From e1d512ed3a302d2afaefeba73ac2596a50ad93f4 Mon Sep 17 00:00:00 2001 From: Eugeniy Mikhailov Date: Tue, 21 Aug 2012 16:44:37 -0400 Subject: changed some substitution to better match our XMDS --- mathemathica_fwm/RbXMDSSetup.nb | 6799 ++++++++++++++++++++++++++++++++++++--- 1 file changed, 6299 insertions(+), 500 deletions(-) (limited to 'mathemathica_fwm') diff --git a/mathemathica_fwm/RbXMDSSetup.nb b/mathemathica_fwm/RbXMDSSetup.nb index a8b7155..5be9fee 100755 --- a/mathemathica_fwm/RbXMDSSetup.nb +++ b/mathemathica_fwm/RbXMDSSetup.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] -NotebookDataLength[ 619915, 17921] -NotebookOptionsPosition[ 611739, 17657] -NotebookOutlinePosition[ 612103, 17673] -CellTagsIndexPosition[ 612060, 17670] +NotebookDataLength[ 837516, 23720] +NotebookOptionsPosition[ 829286, 23455] +NotebookOutlinePosition[ 829643, 23471] +CellTagsIndexPosition[ 829600, 23468] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -48,7 +48,9 @@ Cell[BoxData[ RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", RowBox[{"Label", "\[Rule]", "None"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", - RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output"] + RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", + CellChangeTimes->{3.554569228654716*^9, 3.554570580065393*^9, + 3.554570640474395*^9}] }, Open ]], Cell["\<\ @@ -88,7 +90,9 @@ Cell[BoxData[ RowBox[{"NuclearSpin", "\[Rule]", FractionBox["3", "2"]}], ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Even"}]}], "}"}]], "Output"] + RowBox[{"Parity", "\[Rule]", "Even"}]}], "}"}]], "Output", + CellChangeTimes->{3.554569228708644*^9, 3.554570580071758*^9, + 3.554570640531323*^9}] }, Open ]], Cell[CellGroupData[{ @@ -128,7 +132,9 @@ Cell[BoxData[ RowBox[{"Parity", "\[Rule]", "Odd"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.554569228753817*^9, 3.554570580077429*^9, + 3.554570640538216*^9}] }, Open ]], Cell[CellGroupData[{ @@ -168,7 +174,9 @@ Cell[BoxData[ RowBox[{"Parity", "\[Rule]", "Odd"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.554569228807532*^9, 3.554570580143681*^9, + 3.554570640583111*^9}] }, Open ]], Cell["\<\ @@ -461,7 +469,9 @@ Cell[BoxData[ RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}], ",", RowBox[{"F", "\[Rule]", "2"}], ",", RowBox[{"M", "\[Rule]", - RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]], "Output"] + RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]], "Output", + CellChangeTimes->{3.554569229028195*^9, 3.554570580389244*^9, + 3.554570640815684*^9}] }, Open ]], Cell[TextData[{ @@ -533,7 +543,9 @@ Cell[BoxData[ RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",", RowBox[{"CartesianCoordinates", "\[Rule]", RowBox[{"{", - RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"] + RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output", + CellChangeTimes->{3.554569229170436*^9, 3.55457058045112*^9, + 3.55457064084322*^9}] }, Open ]], Cell[TextData[{ @@ -781,7 +793,9 @@ Cell[BoxData[ RowBox[{"0", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]]}], ",", - "0"}], "}"}]], "Output"] + "0"}], "}"}]], "Output", + CellChangeTimes->{3.554569229495671*^9, 3.554570580538328*^9, + 3.554570640944548*^9}] }, Open ]], Cell["\<\ @@ -3228,7 +3242,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569230251296*^9, 3.554570581141229*^9, + 3.55457064151823*^9}] }, Open ]], Cell["\<\ @@ -3315,7 +3331,9 @@ Cell[BoxData[ ArrowBox[{{-1.04, -0.2}, {-1.96, 3.6416666666666666`}}]}, {PointSize[0.0225]}}, ImagePadding->{{2., 2}, {2., 2.}}, - ImageSize->244.]], "Output"] + ImageSize->244.]], "Output", + CellChangeTimes->{3.554569231386154*^9, 3.55457058234087*^9, + 3.554570642724843*^9}] }, Open ]], Cell[TextData[{ @@ -3443,7 +3461,9 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], ",", RowBox[{"{", - RowBox[{"2", ",", "2"}], "}"}]}], "}"}]], "Output"], + RowBox[{"2", ",", "2"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.554569231500016*^9, 3.554570582543926*^9, + 3.554570642810231*^9}], Cell[BoxData[ RowBox[{"{", @@ -3479,7 +3499,9 @@ Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "1"], "-", SubscriptBox["\[Omega]", "2"], "+", - SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output"] + SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output", + CellChangeTimes->{3.554569231500016*^9, 3.554570582543926*^9, + 3.5545706428137*^9}] }, Open ]], Cell["\<\ @@ -3707,7 +3729,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569231917731*^9, 3.554570582638129*^9, + 3.554570642904566*^9}] }, Open ]], Cell[TextData[{ @@ -4654,7 +4678,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569232380987*^9, 3.554570583042595*^9, + 3.554570643338553*^9}] }, Open ]], Cell[TextData[{ @@ -5079,7 +5105,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.55456923250015*^9, 3.554570583105691*^9, + 3.55457064341745*^9}] }, Open ]], Cell["\<\ @@ -5121,7 +5149,9 @@ Cell[BoxData[ RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], "-", FractionBox[ RowBox[{"5", " ", - RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output"] + RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output", + CellChangeTimes->{3.554569232931236*^9, 3.554570583353512*^9, + 3.554570643590957*^9}] }, Open ]], Cell[CellGroupData[{ @@ -5158,7 +5188,9 @@ Cell[BoxData[ RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], "-", FractionBox[ RowBox[{"5", " ", - RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output"] + RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}]], "Output", + CellChangeTimes->{3.554569233113956*^9, 3.554570583743719*^9, + 3.554570643688447*^9}] }, Open ]], Cell[CellGroupData[{ @@ -5198,7 +5230,9 @@ Cell[BoxData[ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"], "-", FractionBox[ RowBox[{"3", " ", - RowBox[{"HyperfineB", "[", "2", "]"}]}], "4"]}]], "Output"] + RowBox[{"HyperfineB", "[", "2", "]"}]}], "4"]}]], "Output", + CellChangeTimes->{3.554569233218096*^9, 3.554570583941672*^9, + 3.554570643854974*^9}] }, Open ]], Cell[TextData[{ @@ -5560,7 +5594,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569233311345*^9, 3.55457058405622*^9, + 3.554570644126044*^9}] }, Open ]], Cell["\<\ @@ -5636,7 +5672,9 @@ Cell[BoxData[ ArrowBox[{{-1.04, -0.35000000000000003`}, {-1.96, 3.4916666666666667`}}]}, {PointSize[0.0225]}}, ImagePadding->{{2., 2}, {2., 2.}}, - ImageSize->244.]], "Output"] + ImageSize->244.]], "Output", + CellChangeTimes->{3.554569233964627*^9, 3.554570584652609*^9, + 3.554570644753472*^9}] }, Open ]], Cell[TextData[{ @@ -5728,7 +5766,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569234149005*^9, 3.554570584991092*^9, + 3.554570644870477*^9}] }, Open ]], Cell[TextData[{ @@ -7194,7 +7234,9 @@ Cell[BoxData[ Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569234483766*^9, 3.554570585291193*^9, + 3.554570645304517*^9}] }, Open ]], Cell["Here are the evolution equations.", "Text", @@ -7219,7 +7261,7 @@ Cell[BoxData[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"], StandardForm], - ImageSizeCache->{299., {3., 9.}}], + ImageSizeCache->{370., {3., 11.}}], StripOnInput->False, DynamicUpdating->True], "Panel", StripOnInput->False, @@ -7247,7 +7289,7 @@ Cell[BoxData[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], StandardForm], - ImageSizeCache->{54., {1., 9.}}], + ImageSizeCache->{67., {0., 11.}}], StripOnInput->False, DynamicUpdating->True], "Panel", StripOnInput->False, @@ -7255,7 +7297,7 @@ Cell[BoxData[ Appearance->Automatic, ButtonFunction:>OutputSizeLimit`ButtonFunction[ Function[{OutputSizeLimit`Dump`x$}, - TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, 5/ + TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, 5/ 2], Enabled->True, Evaluator->Automatic, @@ -7266,7 +7308,7 @@ Cell[BoxData[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], StandardForm], - ImageSizeCache->{60., {1., 9.}}], + ImageSizeCache->{70., {0., 11.