summaryrefslogtreecommitdiff
path: root/mathemathica_fwm
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2012-08-21 16:44:37 -0400
committerEugeniy Mikhailov <evgmik@gmail.com>2012-08-21 16:44:37 -0400
commite1d512ed3a302d2afaefeba73ac2596a50ad93f4 (patch)
treed71c6d41e253978f35a2da4a0584366734b33382 /mathemathica_fwm
parent777d076eff48df02f8a8588b989c296dea9ef9dc (diff)
downloadNresonances-e1d512ed3a302d2afaefeba73ac2596a50ad93f4.tar.gz
Nresonances-e1d512ed3a302d2afaefeba73ac2596a50ad93f4.zip
changed some substitution to better match our XMDS
Diffstat (limited to 'mathemathica_fwm')
-rwxr-xr-xmathemathica_fwm/RbXMDSSetup.nb6799
1 files changed, 6299 insertions, 500 deletions
diff --git a/mathemathica_fwm/RbXMDSSetup.nb b/mathemathica_fwm/RbXMDSSetup.nb
index a8b7155..5be9fee 100755
--- a/mathemathica_fwm/RbXMDSSetup.nb
+++ b/mathemathica_fwm/RbXMDSSetup.nb
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
-NotebookDataLength[ 619915, 17921]
-NotebookOptionsPosition[ 611739, 17657]
-NotebookOutlinePosition[ 612103, 17673]
-CellTagsIndexPosition[ 612060, 17670]
+NotebookDataLength[ 837516, 23720]
+NotebookOptionsPosition[ 829286, 23455]
+NotebookOutlinePosition[ 829643, 23471]
+CellTagsIndexPosition[ 829600, 23468]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@@ -48,7 +48,9 @@ Cell[BoxData[
RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
RowBox[{"Label", "\[Rule]", "None"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
- RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output"]
+ RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569228654716*^9, 3.554570580065393*^9,
+ 3.554570640474395*^9}]
}, Open ]],
Cell["\<\
@@ -88,7 +90,9 @@ Cell[BoxData[
RowBox[{"NuclearSpin", "\[Rule]",
FractionBox["3", "2"]}], ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Even"}]}], "}"}]], "Output"]
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569228708644*^9, 3.554570580071758*^9,
+ 3.554570640531323*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -128,7 +132,9 @@ Cell[BoxData[
RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
RowBox[{
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569228753817*^9, 3.554570580077429*^9,
+ 3.554570640538216*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -168,7 +174,9 @@ Cell[BoxData[
RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
RowBox[{
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569228807532*^9, 3.554570580143681*^9,
+ 3.554570640583111*^9}]
}, Open ]],
Cell["\<\
@@ -461,7 +469,9 @@ Cell[BoxData[
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"F", "\[Rule]", "2"}], ",",
RowBox[{"M", "\[Rule]",
- RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]], "Output"]
+ RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569229028195*^9, 3.554570580389244*^9,
+ 3.554570640815684*^9}]
}, Open ]],
Cell[TextData[{
@@ -533,7 +543,9 @@ Cell[BoxData[
RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",",
RowBox[{"CartesianCoordinates", "\[Rule]",
RowBox[{"{",
- RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"]
+ RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569229170436*^9, 3.55457058045112*^9,
+ 3.55457064084322*^9}]
}, Open ]],
Cell[TextData[{
@@ -781,7 +793,9 @@ Cell[BoxData[
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]]}], ",",
- "0"}], "}"}]], "Output"]
+ "0"}], "}"}]], "Output",
+ CellChangeTimes->{3.554569229495671*^9, 3.554570580538328*^9,
+ 3.554570640944548*^9}]
}, Open ]],
Cell["\<\
@@ -3228,7 +3242,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569230251296*^9, 3.554570581141229*^9,
+ 3.55457064151823*^9}]
}, Open ]],
Cell["\<\
@@ -3315,7 +3331,9 @@ Cell[BoxData[
ArrowBox[{{-1.04, -0.2}, {-1.96, 3.6416666666666666`}}]},
{PointSize[0.0225]}},
ImagePadding->{{2., 2}, {2., 2.}},
- ImageSize->244.]], "Output"]
+ ImageSize->244.]], "Output",
+ CellChangeTimes->{3.554569231386154*^9, 3.55457058234087*^9,
+ 3.554570642724843*^9}]
}, Open ]],
Cell[TextData[{
@@ -3443,7 +3461,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
- RowBox[{"2", ",", "2"}], "}"}]}], "}"}]], "Output"],
+ RowBox[{"2", ",", "2"}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569231500016*^9, 3.554570582543926*^9,
+ 3.554570642810231*^9}],
Cell[BoxData[
RowBox[{"{",
@@ -3479,7 +3499,9 @@ Cell[BoxData[
RowBox[{
SubscriptBox["\[Omega]", "1"], "-",
SubscriptBox["\[Omega]", "2"], "+",
- SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output"]
+ SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569231500016*^9, 3.554570582543926*^9,
+ 3.5545706428137*^9}]
}, Open ]],
Cell["\<\
@@ -3707,7 +3729,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569231917731*^9, 3.554570582638129*^9,
+ 3.554570642904566*^9}]
}, Open ]],
Cell[TextData[{
@@ -4654,7 +4678,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569232380987*^9, 3.554570583042595*^9,
+ 3.554570643338553*^9}]
}, Open ]],
Cell[TextData[{
@@ -5079,7 +5105,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.55456923250015*^9, 3.554570583105691*^9,
+ 3.55457064341745*^9}]
}, Open ]],
Cell["\<\
@@ -5121,7 +5149,9 @@ Cell[BoxData[
RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], "-",
FractionBox[
RowBox[{"5", " ",
- RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output"]
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output",
+ CellChangeTimes->{3.554569232931236*^9, 3.554570583353512*^9,
+ 3.554570643590957*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -5158,7 +5188,9 @@ Cell[BoxData[
RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], "-",
FractionBox[
RowBox[{"5", " ",
- RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output"]
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output",
+ CellChangeTimes->{3.554569233113956*^9, 3.554570583743719*^9,
+ 3.554570643688447*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -5198,7 +5230,9 @@ Cell[BoxData[
RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"], "-",
FractionBox[
RowBox[{"3", " ",
- RowBox[{"HyperfineB", "[", "2", "]"}]}], "4"]}]], "Output"]
+ RowBox[{"HyperfineB", "[", "2", "]"}]}], "4"]}]], "Output",
+ CellChangeTimes->{3.554569233218096*^9, 3.554570583941672*^9,
+ 3.554570643854974*^9}]
}, Open ]],
Cell[TextData[{
@@ -5560,7 +5594,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569233311345*^9, 3.55457058405622*^9,
+ 3.554570644126044*^9}]
}, Open ]],
Cell["\<\
@@ -5636,7 +5672,9 @@ Cell[BoxData[
ArrowBox[{{-1.04, -0.35000000000000003`}, {-1.96, 3.4916666666666667`}}]},
{PointSize[0.0225]}},
ImagePadding->{{2., 2}, {2., 2.}},
- ImageSize->244.]], "Output"]
+ ImageSize->244.]], "Output",
+ CellChangeTimes->{3.554569233964627*^9, 3.554570584652609*^9,
+ 3.554570644753472*^9}]
}, Open ]],
Cell[TextData[{
@@ -5728,7 +5766,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569234149005*^9, 3.554570584991092*^9,
+ 3.554570644870477*^9}]
}, Open ]],
Cell[TextData[{
@@ -7194,7 +7234,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569234483766*^9, 3.554570585291193*^9,
+ 3.554570645304517*^9}]
}, Open ]],
Cell["Here are the evolution equations.", "Text",
@@ -7219,7 +7261,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
StandardForm],
- ImageSizeCache->{299., {3., 9.}}],
+ ImageSizeCache->{370., {3., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7247,7 +7289,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm],
- ImageSizeCache->{54., {1., 9.}}],
+ ImageSizeCache->{67., {0., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7255,7 +7297,7 @@ Cell[BoxData[
