% l1dantzig_pd.m % % Solves % min_x ||x||_1 subject to ||A'(Ax-b)||_\infty <= epsilon % % Recast as linear program % min_{x,u} sum(u) s.t. x - u <= 0 % -x - u <= 0 % A'(Ax-b) - epsilon <= 0 % -A'(Ax-b) - epsilon <= 0 % and use primal-dual interior point method. % % Usage: xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter) % % x0 - Nx1 vector, initial point. % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % epsilon - scalar or Nx1 vector of correlation constraints % % pdtol - Tolerance for primal-dual algorithm (algorithm terminates if % the duality gap is less than pdtol). % Default = 1e-3. % % pdmaxiter - Maximum number of primal-dual iterations. % Default = 50. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % Default = 1e-8. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % Default = 200. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); if (nargin < 6), pdtol = 1e-3; end if (nargin < 7), pdmaxiter = 50; end if (nargin < 8), cgtol = 1e-8; end if (nargin < 9), cgmaxiter = 200; end N = length(x0); alpha = 0.01; beta = 0.5; mu = 10; gradf0 = [zeros(N,1); ones(N,1)]; % starting point --- make sure that it is feasible if (largescale) if (max( abs(At(A(x0) - b)) - epsilon ) > 0) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); AAt = @(z) A(At(z)); [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = At(w); end else if (max(abs(A'*(A*x0 - b)) - epsilon ) > 0) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); opts.POSDEF = true; opts.SYM = true; [w, hcond] = linsolve(A*A', b, opts); if (hcond < 1e-14) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = A'*w; end end x = x0; u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); % set up for the first iteration if (largescale) Atr = At(A(x) - b); else Atr = A'*(A*x - b); end fu1 = x - u; fu2 = -x - u; fe1 = Atr - epsilon; fe2 = -Atr - epsilon; lamu1 = -(1./fu1); lamu2 = -(1./fu2); lame1 = -(1./fe1); lame2 = -(1./fe2); if (largescale) AtAv = At(A(lame1-lame2)); else AtAv = A'*(A*(lame1-lame2)); end % sdg = surrogate duality gap sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2]; tau = mu*(4*N)/sdg; % residuals rdual = gradf0 + [lamu1-lamu2 + AtAv; -lamu1-lamu2]; rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau); resnorm = norm([rdual; rcent]); % iterations pditer = 0; done = (sdg < pdtol) | (pditer >= pdmaxiter); while (~done) % solve for step direction w2 = - 1 - (1/tau)*(1./fu1 + 1./fu2); sig11 = -lamu1./fu1 - lamu2./fu2; sig12 = lamu1./fu1 - lamu2./fu2; siga = -(lame1./fe1 + lame2./fe2); sigx = sig11 - sig12.^2./sig11; if (largescale) w1 = -(1/tau)*( At(A(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 ); w1p = w1 - (sig12./sig11).*w2; hpfun = @(z) At(A(siga.*At(A(z)))) + sigx.*z; [dx, cgres, cgiter] = cgsolve(hpfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end AtAdx = At(A(dx)); else w1 = -(1/tau)*( A'*(A*(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 ); w1p = w1 - (sig12./sig11).*w2; Hp = A'*(A*sparse(diag(siga))*A')*A + diag(sigx); opts.POSDEF = true; opts.SYM = true; [dx, hcond] = linsolve(Hp, w1p,opts); if (hcond < 1e-14) disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end AtAdx = A'*(A*dx); end du = w2./sig11 - (sig12./sig11).*dx; dlamu1 = -(lamu1./fu1).*(dx-du) - lamu1 - (1/tau)*1./fu1; dlamu2 = -(lamu2./fu2).*(-dx-du) - lamu2 - (1/tau)*1./fu2; dlame1 = -(lame1./fe1).*(AtAdx) - lame1 - (1/tau)*1./fe1; dlame2 = -(lame2./fe2).*(-AtAdx) - lame2 - (1/tau)*1./fe2; if (largescale) AtAdv = At(A(dlame1-dlame2)); else AtAdv = A'*(A*(dlame1-dlame2)); end % find minimal step size that keeps ineq functions < 0, dual vars > 0 iu1 = find(dlamu1 < 0); iu2 = find(dlamu2 < 0); ie1 = find(dlame1 < 0); ie2 = find(dlame2 < 0); ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0); ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0); smax = min(1,min([... -lamu1(iu1)./dlamu1(iu1); -lamu2(iu2)./dlamu2(iu2); ... -lame1(ie1)./dlame1(ie1); -lame2(ie2)./dlame2(ie2); ... -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ... -fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)) ])); s = 0.99*smax; % backtracking line search suffdec = 0; backiter = 0; while (~suffdec) xp = x + s*dx; up = u + s*du; Atrp = Atr + s*AtAdx; AtAvp = AtAv + s*AtAdv; fu1p = fu1 + s*(dx-du); fu2p = fu2 + s*(-dx-du); fe1p = fe1 + s*AtAdx; fe2p = fe2 + s*(-AtAdx); lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; lame1p = lame1 + s*dlame1; lame2p = lame2 + s*dlame2; rdp = gradf0 + [lamu1p-lamu2p + AtAvp; -lamu1p-lamu2p]; rcp = -[lamu1p.*fu1p; lamu2p.*fu2p; lame1p.*fe1p; lame2p.*fe2p] - (1/tau); suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm); s = beta*s; backiter = backiter+1; if (backiter > 32) disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)') xp = x; return end end % setup for next iteration x = xp; u = up; Atr = Atrp; AtAv = AtAvp; fu1 = fu1p; fu2 = fu2p; fe1 = fe1p; fe2 = fe2p; lamu1 = lamu1p; lamu2 = lamu2p; lame1 = lame1p; lame2 = lame2p; sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2]; tau = mu*(4*N)/sdg; rdual = rdp; rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau); resnorm = norm([rdual; rcent]); pditer = pditer+1; done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end