}}], StripOnInput->False, DynamicUpdating->True], "Panel", StripOnInput->False, @@ -7274,7 +7316,7 @@ Cell[BoxData[ Appearance->Automatic, ButtonFunction:>OutputSizeLimit`ButtonFunction[ Function[{OutputSizeLimit`Dump`x$}, - TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, 5 + TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, 5 2], Enabled->True, Evaluator->Automatic, @@ -7285,7 +7327,7 @@ Cell[BoxData[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], StandardForm], - ImageSizeCache->{92., {3., 9.}}], + ImageSizeCache->{107., {3., 11.}}], StripOnInput->False, DynamicUpdating->True], "Panel", StripOnInput->False, @@ -7293,7 +7335,7 @@ Cell[BoxData[ Appearance->Automatic, ButtonFunction:>OutputSizeLimit`ButtonFunction[ Function[{OutputSizeLimit`Dump`x$}, - TableForm[OutputSizeLimit`Dump`x$]], 87, 23290106009964751349, + TableForm[OutputSizeLimit`Dump`x$]], 24, 23295139771439252080, Infinity], Enabled->True, Evaluator->Automatic, @@ -7304,7 +7346,7 @@ Cell[BoxData[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], StandardForm], - ImageSizeCache->{78., {1., 9.}}], + ImageSizeCache->{100., {0., 10.}}], StripOnInput->False, DynamicUpdating->True], "Panel", StripOnInput->False, @@ -7337,8 +7379,10 @@ Cell[BoxData[ DefaultBaseStyle->{}, FrameMargins->5], Deploy, - DefaultBaseStyle->"Deploy"], - Out[87]]], "Output"] + DefaultBaseStyle->{Deployed -> True}], + Out[24]]], "Output", + CellChangeTimes->{3.554569234735175*^9, 3.554570585649747*^9, + 3.554570645545612*^9}] }, Open ]], Cell["\<\ @@ -7417,7 +7461,9 @@ Cell[BoxData[ RowBox[{ RowBox[{"NaturalWidth", "[", "2", "]"}], "\[Rule]", RowBox[{"38.11730983274125`", " ", "Hertz", " ", "Mega"}]}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.554569234847936*^9, 3.554570585762321*^9, + 3.554570645605633*^9}] }, Open ]], Cell[TextData[{ @@ -7706,7 +7752,9 @@ Cell[BoxData[ RowBox[{"{", "252", "}"}], ",", RowBox[{"{", "253", "}"}], ",", RowBox[{"{", "254", "}"}], ",", - RowBox[{"{", "255", "}"}]}], "}"}]], "Output"] + RowBox[{"{", "255", "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.554569235191469*^9, 3.554570586082753*^9, + 3.554570645745293*^9}] }, Open ]], Cell["\<\ @@ -8133,7 +8181,9 @@ Cell[BoxData[ RowBox[{"-", "2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", - RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output"] + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output", + CellChangeTimes->{3.554569235363716*^9, 3.554570586205265*^9, + 3.554570645819355*^9}] }, Open ]], Cell["\<\ @@ -8151,135 +8201,5819 @@ Cell[BoxData[ "]"}]], "Input"], Cell[BoxData[ - InterpretationBox[ - TagBox[ - PanelBox[GridBox[{ - { - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"], - StandardForm], - ImageSizeCache->{299., {3., 9.}}], - StripOnInput->False, - DynamicUpdating->True], "Panel", - StripOnInput->False, - Background->None]}, - { - ItemBox[ - TagBox[ - TagBox[ - TagBox[ - RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], - Column], - Function[BoxForm`e$, - TableForm[BoxForm`e$]]], - Short[#, 5]& ], - Background->GrayLevel[1], - BaseStyle->{Deployed -> False}, - Frame->True, - FrameStyle->GrayLevel[0, 0.2], - StripOnInput->False]}, - { + TagBox[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "6"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "2"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "3"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}]}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "6"]}], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "8"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "6"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "2"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + SubscriptBox["\[Delta]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "3"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "6"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "6"], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "2"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "2"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "3"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "6"]}], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "8"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "2"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "8"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "1", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "12"], " ", + RowBox[{"NaturalWidth", "[", "2", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + RowBox[{ + SubscriptBox["\[Delta]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "2"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "2"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "6"]}], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "6"]}], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "6"]}], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + SubscriptBox["\[Delta]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + RowBox[{ + SubscriptBox["\[Delta]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "2"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + SubscriptBox["\[Delta]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "4"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "6"], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "4"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "-", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "2"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"8", " ", + SqrtBox["3"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Delta]", "1"]}], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], + ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[CapitalOmega]L", "6"]}], "-", + SubscriptBox["\[Delta]", "1"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + FractionBox["1", "8"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], ")"}]}], + "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[CapitalOmega]L", "2"], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]]}], ")"}]}]}]}]}, + { + RowBox[{ RowBox[{ - ButtonBox[ - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], - StandardForm], - ImageSizeCache->{54., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True], "Panel", - StripOnInput->False, - Background->None], - Appearance->Automatic, - ButtonFunction:>OutputSizeLimit`ButtonFunction[ - Function[{OutputSizeLimit`Dump`x$}, - TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, 5/ - 2], - Enabled->True, - Evaluator->Automatic, - Method->"Queued"], "\[ThinSpace]", - ButtonBox[ - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], - StandardForm], - ImageSizeCache->{60., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True], "Panel", - StripOnInput->False, - Background->None], - Appearance->Automatic, - ButtonFunction:>OutputSizeLimit`ButtonFunction[ - Function[{OutputSizeLimit`Dump`x$}, - TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, 5 - 2], - Enabled->True, - Evaluator->Automatic, - Method->"Queued"], "\[ThinSpace]", - ButtonBox[ - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], - StandardForm], - ImageSizeCache->{92., {3., 9.}}], - StripOnInput->False, - DynamicUpdating->True], "Panel", - StripOnInput->False, - Background->None], - Appearance->Automatic, - ButtonFunction:>OutputSizeLimit`ButtonFunction[ - Function[{OutputSizeLimit`Dump`x$}, - TableForm[OutputSizeLimit`Dump`x$]], 95, 23290106009964751349, - Infinity], - Enabled->True, - Evaluator->Automatic, - Method->"Queued"], "\[ThinSpace]", - ButtonBox[ - StyleBox[ - StyleBox[ - DynamicBox[ToBoxes[ - FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], - StandardForm], - ImageSizeCache->{78., {1., 9.