Appearance->Automatic,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, 5/
+ TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, 5/
2],
Enabled->True,
Evaluator->Automatic,
@@ -7266,7 +7308,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm],
- ImageSizeCache->{60., {1., 9.}}],
+ ImageSizeCache->{70., {0., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7274,7 +7316,7 @@ Cell[BoxData[
Appearance->Automatic,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, 5
+ TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, 5
2],
Enabled->True,
Evaluator->Automatic,
@@ -7285,7 +7327,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
- ImageSizeCache->{92., {3., 9.}}],
+ ImageSizeCache->{107., {3., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7293,7 +7335,7 @@ Cell[BoxData[
Appearance->Automatic,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349,
+ TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080,
Infinity],
Enabled->True,
Evaluator->Automatic,
@@ -7304,7 +7346,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
- ImageSizeCache->{78., {1., 9.}}],
+ ImageSizeCache->{100., {0., 10.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7337,8 +7379,10 @@ Cell[BoxData[
DefaultBaseStyle->{},
FrameMargins->5],
Deploy,
- DefaultBaseStyle->"Deploy"],
- Out[87]]], "Output"]
+ DefaultBaseStyle->{Deployed -> True}],
+ Out[24]]], "Output",
+ CellChangeTimes->{3.554569234735175*^9, 3.554570585649747*^9,
+ 3.554570645545612*^9}]
}, Open ]],
Cell["\<\
@@ -7417,7 +7461,9 @@ Cell[BoxData[
RowBox[{
RowBox[{"NaturalWidth", "[", "2", "]"}], "\[Rule]",
RowBox[{"38.11730983274125`", " ", "Hertz", " ", "Mega"}]}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569234847936*^9, 3.554570585762321*^9,
+ 3.554570645605633*^9}]
}, Open ]],
Cell[TextData[{
@@ -7706,7 +7752,9 @@ Cell[BoxData[
RowBox[{"{", "252", "}"}], ",",
RowBox[{"{", "253", "}"}], ",",
RowBox[{"{", "254", "}"}], ",",
- RowBox[{"{", "255", "}"}]}], "}"}]], "Output"]
+ RowBox[{"{", "255", "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569235191469*^9, 3.554570586082753*^9,
+ 3.554570645745293*^9}]
}, Open ]],
Cell["\<\
@@ -8133,7 +8181,9 @@ Cell[BoxData[
RowBox[{"-", "2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
- RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output"]
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569235363716*^9, 3.554570586205265*^9,
+ 3.554570645819355*^9}]
}, Open ]],
Cell["\<\
@@ -8151,135 +8201,5819 @@ Cell[BoxData[
"]"}]], "Input"],
Cell[BoxData[
- InterpretationBox[
- TagBox[
- PanelBox[GridBox[{
- {
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
- StandardForm],
- ImageSizeCache->{299., {3., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None]},
- {
- ItemBox[
- TagBox[
- TagBox[
- TagBox[
- RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
- Column],
- Function[BoxForm`e$,
- TableForm[BoxForm`e$]]],
- Short[#, 5]& ],
- Background->GrayLevel[1],
- BaseStyle->{Deployed -> False},
- Frame->True,
- FrameStyle->GrayLevel[0, 0.2],
- StripOnInput->False]},
- {
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{
RowBox[{
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
- StandardForm],
- ImageSizeCache->{54., {1., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>OutputSizeLimit`ButtonFunction[
- Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, 5/
- 2],
- Enabled->True,
- Evaluator->Automatic,
- Method->"Queued"], "\[ThinSpace]",
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
- StandardForm],
- ImageSizeCache->{60., {1., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>OutputSizeLimit`ButtonFunction[
- Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, 5
- 2],
- Enabled->True,
- Evaluator->Automatic,
- Method->"Queued"], "\[ThinSpace]",
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
- StandardForm],
- ImageSizeCache->{92., {3., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>OutputSizeLimit`ButtonFunction[
- Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349,
- Infinity],
- Enabled->True,
- Evaluator->Automatic,
- Method->"Queued"], "\[ThinSpace]",
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
- StandardForm],
- ImageSizeCache->{78., {1., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>FrontEndExecute[{
- FrontEnd`SetOptions[
- FrontEnd`$FrontEnd,
- FrontEnd`PreferencesSettings -> {"Page" -> "Evaluation"}],
- FrontEnd`FrontEndToken["PreferencesDialog"]}],
- Evaluator->None,
- Method->"Preemptive"]}]}
- },
- GridBoxAlignment->{
- "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxDividers->{
- "Columns" -> {{False}}, "ColumnsIndexed" -> {}, "Rows" -> {{False}},
- "RowsIndexed" -> {}},
- GridBoxItemSize->{
- "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.5599999999999999]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[1.2]},
- Offset[0.2]}, "RowsIndexed" -> {}}],
- DefaultBaseStyle->{},
- FrameMargins->5],
- Deploy,
- DefaultBaseStyle->"Deploy"],
- Out[95]]], "Output"]
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "8"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "6"], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "8"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "4"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "6"], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "4"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569235725104*^9, 3.554570586584882*^9,
+ 3.554570646163539*^9}]
}, Open ]],
Cell["\<\
@@ -8786,7 +14520,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
RowBox[{"-", "2"}]}], "}"}]}]], "[", "0", "]"}], "\[Equal]", "0"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.55456923585014*^9, 3.55457058672761*^9,
+ 3.554570646363813*^9}]
}, Open ]],
Cell[TextData[{
@@ -13381,7 +19117,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569235990839*^9, 3.554570586963279*^9,
+ 3.554570646430884*^9}]
}, Open ]],
Cell[TextData[{
@@ -13592,7 +19330,9 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}],
- "]"}]}]}], ")"}]}]}]}], "}"}]], "Output"]
+ "]"}]}]}], ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569236773899*^9, 3.554570587858582*^9,
+ 3.55457064718746*^9}]
}, Open ]],
Cell["\<\
@@ -13644,7 +19384,9 @@ Cell[BoxData[
RowBox[{"0.005434728849851996`", " ",
RowBox[{"NaturalWidth", "[", "1", "]"}]}],
SuperscriptBox[
- RowBox[{"Energy", "[", "1", "]"}], "2"]]], "Output"]
+ RowBox[{"Energy", "[", "1", "]"}], "2"]]], "Output",
+ CellChangeTimes->{3.554569236930736*^9, 3.554570587946757*^9,
+ 3.554570647232768*^9}]
}, Open ]],
Cell["\<\
@@ -13666,7 +19408,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
- FractionBox[
+ RowBox[{
+ FractionBox["1",
+ SubscriptBox["\[CapitalOmega]", "2"]],
RowBox[{"500.6135764115296`", " ",
RowBox[{"(",
RowBox[{
@@ -13728,9 +19472,10 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}],
- "]"}]}]}], ")"}]}],
- SubscriptBox["\[CapitalOmega]", "2"]]}], ",",
- FractionBox[
+ "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ FractionBox["1",
+ SubscriptBox["\[CapitalOmega]", "2"]],
RowBox[{"250.3067882057648`", " ",
RowBox[{"(",
RowBox[{
@@ -13792,8 +19537,9 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}],
- "]"}]}]}], ")"}]}],
- SubscriptBox["\[CapitalOmega]", "2"]]}], "}"}]], "Output"]
+ "]"}]}]}], ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.55456923715149*^9, 3.554570588024865*^9,
+ 3.554570647273362*^9}]
}, Open ]]
}, Open ]],
@@ -13886,86 +19632,90 @@ Cell[BoxData[{
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
