aboutsummaryrefslogtreecommitdiff
path: root/Optimization/l1dantzig_pd.m
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
commit3983eb46023c1edd00617729ba929057fda8d0bd (patch)
tree816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/l1dantzig_pd.m
downloadl1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz
l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/l1dantzig_pd.m')
-rw-r--r--Optimization/l1dantzig_pd.m234
1 files changed, 234 insertions, 0 deletions
diff --git a/Optimization/l1dantzig_pd.m b/Optimization/l1dantzig_pd.m
new file mode 100644
index 0000000..6a57dea
--- /dev/null
+++ b/Optimization/l1dantzig_pd.m
@@ -0,0 +1,234 @@
+% l1dantzig_pd.m
+%
+% Solves
+% min_x ||x||_1 subject to ||A'(Ax-b)||_\infty <= epsilon
+%
+% Recast as linear program
+% min_{x,u} sum(u) s.t. x - u <= 0
+% -x - u <= 0
+% A'(Ax-b) - epsilon <= 0
+% -A'(Ax-b) - epsilon <= 0
+% and use primal-dual interior point method.
+%
+% Usage: xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)
+%
+% x0 - Nx1 vector, initial point.
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% epsilon - scalar or Nx1 vector of correlation constraints
+%
+% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if
+% the duality gap is less than pdtol).
+% Default = 1e-3.
+%
+% pdmaxiter - Maximum number of primal-dual iterations.
+% Default = 50.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+% Default = 1e-8.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+% Default = 200.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+function xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)
+
+largescale = isa(A,'function_handle');
+
+if (nargin < 6), pdtol = 1e-3; end
+if (nargin < 7), pdmaxiter = 50; end
+if (nargin < 8), cgtol = 1e-8; end
+if (nargin < 9), cgmaxiter = 200; end
+
+N = length(x0);
+
+alpha = 0.01;
+beta = 0.5;
+mu = 10;
+
+gradf0 = [zeros(N,1); ones(N,1)];
+
+
+% starting point --- make sure that it is feasible
+if (largescale)
+ if (max( abs(At(A(x0) - b)) - epsilon ) > 0)
+ disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
+ AAt = @(z) A(At(z));
+ [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('A*At is ill-conditioned: cannot find starting point');
+ xp = x0;
+ return;
+ end
+ x0 = At(w);
+ end
+else
+ if (max(abs(A'*(A*x0 - b)) - epsilon ) > 0)
+ disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
+ opts.POSDEF = true; opts.SYM = true;
+ [w, hcond] = linsolve(A*A', b, opts);
+ if (hcond < 1e-14)
+ disp('A*At is ill-conditioned: cannot find starting point');
+ xp = x0;
+ return;
+ end
+ x0 = A'*w;
+ end
+end
+x = x0;
+u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
+
+% set up for the first iteration
+if (largescale)
+ Atr = At(A(x) - b);
+else
+ Atr = A'*(A*x - b);
+end
+fu1 = x - u;
+fu2 = -x - u;
+fe1 = Atr - epsilon;
+fe2 = -Atr - epsilon;
+lamu1 = -(1./fu1);
+lamu2 = -(1./fu2);
+lame1 = -(1./fe1);
+lame2 = -(1./fe2);
+if (largescale)
+ AtAv = At(A(lame1-lame2));
+else
+ AtAv = A'*(A*(lame1-lame2));
+end
+
+% sdg = surrogate duality gap
+sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];
+tau = mu*(4*N)/sdg;
+
+% residuals
+rdual = gradf0 + [lamu1-lamu2 + AtAv; -lamu1-lamu2];
+rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);
+resnorm = norm([rdual; rcent]);
