summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2012-08-21 16:44:37 -0400
committerEugeniy Mikhailov <evgmik@gmail.com>2012-08-21 16:44:37 -0400
commite1d512ed3a302d2afaefeba73ac2596a50ad93f4 (patch)
treed71c6d41e253978f35a2da4a0584366734b33382
parent777d076eff48df02f8a8588b989c296dea9ef9dc (diff)
downloadNresonances-e1d512ed3a302d2afaefeba73ac2596a50ad93f4.tar.gz
Nresonances-e1d512ed3a302d2afaefeba73ac2596a50ad93f4.zip
changed some substitution to better match our XMDS
-rwxr-xr-xmathemathica_fwm/RbXMDSSetup.nb6799
-rw-r--r--xmds2/realistic_Rb/Makefile55
-rw-r--r--xmds2/realistic_Rb/Makefile.fig39
-rw-r--r--xmds2/realistic_Rb/Makefile.par32
-rw-r--r--xmds2/realistic_Rb/Makefile.pp62
-rw-r--r--xmds2/realistic_Rb/realistic_Rb.xmds511
6 files changed, 6998 insertions, 500 deletions
diff --git a/mathemathica_fwm/RbXMDSSetup.nb b/mathemathica_fwm/RbXMDSSetup.nb
index a8b7155..5be9fee 100755
--- a/mathemathica_fwm/RbXMDSSetup.nb
+++ b/mathemathica_fwm/RbXMDSSetup.nb
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
-NotebookDataLength[ 619915, 17921]
-NotebookOptionsPosition[ 611739, 17657]
-NotebookOutlinePosition[ 612103, 17673]
-CellTagsIndexPosition[ 612060, 17670]
+NotebookDataLength[ 837516, 23720]
+NotebookOptionsPosition[ 829286, 23455]
+NotebookOutlinePosition[ 829643, 23471]
+CellTagsIndexPosition[ 829600, 23468]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@@ -48,7 +48,9 @@ Cell[BoxData[
RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
RowBox[{"Label", "\[Rule]", "None"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
- RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output"]
+ RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569228654716*^9, 3.554570580065393*^9,
+ 3.554570640474395*^9}]
}, Open ]],
Cell["\<\
@@ -88,7 +90,9 @@ Cell[BoxData[
RowBox[{"NuclearSpin", "\[Rule]",
FractionBox["3", "2"]}], ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Even"}]}], "}"}]], "Output"]
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569228708644*^9, 3.554570580071758*^9,
+ 3.554570640531323*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -128,7 +132,9 @@ Cell[BoxData[
RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
RowBox[{
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569228753817*^9, 3.554570580077429*^9,
+ 3.554570640538216*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -168,7 +174,9 @@ Cell[BoxData[
RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
RowBox[{
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569228807532*^9, 3.554570580143681*^9,
+ 3.554570640583111*^9}]
}, Open ]],
Cell["\<\
@@ -461,7 +469,9 @@ Cell[BoxData[
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"F", "\[Rule]", "2"}], ",",
RowBox[{"M", "\[Rule]",
- RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]], "Output"]
+ RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569229028195*^9, 3.554570580389244*^9,
+ 3.554570640815684*^9}]
}, Open ]],
Cell[TextData[{
@@ -533,7 +543,9 @@ Cell[BoxData[
RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",",
RowBox[{"CartesianCoordinates", "\[Rule]",
RowBox[{"{",
- RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"]
+ RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569229170436*^9, 3.55457058045112*^9,
+ 3.55457064084322*^9}]
}, Open ]],
Cell[TextData[{
@@ -781,7 +793,9 @@ Cell[BoxData[
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]]}], ",",
- "0"}], "}"}]], "Output"]
+ "0"}], "}"}]], "Output",
+ CellChangeTimes->{3.554569229495671*^9, 3.554570580538328*^9,
+ 3.554570640944548*^9}]
}, Open ]],
Cell["\<\
@@ -3228,7 +3242,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569230251296*^9, 3.554570581141229*^9,
+ 3.55457064151823*^9}]
}, Open ]],
Cell["\<\
@@ -3315,7 +3331,9 @@ Cell[BoxData[
ArrowBox[{{-1.04, -0.2}, {-1.96, 3.6416666666666666`}}]},
{PointSize[0.0225]}},
ImagePadding->{{2., 2}, {2., 2.}},
- ImageSize->244.]], "Output"]
+ ImageSize->244.]], "Output",
+ CellChangeTimes->{3.554569231386154*^9, 3.55457058234087*^9,
+ 3.554570642724843*^9}]
}, Open ]],
Cell[TextData[{
@@ -3443,7 +3461,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
- RowBox[{"2", ",", "2"}], "}"}]}], "}"}]], "Output"],
+ RowBox[{"2", ",", "2"}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569231500016*^9, 3.554570582543926*^9,
+ 3.554570642810231*^9}],
Cell[BoxData[
RowBox[{"{",
@@ -3479,7 +3499,9 @@ Cell[BoxData[
RowBox[{
SubscriptBox["\[Omega]", "1"], "-",
SubscriptBox["\[Omega]", "2"], "+",
- SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output"]
+ SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569231500016*^9, 3.554570582543926*^9,
+ 3.5545706428137*^9}]
}, Open ]],
Cell["\<\
@@ -3707,7 +3729,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569231917731*^9, 3.554570582638129*^9,
+ 3.554570642904566*^9}]
}, Open ]],
Cell[TextData[{
@@ -4654,7 +4678,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569232380987*^9, 3.554570583042595*^9,
+ 3.554570643338553*^9}]
}, Open ]],
Cell[TextData[{
@@ -5079,7 +5105,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.55456923250015*^9, 3.554570583105691*^9,
+ 3.55457064341745*^9}]
}, Open ]],
Cell["\<\
@@ -5121,7 +5149,9 @@ Cell[BoxData[
RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], "-",
FractionBox[
RowBox[{"5", " ",
- RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output"]
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output",
+ CellChangeTimes->{3.554569232931236*^9, 3.554570583353512*^9,
+ 3.554570643590957*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -5158,7 +5188,9 @@ Cell[BoxData[
RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], "-",
FractionBox[
RowBox[{"5", " ",
- RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output"]
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output",
+ CellChangeTimes->{3.554569233113956*^9, 3.554570583743719*^9,
+ 3.554570643688447*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -5198,7 +5230,9 @@ Cell[BoxData[
RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"], "-",
FractionBox[
RowBox[{"3", " ",
- RowBox[{"HyperfineB", "[", "2", "]"}]}], "4"]}]], "Output"]
+ RowBox[{"HyperfineB", "[", "2", "]"}]}], "4"]}]], "Output",
+ CellChangeTimes->{3.554569233218096*^9, 3.554570583941672*^9,
+ 3.554570643854974*^9}]
}, Open ]],
Cell[TextData[{
@@ -5560,7 +5594,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569233311345*^9, 3.55457058405622*^9,
+ 3.554570644126044*^9}]
}, Open ]],
Cell["\<\
@@ -5636,7 +5672,9 @@ Cell[BoxData[
ArrowBox[{{-1.04, -0.35000000000000003`}, {-1.96, 3.4916666666666667`}}]},
{PointSize[0.0225]}},
ImagePadding->{{2., 2}, {2., 2.}},
- ImageSize->244.]], "Output"]
+ ImageSize->244.]], "Output",
+ CellChangeTimes->{3.554569233964627*^9, 3.554570584652609*^9,
+ 3.554570644753472*^9}]
}, Open ]],
Cell[TextData[{
@@ -5728,7 +5766,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569234149005*^9, 3.554570584991092*^9,
+ 3.554570644870477*^9}]
}, Open ]],
Cell[TextData[{
@@ -7194,7 +7234,9 @@ Cell[BoxData[
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569234483766*^9, 3.554570585291193*^9,
+ 3.554570645304517*^9}]
}, Open ]],
Cell["Here are the evolution equations.", "Text",
@@ -7219,7 +7261,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
StandardForm],
- ImageSizeCache->{299., {3., 9.}}],
+ ImageSizeCache->{370., {3., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7247,7 +7289,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm],
- ImageSizeCache->{54., {1., 9.}}],
+ ImageSizeCache->{67., {0., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7255,7 +7297,7 @@ Cell[BoxData[
Appearance->Automatic,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, 5/
+ TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, 5/
2],
Enabled->True,
Evaluator->Automatic,
@@ -7266,7 +7308,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm],
- ImageSizeCache->{60., {1., 9.}}],
+ ImageSizeCache->{70., {0., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7274,7 +7316,7 @@ Cell[BoxData[
Appearance->Automatic,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, 5
+ TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, 5
2],
Enabled->True,
Evaluator->Automatic,
@@ -7285,7 +7327,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
- ImageSizeCache->{92., {3., 9.}}],
+ ImageSizeCache->{107., {3., 11.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7293,7 +7335,7 @@ Cell[BoxData[
Appearance->Automatic,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349,
+ TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080,
Infinity],
Enabled->True,
Evaluator->Automatic,
@@ -7304,7 +7346,7 @@ Cell[BoxData[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
- ImageSizeCache->{78., {1., 9.}}],
+ ImageSizeCache->{100., {0., 10.}}],
StripOnInput->False,
DynamicUpdating->True], "Panel",
StripOnInput->False,
@@ -7337,8 +7379,10 @@ Cell[BoxData[
DefaultBaseStyle->{},
FrameMargins->5],
Deploy,
- DefaultBaseStyle->"Deploy"],
- Out[87]]], "Output"]
+ DefaultBaseStyle->{Deployed -> True}],
+ Out[24]]], "Output",
+ CellChangeTimes->{3.554569234735175*^9, 3.554570585649747*^9,
+ 3.554570645545612*^9}]
}, Open ]],
Cell["\<\
@@ -7417,7 +7461,9 @@ Cell[BoxData[
RowBox[{
RowBox[{"NaturalWidth", "[", "2", "]"}], "\[Rule]",
RowBox[{"38.11730983274125`", " ", "Hertz", " ", "Mega"}]}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569234847936*^9, 3.554570585762321*^9,
+ 3.554570645605633*^9}]
}, Open ]],
Cell[TextData[{
@@ -7706,7 +7752,9 @@ Cell[BoxData[
RowBox[{"{", "252", "}"}], ",",
RowBox[{"{", "253", "}"}], ",",
RowBox[{"{", "254", "}"}], ",",
- RowBox[{"{", "255", "}"}]}], "}"}]], "Output"]
+ RowBox[{"{", "255", "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569235191469*^9, 3.554570586082753*^9,
+ 3.554570645745293*^9}]
}, Open ]],
Cell["\<\
@@ -8133,7 +8181,9 @@ Cell[BoxData[
RowBox[{"-", "2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
- RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output"]
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569235363716*^9, 3.554570586205265*^9,
+ 3.554570645819355*^9}]
}, Open ]],
Cell["\<\
@@ -8151,135 +8201,5819 @@ Cell[BoxData[
"]"}]], "Input"],
Cell[BoxData[
- InterpretationBox[
- TagBox[
- PanelBox[GridBox[{
- {
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
- StandardForm],
- ImageSizeCache->{299., {3., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None]},
- {
- ItemBox[
- TagBox[
- TagBox[
- TagBox[
- RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
- Column],
- Function[BoxForm`e$,
- TableForm[BoxForm`e$]]],
- Short[#, 5]& ],
- Background->GrayLevel[1],
- BaseStyle->{Deployed -> False},
- Frame->True,
- FrameStyle->GrayLevel[0, 0.2],
- StripOnInput->False]},
- {
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{
RowBox[{
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
- StandardForm],
- ImageSizeCache->{54., {1., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>OutputSizeLimit`ButtonFunction[
- Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, 5/
- 2],
- Enabled->True,
- Evaluator->Automatic,
- Method->"Queued"], "\[ThinSpace]",
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
- StandardForm],
- ImageSizeCache->{60., {1., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>OutputSizeLimit`ButtonFunction[
- Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, 5
- 2],
- Enabled->True,
- Evaluator->Automatic,
- Method->"Queued"], "\[ThinSpace]",
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
- StandardForm],
- ImageSizeCache->{92., {3., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>OutputSizeLimit`ButtonFunction[
- Function[{OutputSizeLimit`Dump`x$},
- TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349,
- Infinity],
- Enabled->True,
- Evaluator->Automatic,
- Method->"Queued"], "\[ThinSpace]",
- ButtonBox[
- StyleBox[
- StyleBox[
- DynamicBox[ToBoxes[
- FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
- StandardForm],
- ImageSizeCache->{78., {1., 9.}}],
- StripOnInput->False,
- DynamicUpdating->True], "Panel",
- StripOnInput->False,
- Background->None],
- Appearance->Automatic,
- ButtonFunction:>FrontEndExecute[{
- FrontEnd`SetOptions[
- FrontEnd`$FrontEnd,
- FrontEnd`PreferencesSettings -> {"Page" -> "Evaluation"}],
- FrontEnd`FrontEndToken["PreferencesDialog"]}],
- Evaluator->None,
- Method->"Preemptive"]}]}
- },
- GridBoxAlignment->{
- "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxDividers->{
- "Columns" -> {{False}}, "ColumnsIndexed" -> {}, "Rows" -> {{False}},
- "RowsIndexed" -> {}},
- GridBoxItemSize->{
- "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.5599999999999999]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[1.2]},
- Offset[0.2]}, "RowsIndexed" -> {}}],
- DefaultBaseStyle->{},
- FrameMargins->5],
- Deploy,
- DefaultBaseStyle->"Deploy"],
- Out[95]]], "Output"]
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "8"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "6"], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "8"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "1", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "4"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "6"], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "4"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "2"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"8", " ",
+ SqrtBox["3"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[CapitalOmega]L", "6"]}], "-",
+ SubscriptBox["\[Delta]", "1"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["\[CapitalOmega]L", "2"], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-",
+ SubscriptBox["\[Delta]", "1"], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t",
+ "]"}]}]}], ")"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "4"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.554569235725104*^9, 3.554570586584882*^9,
+ 3.554570646163539*^9}]
}, Open ]],
Cell["\<\
@@ -8786,7 +14520,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
RowBox[{"-", "2"}]}], "}"}]}]], "[", "0", "]"}], "\[Equal]", "0"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.55456923585014*^9, 3.55457058672761*^9,
+ 3.554570646363813*^9}]
}, Open ]],
Cell[TextData[{
@@ -13381,7 +19117,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569235990839*^9, 3.554570586963279*^9,
+ 3.554570646430884*^9}]
}, Open ]],
Cell[TextData[{
@@ -13592,7 +19330,9 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}],
- "]"}]}]}], ")"}]}]}]}], "}"}]], "Output"]
+ "]"}]}]}], ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569236773899*^9, 3.554570587858582*^9,
+ 3.55457064718746*^9}]
}, Open ]],
Cell["\<\
@@ -13644,7 +19384,9 @@ Cell[BoxData[
RowBox[{"0.005434728849851996`", " ",
RowBox[{"NaturalWidth", "[", "1", "]"}]}],
SuperscriptBox[
- RowBox[{"Energy", "[", "1", "]"}], "2"]]], "Output"]
+ RowBox[{"Energy", "[", "1", "]"}], "2"]]], "Output",
+ CellChangeTimes->{3.554569236930736*^9, 3.554570587946757*^9,
+ 3.554570647232768*^9}]
}, Open ]],
Cell["\<\
@@ -13666,7 +19408,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
- FractionBox[
+ RowBox[{
+ FractionBox["1",
+ SubscriptBox["\[CapitalOmega]", "2"]],
RowBox[{"500.6135764115296`", " ",
RowBox[{"(",
RowBox[{
@@ -13728,9 +19472,10 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}],
- "]"}]}]}], ")"}]}],
- SubscriptBox["\[CapitalOmega]", "2"]]}], ",",
- FractionBox[
+ "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ FractionBox["1",
+ SubscriptBox["\[CapitalOmega]", "2"]],
RowBox[{"250.3067882057648`", " ",
RowBox[{"(",
RowBox[{
@@ -13792,8 +19537,9 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}],
- "]"}]}]}], ")"}]}],
- SubscriptBox["\[CapitalOmega]", "2"]]}], "}"}]], "Output"]
+ "]"}]}]}], ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.55456923715149*^9, 3.554570588024865*^9,
+ 3.554570647273362*^9}]
}, Open ]]
}, Open ]],
@@ -13886,86 +19632,90 @@ Cell[BoxData[{
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
-1:eJxVl3tM1XUYxn9jDSHdws0EdCopG1SsGXNGyvRRQS7K7XA53Dn3c3SVeZkx
-dfZLmmZekBQ3mxcsbWqa6GQhjXyijdL1R2mSqxTRLEEIb1mibVmt79t7trOz
-z57z/C7fy/s+36c8ixz+MMuyTj/6/v3772cBF859J+qHyJX4Bxli++KTow3b
-IY7bHzXOMEK8892OSYatEOvHOp8Rf5CXd2Y/L/4g7+1fniL+IMc3XZwp/iCb
-n1yTIf4A008E8sQf4IS8zU7xB7i850GN+APMbjgeEr+fE4+3LBa/n7O+jFgp
-fj8f33j0TfH7uXXgyGbx+7gpJmKH+H18t7bjffH72Nne85H4fTzQs7BN/F5+
-nOTtFL+XjtSvz4rfy7MRrd3i9/J+f9yA+D2MOTLygfg93P16Q+SPxu9h2OgD
-MYYtD9/6oCrRMN187ve2FMO2m0sWnM4Sv5vjh22tEL+bm7ZMfEX8Lo7fWPeG
-+F1c5uxoFL+L4dP6D4nfxbAVT3wm/6/h/SXTL4hew5FH7ZuiV/NS2K3Ii0av
-ZsThPfGG7SrmL90L0auYcXZEteiVHD1uaJXolexvrtslegUXJXSeEr2CM7Zc
-vip6Ofc13428ZPRyfpqdkGzYLuP5l5oqRS/j4dMb1oteyhfGxp4UvZTtW1bd
-EN3Jc1mDcd1Gd7K2+2iZYbuET/8Ztl30EgaHT+kSvZjrBxrHXDZ6MWu/rfMa
-tovYmeA5JnoRi9bteazH6IUMv9ZSZdgqZGrrs+2iO+jMbJx0xegOThixvcGw
-XcDc6CvDrhq9gLUbZq4zbOezZWhd1E9Gz+fdpoP7hPO4O/tA2jXDuTxzaNct
-4Ry2dbYe/tnwfObcnv7aL4bn8fzuWsd1w9mM6PtiZq/hLL7nXY0+w5k89f2F
-4huGMxgX3W33G57LouiUjgHD6Wzd2Rs7aDiNY9OG1t40PIfD+3vDbxuezaQ1
-g9vuGJ7FuCPXEn8zDE7tOtNyz/AMvlr/ScIfhlOZ0f6y+77haTwW+vDFIcMp
-7Dp5cIXwVDa4k6/L/6dwjONqsVwvmUvTT5yT+09mZOpXXfK8SYxuGTVK3ieR
-yyLrrV8NxzPnmzU7ZHzi+DA99nMZvxjW7ympE47i2m1vdwhbXL13KFH8j2aw
-76HzfwytR0H7Y6CvHwd9/3jo50uEfv4k6PebDP3+ydDjMwV6/KZCj28K9PhP
-g56fVOj5mwE9v4Ce/1nQ62M29PqZA72+0qDXXzr0+pwLvX4zoNd3JvT6z4Le
-H9nQ+2ce9P6aD73/cqD3Zy70/s2D3t/5UPvfzoeuDwXQ9aMAur44oOuPA7o+
-FULXr0Lo+lYEXf+KoOtjMXT9LIauryXQ9bcEuj47oeu3E7q+l0LX/1Lo/lAG
-3T/KoPtLOXT/KYfuTxXQ/asCur9VQve/Suj+WAXdP6ug+2s1dP+thu7PNdD9
-uwa6v7ug+j9cUPnAdkHlB7qg8oXlhsofcEPlE9sNlV/ohso3lgcq/8ADlY9s
-D1R+ogcqX1leqPwFL1Q+s71Q+Y1eqHxn+aDyH3xQ+dD2QeVH+qDypeWHyp/w
-Q+VT2w+VX+mHyrdWACr/IgCVj+0AVH5mACpfW0Go/I0gVD63g1D5nUGofG+F
-oPI/QlDnAzsEdX5gCOp8YS3Af+ePvwAa0amJ
+1:eJxVl3tM1XUYxn9jTqHcpGaKmIXpBpVtypwjJXlU7qIcDnAOd879HJtl2lJT
+Vr+kRaUpXjeWCpY2Nc3LpKFlPtFGUf5hZuQqQjRKFLxnhrZltb5v79nOzj57
+zvO7fC/v+3zH+hY4g1GWZbXf/f79++9nHudnrov9IWY5/kFG+MnCwyMM2xHG
+74gdYxgR3vyuYZxhK8I1o92PiT/Mzs25k8Qf5q0di1PEH2Z8U2ea+MPc/cCK
+LPGHmHEolC/+EMfmr3aLP8Sa7tvV4g8xb+3BiPiDTDjYvFD8QeKL6OXiDzJ6
+1b5XxR9kff/e1eIPsD4uukH8AW5d2vqu+ANsO9r9gfgD3N799BHx+/nxBH+b
++P2cm3ripPj9PBnd0iV+P2/0JfSL38e4vffdFr+P219eG/Oj8fsYNWJnnGHL
+x7r3KpMM08snfj+SYtj28rl57Tni93LckPXl4vfyrfpHnhW/hw+uqn1F/B4u
+crduFL+HMVP7dovfwzsvDvtU/l/NW4umnRa9msP22VdEr2Jn1NWYTqNX8Z49
+jeMN25V0PL8Nolcy8+TQKtErGD9moEb0Cl7aX7tF9HIuSGw7Jno5U+vPnBO9
+jO/svxHzk9HLyNzEZMN2Kb+d31Qhein3tK98Q/QSThk96rDoJWR9zUXR3TyV
+czmhy+huLunaV2rYdvHRP6M2ie5i+N7JHaIXc3X/xvgzRi/m4lO1fsN2EY8n
++g6IXsSiusZB3UYvZHRPc6Vhq5BpLY8fFd1JV/bGcWeN7uRDQzetNWwX0DXy
+7JBzRi/gspVpdYZtB1sG6mJ/NrqD15t2bRfO59u5O9N7DM/lV7u3XBWewyNt
+LXt+MZzHvGvTlvxqeDZPbF3qPG84l4MufJ7WaziHTf6XcMFwNo99f7r4ouEs
+JozssvsMZ9IxMqW133AGD2zuHXXZcDrj0gdeu2J4FmP7egdfMzyTk1Zc3nDd
+8Aw+vLcn6TfD4FMdXzbfNDydL6z5KPGW4VRmHX3G+4fhqfww8v6TA4ZT2HF4
+1zLhKVzvTT4v/5/M0c5zxXK9ZC7LOPSN3H8iB6ce75DnncD7m4cPl/dJ4uKY
+NdYlw+Pp+HpFg4xPAu9kjPpMxi+O9Y2uWuFYvr7hzVZhizXbBpLEf3cGL9xx
+/4+h9Vhofxz09ROg7z8e+vmSoJ9/AvT7TYR+/2To8ZkMPX5ToMc3BXr8p0LP
+Tyr0/E2Hnl9Az/8M6PUxE3r9zIJeX+nQ6y8Den1mQq/fLOj1nQ29/nOg90cu
+9P6ZDb2/8qD33xzo/TkXev/mQ+9vB9T+tx3Q9aEAun4UQNcXJ3T9cULXp0Lo
++lUIXd+KoOtfEXR9LIaun8XQ9dUFXX9d0PXZDV2/3dD1vQS6/pdA94dS6P5R
+Ct1fyqD7Txl0fyqH7l/l0P2tArr/VUD3x0ro/lkJ3V+roPtvFXR/robu39XQ
+/d0D1f/hgcoHtgcqP9ADlS8sL1T+gBcqn9heqPxCL1S+sXxQ+Qc+qHxk+6Dy
+E31Q+cryQ+Uv+KHyme2Hym/0Q+U7KwCV/xCAyod2ACo/MgCVL60gVP5EECqf
+2kGo/MogVL61QlD5FyGofGyHoPIzQ1D52gpD5W+EofK5HYbK7wxD5XsrApX/
+EYE6H9gRqPMDI1DnC2se/jt//AXlpqu7
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
- AxesOrigin->{0, 432.6155},
+ AxesOrigin->{0, 432.61600000000004`},
Frame->True,
PlotRange->{All, All},
PlotRangeClipping->True,
- PlotRangePadding->{Automatic, Automatic}]], "Output"],
+ PlotRangePadding->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.5545692392228*^9, 3.55457059027492*^9,
+ 3.554570649603673*^9}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
-1:eJxtl3lQVWUYh0+Ju2VO6aAJWVIu2HQlK1O7vWyist572bnA3e81NWkR0yzv
-JGW5RCJhkZmYlUsx5ShNOsWLlVo5UqZIy6RIaZFKmVYaZQvP+S9mGOaZhx/c
-c873vd/vXO+Za/dfbhjGR/98//uz+2umznAGAu/+MOPu/1BDatkelVI2LrWb
-wyE9crAgL1QGS0jvi4zdXL8DNkL6cb+v6tK6YA3qTftn/5malEY+qP1rkw82
-rIQlqFsP/1W9phU2gjpkoHf4hZh08gHNqVjzyon74XBA9817oHXWblgCum5N
-r/3VV2eQD+hV+zP73xuA1a/HRt5YG7ELDvt1eGf6Rf+gTPJ+fay02bJ+Jmz4
-NeLkrE+a3ofVp9alY385NTCLvE8LF/Ue2mWFxaefXrl70ZC5sOHTZxaPrE5a
-D6tXLRmLR1ceNPNe/XZdV8GlnjbyXj12rHPDukmw4dWKM/JVeRmsHrV83jq5
-6jU47NG2mEGeP46aeY8uKIpyvDvUTt6jE5p8i9uzYXXr2HuaPlywCg679eGI
-mvIVzbC49dZbNueOHugg79aShLfqCrNgdannVPmA8avhsEsnPD93zztHYHFp
-85VbFvaIzibv0pUHjmZGBeBwqabbHzw55E3Tl2rB4euKjC7Tl+gP1ecndkzP
-wZfo8BbfI989D4eLtfFE47Iep0xfrP0u7orKlVy8U+cl3W3trIENpy7sqI9t
-6zR9kZYc2J1oTc3DF+mepDePR26Gw4UaGjhl8pK++fhC3XbpXEzlbDhcoMsu
-zP8m/aDpC7S9alRT86QCfL4+PcjSPvJV2MjX6Bf+fDnvmkJ8nlb/MSe6/HHY
-yNMO728Ll14wfa625rwx7JmyInyu1nw9u6qyAw7naPVT82YtDjrxORp9dMJa
-20k4nK2np3ZuOjOzGJ+tH3qH5N/aCYcdurLM1na6vATv0GcbUh760ijF23X/
-U60DXloBG3bdUVXXp32AC2/TOn2759cO2LDpmp0Zh76oNX2W/mh80+VuM32W
-jh/T57Yvb3LDmdq/sfZc+B6TM7TmA5vdt9XkdP21od+e3O9NTtPEgNXZdp0H