-1:eJxVl3tM1XUYxn9jDSHdws0EdCopG1SsGXNGyvRRQS7K7XA53Dn3c3SVeZkx
-dfZLmmZekBQ3mxcsbWqa6GQhjXyijdL1R2mSqxTRLEEIb1mibVmt79t7trOz
-z57z/C7fy/s+36c8ixz+MMuyTj/6/v3772cBF859J+qHyJX4Bxli++KTow3b
-IY7bHzXOMEK8892OSYatEOvHOp8Rf5CXd2Y/L/4g7+1fniL+IMc3XZwp/iCb
-n1yTIf4A008E8sQf4IS8zU7xB7i850GN+APMbjgeEr+fE4+3LBa/n7O+jFgp
-fj8f33j0TfH7uXXgyGbx+7gpJmKH+H18t7bjffH72Nne85H4fTzQs7BN/F5+
-nOTtFL+XjtSvz4rfy7MRrd3i9/J+f9yA+D2MOTLygfg93P16Q+SPxu9h2OgD
-MYYtD9/6oCrRMN187ve2FMO2m0sWnM4Sv5vjh22tEL+bm7ZMfEX8Lo7fWPeG
-+F1c5uxoFL+L4dP6D4nfxbAVT3wm/6/h/SXTL4hew5FH7ZuiV/NS2K3Ii0av
-ZsThPfGG7SrmL90L0auYcXZEteiVHD1uaJXolexvrtslegUXJXSeEr2CM7Zc
-vip6Ofc13428ZPRyfpqdkGzYLuP5l5oqRS/j4dMb1oteyhfGxp4UvZTtW1bd
-EN3Jc1mDcd1Gd7K2+2iZYbuET/8Ztl30EgaHT+kSvZjrBxrHXDZ6MWu/rfMa
-tovYmeA5JnoRi9bteazH6IUMv9ZSZdgqZGrrs+2iO+jMbJx0xegOThixvcGw
-XcDc6CvDrhq9gLUbZq4zbOezZWhd1E9Gz+fdpoP7hPO4O/tA2jXDuTxzaNct
-4Ry2dbYe/tnwfObcnv7aL4bn8fzuWsd1w9mM6PtiZq/hLL7nXY0+w5k89f2F
-4huGMxgX3W33G57LouiUjgHD6Wzd2Rs7aDiNY9OG1t40PIfD+3vDbxuezaQ1
-g9vuGJ7FuCPXEn8zDE7tOtNyz/AMvlr/ScIfhlOZ0f6y+77haTwW+vDFIcMp
-7Dp5cIXwVDa4k6/L/6dwjONqsVwvmUvTT5yT+09mZOpXXfK8SYxuGTVK3ieR
-yyLrrV8NxzPnmzU7ZHzi+DA99nMZvxjW7ympE47i2m1vdwhbXL13KFH8j2aw
-76HzfwytR0H7Y6CvHwd9/3jo50uEfv4k6PebDP3+ydDjMwV6/KZCj28K9PhP
-g56fVOj5mwE9v4Ce/1nQ62M29PqZA72+0qDXXzr0+pwLvX4zoNd3JvT6z4Le
-H9nQ+2ce9P6aD73/cqD3Zy70/s2D3t/5UPvfzoeuDwXQ9aMAur44oOuPA7o+
-FULXr0Lo+lYEXf+KoOtjMXT9LIauryXQ9bcEuj47oeu3E7q+l0LX/1Lo/lAG
-3T/KoPtLOXT/KYfuTxXQ/asCur9VQve/Suj+WAXdP6ug+2s1dP+thu7PNdD9
-uwa6v7ug+j9cUPnAdkHlB7qg8oXlhsofcEPlE9sNlV/ohso3lgcq/8ADlY9s
-D1R+ogcqX1leqPwFL1Q+s71Q+Y1eqHxn+aDyH3xQ+dD2QeVH+qDypeWHyp/w
-Q+VT2w+VX+mHyrdWACr/IgCVj+0AVH5mACpfW0Go/I0gVD63g1D5nUGofG+F
-oPI/QlDnAzsEdX5gCOp8YS3Af+ePvwAa0amJ
+1:eJxVl3tM1XUYxn9jTqHcpGaKmIXpBpVtypwjJXlU7qIcDnAOd879HJtl2lJT
+Vr+kRaUpXjeWCpY2Nc3LpKFlPtFGUf5hZuQqQjRKFLxnhrZltb5v79nOzj57
+zvO7fC/v+3zH+hY4g1GWZbXf/f79++9nHudnrov9IWY5/kFG+MnCwyMM2xHG
+74gdYxgR3vyuYZxhK8I1o92PiT/Mzs25k8Qf5q0di1PEH2Z8U2ea+MPc/cCK
+LPGHmHEolC/+EMfmr3aLP8Sa7tvV4g8xb+3BiPiDTDjYvFD8QeKL6OXiDzJ6
+1b5XxR9kff/e1eIPsD4uukH8AW5d2vqu+ANsO9r9gfgD3N799BHx+/nxBH+b
++P2cm3ripPj9PBnd0iV+P2/0JfSL38e4vffdFr+P219eG/Oj8fsYNWJnnGHL
+x7r3KpMM08snfj+SYtj28rl57Tni93LckPXl4vfyrfpHnhW/hw+uqn1F/B4u
+crduFL+HMVP7dovfwzsvDvtU/l/NW4umnRa9msP22VdEr2Jn1NWYTqNX8Z49
+jeMN25V0PL8Nolcy8+TQKtErGD9moEb0Cl7aX7tF9HIuSGw7Jno5U+vPnBO9
+jO/svxHzk9HLyNzEZMN2Kb+d31Qhein3tK98Q/QSThk96rDoJWR9zUXR3TyV
+czmhy+huLunaV2rYdvHRP6M2ie5i+N7JHaIXc3X/xvgzRi/m4lO1fsN2EY8n
++g6IXsSiusZB3UYvZHRPc6Vhq5BpLY8fFd1JV/bGcWeN7uRDQzetNWwX0DXy
+7JBzRi/gspVpdYZtB1sG6mJ/NrqD15t2bRfO59u5O9N7DM/lV7u3XBWewyNt
+LXt+MZzHvGvTlvxqeDZPbF3qPG84l4MufJ7WaziHTf6XcMFwNo99f7r4ouEs
+JozssvsMZ9IxMqW133AGD2zuHXXZcDrj0gdeu2J4FmP7egdfMzyTk1Zc3nDd
+8Aw+vLcn6TfD4FMdXzbfNDydL6z5KPGW4VRmHX3G+4fhqfww8v6TA4ZT2HF4
+1zLhKVzvTT4v/5/M0c5zxXK9ZC7LOPSN3H8iB6ce75DnncD7m4cPl/dJ4uKY
+NdYlw+Pp+HpFg4xPAu9kjPpMxi+O9Y2uWuFYvr7hzVZhizXbBpLEf3cGL9xx
+/4+h9Vhofxz09ROg7z8e+vmSoJ9/AvT7TYR+/2To8ZkMPX5ToMc3BXr8p0LP
+Tyr0/E2Hnl9Az/8M6PUxE3r9zIJeX+nQ6y8Den1mQq/fLOj1nQ29/nOg90cu
+9P6ZDb2/8qD33xzo/TkXev/mQ+9vB9T+tx3Q9aEAun4UQNcXJ3T9cULXp0Lo
++lUIXd+KoOtfEXR9LIaun8XQ9dUFXX9d0PXZDV2/3dD1vQS6/pdA94dS6P5R
+Ct1fyqD7Txl0fyqH7l/l0P2tArr/VUD3x0ro/lkJ3V+roPtvFXR/robu39XQ
+/d0D1f/hgcoHtgcqP9ADlS8sL1T+gBcqn9heqPxCL1S+sXxQ+Qc+qHxk+6Dy
+E31Q+cryQ+Uv+KHyme2Hym/0Q+U7KwCV/xCAyod2ACo/MgCVL60gVP5EECqf
+2kGo/MogVL61QlD5FyGofGyHoPIzQ1D52gpD5W+EofK5HYbK7wxD5XsrApX/
+EYE6H9gRqPMDI1DnC2se/jt//AXlpqu7
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
- AxesOrigin->{0, 432.6155},
+ AxesOrigin->{0, 432.61600000000004`},
Frame->True,
PlotRange->{All, All},
PlotRangeClipping->True,
- PlotRangePadding->{Automatic, Automatic}]], "Output"],
+ PlotRangePadding->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.5545692392228*^9, 3.55457059027492*^9,
+ 3.554570649603673*^9}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
-1:eJxtl3lQVWUYh0+Ju2VO6aAJWVIu2HQlK1O7vWyist572bnA3e81NWkR0yzv
-JGW5RCJhkZmYlUsx5ShNOsWLlVo5UqZIy6RIaZFKmVYaZQvP+S9mGOaZhx/c
-c873vd/vXO+Za/dfbhjGR/98//uz+2umznAGAu/+MOPu/1BDatkelVI2LrWb
-wyE9crAgL1QGS0jvi4zdXL8DNkL6cb+v6tK6YA3qTftn/5malEY+qP1rkw82
-rIQlqFsP/1W9phU2gjpkoHf4hZh08gHNqVjzyon74XBA9817oHXWblgCum5N
-r/3VV2eQD+hV+zP73xuA1a/HRt5YG7ELDvt1eGf6Rf+gTPJ+fay02bJ+Jmz4
-NeLkrE+a3ofVp9alY385NTCLvE8LF/Ue2mWFxaefXrl70ZC5sOHTZxaPrE5a
-D6tXLRmLR1ceNPNe/XZdV8GlnjbyXj12rHPDukmw4dWKM/JVeRmsHrV83jq5
-6jU47NG2mEGeP46aeY8uKIpyvDvUTt6jE5p8i9uzYXXr2HuaPlywCg679eGI
-mvIVzbC49dZbNueOHugg79aShLfqCrNgdannVPmA8avhsEsnPD93zztHYHFp
-85VbFvaIzibv0pUHjmZGBeBwqabbHzw55E3Tl2rB4euKjC7Tl+gP1ecndkzP
-wZfo8BbfI989D4eLtfFE47Iep0xfrP0u7orKlVy8U+cl3W3trIENpy7sqI9t
-6zR9kZYc2J1oTc3DF+mepDePR26Gw4UaGjhl8pK++fhC3XbpXEzlbDhcoMsu
-zP8m/aDpC7S9alRT86QCfL4+PcjSPvJV2MjX6Bf+fDnvmkJ8nlb/MSe6/HHY
-yNMO728Ll14wfa625rwx7JmyInyu1nw9u6qyAw7naPVT82YtDjrxORp9dMJa
-20k4nK2np3ZuOjOzGJ+tH3qH5N/aCYcdurLM1na6vATv0GcbUh760ijF23X/
-U60DXloBG3bdUVXXp32AC2/TOn2759cO2LDpmp0Zh76oNX2W/mh80+VuM32W
-jh/T57Yvb3LDmdq/sfZc+B6TM7TmA5vdt9XkdP21od+e3O9NTtPEgNXZdp0H
-TtWz1r2H4rJMnqG9hg6O7D/f5On6nHNRcMMqk6fppVFZ7yxfa3KKttia2lat
-Nnmqbqxb/2LlfSYn6xeflVckWkxO0t/P37nzhn3m50nUbUvfet1iMTlBO8ec
-2fR9sXm98VrTUL934zLz/opWRS+51L7NfJ5WDcTP++TYMHP9TNFDfa2X2evN
-/TZJWyrH/zTyM3P+TVT7mI7YjQcEvl3jzrU5brxrBDxBn4spSxnVdktjN8fp
-E5u290q7OR626JP2lH3L306Gx6m/NfZ42aMmj9bmujsGRzgS4Bitjbpi75ze
-U+ARuuXwhi2ry+PgSL227kGvw3kDfJUuOfvz6bVREbCh8Z5Qy96KJqvx/1+C
-f4+8kOd6IoW/D48Q/j8cI3w+eLTw+eFxwvXBFuH64Tjh/pj3T7h/5v0V7i/X
-M1G4//Ak4fnAU4TnB1uF5wuL8PzheGF9wAnC+oEThfUFJwnrD04W1ic8VVi/
-cIqwvuFpwvqHpwv7A54h7B84VdhfcJqw/+B0YX/CGcL+hTOF/Q1nCfu/m8NZ
-wnzA24T5gbcJ8wVvF+YP3i7MJ7xDmF94hzDf8NnC/MNnC/MRnyPMT3yOMF/x
-ucL8xecK8xmfJ8xvfJ4w3/H5wvzH5wvnA75AOD/wBcL5gi8Uzh98oXA+4YuE
-8wtfJJxveKdw/uGdwvmILxbOT3yxcL7iS4TzF18inM/4UuH8xpcK5zveJZz/
-3SwuoR/w+y6hP3SzuoR+Qd4t9A/ybqGfkHcL/YW8W+g35D1C/yHvEfoReY/Q
-n8h7hH5F3iv0L/JeoZ+R9wr9jbxX6HfkfUL/I+8T+iF5n9AfyfuEfkneL/RP
-8n6hn5L3C/2VvF/ot+QDQv8lHxD6MfmA0J/JB4R+TT4o9G/yQaGfkw8K/Z18
-UOj35ENC/ycfEt4PyIeE9wfyIeH9gvxM4f2j8W9Hv9hQ
+1:eJxtl3lQVWUYh49J7mm2ONiEUmKi2EhEZUbXV0BJWe+97Fy4+0JSUimaY3kb
+bdwqUhkdyErM3CrHGqJRp3wxy1IHk9DInJQoC4fEyqZUzBae81/MMMwzDz+4
+55zve7/fucMzx+a/zjCMz//5/vdn71e5ZjoCgQ87Z039DzWkExqi0ionpvdy
+OKQtLUUFoUpYQvpEZNz2ne/DRkibB31Tn9EDa1DHHam4mp6aQT6oQ+qmtzS+
+CEtQtx3/q2Z9G2wE9cZh3tsvxWSSD2jh0vVvnn0SDgf00Lyn2mbvhyWgW9f3
+O1Jzcxb5gN50JHvw4wFY/XpqzNi6iL1w2K8jujMv+4dnk/frc86j8RvLYcOv
+V87OPtz0Maw+TVk24beuYTnkfepY1H9kjwUWn7YM3b9oxBzY8OlLi8fUpG6E
+1asJWYtjq1vMvFfPvNZTdO16K3mvnj7Tvem1KbDh1SXn5ZuqSlg9mvBl20Nr
+tsJhj3bEDPdcOW3mPbqwJMr+4UgbeY8mNvkWd+TC6ta4R5s+eXo1HHbrooh1
+VS8chcWtD0zanh87zE7erc7kd+uLc2B1qaurasg9a+GwSxNr53y6+ytYXPrF
+0B0L+47KJe/SZc2ns6MCcNipmba5P47YZXqnFh8fXWL0mL5MO2t+n3xuZh6+
+TKNP+J75oRYOl+qes/tW9u0yfakOvrw3Kl/y8Q5dkDrV0r0ONhy68NzOuPZu
+05doWfP+FEt6Ab5ED6Tu+i5yOxwu1sCwpIeWDCzEF2vDtYsx1RVwuEhXXpr/
+bWaL6Yv0+zXjmo5OKcIX6svD4zvGbIGNQo1+5eobBbcU4wu09spjo6qeh40C
+7fT+sXDZJdPna1veO7e9XFmCz9d1pyrWVJ+Dw3m6YcW82YuDDnyeRp5O3GD9
+EQ7n6sUZ3dvOl5fic/WQd0Thvd1w2K7LK63tP1eV4e1a15i24KThxNv00Iq2
+Ia+/ABs2bVxTP6BjiAtv1S36wfWn7LBh1do9Wa1f15k+R7uMb3vc7abP0fjx
+A+47eZcbztZB++ouhh81OUtrD1htvrdMztQ/Ggd9mv+TyRmaHLA42kd74HTt
+tBxsTcgxeZZGjLw1cvB8k2fqK45FwU2rTX5E+8Tm7F61weQ0bbU2ta9ea/IM
+3Vi/8dXqJ0yerq3HqpamxJucqn/+/uCeOz8zP0+KNix79+34eJOT9dfx57f9
+VGpe7zStadx5cPNK8/6Krh+15FrHe+bztGjFtHmHz9xmrp8k/WSgpY9tp7nf
+puiF6nsujDlmzr/J6hx/Lm5zs8D364yL7faxD0fDiZobU5k2rn3Svl5O0Be3
+NfTLuHsaHK/LbWmfrfpgOjxRfW1x31U+a3KsNtc/cGuEPRmO0VVRNxx8rH8S
+HK07jm/asbYqAY7USfVzvXbHnfCNOvC3X37eEBUBG3rBGTpxcGmTxfj/L8F/
+RF7Icz2Rwt+Ho4X/D8cInw+OFT4/PFG4PjheuH44Qbg/5v0T7p95f4X7y/VM