}}], - StripOnInput->False, - DynamicUpdating->True], "Panel", - StripOnInput->False, - Background->None], - Appearance->Automatic, - ButtonFunction:>FrontEndExecute[{ - FrontEnd`SetOptions[ - FrontEnd`$FrontEnd, - FrontEnd`PreferencesSettings -> {"Page" -> "Evaluation"}], - FrontEnd`FrontEndToken["PreferencesDialog"]}], - Evaluator->None, - Method->"Preemptive"]}]} - }, - GridBoxAlignment->{ - "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxDividers->{ - "Columns" -> {{False}}, "ColumnsIndexed" -> {}, "Rows" -> {{False}}, - "RowsIndexed" -> {}}, - GridBoxItemSize->{ - "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.5599999999999999]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[1.2]}, - Offset[0.2]}, "RowsIndexed" -> {}}], - DefaultBaseStyle->{}, - FrameMargins->5], - Deploy, - DefaultBaseStyle->"Deploy"], - Out[95]]], "Output"] + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "1", "]"}]}], ")"}]}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "2"]}]], " ", + SubscriptBox["\[CapitalOmega]", "2"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "1"]}]], " ", + SubscriptBox["\[CapitalOmega]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + RowBox[{ + SubscriptBox["\[Delta]", "1"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CapitalOmega]L"}], "3"]}], "-", + SubscriptBox["\[Delta]", "1"], "+", + SubscriptBox["\[Delta]", "2"], "-", + SubscriptBox["\[Delta]", "3"]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", + "]"}]}]}], ")"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "3"]}]], " ", + SubscriptBox["\[CapitalOmega]", "3"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[Phi]", "4"]}]], " ", + SubscriptBox["\[CapitalOmega]", "4"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], + RowBox[{"4", " ", + SqrtBox["6"]}]]}], ")"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"\[Gamma]t", "+", + RowBox[{"NaturalWidth", "[", "2", "]"}]}], ")"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", + RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.554569235725104*^9, 3.554570586584882*^9, + 3.554570646163539*^9}] }, Open ]], Cell["\<\ @@ -8786,7 +14520,9 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"2", ",", "2", ",", RowBox[{"-", "2"}]}], "}"}]}]], "[", "0", "]"}], "\[Equal]", "0"}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.55456923585014*^9, 3.55457058672761*^9, + 3.554570646363813*^9}] }, Open ]], Cell[TextData[{ @@ -13381,7 +19117,9 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"2", ",", "2", ",", RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}]}]}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.554569235990839*^9, 3.554570586963279*^9, + 3.554570646430884*^9}] }, Open ]], Cell[TextData[{ @@ -13592,7 +19330,9 @@ Cell[BoxData[ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], - "]"}]}]}], ")"}]}]}]}], "}"}]], "Output"] + "]"}]}]}], ")"}]}]}]}], "}"}]], "Output", + CellChangeTimes->{3.554569236773899*^9, 3.554570587858582*^9, + 3.55457064718746*^9}] }, Open ]], Cell["\<\ @@ -13644,7 +19384,9 @@ Cell[BoxData[ RowBox[{"0.005434728849851996`", " ", RowBox[{"NaturalWidth", "[", "1", "]"}]}], SuperscriptBox[ - RowBox[{"Energy", "[", "1", "]"}], "2"]]], "Output"] + RowBox[{"Energy", "[", "1", "]"}], "2"]]], "Output", + CellChangeTimes->{3.554569236930736*^9, 3.554570587946757*^9, + 3.554570647232768*^9}] }, Open ]], Cell["\<\ @@ -13666,7 +19408,9 @@ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", - FractionBox[ + RowBox[{ + FractionBox["1", + SubscriptBox["\[CapitalOmega]", "2"]], RowBox[{"500.6135764115296`", " ", RowBox[{"(", RowBox[{ @@ -13728,9 +19472,10 @@ Cell[BoxData[ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], - "]"}]}]}], ")"}]}], - SubscriptBox["\[CapitalOmega]", "2"]]}], ",", - FractionBox[ + "]"}]}]}], ")"}]}]}]}], ",", + RowBox[{ + FractionBox["1", + SubscriptBox["\[CapitalOmega]", "2"]], RowBox[{"250.3067882057648`", " ", RowBox[{"(", RowBox[{ @@ -13792,8 +19537,9 @@ Cell[BoxData[ RowBox[{"0", ",", "2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], - "]"}]}]}], ")"}]}], - SubscriptBox["\[CapitalOmega]", "2"]]}], "}"}]], "Output"] + "]"}]}]}], ")"}]}]}]}], "}"}]], "Output", + CellChangeTimes->{3.55456923715149*^9, 3.554570588024865*^9, + 3.554570647273362*^9}] }, Open ]] }, Open ]], @@ -13886,86 +19632,90 @@ Cell[BoxData[{ Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJxVl3tM1XUYxn9jDSHdws0EdCopG1SsGXNGyvRRQS7K7XA53Dn3c3SVeZkx -dfZLmmZekBQ3mxcsbWqa6GQhjXyijdL1R2mSqxTRLEEIb1mibVmt79t7trOz -z57z/C7fy/s+36c8ixz+MMuyTj/6/v3772cBF859J+qHyJX4Bxli++KTow3b -IY7bHzXOMEK8892OSYatEOvHOp8Rf5CXd2Y/L/4g7+1fniL+IMc3XZwp/iCb -n1yTIf4A008E8sQf4IS8zU7xB7i850GN+APMbjgeEr+fE4+3LBa/n7O+jFgp -fj8f33j0TfH7uXXgyGbx+7gpJmKH+H18t7bjffH72Nne85H4fTzQs7BN/F5+ -nOTtFL+XjtSvz4rfy7MRrd3i9/J+f9yA+D2MOTLygfg93P16Q+SPxu9h2OgD -MYYtD9/6oCrRMN187ve2FMO2m0sWnM4Sv5vjh22tEL+bm7ZMfEX8Lo7fWPeG -+F1c5uxoFL+L4dP6D4nfxbAVT3wm/6/h/SXTL4hew5FH7ZuiV/NS2K3Ii0av -ZsThPfGG7SrmL90L0auYcXZEteiVHD1uaJXolexvrtslegUXJXSeEr2CM7Zc -vip6Ofc13428ZPRyfpqdkGzYLuP5l5oqRS/j4dMb1oteyhfGxp4UvZTtW1bd -EN3Jc1mDcd1Gd7K2+2iZYbuET/8Ztl30EgaHT+kSvZjrBxrHXDZ6MWu/rfMa -tovYmeA5JnoRi9bteazH6IUMv9ZSZdgqZGrrs+2iO+jMbJx0xegOThixvcGw -XcDc6CvDrhq9gLUbZq4zbOezZWhd1E9Gz+fdpoP7hPO4O/tA2jXDuTxzaNct -4Ry2dbYe/tnwfObcnv7aL4bn8fzuWsd1w9mM6PtiZq/hLL7nXY0+w5k89f2F -4huGMxgX3W33G57LouiUjgHD6Wzd2Rs7aDiNY9OG1t40PIfD+3vDbxuezaQ1 -g9vuGJ7FuCPXEn8zDE7tOtNyz/AMvlr/ScIfhlOZ0f6y+77haTwW+vDFIcMp -7Dp5cIXwVDa4k6/L/6dwjONqsVwvmUvTT5yT+09mZOpXXfK8SYxuGTVK3ieR -yyLrrV8NxzPnmzU7ZHzi+DA99nMZvxjW7ympE47i2m1vdwhbXL13KFH8j2aw -76HzfwytR0H7Y6CvHwd9/3jo50uEfv4k6PebDP3+ydDjMwV6/KZCj28K9PhP -g56fVOj5mwE9v4Ce/1nQ62M29PqZA72+0qDXXzr0+pwLvX4zoNd3JvT6z4Le -H9nQ+2ce9P6aD73/cqD3Zy70/s2D3t/5UPvfzoeuDwXQ9aMAur44oOuPA7o+ -FULXr0Lo+lYEXf+KoOtjMXT9LIauryXQ9bcEuj47oeu3E7q+l0LX/1Lo/lAG -3T/KoPtLOXT/KYfuTxXQ/asCur9VQve/Suj+WAXdP6ug+2s1dP+thu7PNdD9 -uwa6v7ug+j9cUPnAdkHlB7qg8oXlhsofcEPlE9sNlV/ohso3lgcq/8ADlY9s -D1R+ogcqX1leqPwFL1Q+s71Q+Y1eqHxn+aDyH3xQ+dD2QeVH+qDypeWHyp/w -Q+VT2w+VX+mHyrdWACr/IgCVj+0AVH5mACpfW0Go/I0gVD63g1D5nUGofG+F -oPI/QlDnAzsEdX5gCOp8YS3Af+ePvwAa0amJ +1:eJxVl3tM1XUYxn9jTqHcpGaKmIXpBpVtypwjJXlU7qIcDnAOd879HJtl2lJT +Vr+kRaUpXjeWCpY2Nc3LpKFlPtFGUf5hZuQqQjRKFLxnhrZltb5v79nOzj57 +zvO7fC/v+3zH+hY4g1GWZbXf/f79++9nHudnrov9IWY5/kFG+MnCwyMM2xHG +74gdYxgR3vyuYZxhK8I1o92PiT/Mzs25k8Qf5q0di1PEH2Z8U2ea+MPc/cCK +LPGHmHEolC/+EMfmr3aLP8Sa7tvV4g8xb+3BiPiDTDjYvFD8QeKL6OXiDzJ6 +1b5XxR9kff/e1eIPsD4uukH8AW5d2vqu+ANsO9r9gfgD3N799BHx+/nxBH+b ++P2cm3ripPj9PBnd0iV+P2/0JfSL38e4vffdFr+P219eG/Oj8fsYNWJnnGHL +x7r3KpMM08snfj+SYtj28rl57Tni93LckPXl4vfyrfpHnhW/hw+uqn1F/B4u +crduFL+HMVP7dovfwzsvDvtU/l/NW4umnRa9msP22VdEr2Jn1NWYTqNX8Z49 +jeMN25V0PL8Nolcy8+TQKtErGD9moEb0Cl7aX7tF9HIuSGw7Jno5U+vPnBO9 +jO/svxHzk9HLyNzEZMN2Kb+d31Qhein3tK98Q/QSThk96rDoJWR9zUXR3TyV +czmhy+huLunaV2rYdvHRP6M2ie5i+N7JHaIXc3X/xvgzRi/m4lO1fsN2EY8n ++g6IXsSiusZB3UYvZHRPc6Vhq5BpLY8fFd1JV/bGcWeN7uRDQzetNWwX0DXy +7JBzRi/gspVpdYZtB1sG6mJ/NrqD15t2bRfO59u5O9N7DM/lV7u3XBWewyNt +LXt+MZzHvGvTlvxqeDZPbF3qPG84l4MufJ7WaziHTf6XcMFwNo99f7r4ouEs +JozssvsMZ9IxMqW133AGD2zuHXXZcDrj0gdeu2J4FmP7egdfMzyTk1Zc3nDd +8Aw+vLcn6TfD4FMdXzbfNDydL6z5KPGW4VRmHX3G+4fhqfww8v6TA4ZT2HF4 +1zLhKVzvTT4v/5/M0c5zxXK9ZC7LOPSN3H8iB6ce75DnncD7m4cPl/dJ4uKY +NdYlw+Pp+HpFg4xPAu9kjPpMxi+O9Y2uWuFYvr7hzVZhizXbBpLEf3cGL9xx +/4+h9Vhofxz09ROg7z8e+vmSoJ9/AvT7TYR+/2To8ZkMPX5ToMc3BXr8p0LP +Tyr0/E2Hnl9Az/8M6PUxE3r9zIJeX+nQ6y8Den1mQq/fLOj1nQ29/nOg90cu +9P6ZDb2/8qD33xzo/TkXev/mQ+9vB9T+tx3Q9aEAun4UQNcXJ3T9cULXp0Lo ++lUIXd+KoOtfEXR9LIaun8XQ9dUFXX9d0PXZDV2/3dD1vQS6/pdA94dS6P5R +Ct1fyqD7Txl0fyqH7l/l0P2tArr/VUD3x0ro/lkJ3V+roPtvFXR/robu39XQ +/d0D1f/hgcoHtgcqP9ADlS8sL1T+gBcqn9heqPxCL1S+sXxQ+Qc+qHxk+6Dy +E31Q+cryQ+Uv+KHyme2Hym/0Q+U7KwCV/xCAyod2ACo/MgCVL60gVP5EECqf +2kGo/MogVL61QlD5FyGofGyHoPIzQ1D52gpD5W+EofK5HYbK7wxD5XsrApX/ +EYE6H9gRqPMDI1DnC2se/jt//AXlpqu7 "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - AxesOrigin->{0, 432.6155}, + AxesOrigin->{0, 432.61600000000004`}, Frame->True, PlotRange->{All, All}, PlotRangeClipping->True, - PlotRangePadding->{Automatic, Automatic}]], "Output"], + PlotRangePadding->{Automatic, Automatic}]], "Output", + CellChangeTimes->{3.5545692392228*^9, 3.55457059027492*^9, + 3.554570649603673*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJxtl3lQVWUYh0+Ju2VO6aAJWVIu2HQlK1O7vWyist572bnA3e81NWkR0yzv -JGW5RCJhkZmYlUsx5ShNOsWLlVo5UqZIy6RIaZFKmVYaZQvP+S9mGOaZhx/c -c873vd/vXO+Za/dfbhjGR/98//uz+2umznAGAu/+MOPu/1BDatkelVI2LrWb -wyE9crAgL1QGS0jvi4zdXL8DNkL6cb+v6tK6YA3qTftn/5malEY+qP1rkw82 -rIQlqFsP/1W9phU2gjpkoHf4hZh08gHNqVjzyon74XBA9817oHXWblgCum5N -r/3VV2eQD+hV+zP73xuA1a/HRt5YG7ELDvt1eGf6Rf+gTPJ+fay02bJ+Jmz4 -NeLkrE+a3ofVp9alY385NTCLvE8LF/Ue2mWFxaefXrl70ZC5sOHTZxaPrE5a -D6tXLRmLR1ceNPNe/XZdV8GlnjbyXj12rHPDukmw4dWKM/JVeRmsHrV83jq5 -6jU47NG2mEGeP46aeY8uKIpyvDvUTt6jE5p8i9uzYXXr2HuaPlywCg679eGI -mvIVzbC49dZbNueOHugg79aShLfqCrNgdannVPmA8avhsEsnPD93zztHYHFp -85VbFvaIzibv0pUHjmZGBeBwqabbHzw55E3Tl2rB4euKjC7Tl+gP1ecndkzP -wZfo8BbfI989D4eLtfFE47Iep0xfrP0u7orKlVy8U+cl3W3trIENpy7sqI9t -6zR9kZYc2J1oTc3DF+mepDePR26Gw4UaGjhl8pK++fhC3XbpXEzlbDhcoMsu -zP8m/aDpC7S9alRT86QCfL4+PcjSPvJV2MjX6Bf+fDnvmkJ8nlb/MSe6/HHY -yNMO728Ll14wfa625rwx7JmyInyu1nw9u6qyAw7naPVT82YtDjrxORp9dMJa -20k4nK2np3ZuOjOzGJ+tH3qH5N/aCYcdurLM1na6vATv0GcbUh760ijF23X/ -U60DXloBG3bdUVXXp32AC2/TOn2759cO2LDpmp0Zh76oNX2W/mh80+VuM32W -jh/T57Yvb3LDmdq/sfZc+B6TM7TmA5vdt9XkdP21od+e3O9NTtPEgNXZdp0H -TtWz1r2H4rJMnqG9hg6O7D/f5On6nHNRcMMqk6fppVFZ7yxfa3KKttia2lat -Nnmqbqxb/2LlfSYn6xeflVckWkxO0t/P37nzhn3m50nUbUvfet1iMTlBO8ec -2fR9sXm98VrTUL934zLz/opWRS+51L7NfJ5WDcTP++TYMHP9TNFDfa2X2evN -/TZJWyrH/zTyM3P+TVT7mI7YjQcEvl3jzrU5brxrBDxBn4spSxnVdktjN8fp -E5u290q7OR626JP2lH3L306Gx6m/NfZ42aMmj9bmujsGRzgS4Bitjbpi75ze -U+ARuuXwhi2ry+PgSL227kGvw3kDfJUuOfvz6bVREbCh8Z5Qy96KJqvx/1+C -f4+8kOd6IoW/D48Q/j8cI3w+eLTw+eFxwvXBFuH64Tjh/pj3T7h/5v0V7i/X -M1G4//Ak4fnAU4TnB1uF5wuL8PzheGF9wAnC+oEThfUFJwnrD04W1ic8VVi/ -cIqwvuFpwvqHpwv7A54h7B84VdhfcJqw/+B0YX/CGcL+hTOF/Q1nCfu/m8NZ -wnzA24T5gbcJ8wVvF+YP3i7MJ7xDmF94hzDf8NnC/MNnC/MRnyPMT3yOMF/x -ucL8xecK8xmfJ8xvfJ4w3/H5wvzH5wvnA75AOD/wBcL5gi8Uzh98oXA+4YuE -8wtfJJxveKdw/uGdwvmILxbOT3yxcL7iS4TzF18inM/4UuH8xpcK5zveJZz/ -3SwuoR/w+y6hP3SzuoR+Qd4t9A/ybqGfkHcL/YW8W+g35D1C/yHvEfoReY/Q -n8h7hH5F3iv0L/JeoZ+R9wr9jbxX6HfkfUL/I+8T+iF5n9AfyfuEfkneL/RP -8n6hn5L3C/2VvF/ot+QDQv8lHxD6MfmA0J/JB4R+TT4o9G/yQaGfkw8K/Z18 -UOj35ENC/ycfEt4PyIeE9wfyIeH9gvxM4f2j8W9Hv9hQ +1:eJxtl3lQVWUYh49J7mm2ONiEUmKi2EhEZUbXV0BJWe+97Fy4+0JSUimaY3kb +bdwqUhkdyErM3CrHGqJRp3wxy1IHk9DInJQoC4fEyqZUzBae81/MMMwzDz+4 +55zve7/fucMzx+a/zjCMz//5/vdn71e5ZjoCgQ87Z039DzWkExqi0ionpvdy +OKQtLUUFoUpYQvpEZNz2ne/DRkibB31Tn9EDa1DHHam4mp6aQT6oQ+qmtzS+ +CEtQtx3/q2Z9G2wE9cZh3tsvxWSSD2jh0vVvnn0SDgf00Lyn2mbvhyWgW9f3 +O1Jzcxb5gN50JHvw4wFY/XpqzNi6iL1w2K8jujMv+4dnk/frc86j8RvLYcOv +V87OPtz0Maw+TVk24beuYTnkfepY1H9kjwUWn7YM3b9oxBzY8OlLi8fUpG6E +1asJWYtjq1vMvFfPvNZTdO16K3mvnj7Tvem1KbDh1SXn5ZuqSlg9mvBl20Nr +tsJhj3bEDPdcOW3mPbqwJMr+4UgbeY8mNvkWd+TC6ta4R5s+eXo1HHbrooh1 +VS8chcWtD0zanh87zE7erc7kd+uLc2B1qaurasg9a+GwSxNr53y6+ytYXPrF +0B0L+47KJe/SZc2ns6MCcNipmba5P47YZXqnFh8fXWL0mL5MO2t+n3xuZh6+ +TKNP+J75oRYOl+qes/tW9u0yfakOvrw3Kl/y8Q5dkDrV0r0ONhy68NzOuPZu +05doWfP+FEt6Ab5ED6Tu+i5yOxwu1sCwpIeWDCzEF2vDtYsx1RVwuEhXXpr/ +bWaL6Yv0+zXjmo5OKcIX6svD4zvGbIGNQo1+5eobBbcU4wu09spjo6qeh40C +7fT+sXDZJdPna1veO7e9XFmCz9d1pyrWVJ+Dw3m6YcW82YuDDnyeRp5O3GD9 +EQ7n6sUZ3dvOl5fic/WQd0Thvd1w2K7LK63tP1eV4e1a15i24KThxNv00Iq2 +Ia+/ABs2bVxTP6BjiAtv1S36wfWn7LBh1do9Wa1f15k+R7uMb3vc7abP0fjx +A+47eZcbztZB++ouhh81OUtrD1htvrdMztQ/Ggd9mv+TyRmaHLA42kd74HTt +tBxsTcgxeZZGjLw1cvB8k2fqK45FwU2rTX5E+8Tm7F61weQ0bbU2ta9ea/IM +3Vi/8dXqJ0yerq3HqpamxJucqn/+/uCeOz8zP0+KNix79+34eJOT9dfx57f9 +VGpe7zStadx5cPNK8/6Krh+15FrHe+bztGjFtHmHz9xmrp8k/WSgpY9tp7nf +puiF6nsujDlmzr/J6hx/Lm5zs8D364yL7faxD0fDiZobU5k2rn3Svl5O0Be3 +NfTLuHsaHK/LbWmfrfpgOjxRfW1x31U+a3KsNtc/cGuEPRmO0VVRNxx8rH8S +HK07jm/asbYqAY7USfVzvXbHnfCNOvC3X37eEBUBG3rBGTpxcGmTxfj/L8F/ +RF7Icz2Rwt+Ho4X/D8cInw+OFT4/PFG4PjheuH44Qbg/5v0T7p95f4X7y/VM +Fu4/PEV4PnCS8Pxgi/B8YRGePzxNWB9wsrB+4BRhfcGpwvqDpwvrE54hrF84 +TVjf8CPC+odnCvsDniXsHzhd2F9whrD/4Exhf8JZwv6Fs4X9DecI+7+XwznC +fMBbhfmBtwrzBW8T5g/eJswnvF2YX3i7MN/wucL8w+cK8xGfJ8xPfJ4wX/H5 +wvzF5wvzGV8gzG98gTDf8YXC/McXCucDvkg4P/BFwvmCLxbOH3yxcD7hS4Tz +C18inG94h3D+4R3C+YgvFc5PfKlwvuLLhPMXXyacz3incH7jncL5jncJ538v +i0voB/y+S+gPvawuoV+Qdwv9g7xb6Cfk3UJ/Ie8W+g15j9B/yHuEfkTeI/Qn +8h6hX5H3Cv2LvFfoZ+S9Qn8j7xX6HXmf0P/I+4R+SN4n9EfyPqFfkvcL/ZO8 +X+in5P1CfyXvF/ot+YDQf8kHhH5MPiD0Z/IBoV+TDwr9m3xQ6Ofkg0J/Jx8U ++j35kND/yYeE9wPyIeH9gXxIeL8gXy68f+z7Gzmw2Mg= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], AxesOrigin->{0, 0}, Frame->True, PlotRange->{All, All}, PlotRangeClipping->True, - PlotRangePadding->{Automatic, Automatic}]], "Output"] + PlotRangePadding->{Automatic, Automatic}]], "Output", + CellChangeTimes->{3.5545692392228*^9, 3.55457059027492*^9, + 3.554570649616191*^9}] }, Open ]] }, Open ]], @@ -14052,15 +19802,22 @@ Cell[BoxData[ RowBox[{"hb", "[", "2", "]"}], "\[Equal]", "7.85178251911697`*^7"}], ",", RowBox[{ RowBox[{"g", "[", "2", "]"}], "\[Equal]", "3.8117309832741246`*^7"}]}], - "}"}]], "Output"], + "}"}]], "Output", + CellChangeTimes->{3.554569239338414*^9, 3.554570590470957*^9, + 3.554570649731472*^9}], Cell[BoxData["\<\"ha0 = 2.1471788680034824e10;\\nha1 = \ 2.558764384495815e9;\\ng1 = 3.612847284945266e7;\\nha2 = 5.323020344462938e8;\ -\\nhb2 = 7.85178251911697e7;\\ng2 = 3.8117309832741246e7;\\n\"\>"], "Output"] +\\nhb2 = 7.85178251911697e7;\\ng2 = 3.8117309832741246e7;\\n\"\>"], "Output", + CellChangeTimes->{3.554569239338414*^9, 3.554570590470957*^9, + 3.554570649796009*^9}] }, Open ]], Cell["Convert equations to C form", "Text"], +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.554568964254851*^9, 3.554568970665412*^9}}], + Cell[CellGroupData[{ Cell[BoxData[{ @@ -14131,7 +19888,9 @@ Cell[BoxData[ RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", - RowBox[{"-", "2"}]}], "}"}]}], "}"}]], "Output"], + RowBox[{"-", "2"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.55456923939103*^9, 3.55457059056514*^9, + 3.55457064995498*^9}], Cell[BoxData[ RowBox[{"{", @@ -14190,7 +19949,9 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"2", ",", "2", ",", RowBox[{"-", "2"}]}], "}"}], "\[Rule]", "\<\"16\"\>"}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.55456923939103*^9, 3.55457059056514*^9, + 3.554570649957038*^9}] }, Open ]], Cell[CellGroupData[{ @@ -14344,17 +20105,21 @@ Cell[BoxData[{ RowBox[{"\"\\"", "<>", "a"}]}], ",", RowBox[{ RowBox[{"\"\\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", - RowBox[{"\"\\"", "<>", "a"}]}], ",", + RowBox[{"\"\\"", "<>", "a", "<>", "\"\\""}]}], ",", RowBox[{ RowBox[{"\"\\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", - RowBox[{"\"\\"", "<>", "a"}]}], ",", + RowBox[{"\"\\"", "<>", "a", "<>", "\"\\""}]}], ",", RowBox[{ RowBox[{"\"\\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", - RowBox[{"\"\\"", "<>", "a"}]}], ",", + RowBox[{"\"\\"", "<>", "a"}]}], ",", RowBox[{ RowBox[{"\"\\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", - RowBox[{"\"\\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"], + RowBox[{"\"\\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.55456914848632*^9, 3.554569164767181*^9}, + 3.554569287340058*^9, {3.554569321671209*^9, 3.554569324047068*^9}, { + 3.554569429250296*^9, 3.554569499438798*^9}, {3.554569642022385*^9, + 3.554569642695839*^9}}], Cell[BoxData[ RowBox[{"{", @@ -16009,87 +21774,97 @@ Cell[BoxData[ RowBox[{"r", "[", RowBox[{"\<\"16\"\>", ",", "\<\"04\"\>"}], "]"}], " ", RowBox[{"Wc", "[", "4", "]"}]}], - RowBox[{"4", " ", "rt6"}]]}], ")"}]}]}]}]}], "}"}]], "Output"], + RowBox[{"4", " ", "rt6"}]]}], ")"}]}]}]}]}], "}"}]], "Output", + CellChangeTimes->{3.554569170819231*^9, 3.554569248122409*^9, + 3.554569293506631*^9, 3.554569324777101*^9, 3.554569450471414*^9, + 3.554569500532859*^9, 3.554569643540884*^9, 3.554570590676364*^9, + 3.554570650112442*^9}], Cell[BoxData["\<\"rt6 = 2.449489742783178;\\nrt3 = 1.7320508075688772;\\nrt2 \ = 1.4142135623730951;\\ndr0101_dt = gt/8. - gt*r0101 + (g1*r0909)/2. + \ -(g2*r1313)/6. - i*((r0113*E4)/(4.*rt6) - (r1301*Ec4)/(4.*rt6));\\ndr0113_dt = \ -(-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - d1 + d2 - d3 \ -- v*k1 + v*k2 - v*k3)*r0113 + (r0101*Ec4)/(4.*rt6) - \ -(r1313*Ec4)/(4.*rt6));\\ndr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + \ -(g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4)/8. - \ -(r1402*Ec4)/8.);\\ndr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - \ -i*((WL*r0214)/2. - (-d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0214 - \ -(r0206*Ec3)/(8.*rt3) + (r0202*Ec4)/8. - (r1414*Ec4)/8.);\\ndr0303_dt = gt/8. \ -- gt*r0303 + (g1*r0909)/12. + (g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. \ -+ (g2*r1515)/4. - i*((r0309*E1)/(4.*rt6) + (r0315*E4)/8. - \ -(r0903*Ec1)/(4.*rt6) - (r1503*Ec4)/8.);\\ndr0309_dt = (-(gt*r0309) - (gt + \ -g1)*r0309)/2. - i*(-((-WL/6. - d1 - v*k1)*r0309) + (r0303*Ec1)/(4.*rt6) - \ -(r0909*Ec1)/(4.*rt6) - (r0307*Ec2)/(4.