-TtWz1r2H4rJMnqG9hg6O7D/f5On6nHNRcMMqk6fppVFZ7yxfa3KKttia2lat
-Nnmqbqxb/2LlfSYn6xeflVckWkxO0t/P37nzhn3m50nUbUvfet1iMTlBO8ec
-2fR9sXm98VrTUL934zLz/opWRS+51L7NfJ5WDcTP++TYMHP9TNFDfa2X2evN
-/TZJWyrH/zTyM3P+TVT7mI7YjQcEvl3jzrU5brxrBDxBn4spSxnVdktjN8fp
-E5u290q7OR626JP2lH3L306Gx6m/NfZ42aMmj9bmujsGRzgS4Bitjbpi75ze
-U+ARuuXwhi2ry+PgSL227kGvw3kDfJUuOfvz6bVREbCh8Z5Qy96KJqvx/1+C
-f4+8kOd6IoW/D48Q/j8cI3w+eLTw+eFxwvXBFuH64Tjh/pj3T7h/5v0V7i/X
-M1G4//Ak4fnAU4TnB1uF5wuL8PzheGF9wAnC+oEThfUFJwnrD04W1ic8VVi/
-cIqwvuFpwvqHpwv7A54h7B84VdhfcJqw/+B0YX/CGcL+hTOF/Q1nCfu/m8NZ
-wnzA24T5gbcJ8wVvF+YP3i7MJ7xDmF94hzDf8NnC/MNnC/MRnyPMT3yOMF/x
-ucL8xecK8xmfJ8xvfJ4w3/H5wvzH5wvnA75AOD/wBcL5gi8Uzh98oXA+4YuE
-8wtfJJxveKdw/uGdwvmILxbOT3yxcL7iS4TzF18inM/4UuH8xpcK5zveJZz/
-3SwuoR/w+y6hP3SzuoR+Qd4t9A/ybqGfkHcL/YW8W+g35D1C/yHvEfoReY/Q
-n8h7hH5F3iv0L/JeoZ+R9wr9jbxX6HfkfUL/I+8T+iF5n9AfyfuEfkneL/RP
-8n6hn5L3C/2VvF/ot+QDQv8lHxD6MfmA0J/JB4R+TT4o9G/yQaGfkw8K/Z18
-UOj35ENC/ycfEt4PyIeE9wfyIeH9gvxM4f2j8W9Hv9hQ
+1:eJxtl3lQVWUYh49J7mm2ONiEUmKi2EhEZUbXV0BJWe+97Fy4+0JSUimaY3kb
+bdwqUhkdyErM3CrHGqJRp3wxy1IHk9DInJQoC4fEyqZUzBae81/MMMwzDz+4
+55zve7/fucMzx+a/zjCMz//5/vdn71e5ZjoCgQ87Z039DzWkExqi0ionpvdy
+OKQtLUUFoUpYQvpEZNz2ne/DRkibB31Tn9EDa1DHHam4mp6aQT6oQ+qmtzS+
+CEtQtx3/q2Z9G2wE9cZh3tsvxWSSD2jh0vVvnn0SDgf00Lyn2mbvhyWgW9f3
+O1Jzcxb5gN50JHvw4wFY/XpqzNi6iL1w2K8jujMv+4dnk/frc86j8RvLYcOv
+V87OPtz0Maw+TVk24beuYTnkfepY1H9kjwUWn7YM3b9oxBzY8OlLi8fUpG6E
+1asJWYtjq1vMvFfPvNZTdO16K3mvnj7Tvem1KbDh1SXn5ZuqSlg9mvBl20Nr
+tsJhj3bEDPdcOW3mPbqwJMr+4UgbeY8mNvkWd+TC6ta4R5s+eXo1HHbrooh1
+VS8chcWtD0zanh87zE7erc7kd+uLc2B1qaurasg9a+GwSxNr53y6+ytYXPrF
+0B0L+47KJe/SZc2ns6MCcNipmba5P47YZXqnFh8fXWL0mL5MO2t+n3xuZh6+
+TKNP+J75oRYOl+qes/tW9u0yfakOvrw3Kl/y8Q5dkDrV0r0ONhy68NzOuPZu
+05doWfP+FEt6Ab5ED6Tu+i5yOxwu1sCwpIeWDCzEF2vDtYsx1RVwuEhXXpr/
+bWaL6Yv0+zXjmo5OKcIX6svD4zvGbIGNQo1+5eobBbcU4wu09spjo6qeh40C
+7fT+sXDZJdPna1veO7e9XFmCz9d1pyrWVJ+Dw3m6YcW82YuDDnyeRp5O3GD9
+EQ7n6sUZ3dvOl5fic/WQd0Thvd1w2K7LK63tP1eV4e1a15i24KThxNv00Iq2
+Ia+/ABs2bVxTP6BjiAtv1S36wfWn7LBh1do9Wa1f15k+R7uMb3vc7abP0fjx
+A+47eZcbztZB++ouhh81OUtrD1htvrdMztQ/Ggd9mv+TyRmaHLA42kd74HTt
+tBxsTcgxeZZGjLw1cvB8k2fqK45FwU2rTX5E+8Tm7F61weQ0bbU2ta9ea/IM
+3Vi/8dXqJ0yerq3HqpamxJucqn/+/uCeOz8zP0+KNix79+34eJOT9dfx57f9
+VGpe7zStadx5cPNK8/6Krh+15FrHe+bztGjFtHmHz9xmrp8k/WSgpY9tp7nf
+puiF6nsujDlmzr/J6hx/Lm5zs8D364yL7faxD0fDiZobU5k2rn3Svl5O0Be3
+NfTLuHsaHK/LbWmfrfpgOjxRfW1x31U+a3KsNtc/cGuEPRmO0VVRNxx8rH8S
+HK07jm/asbYqAY7USfVzvXbHnfCNOvC3X37eEBUBG3rBGTpxcGmTxfj/L8F/
+RF7Icz2Rwt+Ho4X/D8cInw+OFT4/PFG4PjheuH44Qbg/5v0T7p95f4X7y/VM
+Fu4/PEV4PnCS8Pxgi/B8YRGePzxNWB9wsrB+4BRhfcGpwvqDpwvrE54hrF84
+TVjf8CPC+odnCvsDniXsHzhd2F9whrD/4Exhf8JZwv6Fs4X9DecI+7+XwznC
+fMBbhfmBtwrzBW8T5g/eJswnvF2YX3i7MN/wucL8w+cK8xGfJ8xPfJ4wX/H5
+wvzF5wvzGV8gzG98gTDf8YXC/McXCucDvkg4P/BFwvmCLxbOH3yxcD7hS4Tz
+C18inG94h3D+4R3C+YgvFc5PfKlwvuLLhPMXXyacz3incH7jncL5jncJ538v
+i0voB/y+S+gPvawuoV+Qdwv9g7xb6Cfk3UJ/Ie8W+g15j9B/yHuEfkTeI/Qn
+8h6hX5H3Cv2LvFfoZ+S9Qn8j7xX6HXmf0P/I+4R+SN4n9EfyPqFfkvcL/ZO8
+X+in5P1CfyXvF/ot+YDQf8kHhH5MPiD0Z/IBoV+TDwr9m3xQ6Ofkg0J/Jx8U
++j35kND/yYeE9wPyIeH9gXxIeL8gXy68f+z7Gzmw2Mg=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
AxesOrigin->{0, 0},
Frame->True,
PlotRange->{All, All},
PlotRangeClipping->True,
- PlotRangePadding->{Automatic, Automatic}]], "Output"]
+ PlotRangePadding->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.5545692392228*^9, 3.55457059027492*^9,
+ 3.554570649616191*^9}]
}, Open ]]
}, Open ]],
@@ -14052,15 +19802,22 @@ Cell[BoxData[
RowBox[{"hb", "[", "2", "]"}], "\[Equal]", "7.85178251911697`*^7"}], ",",
RowBox[{
RowBox[{"g", "[", "2", "]"}], "\[Equal]", "3.8117309832741246`*^7"}]}],
- "}"}]], "Output"],
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569239338414*^9, 3.554570590470957*^9,
+ 3.554570649731472*^9}],
Cell[BoxData["\<\"ha0 = 2.1471788680034824e10;\\nha1 = \
2.558764384495815e9;\\ng1 = 3.612847284945266e7;\\nha2 = 5.323020344462938e8;\
-\\nhb2 = 7.85178251911697e7;\\ng2 = 3.8117309832741246e7;\\n\"\>"], "Output"]
+\\nhb2 = 7.85178251911697e7;\\ng2 = 3.8117309832741246e7;\\n\"\>"], "Output",
+ CellChangeTimes->{3.554569239338414*^9, 3.554570590470957*^9,
+ 3.554570649796009*^9}]
}, Open ]],
Cell["Convert equations to C form", "Text"],
+Cell[BoxData[""], "Input",
+ CellChangeTimes->{{3.554568964254851*^9, 3.554568970665412*^9}}],
+
Cell[CellGroupData[{
Cell[BoxData[{
@@ -14131,7 +19888,9 @@ Cell[BoxData[
RowBox[{"-", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
- RowBox[{"-", "2"}]}], "}"}]}], "}"}]], "Output"],
+ RowBox[{"-", "2"}]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.55456923939103*^9, 3.55457059056514*^9,
+ 3.55457064995498*^9}],
Cell[BoxData[
RowBox[{"{",
@@ -14190,7 +19949,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"2", ",", "2", ",",
RowBox[{"-", "2"}]}], "}"}], "\[Rule]", "\<\"16\"\>"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.55456923939103*^9, 3.55457059056514*^9,
+ 3.554570649957038*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -14344,17 +20105,21 @@ Cell[BoxData[{
RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
RowBox[{
RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",",
+ RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<a\>\""}]}], ",",
RowBox[{
RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
"\[RuleDelayed]",
- RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
+ RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<ac\>\""}]}], ",",
RowBox[{
RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<d\>\"", "<>", "a"}]}], ",",
+ RowBox[{"\"\<delta\>\"", "<>", "a"}]}], ",",
RowBox[{
RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
+ RowBox[{"\"\<Kvec\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input",
+ CellChangeTimes->{{3.55456914848632*^9, 3.554569164767181*^9},
+ 3.554569287340058*^9, {3.554569321671209*^9, 3.554569324047068*^9}, {
+ 3.554569429250296*^9, 3.554569499438798*^9}, {3.554569642022385*^9,
+ 3.554569642695839*^9}}],
Cell[BoxData[
RowBox[{"{",
@@ -16009,87 +21774,97 @@ Cell[BoxData[
RowBox[{"r", "[",
RowBox[{"\<\"16\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
RowBox[{"Wc", "[", "4", "]"}]}],
- RowBox[{"4", " ", "rt6"}]]}], ")"}]}]}]}]}], "}"}]], "Output"],
+ RowBox[{"4", " ", "rt6"}]]}], ")"}]}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554569170819231*^9, 3.554569248122409*^9,
+ 3.554569293506631*^9, 3.554569324777101*^9, 3.554569450471414*^9,
+ 3.554569500532859*^9, 3.554569643540884*^9, 3.554570590676364*^9,
+ 3.554570650112442*^9}],
Cell[BoxData["\<\"rt6 = 2.449489742783178;\\nrt3 = 1.7320508075688772;\\nrt2 \
= 1.4142135623730951;\\ndr0101_dt = gt/8. - gt*r0101 + (g1*r0909)/2. + \
-(g2*r1313)/6. - i*((r0113*E4)/(4.*rt6) - (r1301*Ec4)/(4.*rt6));\\ndr0113_dt = \
-(-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - d1 + d2 - d3 \
-- v*k1 + v*k2 - v*k3)*r0113 + (r0101*Ec4)/(4.*rt6) - \
-(r1313*Ec4)/(4.*rt6));\\ndr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + \
-(g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4)/8. - \
-(r1402*Ec4)/8.);\\ndr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - \
-i*((WL*r0214)/2. - (-d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0214 - \
-(r0206*Ec3)/(8.*rt3) + (r0202*Ec4)/8. - (r1414*Ec4)/8.);\\ndr0303_dt = gt/8. \
-- gt*r0303 + (g1*r0909)/12. + (g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. \
-+ (g2*r1515)/4. - i*((r0309*E1)/(4.*rt6) + (r0315*E4)/8. - \
-(r0903*Ec1)/(4.*rt6) - (r1503*Ec4)/8.);\\ndr0309_dt = (-(gt*r0309) - (gt + \
-g1)*r0309)/2. - i*(-((-WL/6. - d1 - v*k1)*r0309) + (r0303*Ec1)/(4.*rt6) - \
-(r0909*Ec1)/(4.*rt6) - (r0307*Ec2)/(4.*rt6) - (r1509*Ec4)/8.);\\ndr0315_dt = \
-(-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - d1 + d2 - d3 - v*k1 + \
-v*k2 - v*k3)*r0315) - (r0915*Ec1)/(4.*rt6) - (r0307*Ec3)/8. + (r0303*Ec4)/8. \
-- (r1515*Ec4)/8.);\\ndr0404_dt = gt/8. - gt*r0404 + (g1*r1010)/4. + \
-(g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + (g2*r1616)/6. - \
-i*((r0410*E1)/(4.*rt2) + (r0416*E4)/(4.*rt6) - (r1004*Ec1)/(4.*rt2) - \
-(r1604*Ec4)/(4.*rt6));\\ndr0410_dt = (-(gt*r0410) - (gt + g1)*r0410)/2. - \
-i*(-(WL*r0410)/2. + (d1 + v*k1)*r0410 + (r0404*Ec1)/(4.*rt2) - \
-(r1010*Ec1)/(4.*rt2) - (r0408*Ec2)/(4.*rt6) - \
-(r1610*Ec4)/(4.*rt6));\\ndr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - \
-i*(-(WL*r0416)/2. - ((-4*WL)/3. - d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0416 - \
-(r1016*Ec1)/(4.*rt2) - (r0408*Ec3)/(4.*rt2) + (r0404*Ec4)/(4.*rt6) - \
-(r1616*Ec4)/(4.*rt6));\\ndr0505_dt = gt/8. - gt*r0505 + (g1*r1111)/2. + \
-(g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1)/4. - \
-(r1105*Ec1)/4.);\\ndr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - \
-i*(-(WL*r0511) - (WL/6. - d1 - v*k1)*r0511 + (r0505*Ec1)/4. - \
-(r1111*Ec1)/4.);\\ndr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - d1 \
-+ d2 - v*k1 + v*k2)*r0602 + (r0614*E4)/8. + \
-(r1402*Ec3)/(8.*rt3));\\ndr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + \
-(g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3)/(8.*rt3) + \
-(r1406*Ec3)/(8.*rt3));\\ndr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - \
-i*((-WL/2. - d1 + d2 - v*k1 + v*k2)*r0614 - (-d1 + d2 - d3 - v*k1 + v*k2 - \
-v*k3)*r0614 - (r0606*Ec3)/(8.*rt3) + (r1414*Ec3)/(8.*rt3) + \
-(r0602*Ec4)/8.);\\ndr0703_dt = -(gt*r0703) - i*((-d1 + d2 - v*k1 + \
-v*k2)*r0703 + (r0709*E1)/(4.*rt6) + (r0715*E4)/8. + (r0903*Ec2)/(4.*rt6) + \
-(r1503*Ec3)/8.);\\ndr0707_dt = gt/8. - gt*r0707 + (g1*r0909)/12. + \
-(g1*r1111)/12. + (g2*r1313)/4. + (g2*r1414)/3. + (g2*r1515)/4. - \
-i*(-(r0709*E2)/(4.*rt6) - (r0715*E3)/8. + (r0907*Ec2)/(4.*rt6) + \
-(r1507*Ec3)/8.);\\ndr0709_dt = (-(gt*r0709) - (gt + g1)*r0709)/2. - \
-i*(-((-WL/6. - d1 - v*k1)*r0709) + (-d1 + d2 - v*k1 + v*k2)*r0709 + \
-(r0703*Ec1)/(4.*rt6) - (r0707*Ec2)/(4.*rt6) + (r0909*Ec2)/(4.*rt6) + \
-(r1509*Ec3)/8.);\\ndr0715_dt = (-(gt*r0715) - (gt + g2)*r0715)/2. - i*((-d1 + \
-d2 - v*k1 + v*k2)*r0715 - ((-2*WL)/3. - d1 + d2 - d3 - v*k1 + v*k2 - \
-v*k3)*r0715 + (r0915*Ec2)/(4.*rt6) - (r0707*Ec3)/8. + (r1515*Ec3)/8. + \
-(r0703*Ec4)/8.);\\ndr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - d1 + \
-d2 - v*k1 + v*k2)*r0804 + (r0810*E1)/(4.*rt2) + (r0816*E4)/(4.*rt6) + \
-(r1004*Ec2)/(4.*rt6) + (r1604*Ec3)/(4.*rt2));\\ndr0808_dt = gt/8. - gt*r0808 \
-+ (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + \
-(g2*r1616)/2. - i*(-(r0810*E2)/(4.*rt6) - (r0816*E3)/(4.*rt2) + \
-(r1008*Ec2)/(4.*rt6) + (r1608*Ec3)/(4.*rt2));\\ndr0810_dt = (-(gt*r0810) - \