+Fu4/PEV4PnCS8Pxgi/B8YRGePzxNWB9wsrB+4BRhfcGpwvqDpwvrE54hrF84
+TVjf8CPC+odnCvsDniXsHzhd2F9whrD/4Exhf8JZwv6Fs4X9DecI+7+XwznC
+fMBbhfmBtwrzBW8T5g/eJswnvF2YX3i7MN/wucL8w+cK8xGfJ8xPfJ4wX/H5
+wvzF5wvzGV8gzG98gTDf8YXC/McXCucDvkg4P/BFwvmCLxbOH3yxcD7hS4Tz
+C18inG94h3D+4R3C+YgvFc5PfKlwvuLLhPMXXyacz3incH7jncL5jncJ538v
+i0voB/y+S+gPvawuoV+Qdwv9g7xb6Cfk3UJ/Ie8W+g15j9B/yHuEfkTeI/Qn
+8h6hX5H3Cv2LvFfoZ+S9Qn8j7xX6HXmf0P/I+4R+SN4n9EfyPqFfkvcL/ZO8
+X+in5P1CfyXvF/ot+YDQf8kHhH5MPiD0Z/IBoV+TDwr9m3xQ6Ofkg0J/Jx8U
++j35kND/yYeE9wPyIeH9gXxIeL8gXy68f+z7Gzmw2Mg=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
AxesOrigin->{0, 0},
Frame->True,
PlotRange->{All, All},
PlotRangeClipping->True,
- PlotRangePadding->{Automatic, Automatic}]], "Output"]
+ PlotRangePadding->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.5545692392228*^9, 3.55457059027492*^9,
+ 3.554570649616191*^9}]
}, Open ]]
}, Open ]],
@@ -14052,15 +19802,22 @@ Cell[BoxData[
RowBox[{"hb", "[", "2", "]"}], "\[Equal]", "7.85178251911697`*^7"}], ",",
RowBox[{
RowBox[{"g", "[", "2", "]"}], "\[Equal]", "3.8117309832741246`*^7"}]}],
- "}"}]], "Output"],
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569239338414*^9, 3.554570590470957*^9,
+ 3.554570649731472*^9}],
Cell[BoxData["\<\"ha0 = 2.1471788680034824e10;\\nha1 = \
2.558764384495815e9;\\ng1 = 3.612847284945266e7;\\nha2 = 5.323020344462938e8;\
-\\nhb2 = 7.85178251911697e7;\\ng2 = 3.8117309832741246e7;\\n\"\>"], "Output"]
+\\nhb2 = 7.85178251911697e7;\\ng2 = 3.8117309832741246e7;\\n\"\>"], "Output",
+ CellChangeTimes->{3.554569239338414*^9, 3.554570590470957*^9,
+ 3.554570649796009*^9}]
}, Open ]],
Cell["Convert equations to C form", "Text"],
+Cell[BoxData[""], "Input",
+ CellChangeTimes->{{3.554568964254851*^9, 3.554568970665412*^9}}],
+
Cell[CellGroupData[{
Cell[BoxData[{
@@ -14131,7 +19888,9 @@ Cell[BoxData[
RowBox[{"-", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
- RowBox[{"-", "2"}]}], "}"}]}], "}"}]], "Output"],
+ RowBox[{"-", "2"}]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.55456923939103*^9, 3.55457059056514*^9,
+ 3.55457064995498*^9}],
Cell[BoxData[
RowBox[{"{",
@@ -14190,7 +19949,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
RowBox[{"-", "2"}]}], "}"}], "\[Rule]", "\<\"16\"\>"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.55456923939103*^9, 3.55457059056514*^9,
+ 3.554570649957038*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -14344,17 +20105,21 @@ Cell[BoxData[{
RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
RowBox[{
RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",",
+ RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<a\>\""}]}], ",",
RowBox[{
RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
"\[RuleDelayed]",
- RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
+ RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<ac\>\""}]}], ",",
RowBox[{
RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<d\>\"", "<>", "a"}]}], ",",
+ RowBox[{"\"\<delta\>\"", "<>", "a"}]}], ",",
RowBox[{
RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
+ RowBox[{"\"\<Kvec\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input",
+ CellChangeTimes->{{3.55456914848632*^9, 3.554569164767181*^9},
+ 3.554569287340058*^9, {3.554569321671209*^9, 3.554569324047068*^9}, {
+ 3.554569429250296*^9, 3.554569499438798*^9}, {3.554569642022385*^9,
+ 3.554569642695839*^9}}],
Cell[BoxData[
RowBox[{"{",
@@ -16009,87 +21774,97 @@ Cell[BoxData[
RowBox[{"r", "[",
RowBox[{"\<\"16\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
RowBox[{"Wc", "[", "4", "]"}]}],
- RowBox[{"4", " ", "rt6"}]]}], ")"}]}]}]}]}], "}"}]], "Output"],
+ RowBox[{"4", " ", "rt6"}]]}], ")"}]}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569170819231*^9, 3.554569248122409*^9,
+ 3.554569293506631*^9, 3.554569324777101*^9, 3.554569450471414*^9,
+ 3.554569500532859*^9, 3.554569643540884*^9, 3.554570590676364*^9,
+ 3.554570650112442*^9}],
Cell[BoxData["\<\"rt6 = 2.449489742783178;\\nrt3 = 1.7320508075688772;\\nrt2 \
= 1.4142135623730951;\\ndr0101_dt = gt/8. - gt*r0101 + (g1*r0909)/2. + \
-(g2*r1313)/6. - i*((r0113*E4)/(4.*rt6) - (r1301*Ec4)/(4.*rt6));\\ndr0113_dt = \
-(-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - d1 + d2 - d3 \
-- v*k1 + v*k2 - v*k3)*r0113 + (r0101*Ec4)/(4.*rt6) - \
-(r1313*Ec4)/(4.*rt6));\\ndr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + \
-(g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4)/8. - \
-(r1402*Ec4)/8.);\\ndr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - \
-i*((WL*r0214)/2. - (-d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0214 - \
-(r0206*Ec3)/(8.*rt3) + (r0202*Ec4)/8. - (r1414*Ec4)/8.);\\ndr0303_dt = gt/8. \
-- gt*r0303 + (g1*r0909)/12. + (g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. \
-+ (g2*r1515)/4. - i*((r0309*E1)/(4.*rt6) + (r0315*E4)/8. - \
-(r0903*Ec1)/(4.*rt6) - (r1503*Ec4)/8.);\\ndr0309_dt = (-(gt*r0309) - (gt + \
-g1)*r0309)/2. - i*(-((-WL/6. - d1 - v*k1)*r0309) + (r0303*Ec1)/(4.*rt6) - \
-(r0909*Ec1)/(4.*rt6) - (r0307*Ec2)/(4.*rt6) - (r1509*Ec4)/8.);\\ndr0315_dt = \
-(-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - d1 + d2 - d3 - v*k1 + \
-v*k2 - v*k3)*r0315) - (r0915*Ec1)/(4.*rt6) - (r0307*Ec3)/8. + (r0303*Ec4)/8. \
-- (r1515*Ec4)/8.);\\ndr0404_dt = gt/8. - gt*r0404 + (g1*r1010)/4. + \
-(g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + (g2*r1616)/6. - \
-i*((r0410*E1)/(4.*rt2) + (r0416*E4)/(4.*rt6) - (r1004*Ec1)/(4.*rt2) - \
-(r1604*Ec4)/(4.*rt6));\\ndr0410_dt = (-(gt*r0410) - (gt + g1)*r0410)/2. - \
-i*(-(WL*r0410)/2. + (d1 + v*k1)*r0410 + (r0404*Ec1)/(4.*rt2) - \
-(r1010*Ec1)/(4.*rt2) - (r0408*Ec2)/(4.*rt6) - \
-(r1610*Ec4)/(4.*rt6));\\ndr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - \
-i*(-(WL*r0416)/2. - ((-4*WL)/3. - d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0416 - \
-(r1016*Ec1)/(4.*rt2) - (r0408*Ec3)/(4.*rt2) + (r0404*Ec4)/(4.*rt6) - \
-(r1616*Ec4)/(4.*rt6));\\ndr0505_dt = gt/8. - gt*r0505 + (g1*r1111)/2. + \
-(g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1)/4. - \
-(r1105*Ec1)/4.);\\ndr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - \
-i*(-(WL*r0511) - (WL/6. - d1 - v*k1)*r0511 + (r0505*Ec1)/4. - \
-(r1111*Ec1)/4.);\\ndr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - d1 \
-+ d2 - v*k1 + v*k2)*r0602 + (r0614*E4)/8. + \
-(r1402*Ec3)/(8.*rt3));\\ndr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + \
-(g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3)/(8.*rt3) + \
-(r1406*Ec3)/(8.*rt3));\\ndr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - \
-i*((-WL/2. - d1 + d2 - v*k1 + v*k2)*r0614 - (-d1 + d2 - d3 - v*k1 + v*k2 - \
-v*k3)*r0614 - (r0606*Ec3)/(8.*rt3) + (r1414*Ec3)/(8.*rt3) + \
-(r0602*Ec4)/8.);\\ndr0703_dt = -(gt*r0703) - i*((-d1 + d2 - v*k1 + \
-v*k2)*r0703 + (r0709*E1)/(4.*rt6) + (r0715*E4)/8. + (r0903*Ec2)/(4.*rt6) + \
-(r1503*Ec3)/8.);\\ndr0707_dt = gt/8. - gt*r0707 + (g1*r0909)/12. + \
-(g1*r1111)/12. + (g2*r1313)/4. + (g2*r1414)/3. + (g2*r1515)/4. - \
-i*(-(r0709*E2)/(4.*rt6) - (r0715*E3)/8. + (r0907*Ec2)/(4.*rt6) + \
-(r1507*Ec3)/8.);\\ndr0709_dt = (-(gt*r0709) - (gt + g1)*r0709)/2. - \
-i*(-((-WL/6. - d1 - v*k1)*r0709) + (-d1 + d2 - v*k1 + v*k2)*r0709 + \
-(r0703*Ec1)/(4.*rt6) - (r0707*Ec2)/(4.*rt6) + (r0909*Ec2)/(4.*rt6) + \
-(r1509*Ec3)/8.);\\ndr0715_dt = (-(gt*r0715) - (gt + g2)*r0715)/2. - i*((-d1 + \
-d2 - v*k1 + v*k2)*r0715 - ((-2*WL)/3. - d1 + d2 - d3 - v*k1 + v*k2 - \
-v*k3)*r0715 + (r0915*Ec2)/(4.*rt6) - (r0707*Ec3)/8. + (r1515*Ec3)/8. + \
