summaryrefslogtreecommitdiff
path: root/psr
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2010-07-08 17:21:23 +0000
committerEugeniy Mikhailov <evgmik@gmail.com>2010-07-08 17:21:23 +0000
commit836a8eadfa53cc35a636be9e8c03dc2ff1fa326d (patch)
tree4947cb42962bc8c1f6f28043ea4ec6cee585e7c0 /psr
parent316ad84690ae17d43ab9f324f55de0e784090119 (diff)
downloadmulti_mode_eit-836a8eadfa53cc35a636be9e8c03dc2ff1fa326d.tar.gz
multi_mode_eit-836a8eadfa53cc35a636be9e8c03dc2ff1fa326d.zip
added files to calculate and plot psr combo
Diffstat (limited to 'psr')
-rw-r--r--psr/make_representative_psr_vs_detuning_for_given_B_and_psi_el.m53
-rw-r--r--psr/output_psr_results_vs_detuning.m9
-rw-r--r--psr/output_psr_results_vs_power.m70
-rw-r--r--psr/psr_vs_detuning.m2
-rw-r--r--psr/psr_vs_detuning_combo.m40
-rw-r--r--psr/psr_vs_power.m147
-rw-r--r--psr/rb87_D1_line.m2
7 files changed, 312 insertions, 11 deletions
diff --git a/psr/make_representative_psr_vs_detuning_for_given_B_and_psi_el.m b/psr/make_representative_psr_vs_detuning_for_given_B_and_psi_el.m
new file mode 100644
index 0000000..9627b8a
--- /dev/null
+++ b/psr/make_representative_psr_vs_detuning_for_given_B_and_psi_el.m
@@ -0,0 +1,53 @@
+function ...
+ [ ...
+ psr_rad_tnEp_pos_el, psr_rad_tnEp_neg_el, ...
+ psr_rad_smEp_pos_el, psr_rad_smEp_neg_el, ...
+ psr_rad_lgEp_pos_el, psr_rad_lgEp_neg_el, ...
+ psr_rad_grEp_pos_el, psr_rad_grEp_neg_el ...
+ ] =make_representative_psr_vs_detuning_for_given_B_and_psi_el(detuning_freq, B_field, psi_el, theta, phi)
+ %%%%%%%%%%%%%%%%%%%%%
+ %printf("%f\n", B_field);
+ Ep=sqrt(0.01);
+ [psr_rad_tnEp_pos_el]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) ;
+ [psr_rad_tnEp_neg_el]=psr_vs_detuning(detuning_freq, Ep,-psi_el, B_field, theta, phi) ;
+
+ Ep=sqrt(0.1);
+ [psr_rad_smEp_pos_el]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) ;
+ [psr_rad_smEp_neg_el]=psr_vs_detuning(detuning_freq, Ep,-psi_el, B_field, theta, phi) ;
+
+ Ep=sqrt(1.0);
+ [psr_rad_lgEp_pos_el]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) ;
+ [psr_rad_lgEp_neg_el]=psr_vs_detuning(detuning_freq, Ep,-psi_el, B_field, theta, phi) ;
+
+ Ep=sqrt(10.0);
+ [psr_rad_grEp_pos_el]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) ;
+ [psr_rad_grEp_neg_el]=psr_vs_detuning(detuning_freq, Ep,-psi_el, B_field, theta, phi) ;
+
+
+ figure(6);
+ plot ( ...
+ detuning_freq, psr_rad_tnEp_pos_el, '-;tn,pos el;'
+ , detuning_freq, psr_rad_tnEp_neg_el, '-;tn,neg el;'
+ , detuning_freq, psr_rad_smEp_pos_el, '-;sm,pos el;'
+ , detuning_freq, psr_rad_smEp_neg_el, '-;sm,neg el;'
+ , detuning_freq, psr_rad_lgEp_pos_el, '-;lg,pos el;'
+ , detuning_freq, psr_rad_lgEp_neg_el, '-;lg,neg el;'
+ , detuning_freq, psr_rad_grEp_pos_el, '-;gr,pos el;'
+ , detuning_freq, psr_rad_grEp_neg_el, '-;gr,neg el;'
+ );
+
+ str_title=sprintf("PSR. B field=%.5f Gauss, ellipticity=%.2f rad, theta=%.2f, phi=%.2f", B_field, psi_el, theta, phi);
+ title(str_title);
+ xlabel('detuning, MHz');
+ ylabel('PSR, radians');
+ fname=strcat('results/',str_title, '.pdf');
+ print(fname);
+ fname=strcat('results/',str_title, '.mat');
+ save(fname, ...
+ 'detuning_freq', 'B_field', 'theta', 'phi', 'psi_el', ...
+ 'psr_rad_tnEp_pos_el', 'psr_rad_tnEp_neg_el', ...