-(gt + g1)*r0810)/2. - i*((d1 + v*k1)*r0810 + (WL/2. - d1 + d2 - v*k1 + \
-v*k2)*r0810 + (r0804*Ec1)/(4.*rt2) - (r0808*Ec2)/(4.*rt6) + \
-(r1010*Ec2)/(4.*rt6) + (r1610*Ec3)/(4.*rt2));\\ndr0816_dt = (-(gt*r0816) - \
-(gt + g2)*r0816)/2. - i*((WL/2. - d1 + d2 - v*k1 + v*k2)*r0816 - ((-4*WL)/3. \
-- d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0816 + (r1016*Ec2)/(4.*rt6) - \
-(r0808*Ec3)/(4.*rt2) + (r1616*Ec3)/(4.*rt2) + \
-(r0804*Ec4)/(4.*rt6));\\ndr0909_dt = -((gt + g1)*r0909) - \
-i*(-(r0309*E1)/(4.*rt6) + (r0709*E2)/(4.*rt6) + (r0903*Ec1)/(4.*rt6) - \
-(r0907*Ec2)/(4.*rt6));\\ndr0915_dt = (-((gt + g1)*r0915) - (gt + \
-g2)*r0915)/2. - i*((-WL/6. - d1 - v*k1)*r0915 - ((-2*WL)/3. - d1 + d2 - d3 - \
-v*k1 + v*k2 - v*k3)*r0915 - (r0315*E1)/(4.*rt6) + (r0715*E2)/(4.*rt6) - \
-(r0907*Ec3)/8. + (r0903*Ec4)/8.);\\ndr1010_dt = -((gt + g1)*r1010) - \
-i*(-(r0410*E1)/(4.*rt2) + (r0810*E2)/(4.*rt6) + (r1004*Ec1)/(4.*rt2) - \
-(r1008*Ec2)/(4.*rt6));\\ndr1016_dt = (-((gt + g1)*r1016) - (gt + \
-g2)*r1016)/2. - i*(-((d1 + v*k1)*r1016) - ((-4*WL)/3. - d1 + d2 - d3 - v*k1 + \
-v*k2 - v*k3)*r1016 - (r0416*E1)/(4.*rt2) + (r0816*E2)/(4.*rt6) - \
-(r1008*Ec3)/(4.*rt2) + (r1004*Ec4)/(4.*rt6));\\ndr1111_dt = -((gt + \
-g1)*r1111) - i*(-(r0511*E1)/4. + (r1105*Ec1)/4.);\\ndr1313_dt = -((gt + \
-g2)*r1313) - i*(-(r0113*E4)/(4.*rt6) + (r1301*Ec4)/(4.*rt6));\\ndr1414_dt = \
--((gt + g2)*r1414) - i*((r0614*E3)/(8.*rt3) - (r0214*E4)/8. - \
-(r1406*Ec3)/(8.*rt3) + (r1402*Ec4)/8.);\\ndr1515_dt = -((gt + g2)*r1515) - \
-i*((r0715*E3)/8. - (r0315*E4)/8. - (r1507*Ec3)/8. + \
-(r1503*Ec4)/8.);\\ndr1616_dt = -((gt + g2)*r1616) - i*((r0816*E3)/(4.*rt2) - \
-(r0416*E4)/(4.*rt6) - (r1608*Ec3)/(4.*rt2) + (r1604*Ec4)/(4.*rt6));\\n\"\>"], \
-"Output"]
+(g2*r1313)/6. - i*((r0113*E4a)/(4.*rt6) - (r1301*E4ac)/(4.*rt6));\\ndr0113_dt \
+= (-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - delta1 + \
+delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0113 + (r0101*E4ac)/(4.*rt6) \
+- (r1313*E4ac)/(4.*rt6));\\ndr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + \
+(g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4a)/8. - \
+(r1402*E4ac)/8.);\\ndr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - \
+i*((WL*r0214)/2. - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - \
+v*Kvec3)*r0214 - (r0206*E3ac)/(8.*rt3) + (r0202*E4ac)/8. - \
+(r1414*E4ac)/8.);\\ndr0303_dt = gt/8. - gt*r0303 + (g1*r0909)/12. + \
+(g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1515)/4. - \
+i*((r0309*E1a)/(4.*rt6) + (r0315*E4a)/8. - (r0903*E1ac)/(4.*rt6) - \
+(r1503*E4ac)/8.);\\ndr0309_dt = (-(gt*r0309) - (gt + g1)*r0309)/2. - \
+i*(-((-WL/6. - delta1 - v*Kvec1)*r0309) + (r0303*E1ac)/(4.*rt6) - \
+(r0909*E1ac)/(4.*rt6) - (r0307*E2ac)/(4.*rt6) - (r1509*E4ac)/8.);\\ndr0315_dt \
+= (-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - delta1 + delta2 - \
+delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0315) - (r0915*E1ac)/(4.*rt6) - \
+(r0307*E3ac)/8. + (r0303*E4ac)/8. - (r1515*E4ac)/8.);\\ndr0404_dt = gt/8. - \
+gt*r0404 + (g1*r1010)/4. + (g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + \
+(g2*r1616)/6. - i*((r0410*E1a)/(4.*rt2) + (r0416*E4a)/(4.*rt6) - \
+(r1004*E1ac)/(4.*rt2) - (r1604*E4ac)/(4.*rt6));\\ndr0410_dt = (-(gt*r0410) - \
+(gt + g1)*r0410)/2. - i*(-(WL*r0410)/2. + (delta1 + v*Kvec1)*r0410 + \
+(r0404*E1ac)/(4.*rt2) - (r1010*E1ac)/(4.*rt2) - (r0408*E2ac)/(4.*rt6) - \
+(r1610*E4ac)/(4.*rt6));\\ndr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - \
+i*(-(WL*r0416)/2. - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + \
+v*Kvec2 - v*Kvec3)*r0416 - (r1016*E1ac)/(4.*rt2) - (r0408*E3ac)/(4.*rt2) + \
+(r0404*E4ac)/(4.*rt6) - (r1616*E4ac)/(4.*rt6));\\ndr0505_dt = gt/8. - \
+gt*r0505 + (g1*r1111)/2. + (g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1a)/4. \
+- (r1105*E1ac)/4.);\\ndr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - \
+i*(-(WL*r0511) - (WL/6. - delta1 - v*Kvec1)*r0511 + (r0505*E1ac)/4. - \
+(r1111*E1ac)/4.);\\ndr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - \
+delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0602 + (r0614*E4a)/8. + \
+(r1402*E3ac)/(8.*rt3));\\ndr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + \
+(g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3a)/(8.*rt3) + \
+(r1406*E3ac)/(8.*rt3));\\ndr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - \
+i*((-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0614 - (-delta1 + delta2 - \
+delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0614 - (r0606*E3ac)/(8.*rt3) + \
+(r1414*E3ac)/(8.*rt3) + (r0602*E4ac)/8.);\\ndr0703_dt = -(gt*r0703) - \
+i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0703 + (r0709*E1a)/(4.*rt6) + \
+(r0715*E4a)/8. + (r0903*E2ac)/(4.*rt6) + (r1503*E3ac)/8.);\\ndr0707_dt = \
+gt/8. - gt*r0707 + (g1*r0909)/12. + (g1*r1111)/12. + (g2*r1313)/4. + \
+(g2*r1414)/3. + (g2*r1515)/4. - i*(-(r0709*E2a)/(4.*rt6) - (r0715*E3a)/8. + \
+(r0907*E2ac)/(4.*rt6) + (r1507*E3ac)/8.);\\ndr0709_dt = (-(gt*r0709) - (gt + \
+g1)*r0709)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0709) + (-delta1 + delta2 - \
+v*Kvec1 + v*Kvec2)*r0709 + (r0703*E1ac)/(4.*rt6) - (r0707*E2ac)/(4.*rt6) + \
+(r0909*E2ac)/(4.*rt6) + (r1509*E3ac)/8.);\\ndr0715_dt = (-(gt*r0715) - (gt + \
+g2)*r0715)/2. - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0715 - ((-2*WL)/3. \
+- delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0715 + \
+(r0915*E2ac)/(4.*rt6) - (r0707*E3ac)/8. + (r1515*E3ac)/8. + (r0703*E4ac)/8.);\
+\\ndr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - delta1 + delta2 - \
+v*Kvec1 + v*Kvec2)*r0804 + (r0810*E1a)/(4.*rt2) + (r0816*E4a)/(4.*rt6) + \
+(r1004*E2ac)/(4.*rt6) + (r1604*E3ac)/(4.*rt2));\\ndr0808_dt = gt/8. - \
+gt*r0808 + (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + \
+(g2*r1616)/2. - i*(-(r0810*E2a)/(4.*rt6) - (r0816*E3a)/(4.*rt2) + \
+(r1008*E2ac)/(4.*rt6) + (r1608*E3ac)/(4.*rt2));\\ndr0810_dt = (-(gt*r0810) - \
+(gt + g1)*r0810)/2. - i*((delta1 + v*Kvec1)*r0810 + (WL/2. - delta1 + delta2 \
+- v*Kvec1 + v*Kvec2)*r0810 + (r0804*E1ac)/(4.*rt2) - (r0808*E2ac)/(4.*rt6) + \
+(r1010*E2ac)/(4.*rt6) + (r1610*E3ac)/(4.*rt2));\\ndr0816_dt = (-(gt*r0816) - \
+(gt + g2)*r0816)/2. - i*((WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0816 \
+- ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0816 \
++ (r1016*E2ac)/(4.*rt6) - (r0808*E3ac)/(4.*rt2) + (r1616*E3ac)/(4.*rt2) + \
+(r0804*E4ac)/(4.*rt6));\\ndr0909_dt = -((gt + g1)*r0909) - \
+i*(-(r0309*E1a)/(4.*rt6) + (r0709*E2a)/(4.*rt6) + (r0903*E1ac)/(4.*rt6) - \
+(r0907*E2ac)/(4.*rt6));\\ndr0915_dt = (-((gt + g1)*r0915) - (gt + \
+g2)*r0915)/2. - i*((-WL/6. - delta1 - v*Kvec1)*r0915 - ((-2*WL)/3. - delta1 + \
+delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0915 - (r0315*E1a)/(4.*rt6) + \
+(r0715*E2a)/(4.*rt6) - (r0907*E3ac)/8. + (r0903*E4ac)/8.);\\ndr1010_dt = \
+-((gt + g1)*r1010) - i*(-(r0410*E1a)/(4.*rt2) + (r0810*E2a)/(4.*rt6) + \
+(r1004*E1ac)/(4.*rt2) - (r1008*E2ac)/(4.*rt6));\\ndr1016_dt = (-((gt + \
+g1)*r1016) - (gt + g2)*r1016)/2. - i*(-((delta1 + v*Kvec1)*r1016) - \
+((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r1016 - \
+(r0416*E1a)/(4.*rt2) + (r0816*E2a)/(4.*rt6) - (r1008*E3ac)/(4.*rt2) + \
+(r1004*E4ac)/(4.*rt6));\\ndr1111_dt = -((gt + g1)*r1111) - i*(-(r0511*E1a)/4. \
++ (r1105*E1ac)/4.);\\ndr1313_dt = -((gt + g2)*r1313) - \
+i*(-(r0113*E4a)/(4.*rt6) + (r1301*E4ac)/(4.*rt6));\\ndr1414_dt = -((gt + \
+g2)*r1414) - i*((r0614*E3a)/(8.*rt3) - (r0214*E4a)/8. - (r1406*E3ac)/(8.*rt3) \
++ (r1402*E4ac)/8.);\\ndr1515_dt = -((gt + g2)*r1515) - i*((r0715*E3a)/8. - \
+(r0315*E4a)/8. - (r1507*E3ac)/8. + (r1503*E4ac)/8.);\\ndr1616_dt = -((gt + \
+g2)*r1616) - i*((r0816*E3a)/(4.*rt2) - (r0416*E4a)/(4.*rt6) - \
+(r1608*E3ac)/(4.*rt2) + (r1604*E4ac)/(4.*rt6));\\n\"\>"], "Output",
+ CellChangeTimes->{3.554569170819231*^9, 3.554569248122409*^9,
+ 3.554569293506631*^9, 3.554569324777101*^9, 3.554569450471414*^9,
+ 3.554569500532859*^9, 3.554569643540884*^9, 3.554570590676364*^9,
+ 3.554570650128499*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -16102,8 +21877,10 @@ Cell[BoxData[
RowBox[{"NotebookDirectory", "[", "]"}], ",",
"\"\<RbEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]], "Input"],
-Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
-mathemathica_fwm\\\\RbEquations.txt\"\>"], "Output"]
+Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/\
+RbEquations.txt\"\>"], "Output",
+ CellChangeTimes->{3.554569572058956*^9, 3.554569659570355*^9,
+ 3.554570590813968*^9, 3.55457065021187*^9}]
}, Open ]],
Cell["\<\
@@ -16233,7 +22010,7 @@ Cell[BoxData[{
RowBox[{
"\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
"~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
+ RowBox[{"\"\<complex r\>\"", "<>", "a", "<>", "b"}]}], ",",
RowBox[{
RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
"\[RuleDelayed]",
@@ -16257,7 +22034,8 @@ Cell[BoxData[{
RowBox[{"\"\<d\>\"", "<>", "a"}]}], ",",
RowBox[{
RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
+ RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input",
+ CellChangeTimes->{{3.55456986886158*^9, 3.554569871147471*^9}}],
Cell[BoxData[
RowBox[{"{",
@@ -16417,18 +22195,28 @@ Cell[BoxData[
RowBox[{
RowBox[{"r", "[",
RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]", "0"}]}],
- "}"}]], "Output"],
+ "}"}]], "Output",
+ CellChangeTimes->{3.554569872033716*^9, 3.554570590915751*^9,
+ 3.554570650264164*^9}],
-Cell[BoxData["\<\"r0101 = 0.125;\\nr0113 = 0;\\nr0202 = 0.125;\\nr0206 = \
-0;\\nr0214 = 0;\\nr0303 = 0.125;\\nr0307 = 0;\\nr0309 = 0;\\nr0315 = \
-0;\\nr0404 = 0.125;\\nr0408 = 0;\\nr0410 = 0;\\nr0416 = 0;\\nr0505 = \
-0.125;\\nr0511 = 0;\\nr0602 = 0;\\nr0606 = 0.125;\\nr0614 = 0;\\nr0703 = \
-0;\\nr0707 = 0.125;\\nr0709 = 0;\\nr0715 = 0;\\nr0804 = 0;\\nr0808 = \
-0.125;\\nr0810 = 0;\\nr0816 = 0;\\nr0903 = 0;\\nr0907 = 0;\\nr0909 = \
-0;\\nr0915 = 0;\\nr1004 = 0;\\nr1008 = 0;\\nr1010 = 0;\\nr1016 = 0;\\nr1105 = \
-0;\\nr1111 = 0;\\nr1301 = 0;\\nr1313 = 0;\\nr1402 = 0;\\nr1406 = 0;\\nr1414 = \
-0;\\nr1503 = 0;\\nr1507 = 0;\\nr1509 = 0;\\nr1515 = 0;\\nr1604 = 0;\\nr1608 = \
-0;\\nr1610 = 0;\\nr1616 = 0;\\n\"\>"], "Output"]
+Cell[BoxData["\<\"complex r0101 = 0.125;\\ncomplex r0113 = 0;\\ncomplex r0202 \
+= 0.125;\\ncomplex r0206 = 0;\\ncomplex r0214 = 0;\\ncomplex r0303 = \
+0.125;\\ncomplex r0307 = 0;\\ncomplex r0309 = 0;\\ncomplex r0315 = \