-(r0703*Ec4)/8.);\\ndr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - d1 + \
-d2 - v*k1 + v*k2)*r0804 + (r0810*E1)/(4.*rt2) + (r0816*E4)/(4.*rt6) + \
-(r1004*Ec2)/(4.*rt6) + (r1604*Ec3)/(4.*rt2));\\ndr0808_dt = gt/8. - gt*r0808 \
-+ (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + \
-(g2*r1616)/2. - i*(-(r0810*E2)/(4.*rt6) - (r0816*E3)/(4.*rt2) + \
-(r1008*Ec2)/(4.*rt6) + (r1608*Ec3)/(4.*rt2));\\ndr0810_dt = (-(gt*r0810) - \
-(gt + g1)*r0810)/2. - i*((d1 + v*k1)*r0810 + (WL/2. - d1 + d2 - v*k1 + \
-v*k2)*r0810 + (r0804*Ec1)/(4.*rt2) - (r0808*Ec2)/(4.*rt6) + \
-(r1010*Ec2)/(4.*rt6) + (r1610*Ec3)/(4.*rt2));\\ndr0816_dt = (-(gt*r0816) - \
-(gt + g2)*r0816)/2. - i*((WL/2. - d1 + d2 - v*k1 + v*k2)*r0816 - ((-4*WL)/3. \
-- d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0816 + (r1016*Ec2)/(4.*rt6) - \
-(r0808*Ec3)/(4.*rt2) + (r1616*Ec3)/(4.*rt2) + \
-(r0804*Ec4)/(4.*rt6));\\ndr0909_dt = -((gt + g1)*r0909) - \
-i*(-(r0309*E1)/(4.*rt6) + (r0709*E2)/(4.*rt6) + (r0903*Ec1)/(4.*rt6) - \
-(r0907*Ec2)/(4.*rt6));\\ndr0915_dt = (-((gt + g1)*r0915) - (gt + \
-g2)*r0915)/2. - i*((-WL/6. - d1 - v*k1)*r0915 - ((-2*WL)/3. - d1 + d2 - d3 - \
-v*k1 + v*k2 - v*k3)*r0915 - (r0315*E1)/(4.*rt6) + (r0715*E2)/(4.*rt6) - \
-(r0907*Ec3)/8. + (r0903*Ec4)/8.);\\ndr1010_dt = -((gt + g1)*r1010) - \
-i*(-(r0410*E1)/(4.*rt2) + (r0810*E2)/(4.*rt6) + (r1004*Ec1)/(4.*rt2) - \
-(r1008*Ec2)/(4.*rt6));\\ndr1016_dt = (-((gt + g1)*r1016) - (gt + \
-g2)*r1016)/2. - i*(-((d1 + v*k1)*r1016) - ((-4*WL)/3. - d1 + d2 - d3 - v*k1 + \
-v*k2 - v*k3)*r1016 - (r0416*E1)/(4.*rt2) + (r0816*E2)/(4.*rt6) - \
-(r1008*Ec3)/(4.*rt2) + (r1004*Ec4)/(4.*rt6));\\ndr1111_dt = -((gt + \
-g1)*r1111) - i*(-(r0511*E1)/4. + (r1105*Ec1)/4.);\\ndr1313_dt = -((gt + \
-g2)*r1313) - i*(-(r0113*E4)/(4.*rt6) + (r1301*Ec4)/(4.*rt6));\\ndr1414_dt = \
--((gt + g2)*r1414) - i*((r0614*E3)/(8.*rt3) - (r0214*E4)/8. - \
-(r1406*Ec3)/(8.*rt3) + (r1402*Ec4)/8.);\\ndr1515_dt = -((gt + g2)*r1515) - \
-i*((r0715*E3)/8. - (r0315*E4)/8. - (r1507*Ec3)/8. + \
-(r1503*Ec4)/8.);\\ndr1616_dt = -((gt + g2)*r1616) - i*((r0816*E3)/(4.*rt2) - \
-(r0416*E4)/(4.*rt6) - (r1608*Ec3)/(4.*rt2) + (r1604*Ec4)/(4.*rt6));\\n\"\>"], \
-"Output"]
+(g2*r1313)/6. - i*((r0113*E4a)/(4.*rt6) - (r1301*E4ac)/(4.*rt6));\\ndr0113_dt \
+= (-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - delta1 + \
+delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0113 + (r0101*E4ac)/(4.*rt6) \
+- (r1313*E4ac)/(4.*rt6));\\ndr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + \
+(g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4a)/8. - \
+(r1402*E4ac)/8.);\\ndr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - \
+i*((WL*r0214)/2. - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - \
+v*Kvec3)*r0214 - (r0206*E3ac)/(8.*rt3) + (r0202*E4ac)/8. - \
+(r1414*E4ac)/8.);\\ndr0303_dt = gt/8. - gt*r0303 + (g1*r0909)/12. + \
+(g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1515)/4. - \
+i*((r0309*E1a)/(4.*rt6) + (r0315*E4a)/8. - (r0903*E1ac)/(4.*rt6) - \
+(r1503*E4ac)/8.);\\ndr0309_dt = (-(gt*r0309) - (gt + g1)*r0309)/2. - \
+i*(-((-WL/6. - delta1 - v*Kvec1)*r0309) + (r0303*E1ac)/(4.*rt6) - \
+(r0909*E1ac)/(4.*rt6) - (r0307*E2ac)/(4.*rt6) - (r1509*E4ac)/8.);\\ndr0315_dt \
+= (-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - delta1 + delta2 - \
+delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0315) - (r0915*E1ac)/(4.*rt6) - \
+(r0307*E3ac)/8. + (r0303*E4ac)/8. - (r1515*E4ac)/8.);\\ndr0404_dt = gt/8. - \
+gt*r0404 + (g1*r1010)/4. + (g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + \
+(g2*r1616)/6. - i*((r0410*E1a)/(4.*rt2) + (r0416*E4a)/(4.*rt6) - \
+(r1004*E1ac)/(4.*rt2) - (r1604*E4ac)/(4.*rt6));\\ndr0410_dt = (-(gt*r0410) - \
+(gt + g1)*r0410)/2. - i*(-(WL*r0410)/2. + (delta1 + v*Kvec1)*r0410 + \
+(r0404*E1ac)/(4.*rt2) - (r1010*E1ac)/(4.*rt2) - (r0408*E2ac)/(4.*rt6) - \
+(r1610*E4ac)/(4.*rt6));\\ndr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - \
+i*(-(WL*r0416)/2. - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + \
+v*Kvec2 - v*Kvec3)*r0416 - (r1016*E1ac)/(4.*rt2) - (r0408*E3ac)/(4.*rt2) + \
+(r0404*E4ac)/(4.*rt6) - (r1616*E4ac)/(4.*rt6));\\ndr0505_dt = gt/8. - \
+gt*r0505 + (g1*r1111)/2. + (g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1a)/4. \
+- (r1105*E1ac)/4.);\\ndr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - \
+i*(-(WL*r0511) - (WL/6. - delta1 - v*Kvec1)*r0511 + (r0505*E1ac)/4. - \
+(r1111*E1ac)/4.);\\ndr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - \
+delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0602 + (r0614*E4a)/8. + \
+(r1402*E3ac)/(8.*rt3));\\ndr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + \
+(g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3a)/(8.*rt3) + \
+(r1406*E3ac)/(8.*rt3));\\ndr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - \
+i*((-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0614 - (-delta1 + delta2 - \
+delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0614 - (r0606*E3ac)/(8.*rt3) + \
+(r1414*E3ac)/(8.*rt3) + (r0602*E4ac)/8.);\\ndr0703_dt = -(gt*r0703) - \
+i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0703 + (r0709*E1a)/(4.*rt6) + \
+(r0715*E4a)/8. + (r0903*E2ac)/(4.*rt6) + (r1503*E3ac)/8.);\\ndr0707_dt = \
+gt/8. - gt*r0707 + (g1*r0909)/12. + (g1*r1111)/12. + (g2*r1313)/4. + \
+(g2*r1414)/3. + (g2*r1515)/4. - i*(-(r0709*E2a)/(4.*rt6) - (r0715*E3a)/8. + \
+(r0907*E2ac)/(4.*rt6) + (r1507*E3ac)/8.);\\ndr0709_dt = (-(gt*r0709) - (gt + \
+g1)*r0709)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0709) + (-delta1 + delta2 - \
+v*Kvec1 + v*Kvec2)*r0709 + (r0703*E1ac)/(4.*rt6) - (r0707*E2ac)/(4.*rt6) + \
+(r0909*E2ac)/(4.*rt6) + (r1509*E3ac)/8.);\\ndr0715_dt = (-(gt*r0715) - (gt + \
+g2)*r0715)/2. - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0715 - ((-2*WL)/3. \
+- delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0715 + \
+(r0915*E2ac)/(4.*rt6) - (r0707*E3ac)/8. + (r1515*E3ac)/8. + (r0703*E4ac)/8.);\
+\\ndr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - delta1 + delta2 - \
+v*Kvec1 + v*Kvec2)*r0804 + (r0810*E1a)/(4.*rt2) + (r0816*E4a)/(4.*rt6) + \
+(r1004*E2ac)/(4.*rt6) + (r1604*E3ac)/(4.*rt2));\\ndr0808_dt = gt/8. - \
+gt*r0808 + (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + \
+(g2*r1616)/2. - i*(-(r0810*E2a)/(4.*rt6) - (r0816*E3a)/(4.*rt2) + \
+(r1008*E2ac)/(4.*rt6) + (r1608*E3ac)/(4.*rt2));\\ndr0810_dt = (-(gt*r0810) - \
+(gt + g1)*r0810)/2. - i*((delta1 + v*Kvec1)*r0810 + (WL/2. - delta1 + delta2 \
+- v*Kvec1 + v*Kvec2)*r0810 + (r0804*E1ac)/(4.*rt2) - (r0808*E2ac)/(4.*rt6) + \
+(r1010*E2ac)/(4.*rt6) + (r1610*E3ac)/(4.*rt2));\\ndr0816_dt = (-(gt*r0816) - \
+(gt + g2)*r0816)/2. - i*((WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0816 \
+- ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0816 \
++ (r1016*E2ac)/(4.*rt6) - (r0808*E3ac)/(4.*rt2) + (r1616*E3ac)/(4.*rt2) + \
+(r0804*E4ac)/(4.*rt6));\\ndr0909_dt = -((gt + g1)*r0909) - \
+i*(-(r0309*E1a)/(4.*rt6) + (r0709*E2a)/(4.*rt6) + (r0903*E1ac)/(4.*rt6) - \
+(r0907*E2ac)/(4.*rt6));\\ndr0915_dt = (-((gt + g1)*r0915) - (gt + \
+g2)*r0915)/2. - i*((-WL/6. - delta1 - v*Kvec1)*r0915 - ((-2*WL)/3. - delta1 + \
+delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0915 - (r0315*E1a)/(4.*rt6) + \
+(r0715*E2a)/(4.*rt6) - (r0907*E3ac)/8. + (r0903*E4ac)/8.);\\ndr1010_dt = \
+-((gt + g1)*r1010) - i*(-(r0410*E1a)/(4.*rt2) + (r0810*E2a)/(4.*rt6) + \
+(r1004*E1ac)/(4.*rt2) - (r1008*E2ac)/(4.*rt6));\\ndr1016_dt = (-((gt + \