+ 'psr_rad_smEp_pos_el', 'psr_rad_smEp_neg_el', ...
+ 'psr_rad_lgEp_pos_el', 'psr_rad_lgEp_neg_el', ...
+ 'psr_rad_grEp_pos_el', 'psr_rad_grEp_neg_el' );
+
+endfunction
diff --git a/psr/output_psr_results_vs_detuning.m b/psr/output_psr_results_vs_detuning.m
index cf71711..93912ae 100644
--- a/psr/output_psr_results_vs_detuning.m
+++ b/psr/output_psr_results_vs_detuning.m
@@ -1,6 +1,4 @@
-1;
-
-
+function psr_rad=output_psr_results_vs_detuning()
load '/tmp/xi_vs_detuning.mat' ;
Er=(1+I*xi_right)*E_field_pos_freq.right;
@@ -48,13 +46,14 @@ hold off;
I_probe=E_field_probe^2;
psr_rad=(Ipos-Ineg)/(2*I_probe);
plot(detuning_freq, psr_rad, '-');
-subt_str=sprintf("Laser Rabi freq normalized to upper state decay %.3f, ellipticity %.1f degree, \n B field ground level splitting %.3f MHz", I_probe, psi_el*180/pi, B_field);
+subt_str=sprintf("Laser Rabi freq normalized to upper state decay %.3f, ellipticity %.1f degree, \n B field ground level splitting %.3f Gauss", I_probe, psi_el*180/pi, B_field);
title(cstrcat("BPD normilized PSR signal at F_g=2 to F_e=1,2.\n ",subt_str) );
xlabel("two photon detuning (MHz)");
ylabel("PSR (radians)");
print("psr_vs_detuning.ps");
-fname= sprintf("psr_vs_detuning_Fg=2toFe=1,2_Ip=%.3f_el_%.1f_B=%.3fMHz.mat", I_probe, psi_el*180/pi,B_field);
+fname= sprintf("psr_vs_detuning_Fg=2toFe=1,2_Ip=%.3f_el_%.1f_B=%.3fG.mat", I_probe, psi_el*180/pi,B_field);
save(fname,'detuning_freq', 'psr_rad');
+return;
diff --git a/psr/output_psr_results_vs_power.m b/psr/output_psr_results_vs_power.m
new file mode 100644
index 0000000..2d28565
--- /dev/null
+++ b/psr/output_psr_results_vs_power.m
@@ -0,0 +1,70 @@
+1;
+
+
+load '/tmp/xi_vs_power.mat' ;
+
+Er=(1+I*xi_right)*E_field_pos_freq.right;
+El=(1+I*xi_left) *E_field_pos_freq.left;
+
+Ex=(Er+El)/sqrt(2);
+Ey=I*(Er-El)/sqrt(2);
+
+%extra rotation to compensate rotation due to ellipticity
+% actually no need for it since x-polarization shifts by positive phase
+% and y-pol by negative phase
+%el_rot=0*psi_el;
+%Ex=cos(el_rot)*Ex-sin(el_rot)*Ey;
+%Ey=sin(el_rot)*Ex+cos(el_rot)*Ey;
+
+Ipos=(abs(Ey).^2)/2;
+Ineg=(abs(Ex).^2)/2;
+
+figure(1);
+hold off;
+plot(Ep.^2, real(xi_left-xi_right), '-');
+title("differential real xi");
+xlabel("two photon detuning");
+
+figure(2);
+hold off;
+plot(Ep.^2, imag(xi_left-xi_right), '-');
+title("differential imag xi");
+xlabel("two photon detuning");
+
+figure(3);
+hold off;
+plot(Ep.^2, imag(xi_left), '-', Ep, imag(xi_right), '-');
+title("imag xi");
+xlabel("two photon detuning");
+
+figure(4);
+hold off;
+plot(Ep.^2, real(xi_left), '-', Ep.^2, real(xi_right), '-');
+title("real xi");
+xlabel("two photon detuning");
+
+figure(5);
+hold off;
+%plot(Ep.^2, (Ipos-Ineg), '-');
+semilogx(Ep.^2, (Ipos-Ineg), '-');
+%semilogx(Ep.^2, (Ipos-Ineg)./(Ep.^2), '-');
+title("BPD signal xi");
+xlabel("two photon detuning");
+
+%figure(1);
+ %hold off;
+ %plot(detuning_freq, imag(xi_linear), '-1;linear;');
+ %hold on;
+ %plot(detuning_freq, imag(xi_left), '-2;left;');
+ %plot(detuning_freq, imag(xi_right), '-3;right;');
+ %title("probe absorption");
+ %hold off;
+%figure(2);
+ %hold off;
+ %plot(detuning_freq, real(xi_linear), '-1;linear;');
+ %hold on;
+ %plot(detuning_freq, real(xi_left), '-2;left;');
+ %plot(detuning_freq, real(xi_right), '-3;right;');
+ %title("probe dispersion");
+ %hold off;
+
diff --git a/psr/psr_vs_detuning.m b/psr/psr_vs_detuning.m
index c293d02..acf7d43 100644
--- a/psr/psr_vs_detuning.m
+++ b/psr/psr_vs_detuning.m
@@ -45,7 +45,7 @@ fprintf (stderr, "calculating atom properties\n");
fflush (stderr);
pfile='atomic_B_field.mat'; % the parent file where B_field is stored. This is the parameter for calculated L0_and_polarization_submatrices
cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices are written
-neef_update=false;
+need_update=false;
[s, err_p, msg] = stat (pfile);
if(err_p)
%file does not exist
diff --git a/psr/psr_vs_detuning_combo.m b/psr/psr_vs_detuning_combo.m
index 2e8921d..1016a82 100644
--- a/psr/psr_vs_detuning_combo.m
+++ b/psr/psr_vs_detuning_combo.m
@@ -13,12 +13,46 @@ B_field=zeeman_splitting/gmg;