*rt6) - (r1509*Ec4)/8.);\\ndr0315_dt = \ -(-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - d1 + d2 - d3 - v*k1 + \ -v*k2 - v*k3)*r0315) - (r0915*Ec1)/(4.*rt6) - (r0307*Ec3)/8. + (r0303*Ec4)/8. \ -- (r1515*Ec4)/8.);\\ndr0404_dt = gt/8. - gt*r0404 + (g1*r1010)/4. + \ -(g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + (g2*r1616)/6. - \ -i*((r0410*E1)/(4.*rt2) + (r0416*E4)/(4.*rt6) - (r1004*Ec1)/(4.*rt2) - \ -(r1604*Ec4)/(4.*rt6));\\ndr0410_dt = (-(gt*r0410) - (gt + g1)*r0410)/2. - \ -i*(-(WL*r0410)/2. + (d1 + v*k1)*r0410 + (r0404*Ec1)/(4.*rt2) - \ -(r1010*Ec1)/(4.*rt2) - (r0408*Ec2)/(4.*rt6) - \ -(r1610*Ec4)/(4.*rt6));\\ndr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - \ -i*(-(WL*r0416)/2. - ((-4*WL)/3. - d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0416 - \ -(r1016*Ec1)/(4.*rt2) - (r0408*Ec3)/(4.*rt2) + (r0404*Ec4)/(4.*rt6) - \ -(r1616*Ec4)/(4.*rt6));\\ndr0505_dt = gt/8. - gt*r0505 + (g1*r1111)/2. + \ -(g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1)/4. - \ -(r1105*Ec1)/4.);\\ndr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - \ -i*(-(WL*r0511) - (WL/6. - d1 - v*k1)*r0511 + (r0505*Ec1)/4. - \ -(r1111*Ec1)/4.);\\ndr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - d1 \ -+ d2 - v*k1 + v*k2)*r0602 + (r0614*E4)/8. + \ -(r1402*Ec3)/(8.*rt3));\\ndr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + \ -(g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3)/(8.*rt3) + \ -(r1406*Ec3)/(8.*rt3));\\ndr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - \ -i*((-WL/2. - d1 + d2 - v*k1 + v*k2)*r0614 - (-d1 + d2 - d3 - v*k1 + v*k2 - \ -v*k3)*r0614 - (r0606*Ec3)/(8.*rt3) + (r1414*Ec3)/(8.*rt3) + \ -(r0602*Ec4)/8.);\\ndr0703_dt = -(gt*r0703) - i*((-d1 + d2 - v*k1 + \ -v*k2)*r0703 + (r0709*E1)/(4.*rt6) + (r0715*E4)/8. + (r0903*Ec2)/(4.*rt6) + \ -(r1503*Ec3)/8.);\\ndr0707_dt = gt/8. - gt*r0707 + (g1*r0909)/12. + \ -(g1*r1111)/12. + (g2*r1313)/4. + (g2*r1414)/3. + (g2*r1515)/4. - \ -i*(-(r0709*E2)/(4.*rt6) - (r0715*E3)/8. + (r0907*Ec2)/(4.*rt6) + \ -(r1507*Ec3)/8.);\\ndr0709_dt = (-(gt*r0709) - (gt + g1)*r0709)/2. - \ -i*(-((-WL/6. - d1 - v*k1)*r0709) + (-d1 + d2 - v*k1 + v*k2)*r0709 + \ -(r0703*Ec1)/(4.*rt6) - (r0707*Ec2)/(4.*rt6) + (r0909*Ec2)/(4.*rt6) + \ -(r1509*Ec3)/8.);\\ndr0715_dt = (-(gt*r0715) - (gt + g2)*r0715)/2. - i*((-d1 + \ -d2 - v*k1 + v*k2)*r0715 - ((-2*WL)/3. - d1 + d2 - d3 - v*k1 + v*k2 - \ -v*k3)*r0715 + (r0915*Ec2)/(4.*rt6) - (r0707*Ec3)/8. + (r1515*Ec3)/8. + \ -(r0703*Ec4)/8.);\\ndr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - d1 + \ -d2 - v*k1 + v*k2)*r0804 + (r0810*E1)/(4.*rt2) + (r0816*E4)/(4.*rt6) + \ -(r1004*Ec2)/(4.*rt6) + (r1604*Ec3)/(4.*rt2));\\ndr0808_dt = gt/8. - gt*r0808 \ -+ (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + \ -(g2*r1616)/2. - i*(-(r0810*E2)/(4.*rt6) - (r0816*E3)/(4.*rt2) + \ -(r1008*Ec2)/(4.*rt6) + (r1608*Ec3)/(4.*rt2));\\ndr0810_dt = (-(gt*r0810) - \ -(gt + g1)*r0810)/2. - i*((d1 + v*k1)*r0810 + (WL/2. - d1 + d2 - v*k1 + \ -v*k2)*r0810 + (r0804*Ec1)/(4.*rt2) - (r0808*Ec2)/(4.*rt6) + \ -(r1010*Ec2)/(4.*rt6) + (r1610*Ec3)/(4.*rt2));\\ndr0816_dt = (-(gt*r0816) - \ -(gt + g2)*r0816)/2. - i*((WL/2. - d1 + d2 - v*k1 + v*k2)*r0816 - ((-4*WL)/3. \ -- d1 + d2 - d3 - v*k1 + v*k2 - v*k3)*r0816 + (r1016*Ec2)/(4.*rt6) - \ -(r0808*Ec3)/(4.*rt2) + (r1616*Ec3)/(4.*rt2) + \ -(r0804*Ec4)/(4.*rt6));\\ndr0909_dt = -((gt + g1)*r0909) - \ -i*(-(r0309*E1)/(4.*rt6) + (r0709*E2)/(4.*rt6) + (r0903*Ec1)/(4.*rt6) - \ -(r0907*Ec2)/(4.*rt6));\\ndr0915_dt = (-((gt + g1)*r0915) - (gt + \ -g2)*r0915)/2. - i*((-WL/6. - d1 - v*k1)*r0915 - ((-2*WL)/3. - d1 + d2 - d3 - \ -v*k1 + v*k2 - v*k3)*r0915 - (r0315*E1)/(4.*rt6) + (r0715*E2)/(4.*rt6) - \ -(r0907*Ec3)/8. + (r0903*Ec4)/8.);\\ndr1010_dt = -((gt + g1)*r1010) - \ -i*(-(r0410*E1)/(4.*rt2) + (r0810*E2)/(4.*rt6) + (r1004*Ec1)/(4.*rt2) - \ -(r1008*Ec2)/(4.*rt6));\\ndr1016_dt = (-((gt + g1)*r1016) - (gt + \ -g2)*r1016)/2. - i*(-((d1 + v*k1)*r1016) - ((-4*WL)/3. - d1 + d2 - d3 - v*k1 + \ -v*k2 - v*k3)*r1016 - (r0416*E1)/(4.*rt2) + (r0816*E2)/(4.*rt6) - \ -(r1008*Ec3)/(4.*rt2) + (r1004*Ec4)/(4.*rt6));\\ndr1111_dt = -((gt + \ -g1)*r1111) - i*(-(r0511*E1)/4. + (r1105*Ec1)/4.);\\ndr1313_dt = -((gt + \ -g2)*r1313) - i*(-(r0113*E4)/(4.*rt6) + (r1301*Ec4)/(4.*rt6));\\ndr1414_dt = \ --((gt + g2)*r1414) - i*((r0614*E3)/(8.*rt3) - (r0214*E4)/8. - \ -(r1406*Ec3)/(8.*rt3) + (r1402*Ec4)/8.);\\ndr1515_dt = -((gt + g2)*r1515) - \ -i*((r0715*E3)/8. - (r0315*E4)/8. - (r1507*Ec3)/8. + \ -(r1503*Ec4)/8.);\\ndr1616_dt = -((gt + g2)*r1616) - i*((r0816*E3)/(4.*rt2) - \ -(r0416*E4)/(4.*rt6) - (r1608*Ec3)/(4.*rt2) + (r1604*Ec4)/(4.*rt6));\\n\"\>"], \ -"Output"] +(g2*r1313)/6. - i*((r0113*E4a)/(4.*rt6) - (r1301*E4ac)/(4.*rt6));\\ndr0113_dt \ += (-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - delta1 + \ +delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0113 + (r0101*E4ac)/(4.*rt6) \ +- (r1313*E4ac)/(4.*rt6));\\ndr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + \ +(g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4a)/8. - \ +(r1402*E4ac)/8.);\\ndr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - \ +i*((WL*r0214)/2. - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - \ +v*Kvec3)*r0214 - (r0206*E3ac)/(8.*rt3) + (r0202*E4ac)/8. - \ +(r1414*E4ac)/8.);\\ndr0303_dt = gt/8. - gt*r0303 + (g1*r0909)/12. + \ +(g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1515)/4. - \ +i*((r0309*E1a)/(4.*rt6) + (r0315*E4a)/8. - (r0903*E1ac)/(4.*rt6) - \ +(r1503*E4ac)/8.);\\ndr0309_dt = (-(gt*r0309) - (gt + g1)*r0309)/2. - \ +i*(-((-WL/6. - delta1 - v*Kvec1)*r0309) + (r0303*E1ac)/(4.*rt6) - \ +(r0909*E1ac)/(4.*rt6) - (r0307*E2ac)/(4.*rt6) - (r1509*E4ac)/8.);\\ndr0315_dt \ += (-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - delta1 + delta2 - \ +delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0315) - (r0915*E1ac)/(4.*rt6) - \ +(r0307*E3ac)/8. + (r0303*E4ac)/8. - (r1515*E4ac)/8.);\\ndr0404_dt = gt/8. - \ +gt*r0404 + (g1*r1010)/4. + (g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + \ +(g2*r1616)/6. - i*((r0410*E1a)/(4.*rt2) + (r0416*E4a)/(4.*rt6) - \ +(r1004*E1ac)/(4.*rt2) - (r1604*E4ac)/(4.*rt6));\\ndr0410_dt = (-(gt*r0410) - \ +(gt + g1)*r0410)/2. - i*(-(WL*r0410)/2. + (delta1 + v*Kvec1)*r0410 + \ +(r0404*E1ac)/(4.*rt2) - (r1010*E1ac)/(4.*rt2) - (r0408*E2ac)/(4.*rt6) - \ +(r1610*E4ac)/(4.*rt6));\\ndr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - \ +i*(-(WL*r0416)/2. - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + \ +v*Kvec2 - v*Kvec3)*r0416 - (r1016*E1ac)/(4.*rt2) - (r0408*E3ac)/(4.*rt2) + \ +(r0404*E4ac)/(4.*rt6) - (r1616*E4ac)/(4.*rt6));\\ndr0505_dt = gt/8. - \ +gt*r0505 + (g1*r1111)/2. + (g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1a)/4. \ +- (r1105*E1ac)/4.);\\ndr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - \ +i*(-(WL*r0511) - (WL/6. - delta1 - v*Kvec1)*r0511 + (r0505*E1ac)/4. - \ +(r1111*E1ac)/4.);\\ndr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - \ +delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0602 + (r0614*E4a)/8. + \ +(r1402*E3ac)/(8.*rt3));\\ndr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + \ +(g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3a)/(8.*rt3) + \ +(r1406*E3ac)/(8.*rt3));\\ndr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - \ +i*((-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0614 - (-delta1 + delta2 - \ +delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0614 - (r0606*E3ac)/(8.*rt3) + \ +(r1414*E3ac)/(8.*rt3) + (r0602*E4ac)/8.);\\ndr0703_dt = -(gt*r0703) - \ +i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0703 + (r0709*E1a)/(4.*rt6) + \ +(r0715*E4a)/8. + (r0903*E2ac)/(4.*rt6) + (r1503*E3ac)/8.);\\ndr0707_dt = \ +gt/8. - gt*r0707 + (g1*r0909)/12. + (g1*r1111)/12. + (g2*r1313)/4. + \ +(g2*r1414)/3. + (g2*r1515)/4. - i*(-(r0709*E2a)/(4.*rt6) - (r0715*E3a)/8. + \ +(r0907*E2ac)/(4.*rt6) + (r1507*E3ac)/8.);\\ndr0709_dt = (-(gt*r0709) - (gt + \ +g1)*r0709)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0709) + (-delta1 + delta2 - \ +v*Kvec1 + v*Kvec2)*r0709 + (r0703*E1ac)/(4.*rt6) - (r0707*E2ac)/(4.*rt6) + \ +(r0909*E2ac)/(4.