+g1)*r1016) - (gt + g2)*r1016)/2. - i*(-((delta1 + v*Kvec1)*r1016) - \
+((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r1016 - \
+(r0416*E1a)/(4.*rt2) + (r0816*E2a)/(4.*rt6) - (r1008*E3ac)/(4.*rt2) + \
+(r1004*E4ac)/(4.*rt6));\\ndr1111_dt = -((gt + g1)*r1111) - i*(-(r0511*E1a)/4. \
++ (r1105*E1ac)/4.);\\ndr1313_dt = -((gt + g2)*r1313) - \
+i*(-(r0113*E4a)/(4.*rt6) + (r1301*E4ac)/(4.*rt6));\\ndr1414_dt = -((gt + \
+g2)*r1414) - i*((r0614*E3a)/(8.*rt3) - (r0214*E4a)/8. - (r1406*E3ac)/(8.*rt3) \
++ (r1402*E4ac)/8.);\\ndr1515_dt = -((gt + g2)*r1515) - i*((r0715*E3a)/8. - \
+(r0315*E4a)/8. - (r1507*E3ac)/8. + (r1503*E4ac)/8.);\\ndr1616_dt = -((gt + \
+g2)*r1616) - i*((r0816*E3a)/(4.*rt2) - (r0416*E4a)/(4.*rt6) - \
+(r1608*E3ac)/(4.*rt2) + (r1604*E4ac)/(4.*rt6));\\n\"\>"], "Output",
+ CellChangeTimes->{3.554569170819231*^9, 3.554569248122409*^9,
+ 3.554569293506631*^9, 3.554569324777101*^9, 3.554569450471414*^9,
+ 3.554569500532859*^9, 3.554569643540884*^9, 3.554570590676364*^9,
+ 3.554570650128499*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -16102,8 +21877,10 @@ Cell[BoxData[
RowBox[{"NotebookDirectory", "[", "]"}], ",",
"\"\<RbEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]], "Input"],
-Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
-mathemathica_fwm\\\\RbEquations.txt\"\>"], "Output"]
+Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/\
+RbEquations.txt\"\>"], "Output",
+ CellChangeTimes->{3.554569572058956*^9, 3.554569659570355*^9,
+ 3.554570590813968*^9, 3.55457065021187*^9}]
}, Open ]],
Cell["\<\
@@ -16233,7 +22010,7 @@ Cell[BoxData[{
RowBox[{
"\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
"~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
+ RowBox[{"\"\<complex r\>\"", "<>", "a", "<>", "b"}]}], ",",
RowBox[{
RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
"\[RuleDelayed]",
@@ -16257,7 +22034,8 @@ Cell[BoxData[{
RowBox[{"\"\<d\>\"", "<>", "a"}]}], ",",
RowBox[{
RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
+ RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input",
+ CellChangeTimes->{{3.55456986886158*^9, 3.554569871147471*^9}}],
Cell[BoxData[
RowBox[{"{",
@@ -16417,18 +22195,28 @@ Cell[BoxData[
RowBox[{
RowBox[{"r", "[",
RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]", "0"}]}],
- "}"}]], "Output"],
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569872033716*^9, 3.554570590915751*^9,
+ 3.554570650264164*^9}],
-Cell[BoxData["\<\"r0101 = 0.125;\\nr0113 = 0;\\nr0202 = 0.125;\\nr0206 = \
-0;\\nr0214 = 0;\\nr0303 = 0.125;\\nr0307 = 0;\\nr0309 = 0;\\nr0315 = \
-0;\\nr0404 = 0.125;\\nr0408 = 0;\\nr0410 = 0;\\nr0416 = 0;\\nr0505 = \
-0.125;\\nr0511 = 0;\\nr0602 = 0;\\nr0606 = 0.125;\\nr0614 = 0;\\nr0703 = \
-0;\\nr0707 = 0.125;\\nr0709 = 0;\\nr0715 = 0;\\nr0804 = 0;\\nr0808 = \
-0.125;\\nr0810 = 0;\\nr0816 = 0;\\nr0903 = 0;\\nr0907 = 0;\\nr0909 = \
-0;\\nr0915 = 0;\\nr1004 = 0;\\nr1008 = 0;\\nr1010 = 0;\\nr1016 = 0;\\nr1105 = \
-0;\\nr1111 = 0;\\nr1301 = 0;\\nr1313 = 0;\\nr1402 = 0;\\nr1406 = 0;\\nr1414 = \
-0;\\nr1503 = 0;\\nr1507 = 0;\\nr1509 = 0;\\nr1515 = 0;\\nr1604 = 0;\\nr1608 = \
-0;\\nr1610 = 0;\\nr1616 = 0;\\n\"\>"], "Output"]
+Cell[BoxData["\<\"complex r0101 = 0.125;\\ncomplex r0113 = 0;\\ncomplex r0202 \
+= 0.125;\\ncomplex r0206 = 0;\\ncomplex r0214 = 0;\\ncomplex r0303 = \
+0.125;\\ncomplex r0307 = 0;\\ncomplex r0309 = 0;\\ncomplex r0315 = \
+0;\\ncomplex r0404 = 0.125;\\ncomplex r0408 = 0;\\ncomplex r0410 = \
+0;\\ncomplex r0416 = 0;\\ncomplex r0505 = 0.125;\\ncomplex r0511 = \
+0;\\ncomplex r0602 = 0;\\ncomplex r0606 = 0.125;\\ncomplex r0614 = \
+0;\\ncomplex r0703 = 0;\\ncomplex r0707 = 0.125;\\ncomplex r0709 = \
+0;\\ncomplex r0715 = 0;\\ncomplex r0804 = 0;\\ncomplex r0808 = \
+0.125;\\ncomplex r0810 = 0;\\ncomplex r0816 = 0;\\ncomplex r0903 = \
+0;\\ncomplex r0907 = 0;\\ncomplex r0909 = 0;\\ncomplex r0915 = 0;\\ncomplex \
+r1004 = 0;\\ncomplex r1008 = 0;\\ncomplex r1010 = 0;\\ncomplex r1016 = \
+0;\\ncomplex r1105 = 0;\\ncomplex r1111 = 0;\\ncomplex r1301 = 0;\\ncomplex \
+r1313 = 0;\\ncomplex r1402 = 0;\\ncomplex r1406 = 0;\\ncomplex r1414 = \
+0;\\ncomplex r1503 = 0;\\ncomplex r1507 = 0;\\ncomplex r1509 = 0;\\ncomplex \
+r1515 = 0;\\ncomplex r1604 = 0;\\ncomplex r1608 = 0;\\ncomplex r1610 = \
+0;\\ncomplex r1616 = 0;\\n\"\>"], "Output",
+ CellChangeTimes->{3.554569872033716*^9, 3.554570590915751*^9,
+ 3.554570650268968*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -16441,8 +22229,10 @@ Cell[BoxData[
RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<RbInits.txt\>\""}],
"]"}], ",", "%"}], "]"}]], "Input"],
-Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
-mathemathica_fwm\\\\RbInits.txt\"\>"], "Output"]
+Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/RbInits.\
+txt\"\>"], "Output",
+ CellChangeTimes->{3.554569877772325*^9, 3.554570591015199*^9,
+ 3.554570650348909*^9}]
}, Open ]],
Cell["\<\
@@ -16963,7 +22753,8 @@ Cell[BoxData[
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"F", "\[Rule]", "2"}], ",",
RowBox[{"M", "\[Rule]",
- RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]}], "}"}]], "Output"]
+ RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.55457059139513*^9, 3.554570650711194*^9}]
}, Open ]],
Cell["\<\
@@ -17206,7 +22997,8 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}]}],
- "}"}]}], "}"}]], "Output"]
+ "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554570591821216*^9, 3.554570651056006*^9}]
}, Open ]],
Cell["\<\
@@ -17266,7 +23058,8 @@ Cell[BoxData[
RowBox[{"0", ",", "0", ",",
RowBox[{
SubscriptBox["\[CapitalOmega]", "4"], "[", "z", "]"}]}], "}"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554570591897082*^9, 3.554570651100388*^9}]
}, Open ]],
Cell["\<\
@@ -17461,7 +23254,8 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
- ")"}]}]}]}], "}"}]], "Output"]
+ ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554570592011115*^9, 3.554570651181306*^9}]
}, Open ]],
Cell["\<\
@@ -17630,7 +23424,8 @@ Cell[BoxData[
RowBox[{"2.449489742783178`", " ",
RowBox[{"r", "[",
RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}]}], ")"}]}]}]}],
- "}"}]], "Output"],
+ "}"}]], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651251726*^9}],
Cell[BoxData["\<\"dW(1) == 0.16666666666666666*eta(1)*(2.449489742783178*r(\\\
\"03\\\",\\\"09\\\") + 4.242640687119286*r(\\\"04\\\",\\\"10\\\") + \
@@ -17641,24 +23436,27 @@ r(\\\"08\\\",\\\"10\\\")) - Lt[E2];\\ndW(3) == \
3.*r(\\\"07\\\",\\\"15\\\") + 4.242640687119286*r(\\\"08\\\",\\\"16\\\")) - \
Lt[E3];\\ndW(4) == (4*eta(2)*(2.449489742783178*r(\\\"01\\\",\\\"13\\\") + \
3*r(\\\"02\\\",\\\"14\\\") + 3*r(\\\"03\\\",\\\"15\\\") + \
-2.449489742783178*r(\\\"04\\\",\\\"16\\\")))/3. - Lt[E4];\\n\"\>"], "Output"],
+2.449489742783178*r(\\\"04\\\",\\\"16\\\")))/3. - Lt[E4];\\n\"\>"], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651253779*^9}],
Cell[BoxData["\<\"dE1_dz = 0.16666666666666666*eta1*(2.449489742783178*r0309 \
+ 4.242640687119286*r0410 + 6.*r0511) - Lt[E1];\\ndE2_dz = \
-0.8164965809277261*eta1*(r0709 + r0810) - Lt[E2];\\ndE3_dz = \
-1.*eta2*(1.7320508075688772*r0614 + 3.*r0715 + 4.242640687119286*r0816) - \
Lt[E3];\\ndE4_dz = (4*eta2*(2.449489742783178*r0113 + 3*r0214 + 3*r0315 + \
-2.449489742783178*r0416))/3. - Lt[E4];\\n\"\>"], "Output"],
+2.449489742783178*r0416))/3. - Lt[E4];\\n\"\>"], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651255555*^9}],
-Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