+0;\\ncomplex r0404 = 0.125;\\ncomplex r0408 = 0;\\ncomplex r0410 = \
+0;\\ncomplex r0416 = 0;\\ncomplex r0505 = 0.125;\\ncomplex r0511 = \
+0;\\ncomplex r0602 = 0;\\ncomplex r0606 = 0.125;\\ncomplex r0614 = \
+0;\\ncomplex r0703 = 0;\\ncomplex r0707 = 0.125;\\ncomplex r0709 = \
+0;\\ncomplex r0715 = 0;\\ncomplex r0804 = 0;\\ncomplex r0808 = \
+0.125;\\ncomplex r0810 = 0;\\ncomplex r0816 = 0;\\ncomplex r0903 = \
+0;\\ncomplex r0907 = 0;\\ncomplex r0909 = 0;\\ncomplex r0915 = 0;\\ncomplex \
+r1004 = 0;\\ncomplex r1008 = 0;\\ncomplex r1010 = 0;\\ncomplex r1016 = \
+0;\\ncomplex r1105 = 0;\\ncomplex r1111 = 0;\\ncomplex r1301 = 0;\\ncomplex \
+r1313 = 0;\\ncomplex r1402 = 0;\\ncomplex r1406 = 0;\\ncomplex r1414 = \
+0;\\ncomplex r1503 = 0;\\ncomplex r1507 = 0;\\ncomplex r1509 = 0;\\ncomplex \
+r1515 = 0;\\ncomplex r1604 = 0;\\ncomplex r1608 = 0;\\ncomplex r1610 = \
+0;\\ncomplex r1616 = 0;\\n\"\>"], "Output",
+ CellChangeTimes->{3.554569872033716*^9, 3.554570590915751*^9,
+ 3.554570650268968*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -16441,8 +22229,10 @@ Cell[BoxData[
RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<RbInits.txt\>\""}],
"]"}], ",", "%"}], "]"}]], "Input"],
-Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
-mathemathica_fwm\\\\RbInits.txt\"\>"], "Output"]
+Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/RbInits.\
+txt\"\>"], "Output",
+ CellChangeTimes->{3.554569877772325*^9, 3.554570591015199*^9,
+ 3.554570650348909*^9}]
}, Open ]],
Cell["\<\
@@ -16963,7 +22753,8 @@ Cell[BoxData[
RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"F", "\[Rule]", "2"}], ",",
RowBox[{"M", "\[Rule]",
- RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]}], "}"}]], "Output"]
+ RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.55457059139513*^9, 3.554570650711194*^9}]
}, Open ]],
Cell["\<\
@@ -17206,7 +22997,8 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}]}],
- "}"}]}], "}"}]], "Output"]
+ "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554570591821216*^9, 3.554570651056006*^9}]
}, Open ]],
Cell["\<\
@@ -17266,7 +23058,8 @@ Cell[BoxData[
RowBox[{"0", ",", "0", ",",
RowBox[{
SubscriptBox["\[CapitalOmega]", "4"], "[", "z", "]"}]}], "}"}]}],
- "}"}]], "Output"]
+ "}"}]], "Output",
+ CellChangeTimes->{3.554570591897082*^9, 3.554570651100388*^9}]
}, Open ]],
Cell["\<\
@@ -17461,7 +23254,8 @@ Cell[BoxData[
RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
- ")"}]}]}]}], "}"}]], "Output"]
+ ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{3.554570592011115*^9, 3.554570651181306*^9}]
}, Open ]],
Cell["\<\
@@ -17630,7 +23424,8 @@ Cell[BoxData[
RowBox[{"2.449489742783178`", " ",
RowBox[{"r", "[",
RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}]}], ")"}]}]}]}],
- "}"}]], "Output"],
+ "}"}]], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651251726*^9}],
Cell[BoxData["\<\"dW(1) == 0.16666666666666666*eta(1)*(2.449489742783178*r(\\\
\"03\\\",\\\"09\\\") + 4.242640687119286*r(\\\"04\\\",\\\"10\\\") + \
@@ -17641,24 +23436,27 @@ r(\\\"08\\\",\\\"10\\\")) - Lt[E2];\\ndW(3) == \
3.*r(\\\"07\\\",\\\"15\\\") + 4.242640687119286*r(\\\"08\\\",\\\"16\\\")) - \
Lt[E3];\\ndW(4) == (4*eta(2)*(2.449489742783178*r(\\\"01\\\",\\\"13\\\") + \
3*r(\\\"02\\\",\\\"14\\\") + 3*r(\\\"03\\\",\\\"15\\\") + \
-2.449489742783178*r(\\\"04\\\",\\\"16\\\")))/3. - Lt[E4];\\n\"\>"], "Output"],
+2.449489742783178*r(\\\"04\\\",\\\"16\\\")))/3. - Lt[E4];\\n\"\>"], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651253779*^9}],
Cell[BoxData["\<\"dE1_dz = 0.16666666666666666*eta1*(2.449489742783178*r0309 \
+ 4.242640687119286*r0410 + 6.*r0511) - Lt[E1];\\ndE2_dz = \
-0.8164965809277261*eta1*(r0709 + r0810) - Lt[E2];\\ndE3_dz = \
-1.*eta2*(1.7320508075688772*r0614 + 3.*r0715 + 4.242640687119286*r0816) - \
Lt[E3];\\ndE4_dz = (4*eta2*(2.449489742783178*r0113 + 3*r0214 + 3*r0315 + \
-2.449489742783178*r0416))/3. - Lt[E4];\\n\"\>"], "Output"],
+2.449489742783178*r0416))/3. - Lt[E4];\\n\"\>"], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651255555*^9}],
-Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
-mathemathica_fwm\\\\RbPropEquations.txt\"\>"], "Output"]
+Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/\
+RbPropEquations.txt\"\>"], "Output",
+ CellChangeTimes->{3.554570592105373*^9, 3.554570651290865*^9}]
}, Open ]]
}, Open ]]
},
-WindowSize->{1104, 893},
-WindowMargins->{{17, Automatic}, {Automatic, 8}},
+WindowSize->{956, 980},
+WindowMargins->{{Automatic, 0}, {26, Automatic}},
ShowSelection->True,
-FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
+FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
@@ -17673,254 +23471,255 @@ CellTagsIndex->{}
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
-Cell[567, 22, 43, 0, 71, "Section"],
-Cell[613, 24, 33, 0, 29, "Text"],
-Cell[649, 26, 138, 3, 31, "Input",
+Cell[567, 22, 43, 0, 74, "Section"],
+Cell[613, 24, 33, 0, 30, "Text"],
+Cell[649, 26, 138, 3, 30, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->2058623809],
-Cell[790, 31, 82, 2, 29, "Text"],
+Cell[790, 31, 82, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[897, 37, 144, 3, 31, "Input"],
-Cell[1044, 42, 382, 8, 30, "Output"]
+Cell[897, 37, 144, 3, 30, "Input"],
+Cell[1044, 42, 471, 10, 50, "Output"]
}, Open ]],
-Cell[1441, 53, 119, 3, 29, "Text",
+Cell[1530, 55, 119, 3, 30, "Text",
CellID->429217524],
Cell[CellGroupData[{
-Cell[1585, 60, 573, 16, 47, "Input"],
-Cell[2161, 78, 436, 12, 47, "Output"]
+Cell[1674, 62, 573, 16, 75, "Input"],
+Cell[2250, 80, 525, 14, 47, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[2634, 95, 694, 20, 47, "Input"],
-Cell[3331, 117, 425, 13, 47, "Output"]
+Cell[2812, 99, 694, 20, 75, "Input"],
+Cell[3509, 121, 514, 15, 47, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[3793, 135, 694, 20, 47, "Input"],
-Cell[4490, 157, 425, 13, 47, "Output"]
+Cell[4060, 141, 694, 20, 75, "Input"],
+Cell[4757, 163, 514, 15, 47, "Output"]
}, Open ]],
-Cell[4930, 173, 273, 5, 47, "Text"],
-Cell[5206, 180, 419, 12, 31, "Input",
+Cell[5286, 181, 273, 5, 49, "Text"],
+Cell[5562, 188, 419, 12, 30, "Input",
CellID->433132487],
-Cell[5628, 194, 493, 19, 32, "Text"],
+Cell[5984, 202, 493, 19, 33, "Text"],
Cell[CellGroupData[{
-Cell[6146, 217, 411, 12, 31, "Input"],
-Cell[6560, 231, 8889, 232, 587, "Output"]
+Cell[6502, 225, 411, 12, 30, "Input"],
+Cell[6916, 239, 8978, 234, 695, "Output"]
}, Open ]],
-Cell[15464, 466, 1150, 43, 29, "Text",
+Cell[15909, 476, 1150, 43, 49, "Text",
CellID->133602844],
Cell[CellGroupData[{
-Cell[16639, 513, 325, 8, 31, "Input"],
-Cell[16967, 523, 478, 12, 30, "Output"]
+Cell[17084, 523, 325, 8, 30, "Input"],
+Cell[17412, 533, 565, 14, 50, "Output"]
}, Open ]],
-Cell[17460, 538, 411, 10, 47, "Text"],
+Cell[17992, 550, 411, 10, 49, "Text"],
Cell[CellGroupData[{
-Cell[17896, 552, 2561, 80, 92, "Input",
+Cell[18428, 564, 2561, 80, 88, "Input",
CellID->534530029],
-Cell[20460, 634, 4983, 149, 101, "Output"]
+Cell[20992, 646, 5072, 151, 149, "Output"]
}, Open ]],
-Cell[25458, 786, 288, 6, 47, "Text",
+Cell[26079, 800, 288, 6, 49, "Text",
CellID->462076121],
Cell[CellGroupData[{
-Cell[25771, 796, 810, 24, 52, "Input",
+Cell[26392, 810, 810, 24, 73, "Input",
CellID->494599775],
-Cell[26584, 822, 84081, 2408, 594, "Output"]
+Cell[27205, 836, 84169, 2410, 509, "Output"]
}, Open ]],
-Cell[110680, 3233, 256, 5, 47, "Text",
+Cell[111389, 3249, 256, 5, 49, "Text",
CellID->358620443],
Cell[CellGroupData[{
-Cell[110961, 3242, 698, 18, 52, "Input",
+Cell[111670, 3258, 698, 18, 69, "Input",
CellID->167259034],
-Cell[111662, 3262, 3230, 55, 230, "Output"]
+Cell[112371, 3278, 3318, 57, 230, "Output"]
}, Open ]],
-Cell[114907, 3320, 1513, 54, 50, "Text",
+Cell[115704, 3338, 1513, 54, 74, "Text",
CellID->577766068],
Cell[CellGroupData[{
-Cell[116445, 3378, 956, 31, 52, "Input"],
-Cell[117404, 3411, 997, 34, 30, "Output"],
-Cell[118404, 3447, 1196, 34, 30, "Output"]
+Cell[117242, 3396, 956, 31, 50, "Input"],
+Cell[118201, 3429, 1086, 36, 50, "Output"],
+Cell[119290, 3467, 1283, 36, 30, "Output"]
}, Open ]],
-Cell[119615, 3484, 102, 2, 29, "Text"],
+Cell[120588, 3506, 102, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[119742, 3490, 447, 12, 31, "Input"],
-Cell[120192, 3504, 7543, 205, 310, "Output"]
+Cell[120715, 3512, 447, 12, 30, "Input"],
+Cell[121165, 3526, 7632, 207, 298, "Output"]
}, Open ]],
-Cell[127750, 3712, 902, 30, 47, "Text"],
+Cell[128812, 3736, 902, 30, 49, "Text"],
Cell[CellGroupData[{
-Cell[128677, 3746, 1142, 31, 52, "Input"],
-Cell[129822, 3779, 33911, 877, 570, "Output"]
+Cell[129739, 3770, 1142, 31, 69, "Input"],
+Cell[130884, 3803, 34000, 879, 508, "Output"]
}, Open ]],
-Cell[163748, 4659, 837, 25, 47, "Text"],
+Cell[164899, 4685, 837, 25, 68, "Text"],
Cell[CellGroupData[{
-Cell[164610, 4688, 765, 20, 38, "Input"],
-Cell[165378, 4710, 13324, 371, 569, "Output"]
+Cell[165761, 4714, 765, 20, 35, "Input"],
+Cell[166529, 4736, 13411, 373, 507, "Output"]
}, Open ]],
-Cell[178717, 5084, 141, 3, 29, "Text"],
+Cell[179955, 5112, 141, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[178883, 5091, 787, 22, 31, "Input"],
-Cell[179673, 5115, 261, 8, 47, "Output"]
+Cell[180121, 5119, 787, 22, 50, "Input"],
+Cell[180911, 5143, 350, 10, 48, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[179971, 5128, 787, 22, 31, "Input"],
-Cell[180761, 5152, 261, 8, 47, "Output"]
+Cell[181298, 5158, 787, 22, 50, "Input"],
+Cell[182088, 5182, 350, 10, 48, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[181059, 5165, 787, 22, 31, "Input"],
-Cell[181849, 5189, 355, 11, 47, "Output"]
+Cell[182475, 5197, 787, 22, 50, "Input"],
+Cell[183265, 5221, 444, 13, 48, "Output"]
}, Open ]],
-Cell[182219, 5203, 989, 34, 47, "Text"],
+Cell[183724, 5237, 989, 34, 49, "Text"],
Cell[CellGroupData[{
-Cell[183233, 5241, 877, 25, 47, "Input"],
-Cell[184113, 5268, 10598, 294, 569, "Output"]
+Cell[184738, 5275, 877, 25, 95, "Input"],
+Cell[185618, 5302, 10686, 296, 502, "Output"]
}, Open ]],
-Cell[194726, 5565, 92, 2, 29, "Text"],
+Cell[196319, 5601, 92, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[194843, 5571, 1102, 30, 52, "Input",
+Cell[196436, 5607, 1102, 30, 69, "Input",
CellID->102096636],
-Cell[195948, 5603, 2044, 35, 230, "Output"]
+Cell[197541, 5639, 2133, 37, 230, "Output"]
}, Open ]],
-Cell[198007, 5641, 588, 18, 29, "Text",
+Cell[199689, 5679, 588, 18, 49, "Text",
CellID->610306692],
Cell[CellGroupData[{
-Cell[198620, 5663, 272, 7, 31, "Input",
+Cell[200302, 5701, 272, 7, 30, "Input",