+
+% iterations
+pditer = 0;
+done = (sdg < pdtol) | (pditer >= pdmaxiter);
+while (~done)
+
+ % solve for step direction
+ w2 = - 1 - (1/tau)*(1./fu1 + 1./fu2);
+
+ sig11 = -lamu1./fu1 - lamu2./fu2;
+ sig12 = lamu1./fu1 - lamu2./fu2;
+ siga = -(lame1./fe1 + lame2./fe2);
+ sigx = sig11 - sig12.^2./sig11;
+
+ if (largescale)
+ w1 = -(1/tau)*( At(A(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 );
+ w1p = w1 - (sig12./sig11).*w2;
+ hpfun = @(z) At(A(siga.*At(A(z)))) + sigx.*z;
+ [dx, cgres, cgiter] = cgsolve(hpfun, w1p, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ AtAdx = At(A(dx));
+ else
+ w1 = -(1/tau)*( A'*(A*(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 );
+ w1p = w1 - (sig12./sig11).*w2;
+ Hp = A'*(A*sparse(diag(siga))*A')*A + diag(sigx);
+ opts.POSDEF = true; opts.SYM = true;
+ [dx, hcond] = linsolve(Hp, w1p,opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ AtAdx = A'*(A*dx);
+ end
+ du = w2./sig11 - (sig12./sig11).*dx;
+
+ dlamu1 = -(lamu1./fu1).*(dx-du) - lamu1 - (1/tau)*1./fu1;
+ dlamu2 = -(lamu2./fu2).*(-dx-du) - lamu2 - (1/tau)*1./fu2;
+ dlame1 = -(lame1./fe1).*(AtAdx) - lame1 - (1/tau)*1./fe1;
+ dlame2 = -(lame2./fe2).*(-AtAdx) - lame2 - (1/tau)*1./fe2;
+ if (largescale)
+ AtAdv = At(A(dlame1-dlame2));
+ else
+ AtAdv = A'*(A*(dlame1-dlame2));
+ end
+
+
+ % find minimal step size that keeps ineq functions < 0, dual vars > 0
+ iu1 = find(dlamu1 < 0); iu2 = find(dlamu2 < 0);
+ ie1 = find(dlame1 < 0); ie2 = find(dlame2 < 0);
+ ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
+ ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0);
+ smax = min(1,min([...
+ -lamu1(iu1)./dlamu1(iu1); -lamu2(iu2)./dlamu2(iu2); ...
+ -lame1(ie1)./dlame1(ie1); -lame2(ie2)./dlame2(ie2); ...
+ -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
+ -fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)) ]));
+ s = 0.99*smax;
+
+ % backtracking line search
+ suffdec = 0;
+ backiter = 0;
+ while (~suffdec)
+ xp = x + s*dx; up = u + s*du;
+ Atrp = Atr + s*AtAdx; AtAvp = AtAv + s*AtAdv;
+ fu1p = fu1 + s*(dx-du); fu2p = fu2 + s*(-dx-du);
+ fe1p = fe1 + s*AtAdx; fe2p = fe2 + s*(-AtAdx);
+ lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2;
+ lame1p = lame1 + s*dlame1; lame2p = lame2 + s*dlame2;
+ rdp = gradf0 + [lamu1p-lamu2p + AtAvp; -lamu1p-lamu2p];
+ rcp = -[lamu1p.*fu1p; lamu2p.*fu2p; lame1p.*fe1p; lame2p.*fe2p] - (1/tau);
+ suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm);
+ s = beta*s;
+ backiter = backiter+1;
+ if (backiter > 32)
+ disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)')
+ xp = x;
+ return
+ end
+ end
+
+ % setup for next iteration
+ x = xp; u = up;
+ Atr = Atrp; AtAv = AtAvp;
+ fu1 = fu1p; fu2 = fu2p;
+ fe1 = fe1p; fe2 = fe2p;
+ lamu1 = lamu1p; lamu2 = lamu2p;
+ lame1 = lame1p; lame2 = lame2p;
+
+ sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];
+ tau = mu*(4*N)/sdg;
+
+ rdual = rdp;
+ rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);
+ resnorm = norm([rdual; rcent]);
+
+ pditer = pditer+1;
+ done = (sdg < pdtol) | (pditer >= pdmaxiter);
+
+ disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',...
+ pditer, tau, sum(u), sdg, norm(rdual)));
+ if (largescale)
+ disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end