-mathemathica_fwm\\\\RbPropEquations.txt\"\>"], "Output"]
+Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/\
+RbPropEquations.txt\"\>"], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651290865*^9}]
}, Open ]]
}, Open ]]
},
-WindowSize->{1104, 893},
-WindowMargins->{{17, Automatic}, {Automatic, 8}},
+WindowSize->{956, 980},
+WindowMargins->{{Automatic, 0}, {26, Automatic}},
ShowSelection->True,
-FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
+FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
@@ -17673,254 +23471,255 @@ CellTagsIndex->{}
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
-Cell[567, 22, 43, 0, 71, "Section"],
-Cell[613, 24, 33, 0, 29, "Text"],
-Cell[649, 26, 138, 3, 31, "Input",
+Cell[567, 22, 43, 0, 74, "Section"],
+Cell[613, 24, 33, 0, 30, "Text"],
+Cell[649, 26, 138, 3, 30, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->2058623809],
-Cell[790, 31, 82, 2, 29, "Text"],
+Cell[790, 31, 82, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[897, 37, 144, 3, 31, "Input"],
-Cell[1044, 42, 382, 8, 30, "Output"]
+Cell[897, 37, 144, 3, 30, "Input"],
+Cell[1044, 42, 471, 10, 50, "Output"]
}, Open ]],
-Cell[1441, 53, 119, 3, 29, "Text",
+Cell[1530, 55, 119, 3, 30, "Text",
CellID->429217524],
Cell[CellGroupData[{
-Cell[1585, 60, 573, 16, 47, "Input"],
-Cell[2161, 78, 436, 12, 47, "Output"]
+Cell[1674, 62, 573, 16, 75, "Input"],
+Cell[2250, 80, 525, 14, 47, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[2634, 95, 694, 20, 47, "Input"],
-Cell[3331, 117, 425, 13, 47, "Output"]
+Cell[2812, 99, 694, 20, 75, "Input"],
+Cell[3509, 121, 514, 15, 47, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[3793, 135, 694, 20, 47, "Input"],
-Cell[4490, 157, 425, 13, 47, "Output"]
+Cell[4060, 141, 694, 20, 75, "Input"],
+Cell[4757, 163, 514, 15, 47, "Output"]
}, Open ]],
-Cell[4930, 173, 273, 5, 47, "Text"],
-Cell[5206, 180, 419, 12, 31, "Input",
+Cell[5286, 181, 273, 5, 49, "Text"],
+Cell[5562, 188, 419, 12, 30, "Input",
CellID->433132487],
-Cell[5628, 194, 493, 19, 32, "Text"],
+Cell[5984, 202, 493, 19, 33, "Text"],
Cell[CellGroupData[{
-Cell[6146, 217, 411, 12, 31, "Input"],
-Cell[6560, 231, 8889, 232, 587, "Output"]
+Cell[6502, 225, 411, 12, 30, "Input"],
+Cell[6916, 239, 8978, 234, 695, "Output"]
}, Open ]],
-Cell[15464, 466, 1150, 43, 29, "Text",
+Cell[15909, 476, 1150, 43, 49, "Text",
CellID->133602844],
Cell[CellGroupData[{
-Cell[16639, 513, 325, 8, 31, "Input"],
-Cell[16967, 523, 478, 12, 30, "Output"]
+Cell[17084, 523, 325, 8, 30, "Input"],
+Cell[17412, 533, 565, 14, 50, "Output"]
}, Open ]],
-Cell[17460, 538, 411, 10, 47, "Text"],
+Cell[17992, 550, 411, 10, 49, "Text"],
Cell[CellGroupData[{
-Cell[17896, 552, 2561, 80, 92, "Input",
+Cell[18428, 564, 2561, 80, 88, "Input",
CellID->534530029],
-Cell[20460, 634, 4983, 149, 101, "Output"]
+Cell[20992, 646, 5072, 151, 149, "Output"]
}, Open ]],
-Cell[25458, 786, 288, 6, 47, "Text",
+Cell[26079, 800, 288, 6, 49, "Text",
CellID->462076121],
Cell[CellGroupData[{
-Cell[25771, 796, 810, 24, 52, "Input",
+Cell[26392, 810, 810, 24, 73, "Input",
CellID->494599775],
-Cell[26584, 822, 84081, 2408, 594, "Output"]
+Cell[27205, 836, 84169, 2410, 509, "Output"]
}, Open ]],
-Cell[110680, 3233, 256, 5, 47, "Text",
+Cell[111389, 3249, 256, 5, 49, "Text",
CellID->358620443],
Cell[CellGroupData[{
-Cell[110961, 3242, 698, 18, 52, "Input",
+Cell[111670, 3258, 698, 18, 69, "Input",
CellID->167259034],
-Cell[111662, 3262, 3230, 55, 230, "Output"]
+Cell[112371, 3278, 3318, 57, 230, "Output"]
}, Open ]],
-Cell[114907, 3320, 1513, 54, 50, "Text",
+Cell[115704, 3338, 1513, 54, 74, "Text",
CellID->577766068],
Cell[CellGroupData[{
-Cell[116445, 3378, 956, 31, 52, "Input"],
-Cell[117404, 3411, 997, 34, 30, "Output"],
-Cell[118404, 3447, 1196, 34, 30, "Output"]
+Cell[117242, 3396, 956, 31, 50, "Input"],
+Cell[118201, 3429, 1086, 36, 50, "Output"],
+Cell[119290, 3467, 1283, 36, 30, "Output"]
}, Open ]],
-Cell[119615, 3484, 102, 2, 29, "Text"],
+Cell[120588, 3506, 102, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[119742, 3490, 447, 12, 31, "Input"],
-Cell[120192, 3504, 7543, 205, 310, "Output"]
+Cell[120715, 3512, 447, 12, 30, "Input"],
+Cell[121165, 3526, 7632, 207, 298, "Output"]
}, Open ]],
-Cell[127750, 3712, 902, 30, 47, "Text"],
+Cell[128812, 3736, 902, 30, 49, "Text"],
Cell[CellGroupData[{
-Cell[128677, 3746, 1142, 31, 52, "Input"],
-Cell[129822, 3779, 33911, 877, 570, "Output"]
+Cell[129739, 3770, 1142, 31, 69, "Input"],
+Cell[130884, 3803, 34000, 879, 508, "Output"]
}, Open ]],
-Cell[163748, 4659, 837, 25, 47, "Text"],
+Cell[164899, 4685, 837, 25, 68, "Text"],
Cell[CellGroupData[{
-Cell[164610, 4688, 765, 20, 38, "Input"],
-Cell[165378, 4710, 13324, 371, 569, "Output"]
+Cell[165761, 4714, 765, 20, 35, "Input"],
+Cell[166529, 4736, 13411, 373, 507, "Output"]
}, Open ]],
-Cell[178717, 5084, 141, 3, 29, "Text"],
+Cell[179955, 5112, 141, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[178883, 5091, 787, 22, 31, "Input"],
-Cell[179673, 5115, 261, 8, 47, "Output"]
+Cell[180121, 5119, 787, 22, 50, "Input"],
+Cell[180911, 5143, 350, 10, 48, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[179971, 5128, 787, 22, 31, "Input"],
-Cell[180761, 5152, 261, 8, 47, "Output"]
+Cell[181298, 5158, 787, 22, 50, "Input"],
+Cell[182088, 5182, 350, 10, 48, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[181059, 5165, 787, 22, 31, "Input"],
-Cell[181849, 5189, 355, 11, 47, "Output"]
+Cell[182475, 5197, 787, 22, 50, "Input"],
+Cell[183265, 5221, 444, 13, 48, "Output"]
}, Open ]],
-Cell[182219, 5203, 989, 34, 47, "Text"],
+Cell[183724, 5237, 989, 34, 49, "Text"],
Cell[CellGroupData[{
-Cell[183233, 5241, 877, 25, 47, "Input"],
-Cell[184113, 5268, 10598, 294, 569, "Output"]
+Cell[184738, 5275, 877, 25, 95, "Input"],
+Cell[185618, 5302, 10686, 296, 502, "Output"]
}, Open ]],
-Cell[194726, 5565, 92, 2, 29, "Text"],
+Cell[196319, 5601, 92, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[194843, 5571, 1102, 30, 52, "Input",
+Cell[196436, 5607, 1102, 30, 69, "Input",
CellID->102096636],
-Cell[195948, 5603, 2044, 35, 230, "Output"]
+Cell[197541, 5639, 2133, 37, 230, "Output"]
}, Open ]],
-Cell[198007, 5641, 588, 18, 29, "Text",
+Cell[199689, 5679, 588, 18, 49, "Text",
CellID->610306692],
Cell[CellGroupData[{
-Cell[198620, 5663, 272, 7, 31, "Input",
+Cell[200302, 5701, 272, 7, 30, "Input",
CellID->645617687],
-Cell[198895, 5672, 2716, 58, 266, "Output"]
+Cell[200577, 5710, 2805, 60, 273, "Output"]
}, Open ]],
-Cell[201626, 5733, 460, 13, 29, "Text",
+Cell[203397, 5773, 460, 13, 49, "Text",
CellID->854192725],
Cell[CellGroupData[{
-Cell[202111, 5750, 274, 7, 31, "Input",
+Cell[203882, 5790, 274, 7, 30, "Input",
CellID->465762594],
-Cell[202388, 5759, 49693, 1437, 426, "Output"]
+Cell[204159, 5799, 49782, 1439, 401, "Output"]
}, Open ]],
-Cell[252096, 7199, 69, 1, 29, "Text",
+Cell[253956, 7241, 69, 1, 30, "Text",
CellID->314466782],
Cell[CellGroupData[{
-Cell[252190, 7204, 197, 5, 31, "Input"],
-Cell[252390, 7211, 4464, 129, 126, "Output"]
+Cell[254050, 7246, 197, 5, 30, "Input"],
+Cell[254250, 7253, 4570, 131, 123, "Output"]
}, Open ]],
-Cell[256869, 7343, 232, 4, 29, "Text"],
+Cell[258835, 7387, 232, 4, 49, "Text"],
Cell[CellGroupData[{
-Cell[257126, 7351, 1661, 45, 119, "Input"],
-Cell[258790, 7398, 891, 21, 50, "Output"]
+Cell[259092, 7395, 1661, 45, 147, "Input"],
+Cell[260756, 7442, 980, 23, 69, "Output"]
}, Open ]],
-Cell[259696, 7422, 519, 13, 49, "Text"],
-Cell[260218, 7437, 1771, 45, 98, "Input"],
-Cell[261992, 7484, 105, 3, 29, "Text"],
