diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-11-16 14:51:00 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2020-09-21 16:29:52 -0400 |
commit | 0c84e6a261f1ca21c8f9371c42b72d8b882f6f4c (patch) | |
tree | 80e115dfbd46ce74ef7b0b65c2ca2deb1b88d822 /faraday/psr_vs_power.m | |
parent | 46ed078564656957a69e52b69922bfa6a52488ad (diff) | |
download | multi_mode_eit-0c84e6a261f1ca21c8f9371c42b72d8b882f6f4c.tar.gz multi_mode_eit-0c84e6a261f1ca21c8f9371c42b72d8b882f6f4c.zip |
removed unused files
Diffstat (limited to 'faraday/psr_vs_power.m')
-rw-r--r-- | faraday/psr_vs_power.m | 147 |
1 files changed, 0 insertions, 147 deletions
diff --git a/faraday/psr_vs_power.m b/faraday/psr_vs_power.m deleted file mode 100644 index 97b9fab..0000000 --- a/faraday/psr_vs_power.m +++ /dev/null @@ -1,147 +0,0 @@ -1; -clear all; -t0 = clock (); % we will use this latter to calculate elapsed time - - -% load useful functions; -useful_functions; - -% some physical constants -useful_constants; - -basis_transformation; % load subroutines - -% load atom energy levels and decay description -rb87_D1_line; -%four_levels_with_polarization; -%four_levels; -%three_levels; -%two_levels; - -% load EM field description -field_description; - -%Nfreq=length(modulation_freq); - - - -%tune probe frequency -detuning_p=0; -N_detun_steps=100; -%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting -detuning_p_min=-200.0; -detuning_p_max=-detuning_p_min; -detuning_p_max=1000; -detuning_freq=zeros(1,N_detun_steps+1); -kappa_p =zeros(1,N_detun_steps+1); -kappa_m =zeros(1,N_detun_steps+1); -detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; - -fprintf (stderr, "calculating atom properties\n"); -fflush (stderr); -pfile='rb87_D1_line.m'; % the parent file from which L0_and_polarization_submatrices calculated -cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices writen -[s, err, msg] = stat (pfile); -if(err) - %file does not exist - disp('Big troubles are coming, no file to define Hamiltonian)'); - msg=cstrcat('File: ', pfile, ' is missing...exiting'); - disp(msg); - return; -else - pfile_mtime=s.mtime; -endif -[s, err, msg] = stat (cfile); -if(err) - %file does not exist - cfile_mtime=0; -else - cfile_mtime=s.mtime; -endif; -if ( cfile_mtime >= pfile_mtime) - % matrices already calculated and up to date, all we need to load them - load(cfile); - else - % calculate E_field independent properties of the atom - % to be used as sub matrix templates for Liouville operator matrix - [L0m, polarizability_m]=L0_and_polarization_submatrices( ... - Nlevels, ... - H0, g_decay, g_dephasing, dipole_elements ... - ); - save(cfile, 'L0m', 'polarizability_m'); - endif -elapsed_time = etime (clock (), t0); -fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); -fflush (stderr); - -global atom_properties; -atom_properties.L0m=L0m; -atom_properties.polarizability_m=polarizability_m; -atom_properties.dipole_elements=dipole_elements; - - -% phi is angle between linear polarization and axis x -phi=pi*2/8; -% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') -theta=0; -% psi_el is the ellipticity parameter (phase difference between left and right polarization) -psi_el=-5/180*pi; - - - -fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); -fflush (stderr); -wp=w_pf1-w_sf2 +80; %Fg=2 -> Fe=1 +80 MHz -Ep=logspace(-2,1,100); -for cntr=1:length(Ep); - - %light_positive_freq = [wp]; - E_field_drive = [0 ]; - E_field_probe = [Ep(cntr) ]; - E_field_zero = [0 ]; - E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; - - % we define light as linearly polarized - % where phi is angle between light polarization and axis x - % only sign of modulation frequency is important now - % we define actual frequency later on - [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); - % we add required ellipticity - E_field_lab_pos_freq.x*=exp(I*psi_el); - E_field_lab_pos_freq.y*=exp(-I*psi_el); - E_field_lab_pos_freq.z=E_field_zero; - - E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); - - - light_positive_freq=[ wp]; - % we calculate dc and negative frequiencies as well as amplitudes - [modulation_freq, E_field] = ... - light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... - light_positive_freq, E_field_pos_freq); - freq_index=freq2index(wp,modulation_freq); - - atom_field_problem.E_field = E_field; - atom_field_problem.modulation_freq = modulation_freq; - atom_field_problem.freq_index = freq_index; - - problems_cell_array{cntr}=atom_field_problem; - -endfor - -save '/tmp/problem_definition.mat' problems_cell_array atom_properties Ep ; -fprintf (stderr, "now really hard calculations begin\n"); -fflush (stderr); -% once we define all problems the main job is done here -[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); -%[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); - -%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning; -save '/tmp/xi_vs_power.mat' Ep xi_linear xi_left xi_right E_field_pos_freq wp; - -%output_psr_results_vs_detuning; -output_psr_results_vs_power; - -elapsed_time = etime (clock (), t0) - -% vim: ts=2:sw=2:fdm=indent |