CellID->645617687],
-Cell[198895, 5672, 2716, 58, 266, "Output"]
+Cell[200577, 5710, 2805, 60, 273, "Output"]
}, Open ]],
-Cell[201626, 5733, 460, 13, 29, "Text",
+Cell[203397, 5773, 460, 13, 49, "Text",
CellID->854192725],
Cell[CellGroupData[{
-Cell[202111, 5750, 274, 7, 31, "Input",
+Cell[203882, 5790, 274, 7, 30, "Input",
CellID->465762594],
-Cell[202388, 5759, 49693, 1437, 426, "Output"]
+Cell[204159, 5799, 49782, 1439, 401, "Output"]
}, Open ]],
-Cell[252096, 7199, 69, 1, 29, "Text",
+Cell[253956, 7241, 69, 1, 30, "Text",
CellID->314466782],
Cell[CellGroupData[{
-Cell[252190, 7204, 197, 5, 31, "Input"],
-Cell[252390, 7211, 4464, 129, 126, "Output"]
+Cell[254050, 7246, 197, 5, 30, "Input"],
+Cell[254250, 7253, 4570, 131, 123, "Output"]
}, Open ]],
-Cell[256869, 7343, 232, 4, 29, "Text"],
+Cell[258835, 7387, 232, 4, 49, "Text"],
Cell[CellGroupData[{
-Cell[257126, 7351, 1661, 45, 119, "Input"],
-Cell[258790, 7398, 891, 21, 50, "Output"]
+Cell[259092, 7395, 1661, 45, 147, "Input"],
+Cell[260756, 7442, 980, 23, 69, "Output"]
}, Open ]],
-Cell[259696, 7422, 519, 13, 49, "Text"],
-Cell[260218, 7437, 1771, 45, 98, "Input"],
-Cell[261992, 7484, 105, 3, 29, "Text"],
+Cell[261751, 7468, 519, 13, 49, "Text"],
+Cell[262273, 7483, 1771, 45, 118, "Input"],
+Cell[264047, 7530, 105, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[262122, 7491, 213, 6, 31, "Input"],
-Cell[262338, 7499, 7417, 209, 202, "Output"]
+Cell[264177, 7537, 213, 6, 30, "Input"],
+Cell[264393, 7545, 7506, 211, 278, "Output"]
}, Open ]],
-Cell[269770, 7711, 93, 2, 29, "Text"],
-Cell[269866, 7715, 187, 6, 31, "Input"],
-Cell[270056, 7723, 80, 2, 29, "Text"],
-Cell[270139, 7727, 216, 8, 31, "Input"],
-Cell[270358, 7737, 88, 2, 29, "Text"],
+Cell[271914, 7759, 93, 2, 30, "Text"],
+Cell[272010, 7763, 187, 6, 30, "Input"],
+Cell[272200, 7771, 80, 2, 30, "Text"],
+Cell[272283, 7775, 216, 8, 30, "Input"],
+Cell[272502, 7785, 88, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[270471, 7743, 163, 5, 31, "Input"],
-Cell[270637, 7750, 11989, 385, 152, "Output"]
+Cell[272615, 7791, 163, 5, 30, "Input"],
+Cell[272781, 7798, 12078, 387, 231, "Output"]
}, Open ]],
-Cell[282641, 8138, 85, 2, 29, "Text"],
+Cell[284874, 8188, 85, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[282751, 8144, 190, 6, 31, "Input"],
-Cell[282944, 8152, 4464, 129, 126, "Output"]
+Cell[284984, 8194, 190, 6, 30, "Input"],
+Cell[285177, 8202, 216154, 5813, 1766, "Output"]
}, Open ]],
-Cell[287423, 8284, 71, 2, 29, "Text"],
+Cell[501346, 14018, 71, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[287519, 8290, 290, 8, 31, "Input"],
-Cell[287812, 8300, 14287, 488, 277, "Output"]
+Cell[501442, 14024, 290, 8, 30, "Input"],
+Cell[501735, 14034, 14374, 490, 365, "Output"]
}, Open ]],
-Cell[302114, 8791, 297, 8, 29, "Text"],
+Cell[516124, 14527, 297, 8, 30, "Text"],
Cell[CellGroupData[{
-Cell[302436, 8803, 534, 18, 33, "Input"],
-Cell[302973, 8823, 154837, 4560, 3394, "Output"]
+Cell[516446, 14539, 534, 18, 30, "Input"],
+Cell[516983, 14559, 154926, 4562, 4885, "Output"]
}, Open ]],
-Cell[457825, 13386, 1289, 34, 82, "Text"],
+Cell[671924, 19124, 1289, 34, 102, "Text"],
Cell[CellGroupData[{
-Cell[459139, 13424, 869, 26, 52, "Input"],
-Cell[460011, 13452, 4579, 142, 141, "Output"]
+Cell[673238, 19162, 869, 26, 50, "Input"],
+Cell[674110, 19190, 4667, 144, 144, "Output"]
}, Open ]],
-Cell[464605, 13597, 130, 3, 29, "Text"],
+Cell[678792, 19337, 130, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[464760, 13604, 1227, 35, 52, "Input"],
-Cell[465990, 13641, 189, 5, 49, "Output"]
+Cell[678947, 19344, 1227, 35, 50, "Input"],
+Cell[680177, 19381, 278, 7, 50, "Output"]
}, Open ]],
-Cell[466194, 13649, 154, 3, 29, "Text"],
+Cell[680470, 19391, 154, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[466373, 13656, 171, 6, 31, "Input"],
-Cell[466547, 13664, 4286, 131, 125, "Output"]
+Cell[680649, 19398, 171, 6, 30, "Input"],
+Cell[680823, 19406, 4417, 135, 142, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
-Cell[470882, 13801, 44, 0, 71, "Section"],
-Cell[470929, 13803, 253, 6, 31, "Input"],
-Cell[471185, 13811, 262, 5, 47, "Text"],
+Cell[685289, 19547, 44, 0, 74, "Section"],
+Cell[685336, 19549, 253, 6, 30, "Input"],
+Cell[685592, 19557, 262, 5, 49, "Text"],
Cell[CellGroupData[{
-Cell[471472, 13820, 2135, 63, 112, "Input"],
-Cell[473610, 13885, 1997, 37, 230, "Output"],
-Cell[475610, 13924, 2364, 43, 232, "Output"]
+Cell[685879, 19566, 2135, 63, 107, "Input"],
+Cell[688017, 19631, 2090, 39, 225, "Output"],
+Cell[690110, 19672, 2450, 45, 228, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
-Cell[478023, 13973, 49, 0, 71, "Section"],
+Cell[692609, 19723, 49, 0, 74, "Section"],
Cell[CellGroupData[{
-Cell[478097, 13977, 2204, 59, 112, "Input"],
-Cell[480304, 14038, 612, 16, 33, "Output"],
-Cell[480919, 14056, 213, 2, 145, "Output"]
+Cell[692683, 19727, 2204, 59, 130, "Input"],
+Cell[694890, 19788, 701, 18, 55, "Output"],
+Cell[695594, 19808, 302, 4, 145, "Output"]
}, Open ]],
-Cell[481147, 14061, 43, 0, 29, "Text"],
+Cell[695911, 19815, 43, 0, 30, "Text"],
+Cell[695957, 19817, 92, 1, 30, "Input"],
Cell[CellGroupData[{
-Cell[481215, 14065, 884, 26, 52, "Input"],
-Cell[482102, 14093, 1283, 40, 50, "Output"],
-Cell[483388, 14135, 1948, 57, 50, "Output"]
+Cell[696074, 19822, 884, 26, 69, "Input"],
+Cell[696961, 19850, 1369, 42, 50, "Output"],
+Cell[698333, 19894, 2035, 59, 69, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[485373, 14197, 5876, 159, 205, "Input"],
-Cell[491252, 14358, 58538, 1653, 1720, "Output"],
-Cell[549793, 16013, 5569, 78, 1057, "Output"]
+Cell[700405, 19958, 6158, 163, 243, "Input"],
+Cell[706566, 20123, 58765, 1657, 2381, "Output"],
+Cell[765334, 21782, 6258, 84, 1494, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[555399, 16096, 215, 6, 31, "Input"],
-Cell[555617, 16104, 120, 1, 30, "Output"]
+Cell[771629, 21871, 215, 6, 30, "Input"],
+Cell[771847, 21879, 214, 3, 30, "Output"]
}, Open ]],
-Cell[555752, 16108, 61, 2, 29, "Text"],
+Cell[772076, 21885, 61, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[555838, 16114, 5367, 145, 203, "Input"],
-Cell[561208, 16261, 5875, 158, 164, "Output"],
-Cell[567086, 16421, 722, 9, 962, "Output"]
+Cell[772162, 21891, 5440, 146, 233, "Input"],
+Cell[777605, 22039, 5964, 160, 222, "Output"],
+Cell[783572, 22201, 1215, 17, 962, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[567845, 16435, 210, 6, 31, "Input"],
-Cell[568058, 16443, 116, 1, 30, "Output"]
+Cell[784824, 22223, 210, 6, 30, "Input"],
+Cell[785037, 22231, 189, 3, 30, "Output"]
}, Open ]],
-Cell[568189, 16447, 63, 2, 29, "Text"],
-Cell[568255, 16451, 127, 3, 29, "Text"],
+Cell[785241, 22237, 63, 2, 30, "Text"],
+Cell[785307, 22241, 127, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[568407, 16458, 1162, 35, 52, "Input"],
-Cell[569572, 16495, 18801, 470, 1163, "Output"]
+Cell[785459, 22248, 1162, 35, 69, "Input"],
+Cell[786624, 22285, 18864, 471, 1343, "Output"]
}, Open ]],
-Cell[588388, 16968, 99, 2, 29, "Text"],
-Cell[588490, 16972, 709, 21, 31, "Input"],
-Cell[589202, 16995, 149, 3, 29, "Text"],
+Cell[805503, 22759, 99, 2, 30, "Text"],
+Cell[805605, 22763, 709, 21, 50, "Input"],
+Cell[806317, 22786, 149, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[589376, 17002, 2094, 53, 159, "Input"],
-Cell[591473, 17057, 5151, 151, 137, "Output"]
+Cell[806491, 22793, 2094, 53, 171, "Input"],
+Cell[808588, 22848, 5215, 152, 248, "Output"]
}, Open ]],
-Cell[596639, 17211, 86, 2, 29, "Text"],
+Cell[813818, 23003, 86, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[596750, 17217, 916, 26, 33, "Input"],
-Cell[597669, 17245, 674, 23, 30, "Output"]
+Cell[813929, 23009, 916, 26, 69, "Input"],
+Cell[814848, 23037, 738, 24, 30, "Output"]
}, Open ]],
-Cell[598358, 17271, 115, 3, 29, "Text"],
+Cell[815601, 23064, 115, 3, 30, "Text"],
Cell[CellGroupData[{
-Cell[598498, 17278, 721, 21, 52, "Input"],
-Cell[599222, 17301, 5290, 162, 124, "Output"]
+Cell[815741, 23071, 721, 21, 69, "Input"],
+Cell[816465, 23094, 5354, 163, 166, "Output"]
}, Open ]],
-Cell[604527, 17466, 64, 2, 29, "Text"],
+Cell[821834, 23260, 64, 2, 30, "Text"],
Cell[CellGroupData[{
-Cell[604616, 17472, 3489, 94, 154, "Input"],
-Cell[608108, 17568, 2396, 64, 92, "Output"],
-Cell[610507, 17634, 659, 9, 107, "Output"],
-Cell[611169, 17645, 415, 5, 107, "Output"],
-Cell[611587, 17652, 124, 1, 30, "Output"]
+Cell[821923, 23266, 3489, 94, 196, "Input"],
+Cell[825415, 23362, 2460, 65, 113, "Output"],
+Cell[827878, 23429, 723, 10, 164, "Output"],
+Cell[828604, 23441, 479, 6, 126, "Output"],
+Cell[829086, 23449, 172, 2, 30, "Output"]
}, Open ]]
}, Open ]]
}
diff --git a/xmds2/realistic_Rb/Makefile b/xmds2/realistic_Rb/Makefile
new file mode 100644
index 0000000..e088e15
--- /dev/null
+++ b/xmds2/realistic_Rb/Makefile
@@ -0,0 +1,55 @@
+### -*- make -*-
+### This file is part of the Debian xmds package
+### Copyright (C) 2006 Rafael Laboissiere
+### This file is relased under the GNU General Public License
+### NO WARRANTIES!
+
+### This makefile can be used to build and run the XMDS examples
+
+XMDS_FILES = $(shell ls *.xmds)
+RUN_FILES = $(patsubst %.xmds,%.run,$(XMDS_FILES))
+CC_FILES = $(patsubst %.xmds,%.cc,$(XMDS_FILES))
+XSIL_FILES = $(patsubst %.xmds,%.xsil,$(XMDS_FILES))
+M_FILES = $(patsubst %.xmds,%.m,$(XMDS_FILES))
+
+XMDS = xmds2
+XSIL2GRAPHICS = xsil2graphics
+
+all: $(RUN_FILES)
+
+%.run: %.xmds
+ $(XMDS) $<
+ mv $(patsubst %.xmds,%,$<) $@
+
+%.xsil: %.run
+ ./$< --E1o=0 --E3o=0
+
+%.m: %.xsil
+ $(XSIL2GRAPHICS) $<
+
+plot: $(M_FILES)
+ octave pp.m
+
+clean:
+ rm -f $(CC_FILES) $(RUN_FILES) $(M_FILES) $(XSIL_FILES) *.wisdom.fftw3 *.dat octave-core *.wisdom *.pdf
+ rm -f $(png_targets)
+ rm -f $(eps_targets)
+
+eps_targets = $(wildcard *.eps)
+pdf_targets = $(eps_targets:%.eps=%.pdf)
+png_targets = $(pdf_targets:%.pdf=%.png)
+
+png: pdf $(png_targets)
+
+$(png_targets): %.png : %.pdf
+ convert -density 300 $< $@
+
+pdf: $(pdf_targets)
+
+$(pdf_targets): %.pdf : %.eps
+ cat $< | ps2eps -B > __tt.eps
+ epspdf __tt.eps $@
+ rm -f __tt.eps
+ #ps2eps -B $< | epspdf $< $@
+.PRECIOUS: %.run %.xsil %.m
+.PHONY: all clean
diff --git a/xmds2/realistic_Rb/Makefile.fig b/xmds2/realistic_Rb/Makefile.fig
new file mode 100644
index 0000000..71fba31
--- /dev/null
+++ b/xmds2/realistic_Rb/Makefile.fig
@@ -0,0 +1,39 @@
+### -*- make -*-
+### This makefile can be used to build and run the XMDS examples
+
+GNUPLOT_FILES = $(wildcard *.gp)
+
+SCRIPTS_DIR = .