+Cell[261751, 7468, 519, 13, 49, "Text"],
+Cell[262273, 7483, 1771, 45, 118, "Input"],
+Cell[264047, 7530, 105, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[262122, 7491, 213, 6, 31, "Input"],
-Cell[262338, 7499, 7417, 209, 202, "Output"]
+Cell[264177, 7537, 213, 6, 30, "Input"],
+Cell[264393, 7545, 7506, 211, 278, "Output"]
}, Open ]],
-Cell[269770, 7711, 93, 2, 29, "Text"],
-Cell[269866, 7715, 187, 6, 31, "Input"],
-Cell[270056, 7723, 80, 2, 29, "Text"],
-Cell[270139, 7727, 216, 8, 31, "Input"],
-Cell[270358, 7737, 88, 2, 29, "Text"],
+Cell[271914, 7759, 93, 2, 30, "Text"],
+Cell[272010, 7763, 187, 6, 30, "Input"],
+Cell[272200, 7771, 80, 2, 30, "Text"],
+Cell[272283, 7775, 216, 8, 30, "Input"],
+Cell[272502, 7785, 88, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[270471, 7743, 163, 5, 31, "Input"],
-Cell[270637, 7750, 11989, 385, 152, "Output"]
+Cell[272615, 7791, 163, 5, 30, "Input"],
+Cell[272781, 7798, 12078, 387, 231, "Output"]
}, Open ]],
-Cell[282641, 8138, 85, 2, 29, "Text"],
+Cell[284874, 8188, 85, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[282751, 8144, 190, 6, 31, "Input"],
-Cell[282944, 8152, 4464, 129, 126, "Output"]
+Cell[284984, 8194, 190, 6, 30, "Input"],
+Cell[285177, 8202, 216154, 5813, 1766, "Output"]
}, Open ]],
-Cell[287423, 8284, 71, 2, 29, "Text"],
+Cell[501346, 14018, 71, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[287519, 8290, 290, 8, 31, "Input"],
-Cell[287812, 8300, 14287, 488, 277, "Output"]
+Cell[501442, 14024, 290, 8, 30, "Input"],
+Cell[501735, 14034, 14374, 490, 365, "Output"]
}, Open ]],
-Cell[302114, 8791, 297, 8, 29, "Text"],
+Cell[516124, 14527, 297, 8, 30, "Text"],
Cell[CellGroupData[{
-Cell[302436, 8803, 534, 18, 33, "Input"],
-Cell[302973, 8823, 154837, 4560, 3394, "Output"]
+Cell[516446, 14539, 534, 18, 30, "Input"],
+Cell[516983, 14559, 154926, 4562, 4885, "Output"]
}, Open ]],
-Cell[457825, 13386, 1289, 34, 82, "Text"],
+Cell[671924, 19124, 1289, 34, 102, "Text"],
Cell[CellGroupData[{
-Cell[459139, 13424, 869, 26, 52, "Input"],
-Cell[460011, 13452, 4579, 142, 141, "Output"]
+Cell[673238, 19162, 869, 26, 50, "Input"],
+Cell[674110, 19190, 4667, 144, 144, "Output"]
}, Open ]],
-Cell[464605, 13597, 130, 3, 29, "Text"],
+Cell[678792, 19337, 130, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[464760, 13604, 1227, 35, 52, "Input"],
-Cell[465990, 13641, 189, 5, 49, "Output"]
+Cell[678947, 19344, 1227, 35, 50, "Input"],
+Cell[680177, 19381, 278, 7, 50, "Output"]
}, Open ]],
-Cell[466194, 13649, 154, 3, 29, "Text"],
+Cell[680470, 19391, 154, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[466373, 13656, 171, 6, 31, "Input"],
-Cell[466547, 13664, 4286, 131, 125, "Output"]
+Cell[680649, 19398, 171, 6, 30, "Input"],
+Cell[680823, 19406, 4417, 135, 142, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
-Cell[470882, 13801, 44, 0, 71, "Section"],
-Cell[470929, 13803, 253, 6, 31, "Input"],
-Cell[471185, 13811, 262, 5, 47, "Text"],
+Cell[685289, 19547, 44, 0, 74, "Section"],
+Cell[685336, 19549, 253, 6, 30, "Input"],
+Cell[685592, 19557, 262, 5, 49, "Text"],
Cell[CellGroupData[{
-Cell[471472, 13820, 2135, 63, 112, "Input"],
-Cell[473610, 13885, 1997, 37, 230, "Output"],
-Cell[475610, 13924, 2364, 43, 232, "Output"]
+Cell[685879, 19566, 2135, 63, 107, "Input"],
+Cell[688017, 19631, 2090, 39, 225, "Output"],
+Cell[690110, 19672, 2450, 45, 228, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
-Cell[478023, 13973, 49, 0, 71, "Section"],
+Cell[692609, 19723, 49, 0, 74, "Section"],
Cell[CellGroupData[{
-Cell[478097, 13977, 2204, 59, 112, "Input"],
-Cell[480304, 14038, 612, 16, 33, "Output"],
-Cell[480919, 14056, 213, 2, 145, "Output"]
+Cell[692683, 19727, 2204, 59, 130, "Input"],
+Cell[694890, 19788, 701, 18, 55, "Output"],
+Cell[695594, 19808, 302, 4, 145, "Output"]
}, Open ]],
-Cell[481147, 14061, 43, 0, 29, "Text"],
+Cell[695911, 19815, 43, 0, 30, "Text"],
+Cell[695957, 19817, 92, 1, 30, "Input"],
Cell[CellGroupData[{
-Cell[481215, 14065, 884, 26, 52, "Input"],
-Cell[482102, 14093, 1283, 40, 50, "Output"],
-Cell[483388, 14135, 1948, 57, 50, "Output"]
+Cell[696074, 19822, 884, 26, 69, "Input"],
+Cell[696961, 19850, 1369, 42, 50, "Output"],
+Cell[698333, 19894, 2035, 59, 69, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[485373, 14197, 5876, 159, 205, "Input"],
-Cell[491252, 14358, 58538, 1653, 1720, "Output"],
-Cell[549793, 16013, 5569, 78, 1057, "Output"]
+Cell[700405, 19958, 6158, 163, 243, "Input"],
+Cell[706566, 20123, 58765, 1657, 2381, "Output"],
+Cell[765334, 21782, 6258, 84, 1494, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[555399, 16096, 215, 6, 31, "Input"],
-Cell[555617, 16104, 120, 1, 30, "Output"]
+Cell[771629, 21871, 215, 6, 30, "Input"],
+Cell[771847, 21879, 214, 3, 30, "Output"]
}, Open ]],
-Cell[555752, 16108, 61, 2, 29, "Text"],
+Cell[772076, 21885, 61, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[555838, 16114, 5367, 145, 203, "Input"],
-Cell[561208, 16261, 5875, 158, 164, "Output"],
-Cell[567086, 16421, 722, 9, 962, "Output"]
+Cell[772162, 21891, 5440, 146, 233, "Input"],
+Cell[777605, 22039, 5964, 160, 222, "Output"],
+Cell[783572, 22201, 1215, 17, 962, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[567845, 16435, 210, 6, 31, "Input"],
-Cell[568058, 16443, 116, 1, 30, "Output"]
+Cell[784824, 22223, 210, 6, 30, "Input"],
+Cell[785037, 22231, 189, 3, 30, "Output"]
}, Open ]],
-Cell[568189, 16447, 63, 2, 29, "Text"],
-Cell[568255, 16451, 127, 3, 29, "Text"],
+Cell[785241, 22237, 63, 2, 30, "Text"],
+Cell[785307, 22241, 127, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[568407, 16458, 1162, 35, 52, "Input"],
-Cell[569572, 16495, 18801, 470, 1163, "Output"]
+Cell[785459, 22248, 1162, 35, 69, "Input"],
+Cell[786624, 22285, 18864, 471, 1343, "Output"]
}, Open ]],
-Cell[588388, 16968, 99, 2, 29, "Text"],
-Cell[588490, 16972, 709, 21, 31, "Input"],
-Cell[589202, 16995, 149, 3, 29, "Text"],
+Cell[805503, 22759, 99, 2, 30, "Text"],
+Cell[805605, 22763, 709, 21, 50, "Input"],
+Cell[806317, 22786, 149, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[589376, 17002, 2094, 53, 159, "Input"],
-Cell[591473, 17057, 5151, 151, 137, "Output"]
+Cell[806491, 22793, 2094, 53, 171, "Input"],
+Cell[808588, 22848, 5215, 152, 248, "Output"]
}, Open ]],
-Cell[596639, 17211, 86, 2, 29, "Text"],
+Cell[813818, 23003, 86, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[596750, 17217, 916, 26, 33, "Input"],
-Cell[597669, 17245, 674, 23, 30, "Output"]
+Cell[813929, 23009, 916, 26, 69, "Input"],
+Cell[814848, 23037, 738, 24, 30, "Output"]
}, Open ]],
-Cell[598358, 17271, 115, 3, 29, "Text"],
+Cell[815601, 23064, 115, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[598498, 17278, 721, 21, 52, "Input"],
-Cell[599222, 17301, 5290, 162, 124, "Output"]
+Cell[815741, 23071, 721, 21, 69, "Input"],
+Cell[816465, 23094, 5354, 163, 166, "Output"]
}, Open ]],
-Cell[604527, 17466, 64, 2, 29, "Text"],
+Cell[821834, 23260, 64, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[604616, 17472, 3489, 94, 154, "Input"],
-Cell[608108, 17568, 2396, 64, 92, "Output"],
-Cell[610507, 17634, 659, 9, 107, "Output"],
-Cell[611169, 17645, 415, 5, 107, "Output"],
-Cell[611587, 17652, 124, 1, 30, "Output"]
+Cell[821923, 23266, 3489, 94, 196, "Input"],
+Cell[825415, 23362, 2460, 65, 113, "Output"],
+Cell[827878, 23429, 723, 10, 164, "Output"],
+Cell[828604, 23441, 479, 6, 126, "Output"],
+Cell[829086, 23449, 172, 2, 30, "Output"]
}, Open ]]
}, Open ]]
}