*rt6) + (r1509*E3ac)/8.);\\ndr0715_dt = (-(gt*r0715) - (gt + \ +g2)*r0715)/2. - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0715 - ((-2*WL)/3. \ +- delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0715 + \ +(r0915*E2ac)/(4.*rt6) - (r0707*E3ac)/8. + (r1515*E3ac)/8. + (r0703*E4ac)/8.);\ +\\ndr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - delta1 + delta2 - \ +v*Kvec1 + v*Kvec2)*r0804 + (r0810*E1a)/(4.*rt2) + (r0816*E4a)/(4.*rt6) + \ +(r1004*E2ac)/(4.*rt6) + (r1604*E3ac)/(4.*rt2));\\ndr0808_dt = gt/8. - \ +gt*r0808 + (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + \ +(g2*r1616)/2. - i*(-(r0810*E2a)/(4.*rt6) - (r0816*E3a)/(4.*rt2) + \ +(r1008*E2ac)/(4.*rt6) + (r1608*E3ac)/(4.*rt2));\\ndr0810_dt = (-(gt*r0810) - \ +(gt + g1)*r0810)/2. - i*((delta1 + v*Kvec1)*r0810 + (WL/2. - delta1 + delta2 \ +- v*Kvec1 + v*Kvec2)*r0810 + (r0804*E1ac)/(4.*rt2) - (r0808*E2ac)/(4.*rt6) + \ +(r1010*E2ac)/(4.*rt6) + (r1610*E3ac)/(4.*rt2));\\ndr0816_dt = (-(gt*r0816) - \ +(gt + g2)*r0816)/2. - i*((WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0816 \ +- ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0816 \ ++ (r1016*E2ac)/(4.*rt6) - (r0808*E3ac)/(4.*rt2) + (r1616*E3ac)/(4.*rt2) + \ +(r0804*E4ac)/(4.*rt6));\\ndr0909_dt = -((gt + g1)*r0909) - \ +i*(-(r0309*E1a)/(4.*rt6) + (r0709*E2a)/(4.*rt6) + (r0903*E1ac)/(4.*rt6) - \ +(r0907*E2ac)/(4.*rt6));\\ndr0915_dt = (-((gt + g1)*r0915) - (gt + \ +g2)*r0915)/2. - i*((-WL/6. - delta1 - v*Kvec1)*r0915 - ((-2*WL)/3. - delta1 + \ +delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0915 - (r0315*E1a)/(4.*rt6) + \ +(r0715*E2a)/(4.*rt6) - (r0907*E3ac)/8. + (r0903*E4ac)/8.);\\ndr1010_dt = \ +-((gt + g1)*r1010) - i*(-(r0410*E1a)/(4.*rt2) + (r0810*E2a)/(4.*rt6) + \ +(r1004*E1ac)/(4.*rt2) - (r1008*E2ac)/(4.*rt6));\\ndr1016_dt = (-((gt + \ +g1)*r1016) - (gt + g2)*r1016)/2. - i*(-((delta1 + v*Kvec1)*r1016) - \ +((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r1016 - \ +(r0416*E1a)/(4.*rt2) + (r0816*E2a)/(4.*rt6) - (r1008*E3ac)/(4.*rt2) + \ +(r1004*E4ac)/(4.*rt6));\\ndr1111_dt = -((gt + g1)*r1111) - i*(-(r0511*E1a)/4. \ ++ (r1105*E1ac)/4.);\\ndr1313_dt = -((gt + g2)*r1313) - \ +i*(-(r0113*E4a)/(4.*rt6) + (r1301*E4ac)/(4.*rt6));\\ndr1414_dt = -((gt + \ +g2)*r1414) - i*((r0614*E3a)/(8.*rt3) - (r0214*E4a)/8. - (r1406*E3ac)/(8.*rt3) \ ++ (r1402*E4ac)/8.);\\ndr1515_dt = -((gt + g2)*r1515) - i*((r0715*E3a)/8. - \ +(r0315*E4a)/8. - (r1507*E3ac)/8. + (r1503*E4ac)/8.);\\ndr1616_dt = -((gt + \ +g2)*r1616) - i*((r0816*E3a)/(4.*rt2) - (r0416*E4a)/(4.*rt6) - \ +(r1608*E3ac)/(4.*rt2) + (r1604*E4ac)/(4.*rt6));\\n\"\>"], "Output", + CellChangeTimes->{3.554569170819231*^9, 3.554569248122409*^9, + 3.554569293506631*^9, 3.554569324777101*^9, 3.554569450471414*^9, + 3.554569500532859*^9, 3.554569643540884*^9, 3.554570590676364*^9, + 3.554570650128499*^9}] }, Open ]], Cell[CellGroupData[{ @@ -16102,8 +21877,10 @@ Cell[BoxData[ RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\\""}], "]"}], ",", "%"}], "]"}]], "Input"], -Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\ -mathemathica_fwm\\\\RbEquations.txt\"\>"], "Output"] +Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/\ +RbEquations.txt\"\>"], "Output", + CellChangeTimes->{3.554569572058956*^9, 3.554569659570355*^9, + 3.554570590813968*^9, 3.55457065021187*^9}] }, Open ]], Cell["\<\ @@ -16233,7 +22010,7 @@ Cell[BoxData[{ RowBox[{ "\"\\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", "~~", "\"\<\\\")\>\""}], "]"}], ":>", - RowBox[{"\"\\"", "<>", "a", "<>", "b"}]}], ",", + RowBox[{"\"\\"", "<>", "a", "<>", "b"}]}], ",", RowBox[{ RowBox[{"\"\\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", @@ -16257,7 +22034,8 @@ Cell[BoxData[{ RowBox[{"\"\\"", "<>", "a"}]}], ",", RowBox[{ RowBox[{"\"\\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", - RowBox[{"\"\\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"], + RowBox[{"\"\\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.55456986886158*^9, 3.554569871147471*^9}}], Cell[BoxData[ RowBox[{"{", @@ -16417,18 +22195,28 @@ Cell[BoxData[ RowBox[{ RowBox[{"r", "[", RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]", "0"}]}], - "}"}]], "Output"], + "}"}]], "Output", + CellChangeTimes->{3.554569872033716*^9, 3.554570590915751*^9, + 3.554570650264164*^9}], -Cell[BoxData["\<\"r0101 = 0.125;\\nr0113 = 0;\\nr0202 = 0.125;\\nr0206 = \ -0;\\nr0214 = 0;\\nr0303 = 0.125;\\nr0307 = 0;\\nr0309 = 0;\\nr0315 = \ -0;\\nr0404 = 0.125;\\nr0408 = 0;\\nr0410 = 0;\\nr0416 = 0;\\nr0505 = \ -0.125;\\nr0511 = 0;\\nr0602 = 0;\\nr0606 = 0.125;\\nr0614 = 0;\\nr0703 = \ -0;\\nr0707 = 0.125;\\nr0709 = 0;\\nr0715 = 0;\\nr0804 = 0;\\nr0808 = \ -0.125;\\nr0810 = 0;\\nr0816 = 0;\\nr0903 = 0;\\nr0907 = 0;\\nr0909 = \ -0;\\nr0915 = 0;\\nr1004 = 0;\\nr1008 = 0;\\nr1010 = 0;\\nr1016 = 0;\\nr1105 = \ -0;\\nr1111 = 0;\\nr1301 = 0;\\nr1313 = 0;\\nr1402 = 0;\\nr1406 = 0;\\nr1414 = \ -0;\\nr1503 = 0;\\nr1507 = 0;\\nr1509 = 0;\\nr1515 = 0;\\nr1604 = 0;\\nr1608 = \ -0;\\nr1610 = 0;\\nr1616 = 0;\\n\"\>"], "Output"] +Cell[BoxData["\<\"complex r0101 = 0.125;\\ncomplex r0113 = 0;\\ncomplex r0202 \ += 0.125;\\ncomplex r0206 = 0;\\ncomplex r0214 = 0;\\ncomplex r0303 = \ +0.125;\\ncomplex r0307 = 0;\\ncomplex r0309 = 0;\\ncomplex r0315 = \ +0;\\ncomplex r0404 = 0.125;\\ncomplex r0408 = 0;\\ncomplex r0410 = \ +0;\\ncomplex r0416 = 0;\\ncomplex r0505 = 0.125;\\ncomplex r0511 = \ +0;\\ncomplex r0602 = 0;\\ncomplex r0606 = 0.125;\\ncomplex r0614 = \ +0;\\ncomplex r0703 = 0;\\ncomplex r0707 = 0.125;\\ncomplex r0709 = \ +0;\\ncomplex r0715 = 0;\\ncomplex r0804 = 0;\\ncomplex r0808 = \ +0.125;\\ncomplex r0810 = 0;\\ncomplex r0816 = 0;\\ncomplex r0903 = \ +0;\\ncomplex r0907 = 0;\\ncomplex r0909 = 0;\\ncomplex r0915 = 0;\\ncomplex \ +r1004 = 0;\\ncomplex r1008 = 0;\\ncomplex r1010 = 0;\\ncomplex r1016 = \ +0;\\ncomplex r1105 = 0;\\ncomplex r1111 = 0;\\ncomplex r1301 = 0;\\ncomplex \ +r1313 = 0;\\ncomplex r1402 = 0;\\ncomplex r1406 = 0;\\ncomplex r1414 = \ +0;\\ncomplex r1503 = 0;\\ncomplex r1507 = 0;\\ncomplex r1509 = 0;\\ncomplex \ +r1515 = 0;\\ncomplex r1604 = 0;\\ncomplex r1608 = 0;\\ncomplex r1610 = \ +0;\\ncomplex r1616 = 0;\\n\"\>"], "Output", + CellChangeTimes->{3.554569872033716*^9, 3.554570590915751*^9, + 3.554570650268968*^9}] }, Open ]], Cell[CellGroupData[{ @@ -16441,8 +22229,10 @@ Cell[BoxData[ RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\\""}], "]"}], ",", "%"}], "]"}]], "Input"], -Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\ -mathemathica_fwm\\\\RbInits.txt\"\>"], "Output"] +Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/RbInits.\ +txt\"\>"], "Output", + CellChangeTimes->{3.554569877772325*^9, 3.554570591015199*^9, + 3.554570650348909*^9}] }, Open ]], Cell["\<\ @@ -16963,7 +22753,8 @@ Cell[BoxData[ RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}], ",", RowBox[{"F", "\[Rule]", "2"}], ",", RowBox[{"M", "\[Rule]", - RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]}], "}"}]], "Output"] + RowBox[{"-", "2"}]}]}], "]"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.55457059139513*^9, 3.554570650711194*^9}] }, Open ]], Cell["\<\ @@ -17206,7 +22997,8 @@ Cell[BoxData[ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}]}], - "}"}]}], "}"}]], "Output"] + "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.554570591821216*^9, 3.554570651056006*^9}] }, Open ]], Cell["\<\ @@ -17266,7 +23058,8 @@ Cell[BoxData[ RowBox[{"0", ",", "0", ",", RowBox[{ SubscriptBox["\[CapitalOmega]", "4"], "[", "z", "]"}]}], "}"}]}], - "}"}]], "Output"] + "}"}]], "Output", + CellChangeTimes->{3.554570591897082*^9, 3.554570651100388*^9}] }, Open ]], Cell["\<\ @@ -17461,7 +23254,8 @@ Cell[BoxData[ RowBox[{"0", ",", "2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], - ")"}]}]}]}], "}"}]], "Output"] + ")"}]}]}]}], "}"}]], "Output", + CellChangeTimes->{3.554570592011115*^9, 3.554570651181306*^9}] }, Open ]], Cell["\<\ @@ -17630,7 +23424,8 @@ Cell[BoxData[ RowBox[{"2.449489742783178`", " ", RowBox[{"r", "[", RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}]}], ")"}]}]}]}], - "}"}]], "Output"], + "}"}]], "Output", + CellChangeTimes->{3.554570592105373*^9, 3.554570651251726*^9}], Cell[BoxData["\<\"dW(1) == 0.16666666666666666*eta(1)*(2.449489742783178*r(\\\ \"03\\\",\\\"09\\\") + 4.242640687119286*r(\\\"04\\\",\\\"10\\\") + \ @@ -17641,24 +23436,27 @@ r(\\\"08\\\",\\\"10\\\")) - Lt[E2];\\ndW(3) == \ 3.