+
+
+eps_targets = $(wildcard *.eps)
+eps_bb_targets = $(eps_targets:%.eps=%.bb)
+pdf_targets = $(eps_targets:%.eps=%.pdf)
+png_targets = $(pdf_targets:%.pdf=%.png)
+
+fig: png
+
+pdf: $(pdf_targets)
+
+# fix bounding box
+$(eps_bb_targets): %.bb : %.eps
+ @cat $< | ps2eps -q -B > $@
+
+$(pdf_targets): %.pdf : %.bb
+ epspdf $< $@
+
+png: $(png_targets)
+
+$(png_targets): %.png : %.pdf
+ convert -density 300 $< $@
+
+clean:
+ rm -f *.pdf
+ rm -f *.eps
+ rm -f *.bb
+
+real_clean: clean
+ rm -f *.png
+
+.PRECIOUS: %.run %.xsil %.m
+.PHONY: all clean
diff --git a/xmds2/realistic_Rb/Makefile.par b/xmds2/realistic_Rb/Makefile.par
new file mode 100644
index 0000000..cc21c7b
--- /dev/null
+++ b/xmds2/realistic_Rb/Makefile.par
@@ -0,0 +1,32 @@
+### -*- make -*-
+### This file is part of the Debian xmds package
+### Copyright (C) 2006 Rafael Laboissiere
+### This file is relased under the GNU General Public License
+### NO WARRANTIES!
+
+### This makefile can be used to build and run the XMDS examples
+
+
+PARAMS_FILES = $(wildcard *.params)
+PP_DIR = $(PARAMS_FILES:%.params=%)
+CALC_XSIL_FILES = $(PARAMS_FILES:%.params=%/data.xsil)
+
+default: $(CALC_XSIL_FILES)
+
+$(CALC_XSIL_FILES): %/data.xsil : % %.params
+ echo processing $$(dirname $(@)) dir
+ $(MAKE) -C $$(dirname $(@)) -f ../Makefile.pp SCRIPTS_DIR=../ PARAMS_FILE=../$<.params
+
+$(PP_DIR): % : %.params
+ echo need to make dir
+ [ -d $@ ] || mkdir -p $@
+
+clean:
+ for d in $(PP_DIR); \
+ do $(MAKE) -C $$d SCRIPTS_DIR=../ -f ../Makefile.pp $@; done
+
+real_clean:
+ for d in $(PP_DIR); \
+ do $(MAKE) -C $$d SCRIPTS_DIR=../ -f ../Makefile.pp $@; done
+
+.PHONY: all clean
diff --git a/xmds2/realistic_Rb/Makefile.pp b/xmds2/realistic_Rb/Makefile.pp
new file mode 100644
index 0000000..83e5bec
--- /dev/null
+++ b/xmds2/realistic_Rb/Makefile.pp
@@ -0,0 +1,62 @@
+### -*- make -*-
+### This makefile can be used to build and run the XMDS examples
+
+
+XSIL_FILES = Nlevels_with_doppler_with_z_4wm.xsil
+M_FILES = $(patsubst %.xsil,%.m,$(XSIL_FILES))
+GNUPLOT_FILES = $(wildcard *.gp)
+
+SCRIPTS_DIR = .
+
+XSIL2GRAPHICS = xsil2graphics
+
+# fast light
+#PARAMS = --delta1=0 --delta2=0 --delta3=0 --E1o=1.9e7 --E2o=3.1e5 --E3o=3.8e7 --E4o=1e1
+#PARAMS = --delta1=0 --delta2=0 --delta3=0 --E1o=0.1e7 --E2o=1e4 --E3o=.3e7 --E4o=0 --Lcell=1.5e-2 --Temperature=.0001
+PARAMS = \
+ --Ndens=1e15 \
+ --Lcell=10.0e-2 \
+ --Temperature=5 \
+ --Pwidth=0.4e-6 \
+ --delta1=0 --delta2=0 --delta3=0 \
+ --E1o=2e7 --E2o=1e2 --E3o=4e7 --E4o=1e0
+
+
+include $(PARAMS_FILE)
+
+
+# slow light EIT
+#PARAMS = --delta1=0 --delta2=0 --delta3=0 --E1o=1.9e7 --E2o=3.1e5 --E3o=0 --E4o=0
+
+all: $(XSIL_FILES) Nlevels_with_doppler_with_z_4wm.xsil $(M_FILES) plot fig
+
+Nlevels_with_doppler_with_z_4wm.xsil: ../Nlevels_with_doppler_with_z_4wm.run $(PARAMS_FILE)
+ $< $(PARAMS) | grep "Time elapsed for simulation is:" > exact_analysis_execution_time.txt
+
+%.m: %.xsil
+ $(XSIL2GRAPHICS) $<
+
+fig: pp_I2.stamp
+ $(MAKE) -f $(SCRIPTS_DIR)/Makefile.fig $@
+
+
+pretty_plots: pp_I2.stamp $(GNUPLOT_FILES)
+ gnuplot $(SCRIPTS_DIR)/plot_fields_propagation_I2.gp
+ gnuplot $(SCRIPTS_DIR)/plot_fields_propagation_I4.gp
+
+plot: pp_I2.stamp
+
+pp_I2.stamp: $(XSIL_FILES) $(M_FILES)
+ octave -q $(SCRIPTS_DIR)/pp_I2.m
+
+clean:
+ rm -f $(M_FILES) $(XSIL_FILES) *.dat octave-core
+ rm -f pp_I2.stamp
+ $(MAKE) -f $(SCRIPTS_DIR)/Makefile.fig $@
+
+real_clean: clean
+ $(MAKE) -f $(SCRIPTS_DIR)/Makefile.fig $@
+ rm -f exact_analysis_execution_time.txt
+
+.PRECIOUS: %.run %.xsil %.m
+.PHONY: all clean
diff --git a/xmds2/realistic_Rb/realistic_Rb.xmds b/xmds2/realistic_Rb/realistic_Rb.xmds
new file mode 100644
index 0000000..6a40191
--- /dev/null
+++ b/xmds2/realistic_Rb/realistic_Rb.xmds
@@ -0,0 +1,511 @@
+<?xml version="1.0"?>
+<simulation xmds-version="2">
+
+ <name>realistic_Rb</name>
+
+ <author>Eugeniy Mikhailov</author>
+ <description>
+ License GPL.
+
+ Solving simplified Rb atom model
+ with fields propagation along spatial axis Z
+ with Doppler broadening.
+
+
+ We assume four-wave mixing condition when w3-w4=w2-w1 i.e. fields E3 and E4 drive the same
+ resonance as fields E2 and E1.
+
+
+ * --------------- | F=1, 2P_3/2 >
+ * \ \
+ * \ E3_r \ -------- | F=2, 2P_+1/2 >
+ * \ E4_r \ / \
+ * \ \ / E2_l \
+ * \ / \ E1_l
+ * | F=2, 2S_1/2 > -------------- \
+ * \ \
+ * \ \
+ * ------------- | F=1, 2S_1/2 >
+ *
+
+
+ We are solving
+ dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i.
+ Note that E is actually a Rabi frequency of electromagnetic field not the EM field
+ in xmds terms it looks like
+ dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space
+
+ VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to
+ normalize it to something else look drho/dt equation.
+ No need to renormalizes eta as long as its express through
+ the upper level decay rate in the same units as Rabi frequency.
+ </description>
+
+ <features>
+ <globals>
+ <![CDATA[
+ const double pi = M_PI;
+ const double c=3.e8;
+ const double k_boltzmann= 1.3806505e-23; // Boltzmann knostant in [J/K]
+ const double lambda=794.7e-9; //wavelength in m
+ const double Kvec = 2*M_PI/lambda; // k-vector
+ const double Gamma_super=6*(2*M_PI*1e6); // characteristic decay rate of upper level used for eta calculations expressed in [1/s]
+ // eta will be calculated in the <arguments> section
+ double eta = 0; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)]
+
+ // --------- Atom and cell properties -------------------------
+ // range of Maxwell distribution atomic velocities
+ const double mass = (86.909180527 * 1.660538921e-27); // atom mass in [kg]
+ // above mass expression is written as (expression is isotopic_mass * atomic_mass_unit)
+
+ // Average sqrt(v^2) in Maxwell distribution for one dimension
+ // Maxwell related parameters will be calculated in <arguments> section
+ double v_thermal_averaged=0;
+ // Maxwell distribution velocities range to take in account in [m/s]
+ double V_maxwell_min = 0, V_maxwell_max = 0;
+
+ // repopulation rate (atoms flying in/out the laser beam) in [1/s]
+ const double gt=0.01 *(2*M_PI*1e6);
+ // Natural linewidth of j's level in [1/s]
+ const double G3=3.0 *(2*M_PI*1e6);
+ const double G4=3.0 *(2*M_PI*1e6);
+
+ // total decay of i-th level branching ratios. Rij branching of i-th level to j-th
+ const double R41=0.5, R42=0.5;
+ const double R31=0.5, R32=0.5;
+
+
+ complex E1ac, E2ac, E3ac, E4ac; // Complex conjugated Rabi frequencies
+
+ complex r21, r31, r41, r32, r42, r43, r44; // density matrix elements
+
+ // inner use variables
+ double probability_v; // will be used as p(v) in Maxwell distribution
+
+ ]]>
+ </globals>
+ <validation kind="run-time"/> <!--allows to put ranges as variables-->
+ <benchmark />
+ <arguments>
+ <!-- Rabi frequency divided by 2 in [1/s] -->
+ <argument name="E1o" type="real" default_value="2*1.5*(2*M_PI*1e6)" />
+ <argument name="E2o" type="real" default_value="0.05*(2*M_PI*1e6)" />
+ <argument name="E3o" type="real" default_value="2*3.0*(2*M_PI*1e6)" />
+ <argument name="E4o" type="real" default_value=".01*(2*M_PI*1e6)" />
+ <!-- Fields detuning in [1/s] -->
+ <argument name="delta1" type="real" default_value="0.0" />
+ <argument name="delta2" type="real" default_value="0.0" />
+ <argument name="delta3" type="real" default_value="0.0" />
+ <!--Pulse duration/width [s] -->
+ <argument name="Pwidth" type="real" default_value="0.1e-6" />
+ <!-- Atom and cell properties -->
+ <!--Cell length [m] -->
+ <argument name="Lcell" type="real" default_value="1.5e-2" />
+ <!--Density of atoms [1/m^3] -->
+ <argument name="Ndens" type="real" default_value="1e15" />
+ <!--Atoms temperature [K] -->
+ <!--TODO: looks like Temperature > 10 K knocks solver,
+ I am guessing detunings are too large and thus it became a stiff equation-->
+ <!--! make sure it is not equal to zero!-->
+ <argument name="Temperature" type="real" default_value="5" />
+ <!-- This will be executed after arguments/parameters are parsed -->
+ <!-- Read the code Luke: took me a while of reading the xmds2 sources to find it -->
+ <![CDATA[
+ // Average sqrt(v^2) in Maxwell distribution for one dimension
+ if (Temperature == 0)
+ _LOG(_ERROR_LOG_LEVEL, "ERROR: Temperature should be >0 to provide range for Maxwell velocity distribution\n");
+ v_thermal_averaged=sqrt(k_boltzmann*Temperature/mass);
+ // Maxwell distribution velocities range to take in account in [m/s]
+ // there is almost zero probability for higher velocity p(4*v_av) = 3.3e-04 * p(0)
+ V_maxwell_min = -4*v_thermal_averaged; V_maxwell_max = -V_maxwell_min;
+
+ // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)]
+ eta = 3*lambda*lambda*Ndens*Gamma_super/8.0/M_PI;
+ ]]>
+ </arguments>
+ <bing />
+ <diagnostics />
+ <fftw plan="patient" threads="1" />
+ <!-- I don't see any speed up on 6 core CPU even if use threads="6" -->
+ <openmp />
+ <auto_vectorise />
+ <halt_non_finite />
+ </features>
+
+ <!-- 'z', 't', and 'v' to have dimensions [m], [s], and [m/s] -->
+ <geometry>
+ <propagation_dimension> z </propagation_dimension>
+ <transverse_dimensions>
+ <!-- IMPORTANT: looks like having a lot of points in time helps with convergence.
+ I suspect that time spacing should be small enough to catch
+ all pulse harmonics and more importantly 1/dt should be larger than
+ the largest detuning (including Doppler shifts).
+ Unfortunately calculation time is proportional to lattice size
+ so we cannot just blindly increase it.
+ Some rules of thumb:
+ * lattice="1000" domain="(-1e-6, 1e-6)"
+ was good enough detunings up to 155 MHz (980 rad/s) notice that 1/dt=500 MHz
+ * lattice="10000" domain="(-1e-6, 1e-6)"
+ works for Doppler averaging in up to 400K for Rb when lasers are zero detuned
+ -->
+ <dimension name="t" lattice="10000" domain="(-1e-6, 1e-6)" />
+ <dimension name="v" lattice="100" domain="(V_maxwell_min, V_maxwell_max)" />
+ </transverse_dimensions>
+ </geometry>
+
+ <!-- Rabi frequency -->
+ <vector name="E_field" type="complex" initial_space="t">
+ <components>E1 E2 E3 E4</components>
+ <initialisation>
+ <![CDATA[
+ // Initial (at starting 'z' position) electromagnetic field does not depend on detuning
+ // as well as time
+ E1=E1o;
+ E2=E2o*exp(-pow( ((t-0.0)/Pwidth),2) );
+ E3=E3o;
+ E4=E4o;
+ ]]>
+ </initialisation>
+ </vector>
+
+ <!--Maxwell distribution probability p(v)-->
+ <computed_vector name="Maxwell_distribution_probabilities" dimensions="v" type="real">
+ <components>probability_v</components>
+ <evaluation>
+ <![CDATA[
+ // TODO: move to the global space/function. This reevaluated many times since it called from dependency requests but it never changes during the script lifetime since 'v' is fixed.
+ probability_v=1.0/(v_thermal_averaged*sqrt(2*M_PI)) * exp( - mod2(v/v_thermal_averaged)/2.0 );
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+ <!--Maxwell distribution norm sum(p(v))
+ Needed since we sum over the grid instead of true integral,
+ we also have finite cut off velocities-->
+ <computed_vector name="Maxwell_distribution_probabilities_norm" dimensions="" type="real">
+ <components>probability_v_norm</components>
+ <evaluation>
+ <dependencies basis="v">Maxwell_distribution_probabilities</dependencies>
+ <![CDATA[
+ // TODO: move to the global space/function. This reevaluated many times since it called from dependency requests but it never changes during the script lifetime since 'v' is fixed.
