1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
% l1dantzig_pd.m
%
% Solves
% min_x ||x||_1 subject to ||A'(Ax-b)||_\infty <= epsilon
%
% Recast as linear program
% min_{x,u} sum(u) s.t. x - u <= 0
% -x - u <= 0
% A'(Ax-b) - epsilon <= 0
% -A'(Ax-b) - epsilon <= 0
% and use primal-dual interior point method.
%
% Usage: xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)
%
% x0 - Nx1 vector, initial point.
%
% A - Either a handle to a function that takes a N vector and returns a K
% vector , or a KxN matrix. If A is a function handle, the algorithm
% operates in "largescale" mode, solving the Newton systems via the
% Conjugate Gradients algorithm.
%
% At - Handle to a function that takes a K vector and returns an N vector.
% If A is a KxN matrix, At is ignored.
%
% b - Kx1 vector of observations.
%
% epsilon - scalar or Nx1 vector of correlation constraints
%
% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if
% the duality gap is less than pdtol).
% Default = 1e-3.
%
% pdmaxiter - Maximum number of primal-dual iterations.
% Default = 50.
%
% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
% Default = 1e-8.
%
% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
% if A is a matrix.
% Default = 200.
%
% Written by: Justin Romberg, Caltech
% Email: jrom@acm.caltech.edu
% Created: October 2005
%
function xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)
largescale = isa(A,'function_handle');
if (nargin < 6), pdtol = 1e-3; end
if (nargin < 7), pdmaxiter = 50; end
if (nargin < 8), cgtol = 1e-8; end
if (nargin < 9), cgmaxiter = 200; end
N = length(x0);
alpha = 0.01;
beta = 0.5;
mu = 10;
gradf0 = [zeros(N,1); ones(N,1)];
% starting point --- make sure that it is feasible
if (largescale)
if (max( abs(At(A(x0) - b)) - epsilon ) > 0)
disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
AAt = @(z) A(At(z));
[w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
if (cgres > 1/2)
disp('A*At is ill-conditioned: cannot find starting point');
xp = x0;
return;
end
x0 = At(w);
end
else
if (max(abs(A'*(A*x0 - b)) - epsilon ) > 0)
disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
opts.POSDEF = true; opts.SYM = true;
[w, hcond] = linsolve(A*A', b, opts);
if (hcond < 1e-14)
disp('A*At is ill-conditioned: cannot find starting point');
xp = x0;
return;
end
x0 = A'*w;
end
end
x = x0;
u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
% set up for the first iteration
if (largescale)
Atr = At(A(x) - b);
else
Atr = A'*(A*x - b);
end
fu1 = x - u;
fu2 = -x - u;
fe1 = Atr - epsilon;
fe2 = -Atr - epsilon;
lamu1 = -(1./fu1);
lamu2 = -(1./fu2);
lame1 = -(1./fe1);
lame2 = -(1./fe2);
if (largescale)
AtAv = At(A(lame1-lame2));
else
AtAv = A'*(A*(lame1-lame2));
end
% sdg = surrogate duality gap
sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];
tau = mu*(4*N)/sdg;
% residuals
rdual = gradf0 + [lamu1-lamu2 + AtAv; -lamu1-lamu2];
rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);
resnorm = norm([rdual; rcent]);
% iterations
pditer = 0;
done = (sdg < pdtol) | (pditer >= pdmaxiter);
while (~done)
% solve for step direction
w2 = - 1 - (1/tau)*(1./fu1 + 1./fu2);
sig11 = -lamu1./fu1 - lamu2./fu2;
sig12 = lamu1./fu1 - lamu2./fu2;
siga = -(lame1./fe1 + lame2./fe2);
sigx = sig11 - sig12.^2./sig11;
if (largescale)
w1 = -(1/tau)*( At(A(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 );
w1p = w1 - (sig12./sig11).*w2;
hpfun = @(z) At(A(siga.*At(A(z)))) + sigx.*z;
[dx, cgres, cgiter] = cgsolve(hpfun, w1p, cgtol, cgmaxiter, 0);
if (cgres > 1/2)
disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
xp = x;
return
end
AtAdx = At(A(dx));
else
w1 = -(1/tau)*( A'*(A*(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 );
w1p = w1 - (sig12./sig11).*w2;
Hp = A'*(A*sparse(diag(siga))*A')*A + diag(sigx);
opts.POSDEF = true; opts.SYM = true;
[dx, hcond] = linsolve(Hp, w1p,opts);
if (hcond < 1e-14)
disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
xp = x;
return
end
AtAdx = A'*(A*dx);
end
du = w2./sig11 - (sig12./sig11).*dx;
dlamu1 = -(lamu1./fu1).*(dx-du) - lamu1 - (1/tau)*1./fu1;
dlamu2 = -(lamu2./fu2).*(-dx-du) - lamu2 - (1/tau)*1./fu2;
dlame1 = -(lame1./fe1).*(AtAdx) - lame1 - (1/tau)*1./fe1;
dlame2 = -(lame2./fe2).*(-AtAdx) - lame2 - (1/tau)*1./fe2;
if (largescale)
AtAdv = At(A(dlame1-dlame2));
else
AtAdv = A'*(A*(dlame1-dlame2));
end
% find minimal step size that keeps ineq functions < 0, dual vars > 0
iu1 = find(dlamu1 < 0); iu2 = find(dlamu2 < 0);
ie1 = find(dlame1 < 0); ie2 = find(dlame2 < 0);
ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0);
smax = min(1,min([...
-lamu1(iu1)./dlamu1(iu1); -lamu2(iu2)./dlamu2(iu2); ...
-lame1(ie1)./dlame1(ie1); -lame2(ie2)./dlame2(ie2); ...
-fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
-fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)) ]));
s = 0.99*smax;
% backtracking line search
suffdec = 0;
backiter = 0;
while (~suffdec)
xp = x + s*dx; up = u + s*du;
Atrp = Atr + s*AtAdx; AtAvp = AtAv + s*AtAdv;
fu1p = fu1 + s*(dx-du); fu2p = fu2 + s*(-dx-du);
fe1p = fe1 + s*AtAdx; fe2p = fe2 + s*(-AtAdx);
lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2;
lame1p = lame1 + s*dlame1; lame2p = lame2 + s*dlame2;
rdp = gradf0 + [lamu1p-lamu2p + AtAvp; -lamu1p-lamu2p];
rcp = -[lamu1p.*fu1p; lamu2p.*fu2p; lame1p.*fe1p; lame2p.*fe2p] - (1/tau);
suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm);
s = beta*s;
backiter = backiter+1;
if (backiter > 32)
disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)')
xp = x;
return
end
end
% setup for next iteration
x = xp; u = up;
Atr = Atrp; AtAv = AtAvp;
fu1 = fu1p; fu2 = fu2p;
fe1 = fe1p; fe2 = fe2p;
lamu1 = lamu1p; lamu2 = lamu2p;
lame1 = lame1p; lame2 = lame2p;
sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];
tau = mu*(4*N)/sdg;
rdual = rdp;
rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);
resnorm = norm([rdual; rcent]);
pditer = pditer+1;
done = (sdg < pdtol) | (pditer >= pdmaxiter);
disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',...
pditer, tau, sum(u), sdg, norm(rdual)));
if (largescale)
disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
else
disp(sprintf(' H11p condition number = %8.3e', hcond));
end
end
|