*r(\\\"07\\\",\\\"15\\\") + 4.242640687119286*r(\\\"08\\\",\\\"16\\\")) - \ Lt[E3];\\ndW(4) == (4*eta(2)*(2.449489742783178*r(\\\"01\\\",\\\"13\\\") + \ 3*r(\\\"02\\\",\\\"14\\\") + 3*r(\\\"03\\\",\\\"15\\\") + \ -2.449489742783178*r(\\\"04\\\",\\\"16\\\")))/3. - Lt[E4];\\n\"\>"], "Output"], +2.449489742783178*r(\\\"04\\\",\\\"16\\\")))/3. - Lt[E4];\\n\"\>"], "Output", + CellChangeTimes->{3.554570592105373*^9, 3.554570651253779*^9}], Cell[BoxData["\<\"dE1_dz = 0.16666666666666666*eta1*(2.449489742783178*r0309 \ + 4.242640687119286*r0410 + 6.*r0511) - Lt[E1];\\ndE2_dz = \ -0.8164965809277261*eta1*(r0709 + r0810) - Lt[E2];\\ndE3_dz = \ -1.*eta2*(1.7320508075688772*r0614 + 3.*r0715 + 4.242640687119286*r0816) - \ Lt[E3];\\ndE4_dz = (4*eta2*(2.449489742783178*r0113 + 3*r0214 + 3*r0315 + \ -2.449489742783178*r0416))/3. - Lt[E4];\\n\"\>"], "Output"], +2.449489742783178*r0416))/3. - Lt[E4];\\n\"\>"], "Output", + CellChangeTimes->{3.554570592105373*^9, 3.554570651255555*^9}], -Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\ -mathemathica_fwm\\\\RbPropEquations.txt\"\>"], "Output"] +Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/mathemathica_fwm/\ +RbPropEquations.txt\"\>"], "Output", + CellChangeTimes->{3.554570592105373*^9, 3.554570651290865*^9}] }, Open ]] }, Open ]] }, -WindowSize->{1104, 893}, -WindowMargins->{{17, Automatic}, {Automatic, 8}}, +WindowSize->{956, 980}, +WindowMargins->{{Automatic, 0}, {26, Automatic}}, ShowSelection->True, -FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", +FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) @@ -17673,254 +23471,255 @@ CellTagsIndex->{} (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ -Cell[567, 22, 43, 0, 71, "Section"], -Cell[613, 24, 33, 0, 29, "Text"], -Cell[649, 26, 138, 3, 31, "Input", +Cell[567, 22, 43, 0, 74, "Section"], +Cell[613, 24, 33, 0, 30, "Text"], +Cell[649, 26, 138, 3, 30, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->2058623809], -Cell[790, 31, 82, 2, 29, "Text"], +Cell[790, 31, 82, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[897, 37, 144, 3, 31, "Input"], -Cell[1044, 42, 382, 8, 30, "Output"] +Cell[897, 37, 144, 3, 30, "Input"], +Cell[1044, 42, 471, 10, 50, "Output"] }, Open ]], -Cell[1441, 53, 119, 3, 29, "Text", +Cell[1530, 55, 119, 3, 30, "Text", CellID->429217524], Cell[CellGroupData[{ -Cell[1585, 60, 573, 16, 47, "Input"], -Cell[2161, 78, 436, 12, 47, "Output"] +Cell[1674, 62, 573, 16, 75, "Input"], +Cell[2250, 80, 525, 14, 47, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[2634, 95, 694, 20, 47, "Input"], -Cell[3331, 117, 425, 13, 47, "Output"] +Cell[2812, 99, 694, 20, 75, "Input"], +Cell[3509, 121, 514, 15, 47, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[3793, 135, 694, 20, 47, "Input"], -Cell[4490, 157, 425, 13, 47, "Output"] +Cell[4060, 141, 694, 20, 75, "Input"], +Cell[4757, 163, 514, 15, 47, "Output"] }, Open ]], -Cell[4930, 173, 273, 5, 47, "Text"], -Cell[5206, 180, 419, 12, 31, "Input", +Cell[5286, 181, 273, 5, 49, "Text"], +Cell[5562, 188, 419, 12, 30, "Input", CellID->433132487], -Cell[5628, 194, 493, 19, 32, "Text"], +Cell[5984, 202, 493, 19, 33, "Text"], Cell[CellGroupData[{ -Cell[6146, 217, 411, 12, 31, "Input"], -Cell[6560, 231, 8889, 232, 587, "Output"] +Cell[6502, 225, 411, 12, 30, "Input"], +Cell[6916, 239, 8978, 234, 695, "Output"] }, Open ]], -Cell[15464, 466, 1150, 43, 29, "Text", +Cell[15909, 476, 1150, 43, 49, "Text", CellID->133602844], Cell[CellGroupData[{ -Cell[16639, 513, 325, 8, 31, "Input"], -Cell[16967, 523, 478, 12, 30, "Output"] +Cell[17084, 523, 325, 8, 30, "Input"], +Cell[17412, 533, 565, 14, 50, "Output"] }, Open ]], -Cell[17460, 538, 411, 10, 47, "Text"], +Cell[17992, 550, 411, 10, 49, "Text"], Cell[CellGroupData[{ -Cell[17896, 552, 2561, 80, 92, "Input", +Cell[18428, 564, 2561, 80, 88, "Input", CellID->534530029], -Cell[20460, 634, 4983, 149, 101, "Output"] +Cell[20992, 646, 5072, 151, 149, "Output"] }, Open ]], -Cell[25458, 786, 288, 6, 47, "Text", +Cell[26079, 800, 288, 6, 49, "Text", CellID->462076121], Cell[CellGroupData[{ -Cell[25771, 796, 810, 24, 52, "Input", +Cell[26392, 810, 810, 24, 73, "Input", CellID->494599775], -Cell[26584, 822, 84081, 2408, 594, "Output"] +Cell[27205, 836, 84169, 2410, 509, "Output"] }, Open ]], -Cell[110680, 3233, 256, 5, 47, "Text", +Cell[111389, 3249, 256, 5, 49, "Text", CellID->358620443], Cell[CellGroupData[{ -Cell[110961, 3242, 698, 18, 52, "Input", +Cell[111670, 3258, 698, 18, 69, "Input", CellID->167259034], -Cell[111662, 3262, 3230, 55, 230, "Output"] +Cell[112371, 3278, 3318, 57, 230, "Output"] }, Open ]], -Cell[114907, 3320, 1513, 54, 50, "Text", +Cell[115704, 3338, 1513, 54, 74, "Text", CellID->577766068], Cell[CellGroupData[{ -Cell[116445, 3378, 956, 31, 52, "Input"], -Cell[117404, 3411, 997, 34, 30, "Output"], -Cell[118404, 3447, 1196, 34, 30, "Output"] +Cell[117242, 3396, 956, 31, 50, "Input"], +Cell[118201, 3429, 1086, 36, 50, "Output"], +Cell[119290, 3467, 1283, 36, 30, "Output"] }, Open ]], -Cell[119615, 3484, 102, 2, 29, "Text"], +Cell[120588, 3506, 102, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[119742, 3490, 447, 12, 31, "Input"], -Cell[120192, 3504, 7543, 205, 310, "Output"] +Cell[120715, 3512, 447, 12, 30, "Input"], +Cell[121165, 3526, 7632, 207, 298, "Output"] }, Open ]], -Cell[127750, 3712, 902, 30, 47, "Text"], +Cell[128812, 3736, 902, 30, 49, "Text"], Cell[CellGroupData[{ -Cell[128677, 3746, 1142, 31, 52, "Input"], -Cell[129822, 3779, 33911, 877, 570, "Output"] +Cell[129739, 3770, 1142, 31, 69, "Input"], +Cell[130884, 3803, 34000, 879, 508, "Output"] }, Open ]], -Cell[163748, 4659, 837, 25, 47, "Text"], +Cell[164899, 4685, 837, 25, 68, "Text"], Cell[CellGroupData[{ -Cell[164610, 4688, 765, 20, 38, "Input"], -Cell[165378, 4710, 13324, 371, 569, "Output"] +Cell[165761, 4714, 765, 20, 35, "Input"], +Cell[166529, 4736, 13411, 373, 507, "Output"] }, Open ]], -Cell[178717, 5084, 141, 3, 29, "Text"], +Cell[179955, 5112, 141, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[178883, 5091, 787, 22, 31, "Input"], -Cell[179673, 5115, 261, 8, 47, "Output"] +Cell[180121, 5119, 787, 22, 50, "Input"], +Cell[180911, 5143, 350, 10, 48, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[179971, 5128, 787, 22, 31, "Input"], -Cell[180761, 5152, 261, 8, 47, "Output"] +Cell[181298, 5158, 787, 22, 50, "Input"], +Cell[182088, 5182, 350, 10, 48, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[181059, 5165, 787, 22, 31, "Input"], -Cell[181849, 5189, 355, 11, 47, "Output"] +Cell[182475, 5197, 787, 22, 50, "Input"], +Cell[183265, 5221, 444, 13, 48, "Output"] }, Open ]], -Cell[182219, 5203, 989, 34, 47, "Text"], +Cell[183724, 5237, 989, 34, 49, "Text"], Cell[CellGroupData[{ -Cell[183233, 5241, 877, 25, 47, "Input"], -Cell[184113, 5268, 10598, 294, 569, "Output"] +Cell[184738, 5275, 877, 25, 95, "Input"], +Cell[185618, 5302, 10686, 296, 502, "Output"] }, Open ]], -Cell[194726, 5565, 92, 2, 29, "Text"], +Cell[196319, 5601, 92, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[194843, 5571, 1102, 30, 52, "Input", +Cell[196436, 5607, 1102, 30, 69, "Input", CellID->102096636], -Cell[195948, 5603, 2044, 35, 230, "Output"] +Cell[197541, 5639, 2133, 37, 230, "Output"] }, Open ]], -Cell[198007, 5641, 588, 18, 29, "Text", +Cell[199689, 5679, 588, 18, 49, "Text", CellID->610306692], Cell[CellGroupData[{ -Cell[198620, 5663, 272, 7, 31, "Input", +Cell[200302, 5701, 272, 7, 30, "Input", CellID->645617687], -Cell[198895, 5672, 2716, 58, 266, "Output"] +Cell[200577, 5710, 2805, 60, 273, "Output"] }, Open ]], -Cell[201626, 5733, 460, 13, 29, "Text", +Cell[203397, 5773, 460, 13, 49, "Text", CellID->854192725], Cell[CellGroupData[{ -Cell[202111, 5750, 274, 7, 31, "Input", +Cell[203882, 5790, 274, 7, 30, "Input", CellID->465762594], -Cell[202388, 5759, 49693, 1437, 426, "Output"] +Cell[204159, 5799, 49782, 1439, 401, "Output"] }, Open ]], -Cell[252096, 7199, 69, 1, 29, "Text", +Cell[253956, 