%[psr_rad]=psr_vs_detuning(Ep, psi_el, B_field, theta, phi)
% phi is angle between linear polarization and axis x
-phi=pi*2/8;
+phi=pi/4;
% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z')
theta=0;
% psi_el is the ellipticity parameter (phase difference between left and right polarization)
psi_el=-30/180*pi;
-Ep=0.2;
-[psr_rad]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) ;
+
+figure(6);
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
+% zero magnetic field,, 30 degree ellipticity
+zeeman_splitting=+0.000;
+B_field=zeeman_splitting/gmg;
+psi_el=30/180*pi;
+
+[psr_rad_tnEp_pos_el, psr_rad_tnEp_neg_el, psr_rad_smEp_pos_el, psr_rad_smEp_neg_el, psr_rad_lgEp_pos_el, psr_rad_lgEp_neg_el, psr_rad_grEp_pos_el, psr_rad_grEp_neg_el] =make_representative_psr_vs_detuning_for_given_B_and_psi_el(detuning_freq, B_field, psi_el, theta, phi);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
+% 0.1 G magnetic field,, 30 degree ellipticity
+
+zeeman_splitting=+0.070;
+B_field=zeeman_splitting/gmg;
+psi_el=30/180*pi;
+
+[psr_rad_tnEp_pos_el, psr_rad_tnEp_neg_el, psr_rad_smEp_pos_el, psr_rad_smEp_neg_el, psr_rad_lgEp_pos_el, psr_rad_lgEp_neg_el, psr_rad_grEp_pos_el, psr_rad_grEp_neg_el] =make_representative_psr_vs_detuning_for_given_B_and_psi_el(detuning_freq, B_field, psi_el, theta, phi);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
+% 0.0001 G magnetic field,, 30 degree ellipticity
+
+zeeman_splitting=+0.000070;
+B_field=zeeman_splitting/gmg;
+psi_el=30/180*pi;
+
+[psr_rad_tnEp_pos_el, psr_rad_tnEp_neg_el, psr_rad_smEp_pos_el, psr_rad_smEp_neg_el, psr_rad_lgEp_pos_el, psr_rad_lgEp_neg_el, psr_rad_grEp_pos_el, psr_rad_grEp_neg_el] =make_representative_psr_vs_detuning_for_given_B_and_psi_el(detuning_freq, B_field, psi_el, theta, phi);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
+% 1.0 G magnetic field,, 30 degree ellipticity
+
+zeeman_splitting=+0.70;
+B_field=zeeman_splitting/gmg;
+psi_el=30/180*pi;
+
+[psr_rad_tnEp_pos_el, psr_rad_tnEp_neg_el, psr_rad_smEp_pos_el, psr_rad_smEp_neg_el, psr_rad_lgEp_pos_el, psr_rad_lgEp_neg_el, psr_rad_grEp_pos_el, psr_rad_grEp_neg_el] =make_representative_psr_vs_detuning_for_given_B_and_psi_el(detuning_freq, B_field, psi_el, theta, phi);
diff --git a/psr/psr_vs_power.m b/psr/psr_vs_power.m
new file mode 100644
index 0000000..97b9fab
--- /dev/null
+++ b/psr/psr_vs_power.m
@@ -0,0 +1,147 @@
+1;
+clear all;
+t0 = clock (); % we will use this latter to calculate elapsed time
+
+
+% load useful functions;
+useful_functions;
+
+% some physical constants
+useful_constants;
+
+basis_transformation; % load subroutines
+
+% load atom energy levels and decay description
+rb87_D1_line;
+%four_levels_with_polarization;
+%four_levels;
+%three_levels;
+%two_levels;
+
+% load EM field description
+field_description;
+
+%Nfreq=length(modulation_freq);
+
+
+
+%tune probe frequency
+detuning_p=0;
+N_detun_steps=100;
+%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting
+detuning_p_min=-200.0;
+detuning_p_max=-detuning_p_min;
+detuning_p_max=1000;
+detuning_freq=zeros(1,N_detun_steps+1);
+kappa_p =zeros(1,N_detun_steps+1);
+kappa_m =zeros(1,N_detun_steps+1);
+detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;
+
+fprintf (stderr, "calculating atom properties\n");
+fflush (stderr);
+pfile='rb87_D1_line.m'; % the parent file from which L0_and_polarization_submatrices calculated
+cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices writen
+[s, err, msg] = stat (pfile);
+if(err)
+ %file does not exist
+ disp('Big troubles are coming, no file to define Hamiltonian)');
+ msg=cstrcat('File: ', pfile, ' is missing...exiting');
+ disp(msg);
+ return;
+else
+ pfile_mtime=s.mtime;
+endif
+[s, err, msg] = stat (cfile);
+if(err)
+ %file does not exist
+ cfile_mtime=0;
+else
+ cfile_mtime=s.mtime;
+endif;
+if ( cfile_mtime >= pfile_mtime)
+ % matrices already calculated and up to date, all we need to load them
+ load(cfile);
+ else
+ % calculate E_field independent properties of the atom
+ % to be used as sub matrix templates for Liouville operator matrix
+ [L0m, polarizability_m]=L0_and_polarization_submatrices( ...
