summaryrefslogtreecommitdiff
path: root/psr/psr_vs_power.m
diff options
context:
space:
mode:
Diffstat (limited to 'psr/psr_vs_power.m')
-rw-r--r--psr/psr_vs_power.m147
1 files changed, 147 insertions, 0 deletions
diff --git a/psr/psr_vs_power.m b/psr/psr_vs_power.m
new file mode 100644
index 0000000..97b9fab
--- /dev/null
+++ b/psr/psr_vs_power.m
@@ -0,0 +1,147 @@
+1;
+clear all;
+t0 = clock (); % we will use this latter to calculate elapsed time
+
+
+% load useful functions;
+useful_functions;
+
+% some physical constants
+useful_constants;
+
+basis_transformation; % load subroutines
+
+% load atom energy levels and decay description
+rb87_D1_line;
+%four_levels_with_polarization;
+%four_levels;
+%three_levels;
+%two_levels;
+
+% load EM field description
+field_description;
+
+%Nfreq=length(modulation_freq);
+
+
+
+%tune probe frequency
+detuning_p=0;
+N_detun_steps=100;
+%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting
+detuning_p_min=-200.0;
+detuning_p_max=-detuning_p_min;
+detuning_p_max=1000;
+detuning_freq=zeros(1,N_detun_steps+1);
+kappa_p =zeros(1,N_detun_steps+1);
+kappa_m =zeros(1,N_detun_steps+1);
+detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;
+
+fprintf (stderr, "calculating atom properties\n");
+fflush (stderr);
+pfile='rb87_D1_line.m'; % the parent file from which L0_and_polarization_submatrices calculated
+cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices writen
+[s, err, msg] = stat (pfile);
+if(err)
+ %file does not exist
+ disp('Big troubles are coming, no file to define Hamiltonian)');
+ msg=cstrcat('File: ', pfile, ' is missing...exiting');
+ disp(msg);
+ return;
+else
+ pfile_mtime=s.mtime;
+endif
+[s, err, msg] = stat (cfile);
+if(err)
+ %file does not exist
+ cfile_mtime=0;
+else
+ cfile_mtime=s.mtime;
+endif;
+if ( cfile_mtime >= pfile_mtime)
+ % matrices already calculated and up to date, all we need to load them
+ load(cfile);
+ else
+ % calculate E_field independent properties of the atom
+ % to be used as sub matrix templates for Liouville operator matrix
+ [L0m, polarizability_m]=L0_and_polarization_submatrices( ...
+ Nlevels, ...
+ H0, g_decay, g_dephasing, dipole_elements ...
+ );
+ save(cfile, 'L0m', 'polarizability_m');
+ endif
+elapsed_time = etime (clock (), t0);
+fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
+fflush (stderr);
+
+global atom_properties;
+atom_properties.L0m=L0m;
+atom_properties.polarizability_m=polarizability_m;
+atom_properties.dipole_elements=dipole_elements;
+
+
+% phi is angle between linear polarization and axis x
+phi=pi*2/8;
+% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z')
+theta=0;
+% psi_el is the ellipticity parameter (phase difference between left and right polarization)
+psi_el=-5/180*pi;
+
+
+
+fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
+fflush (stderr);
+wp=w_pf1-w_sf2 +80; %Fg=2 -> Fe=1 +80 MHz
+Ep=logspace(-2,1,100);
+for cntr=1:length(Ep);
+
+ %light_positive_freq = [wp];
+ E_field_drive = [0 ];
+ E_field_probe = [Ep(cntr) ];
+ E_field_zero = [0 ];
+ E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive;
+
+ % we define light as linearly polarized
+ % where phi is angle between light polarization and axis x
+ % only sign of modulation frequency is important now
+ % we define actual frequency later on
+ [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear);
+ % we add required ellipticity
+ E_field_lab_pos_freq.x*=exp(I*psi_el);
+ E_field_lab_pos_freq.y*=exp(-I*psi_el);
+ E_field_lab_pos_freq.z=E_field_zero;
+
+ E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq);
+
+
+ light_positive_freq=[ wp];
+ % we calculate dc and negative frequiencies as well as amplitudes
+ [modulation_freq, E_field] = ...
+ light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
+ light_positive_freq, E_field_pos_freq);
+ freq_index=freq2index(wp,modulation_freq);
+
+ atom_field_problem.E_field = E_field;
+ atom_field_problem.modulation_freq = modulation_freq;
+ atom_field_problem.freq_index = freq_index;
+
+ problems_cell_array{cntr}=atom_field_problem;
+
+endfor
+
+save '/tmp/problem_definition.mat' problems_cell_array atom_properties Ep ;
+fprintf (stderr, "now really hard calculations begin\n");
+fflush (stderr);
+% once we define all problems the main job is done here
+[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
+%[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
+
+%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning;
+save '/tmp/xi_vs_power.mat' Ep xi_linear xi_left xi_right E_field_pos_freq wp;
+
+%output_psr_results_vs_detuning;
+output_psr_results_vs_power;
+
+elapsed_time = etime (clock (), t0)
+
+% vim: ts=2:sw=2:fdm=indent