7241, 69, 1, 30, "Text", CellID->314466782], Cell[CellGroupData[{ -Cell[252190, 7204, 197, 5, 31, "Input"], -Cell[252390, 7211, 4464, 129, 126, "Output"] +Cell[254050, 7246, 197, 5, 30, "Input"], +Cell[254250, 7253, 4570, 131, 123, "Output"] }, Open ]], -Cell[256869, 7343, 232, 4, 29, "Text"], +Cell[258835, 7387, 232, 4, 49, "Text"], Cell[CellGroupData[{ -Cell[257126, 7351, 1661, 45, 119, "Input"], -Cell[258790, 7398, 891, 21, 50, "Output"] +Cell[259092, 7395, 1661, 45, 147, "Input"], +Cell[260756, 7442, 980, 23, 69, "Output"] }, Open ]], -Cell[259696, 7422, 519, 13, 49, "Text"], -Cell[260218, 7437, 1771, 45, 98, "Input"], -Cell[261992, 7484, 105, 3, 29, "Text"], +Cell[261751, 7468, 519, 13, 49, "Text"], +Cell[262273, 7483, 1771, 45, 118, "Input"], +Cell[264047, 7530, 105, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[262122, 7491, 213, 6, 31, "Input"], -Cell[262338, 7499, 7417, 209, 202, "Output"] +Cell[264177, 7537, 213, 6, 30, "Input"], +Cell[264393, 7545, 7506, 211, 278, "Output"] }, Open ]], -Cell[269770, 7711, 93, 2, 29, "Text"], -Cell[269866, 7715, 187, 6, 31, "Input"], -Cell[270056, 7723, 80, 2, 29, "Text"], -Cell[270139, 7727, 216, 8, 31, "Input"], -Cell[270358, 7737, 88, 2, 29, "Text"], +Cell[271914, 7759, 93, 2, 30, "Text"], +Cell[272010, 7763, 187, 6, 30, "Input"], +Cell[272200, 7771, 80, 2, 30, "Text"], +Cell[272283, 7775, 216, 8, 30, "Input"], +Cell[272502, 7785, 88, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[270471, 7743, 163, 5, 31, "Input"], -Cell[270637, 7750, 11989, 385, 152, "Output"] +Cell[272615, 7791, 163, 5, 30, "Input"], +Cell[272781, 7798, 12078, 387, 231, "Output"] }, Open ]], -Cell[282641, 8138, 85, 2, 29, "Text"], +Cell[284874, 8188, 85, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[282751, 8144, 190, 6, 31, "Input"], -Cell[282944, 8152, 4464, 129, 126, "Output"] +Cell[284984, 8194, 190, 6, 30, "Input"], +Cell[285177, 8202, 216154, 5813, 1766, "Output"] }, Open ]], -Cell[287423, 8284, 71, 2, 29, "Text"], +Cell[501346, 14018, 71, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[287519, 8290, 290, 8, 31, "Input"], -Cell[287812, 8300, 14287, 488, 277, "Output"] +Cell[501442, 14024, 290, 8, 30, "Input"], +Cell[501735, 14034, 14374, 490, 365, "Output"] }, Open ]], -Cell[302114, 8791, 297, 8, 29, "Text"], +Cell[516124, 14527, 297, 8, 30, "Text"], Cell[CellGroupData[{ -Cell[302436, 8803, 534, 18, 33, "Input"], -Cell[302973, 8823, 154837, 4560, 3394, "Output"] +Cell[516446, 14539, 534, 18, 30, "Input"], +Cell[516983, 14559, 154926, 4562, 4885, "Output"] }, Open ]], -Cell[457825, 13386, 1289, 34, 82, "Text"], +Cell[671924, 19124, 1289, 34, 102, "Text"], Cell[CellGroupData[{ -Cell[459139, 13424, 869, 26, 52, "Input"], -Cell[460011, 13452, 4579, 142, 141, "Output"] +Cell[673238, 19162, 869, 26, 50, "Input"], +Cell[674110, 19190, 4667, 144, 144, "Output"] }, Open ]], -Cell[464605, 13597, 130, 3, 29, "Text"], +Cell[678792, 19337, 130, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[464760, 13604, 1227, 35, 52, "Input"], -Cell[465990, 13641, 189, 5, 49, "Output"] +Cell[678947, 19344, 1227, 35, 50, "Input"], +Cell[680177, 19381, 278, 7, 50, "Output"] }, Open ]], -Cell[466194, 13649, 154, 3, 29, "Text"], +Cell[680470, 19391, 154, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[466373, 13656, 171, 6, 31, "Input"], -Cell[466547, 13664, 4286, 131, 125, "Output"] +Cell[680649, 19398, 171, 6, 30, "Input"], +Cell[680823, 19406, 4417, 135, 142, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[470882, 13801, 44, 0, 71, "Section"], -Cell[470929, 13803, 253, 6, 31, "Input"], -Cell[471185, 13811, 262, 5, 47, "Text"], +Cell[685289, 19547, 44, 0, 74, "Section"], +Cell[685336, 19549, 253, 6, 30, "Input"], +Cell[685592, 19557, 262, 5, 49, "Text"], Cell[CellGroupData[{ -Cell[471472, 13820, 2135, 63, 112, "Input"], -Cell[473610, 13885, 1997, 37, 230, "Output"], -Cell[475610, 13924, 2364, 43, 232, "Output"] +Cell[685879, 19566, 2135, 63, 107, "Input"], +Cell[688017, 19631, 2090, 39, 225, "Output"], +Cell[690110, 19672, 2450, 45, 228, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[478023, 13973, 49, 0, 71, "Section"], +Cell[692609, 19723, 49, 0, 74, "Section"], Cell[CellGroupData[{ -Cell[478097, 13977, 2204, 59, 112, "Input"], -Cell[480304, 14038, 612, 16, 33, "Output"], -Cell[480919, 14056, 213, 2, 145, "Output"] +Cell[692683, 19727, 2204, 59, 130, "Input"], +Cell[694890, 19788, 701, 18, 55, "Output"], +Cell[695594, 19808, 302, 4, 145, "Output"] }, Open ]], -Cell[481147, 14061, 43, 0, 29, "Text"], +Cell[695911, 19815, 43, 0, 30, "Text"], +Cell[695957, 19817, 92, 1, 30, "Input"], Cell[CellGroupData[{ -Cell[481215, 14065, 884, 26, 52, "Input"], -Cell[482102, 14093, 1283, 40, 50, "Output"], -Cell[483388, 14135, 1948, 57, 50, "Output"] +Cell[696074, 19822, 884, 26, 69, "Input"], +Cell[696961, 19850, 1369, 42, 50, "Output"], +Cell[698333, 19894, 2035, 59, 69, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[485373, 14197, 5876, 159, 205, "Input"], -Cell[491252, 14358, 58538, 1653, 1720, "Output"], -Cell[549793, 16013, 5569, 78, 1057, "Output"] +Cell[700405, 19958, 6158, 163, 243, "Input"], +Cell[706566, 20123, 58765, 1657, 2381, "Output"], +Cell[765334, 21782, 6258, 84, 1494, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[555399, 16096, 215, 6, 31, "Input"], -Cell[555617, 16104, 120, 1, 30, "Output"] +Cell[771629, 21871, 215, 6, 30, "Input"], +Cell[771847, 21879, 214, 3, 30, "Output"] }, Open ]], -Cell[555752, 16108, 61, 2, 29, "Text"], +Cell[772076, 21885, 61, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[555838, 16114, 5367, 145, 203, "Input"], -Cell[561208, 16261, 5875, 158, 164, "Output"], -Cell[567086, 16421, 722, 9, 962, "Output"] +Cell[772162, 21891, 5440, 146, 233, "Input"], +Cell[777605, 22039, 5964, 160, 222, "Output"], +Cell[783572, 22201, 1215, 17, 962, "Output"] }, Open ]], Cell[CellGroupData[{ -Cell[567845, 16435, 210, 6, 31, "Input"], -Cell[568058, 16443, 116, 1, 30, "Output"] +Cell[784824, 22223, 210, 6, 30, "Input"], +Cell[785037, 22231, 189, 3, 30, "Output"] }, Open ]], -Cell[568189, 16447, 63, 2, 29, "Text"], -Cell[568255, 16451, 127, 3, 29, "Text"], +Cell[785241, 22237, 63, 2, 30, "Text"], +Cell[785307, 22241, 127, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[568407, 16458, 1162, 35, 52, "Input"], -Cell[569572, 16495, 18801, 470, 1163, "Output"] +Cell[785459, 22248, 1162, 35, 69, "Input"], +Cell[786624, 22285, 18864, 471, 1343, "Output"] }, Open ]], -Cell[588388, 16968, 99, 2, 29, "Text"], -Cell[588490, 16972, 709, 21, 31, "Input"], -Cell[589202, 16995, 149, 3, 29, "Text"], +Cell[805503, 22759, 99, 2, 30, "Text"], +Cell[805605, 22763, 709, 21, 50, "Input"], +Cell[806317, 22786, 149, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[589376, 17002, 2094, 53, 159, "Input"], -Cell[591473, 17057, 5151, 151, 137, "Output"] +Cell[806491, 22793, 2094, 53, 171, "Input"], +Cell[808588, 22848, 5215, 152, 248, "Output"] }, Open ]], -Cell[596639, 17211, 86, 2, 29, "Text"], +Cell[813818, 23003, 86, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[596750, 17217, 916, 26, 33, "Input"], -Cell[597669, 17245, 674, 23, 30, "Output"] +Cell[813929, 23009, 916, 26, 69, "Input"], +Cell[814848, 23037, 738, 24, 30, "Output"] }, Open ]], -Cell[598358, 17271, 115, 3, 29, "Text"], +Cell[815601, 23064, 115, 3, 30, "Text"], Cell[CellGroupData[{ -Cell[598498, 17278, 721, 21, 52, "Input"], -Cell[599222, 17301, 5290, 162, 124, "Output"] +Cell[815741, 23071, 721, 21, 69, "Input"], +Cell[816465, 23094, 5354, 163, 166, "Output"] }, Open ]], -Cell[604527, 17466, 64, 2, 29, "Text"], +Cell[821834, 23260, 64, 2, 30, "Text"], Cell[CellGroupData[{ -Cell[604616, 17472, 3489, 94, 154, "Input"], -Cell[608108, 17568, 2396, 64, 92, "Output"], -Cell[610507, 17634, 659, 9, 107, "Output"], -Cell[611169, 17645, 415, 5, 107, "Output"], -Cell[611587, 17652, 124, 1, 30, "Output"] +Cell[821923, 23266, 3489, 94, 196, "Input"], +Cell[825415, 23362, 2460, 65, 113, "Output"], +Cell[827878, 23429, 723, 10, 164, "Output"], +Cell[828604, 23441, 479, 6, 126, "Output"], +Cell[829086, 23449, 172, 2, 30, "Output"] }, Open ]] }, Open ]] } -- cgit v1.2.3