+ Nlevels, ...
+ H0, g_decay, g_dephasing, dipole_elements ...
+ );
+ save(cfile, 'L0m', 'polarizability_m');
+ endif
+elapsed_time = etime (clock (), t0);
+fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
+fflush (stderr);
+
+global atom_properties;
+atom_properties.L0m=L0m;
+atom_properties.polarizability_m=polarizability_m;
+atom_properties.dipole_elements=dipole_elements;
+
+
+% phi is angle between linear polarization and axis x
+phi=pi*2/8;
+% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z')
+theta=0;
+% psi_el is the ellipticity parameter (phase difference between left and right polarization)
+psi_el=-5/180*pi;
+
+
+
+fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
+fflush (stderr);
+wp=w_pf1-w_sf2 +80; %Fg=2 -> Fe=1 +80 MHz
+Ep=logspace(-2,1,100);
+for cntr=1:length(Ep);
+
+ %light_positive_freq = [wp];
+ E_field_drive = [0 ];
+ E_field_probe = [Ep(cntr) ];
+ E_field_zero = [0 ];
+ E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive;
+
+ % we define light as linearly polarized
+ % where phi is angle between light polarization and axis x
+ % only sign of modulation frequency is important now
+ % we define actual frequency later on
+ [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear);
+ % we add required ellipticity
+ E_field_lab_pos_freq.x*=exp(I*psi_el);
+ E_field_lab_pos_freq.y*=exp(-I*psi_el);
+ E_field_lab_pos_freq.z=E_field_zero;
+
+ E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq);
+
+
+ light_positive_freq=[ wp];
+ % we calculate dc and negative frequiencies as well as amplitudes
+ [modulation_freq, E_field] = ...
+ light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
+ light_positive_freq, E_field_pos_freq);
+ freq_index=freq2index(wp,modulation_freq);
+
+ atom_field_problem.E_field = E_field;
+ atom_field_problem.modulation_freq = modulation_freq;
+ atom_field_problem.freq_index = freq_index;
+
+ problems_cell_array{cntr}=atom_field_problem;
+
+endfor
+
+save '/tmp/problem_definition.mat' problems_cell_array atom_properties Ep ;
+fprintf (stderr, "now really hard calculations begin\n");
+fflush (stderr);
+% once we define all problems the main job is done here
+[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
+%[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
+
+%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning;
+save '/tmp/xi_vs_power.mat' Ep xi_linear xi_left xi_right E_field_pos_freq wp;
+
+%output_psr_results_vs_detuning;
+output_psr_results_vs_power;
+
+elapsed_time = etime (clock (), t0)
+
+% vim: ts=2:sw=2:fdm=indent
diff --git a/psr/rb87_D1_line.m b/psr/rb87_D1_line.m
index ecdd6a3..74a52f0 100644
--- a/psr/rb87_D1_line.m
+++ b/psr/rb87_D1_line.m
@@ -30,8 +30,6 @@ w_pf2 = w_pf1+w_hpf_exited; %Distance from |S,F=1> to |P,F=2>
gmg=.7; % gyro magnetic ration for ground level
gme=.23; % gyro magnetic ration for exited level % CHECKME
-zeeman_splitting=0.0;
-B_field=zeeman_splitting/gmg;
%bottom level |F=1>
levels( 1)=struct( "ang_momentum", 0, "total_momentum", 1, "m", -1, "energy", 0, "gm", -gmg);