+ probability_v_norm=probability_v;
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+
+ <!-- Averaged across Maxwell distribution fields amplitudes -->
+ <computed_vector name="E_field_avgd" dimensions="t" type="complex">
+ <components>E1a E2a E3a E4a</components>
+ <evaluation>
+ <dependencies basis="v">E_field Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm</dependencies>
+ <![CDATA[
+ double prob_v_normalized=probability_v/probability_v_norm;
+ E1a=E1*prob_v_normalized;
+ E2a=E2*prob_v_normalized;
+ E3a=E3*prob_v_normalized;
+ E4a=E4*prob_v_normalized;
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+ <!-- Averaged across Maxwell distribution density matrix components -->
+ <computed_vector name="density_matrix_averaged" dimensions="t" type="complex">
+ <components>r11a r22a r33a r12a r13a r14a r23a r24a r34a r44a</components>
+ <evaluation>
+ <dependencies basis="v">density_matrix Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm</dependencies>
+ <![CDATA[
+ double prob_v_normalized=probability_v/probability_v_norm;
+ r11a=r11*prob_v_normalized;
+ r22a=r22*prob_v_normalized;
+ r33a=r33*prob_v_normalized;
+ r12a=r12*prob_v_normalized;
+ r13a=r13*prob_v_normalized;
+ r14a=r14*prob_v_normalized;
+ r23a=r23*prob_v_normalized;
+ r24a=r24*prob_v_normalized;
+ r34a=r34*prob_v_normalized;
+ r44a=r44*prob_v_normalized;
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+
+ <vector name="density_matrix" type="complex" initial_space="t">
+ <!--<components>r11 r22 r33 r44 r12 r13 r14 r23 r24 r34 r21 r31 r41 r32 r42 r43</components>-->
+ <!--<components>r11 r22 r33 r44 r12 r13 r14 r23 r24 r34</components>-->
+ <components>r11 r22 r33 r12 r13 r14 r23 r24 r34 r44</components>
+ <!--
+ note one of the level population is redundant since
+ r11+r22+r33+r44=1
+ so r11 is missing
+ -->
+ <initialisation>
+ <!--This sets boundary condition at all times and left border of z (i.e. z=0)-->
+ <!-- Comment out no light field initial conditions
+ <![CDATA[
+ // Note:
+ // convergence is really slow if all populations concentrated at the bottom level |1>
+ // this is because if r11=1, everything else is 0 and then every small increment
+ // seems to be huge and adaptive solver makes smaller and smaller steps.
+ // As quick and dirty fix I reshuffle initial population
+ // so some of the population sits at the second ground level |2>
+ // TODO: Fix above. Make the equation of motion for r11
+ // and express other level, let's say r44
+ // through population normalization
+ r11 = 1;
+ r22 = 0; r33 = 0; r44 = 0;
+ r12 = 0; r13 = 0; r14 = 0;
+ r23 = 0; r24 = 0;
+ r34 = 0;
+ ]]>
+ -->
+ <!-- Below initialization assumes strong E1 and E3 which were shining for long time before
+ we even start to look at the problem -->
+ <!-- Precalculated by Nate via Mathematica steady state solver -->
+ <dependencies>E_field_avgd</dependencies>
+ <![CDATA[
+ E1ac = conj(E1a);
+ E2ac = conj(E2a);
+ E3ac = conj(E3a);
+ E4ac = conj(E4a);
+
+ // IMPORTANT: assumes no detunings
+ r11 = (gt*(4*mod2(E1a) + (G3 + gt)*(G3 + 2*gt))*((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt)) + 4*mod2(E3a)*G4*(R41 -
+ R42)))/(2.*(-16*mod2(E1a)*mod2(E3a)*G3*G4*R32*R41 + (G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))*((G4 + 2*gt)*(4*mod2(E3a) +
+ gt*(G4 + gt)) - 4*mod2(E3a)*G4*R42) + 4*mod2(E1a)*G3*R31*(-((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))) + 4*mod2(E3a)*G4*R42)));
+
+ r13 = -((E1ac*gt*(G3 + gt)*i*((G4 + 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))
+ + 4*mod2(E3a)*G4*(R41 -
+ R42)))/(-16*mod2(E1a)*mod2(E3a)*G3*G4*R32*R41 + (G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))*((G4 + 2*gt)*(4*mod2(E3a) +
+ gt*(G4 + gt)) - 4*mod2(E3a)*G4*R42) + 4*mod2(E1a)*G3*R31*(-((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))) + 4*mod2(E3a)*G4*R42)));
+
+ r22 = (gt*(4*mod2(E3a) + (G4 + gt)*(G4 + 2*gt))*((G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt)) + 4*mod2(E1a)*G3*(-R31 +
+ R32)))/(2.*(-16*mod2(E1a)*mod2(E3a)*G3*G4*R32*R41 + (G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))*((G4 + 2*gt)*(4*mod2(E3a) +
+ gt*(G4 + gt)) - 4*mod2(E3a)*G4*R42) + 4*mod2(E1a)*G3*R31*(-((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))) + 4*mod2(E3a)*G4*R42)));
+
+ r24 = -((E3ac*gt*(G4 + gt)*i*((G3 + 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))
+ + 4*mod2(E1a)*G3*(-R31 +
+ R32)))/(-16*mod2(E1a)*mod2(E3a)*G3*G4*R32*R41 + (G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))*((G4 + 2*gt)*(4*mod2(E3a) +
+ gt*(G4 + gt)) - 4*mod2(E3a)*G4*R42) + 4*mod2(E1a)*G3*R31*(-((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))) + 4*mod2(E3a)*G4*R42)));
+
+ r33 = (2*mod2(E1a)*gt*((G4 + 2*gt)*(4*mod2(E3a) + gt*(G4 + gt)) +
+ 4*mod2(E3a)*G4*(R41 -
+ R42)))/(-16*mod2(E1a)*mod2(E3a)*G3*G4*R32*R41 + (G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))*((G4 + 2*gt)*(4*mod2(E3a) +
+ gt*(G4 + gt)) - 4*mod2(E3a)*G4*R42) + 4*mod2(E1a)*G3*R31*(-((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))) + 4*mod2(E3a)*G4*R42));
+
+ r44 = (2*mod2(E3a)*gt*((G3 + 2*gt)*(4*mod2(E1a) + gt*(G3 + gt)) +
+ 4*mod2(E1a)*G3*(-R31 +
+ R32)))/(-16*mod2(E1a)*mod2(E3a)*G3*G4*R32*R41 + (G3 +
+ 2*gt)*(4*mod2(E1a) + gt*(G3 + gt))*((G4 + 2*gt)*(4*mod2(E3a) +
+ gt*(G4 + gt)) - 4*mod2(E3a)*G4*R42) + 4*mod2(E1a)*G3*R31*(-((G4 +
+ 2*gt)*(4*mod2(E3a) + gt*(G4 + gt))) + 4*mod2(E3a)*G4*R42));
+
+ ]]>
+ </initialisation>
+ </vector>
+
+ <sequence>
+ <!--For this set of conditions ARK45 is faster than ARK89-->
+ <!--ARK45 is good for small detuning when all frequency like term are close to zero-->
+ <integrate algorithm="ARK45" tolerance="1e-5" interval="Lcell">
+ <!--<integrate algorithm="SI" steps="200" interval="Lcell"> -->
+ <!--RK4 is good for large detunings when frequency like term are big, it does not try to be too smart about adaptive step which ARK seems to make too small-->
+ <!--When ARK45 works it about 3 times faster then RK4 with 1000 steps-->
+ <!--<integrate algorithm="RK4" steps="100" interval="1.5e-2">-->
+ <!--SIC algorithm seems to be much slower and needs fine 'z' step tuning and much finer time grid-->
+ <!--For example I had to quadruple the time grid from 1000 to 4000 when increased z distance from 0.02 to 0.04-->
+
+ <!--<integrate algorithm="SIC" interval="4e-2" steps="200">-->
+
+ <samples>100 100</samples>
+ <!--Use the next line for debuging to see velocity dependence. Uncomment/switch on output groups 3,4-->
+ <!--<samples>100 100 100 100</samples>-->
+ <operators>
+ <operator kind="cross_propagation" algorithm="SI" propagation_dimension="t">
+ <integration_vectors>density_matrix</integration_vectors>
+ <dependencies>E_field_avgd</dependencies>
+ <boundary_condition kind="left">
+ <!--This set boundary condition at all 'z' and left border of 't' (i.e. min(t))-->
+ <!--
+ <![CDATA[
+ r11 = 0; r22 = 1; r33 = 0; r44 = 0;
+ r12 = 0; r13 = 0; r14 = 0;
+ r23 = 0; r24 = 0;
+ r34 = 0;
+ printf("z= %g, t= %g\n", z, t);
+ ]]>
+ -->
+ </boundary_condition>
+ <![CDATA[
+ E1ac = conj(E1a);
+ E2ac = conj(E2a);
+ E3ac = conj(E3a);
+ E4ac = conj(E4a);
+
+ r21=conj(r12);
+ r31=conj(r13);
+ r41=conj(r14);
+ r32=conj(r23);
+ r42=conj(r24);
+ r43=conj(r34);
+ //r44=1- r11 - r22 - r33;
+
+ // Equations of motions according to Nate's mathematica code
+ dr11_dt = gt/2 - gt*r11 + i*(-(E1a*r13) - E4a*r14 + E1ac*r31 + E4ac*r41) + G3*r33*R31 + G4*r44*R41;
+ dr12_dt = -(gt*r12) + i*((-(delta1 + Kvec*v) + (delta2 + Kvec*v))*r12 - E2a*r13 - E3a*r14 + E1ac*r32 + E4ac*r42);
+ dr13_dt = -((G3 + 2*gt)*r13)/2. + i*(-(E1ac*r11) - E2ac*r12 - (delta1 + Kvec*v)*r13 + E1ac*r33 + E4ac*r43);
+ dr14_dt = -((G4 + 2*gt)*r14)/2. + i*(-(E4ac*r11) - E3ac*r12 - ((delta1 + Kvec*v) - (delta2 + Kvec*v) + (delta3 + Kvec*v))*r14 + E1ac*r34 + E4ac*r44);
+ dr22_dt = gt/2 - gt*r22 + i*(-(E2a*r23) - E3a*r24 + E2ac*r32 + E3ac*r42) + G3*r33*R32 + G4*r44*R42;
+ dr23_dt = -((G3 + 2*gt)*r23)/2. + i*(-(E1ac*r21) - E2ac*r22 - (delta2 + Kvec*v)*r23 + E2ac*r33 + E3ac*r43);
+ dr24_dt = -((G4 + 2*gt)*r24)/2. + i*(-(E4ac*r21) - E3ac*r22 - (delta3 + Kvec*v)*r24 + E2ac*r34 + E3ac*r44);
+ dr33_dt = i*(E1a*r13 + E2a*r23 - E1ac*r31 - E2ac*r32) - (G3 + gt)*r33;
+
+ dr34_dt = -((G3 + G4 + 2*gt)*r34)/2. + i*(E1a*r14 + E2a*r24 - E4ac*r31 - E3ac*r32 + ((delta2 + Kvec*v) - (delta3 + Kvec*v))*r34);
+ dr44_dt = i*(E4a*r14 + E3a*r24 - E4ac*r41 - E3ac*r42) - (G4 + gt)*r44;
+ ]]>
+ </operator>
+ <!--
+ According to xmds2 docs operator kind="ip" should be faster
+ but our codes runs about 5% to 10% slower with it.
+ Maybe because we very close to the stiff condition so I use "ex" kind
+ <operator kind="ip" constant="yes">
+ -->
+ <operator kind="ex" constant="yes" type="imaginary">
+ <operator_names>Lt</operator_names>
+ <![CDATA[
+ Lt = -i/c*kt;
+ ]]>
+ </operator>
+ <integration_vectors>E_field</integration_vectors>
+ <dependencies>density_matrix</dependencies>
+ <![CDATA[
+ dE1_dz = i*eta*conj(r13) +Lt[E1] ;
+ dE2_dz = i*eta*conj(r23) +Lt[E2] ;
+ dE3_dz = i*eta*conj(r24) +Lt[E3] ;
+ dE4_dz = i*eta*conj(r14) +Lt[E4] ;
+ ]]>
+ </operators>
+ </integrate>
+ </sequence>
+
+
+
+ <!-- The output to generate -->
+ <output format="binary" filename="realistic_Rb.xsil">
+ <group>
+ <sampling basis="t(1000) " initial_sample="yes">
+ <dependencies>E_field_avgd</dependencies>
+ <moments>I1_out I2_out I3_out I4_out</moments>
+ <![CDATA[
+ I1_out = mod2(E1a);
+ I2_out = mod2(E2a);
+ I3_out = mod2(E3a);
+ I4_out = mod2(E4a);
+ ]]>
+ </sampling>
+ </group>
+
+ <group>
+ <sampling basis="t(100) v(10)" initial_sample="yes">
+ <dependencies>density_matrix_averaged</dependencies>
+ <moments>
+ r11_out r22_out r33_out r44_out
+ r12_re_out r12_im_out r13_re_out r13_im_out r14_re_out r14_im_out
+ r23_re_out r23_im_out r24_re_out r24_im_out
+ r34_re_out r34_im_out
+ </moments>
+ <![CDATA[
+ // populations output
+ r11_out = r11a.Re();
+ r22_out = r22a.Re();
+ r33_out = r33a.Re();
+ r44_out = r44a.Re();
+ // coherences output
+ r12_re_out = r12a.Re();
+ r12_im_out = r12a.Im();
+ r13_re_out = r13a.Re();
+ r13_im_out = r13a.Im();
+ r14_re_out = r14a.Re();
+ r14_im_out = r14a.Im();
+ r23_re_out = r23a.Re();
+ r23_im_out = r23a.Im();
+ r24_re_out = r24a.Re();
+ r24_im_out = r24a.Im();
+ r34_re_out = r34a.Re();
+ r34_im_out = r34a.Im();
+ ]]>
+ </sampling>
+ </group>
+
+ <!-- use the following two groups only for debuging
+ otherwise they are quite useless and have to much information
+ in 3D space (z,t,v) -->
+ <!--
+ <group>
+ <sampling basis="t(100) v(10)" initial_sample="yes">
+ <dependencies>E_field</dependencies>
+ <moments>I1_out_v I2_out_v I3_out_v I4_out_v</moments>
+ <![CDATA[
+ // light field intensity distribution in velocity subgroups
+ I1_out_v = mod2(E1);
+ I2_out_v = mod2(E2);
+ I3_out_v = mod2(E3);
+ I4_out_v = mod2(E4);
+ ]]>
+ </sampling>
+ </group>
+
+ <group>
+ <sampling basis="t(100) v(10)" initial_sample="yes">
+ <dependencies>density_matrix</dependencies>
+ <moments>
+ r11_out_v r22_out_v r33_out_v r44_out_v
+ r12_re_out_v r12_im_out_v r13_re_out_v r13_im_out_v r14_re_out_v r14_im_out_v
+ r23_re_out_v r23_im_out_v r24_re_out_v r24_im_out_v
+ r34_re_out_v r34_im_out_v
+ </moments>
+ <![CDATA[
+ // density matrix distribution in velocity subgroups
+ // populations output
+ r11_out_v = r11.Re();
+ r22_out_v = r22.Re();
+ r33_out_v = r33.Re();
+ r44_out_v = r44.Re();
+ // coherences output
+ r12_re_out_v = r12.Re();
+ r12_im_out_v = r12.Im();
+ r13_re_out_v = r13.Re();
+ r13_im_out_v = r13.Im();
+ r14_re_out_v = r14.Re();
+ r14_im_out_v = r14.Im();
+ r23_re_out_v = r23.Re();
+ r23_im_out_v = r23.Im();
+ r24_re_out_v = r24.Re();
+ r24_im_out_v = r24.Im();
+ r34_re_out_v = r34.Re();
+ r34_im_out_v = r34.Im();
+ ]]>
+ </sampling>
+ </group>
+ -->
+
+ </output>
+
+</simulation>
+
+<!--
+vim: ts=2 sw=2 foldmethod=indent:
+-->