summaryrefslogtreecommitdiff
path: root/faraday/psr_vs_power.m
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2011-11-16 14:51:00 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2020-09-21 16:29:52 -0400
commit0c84e6a261f1ca21c8f9371c42b72d8b882f6f4c (patch)
tree80e115dfbd46ce74ef7b0b65c2ca2deb1b88d822 /faraday/psr_vs_power.m
parent46ed078564656957a69e52b69922bfa6a52488ad (diff)
downloadmulti_mode_eit-0c84e6a261f1ca21c8f9371c42b72d8b882f6f4c.tar.gz
multi_mode_eit-0c84e6a261f1ca21c8f9371c42b72d8b882f6f4c.zip
removed unused files
Diffstat (limited to 'faraday/psr_vs_power.m')
-rw-r--r--faraday/psr_vs_power.m147
1 files changed, 0 insertions, 147 deletions
diff --git a/faraday/psr_vs_power.m b/faraday/psr_vs_power.m
deleted file mode 100644
index 97b9fab..0000000
--- a/faraday/psr_vs_power.m
+++ /dev/null
@@ -1,147 +0,0 @@
-1;
-clear all;
-t0 = clock (); % we will use this latter to calculate elapsed time
-
-
-% load useful functions;
-useful_functions;
-
-% some physical constants
-useful_constants;
-
-basis_transformation; % load subroutines
-
-% load atom energy levels and decay description
-rb87_D1_line;
-%four_levels_with_polarization;
-%four_levels;
-%three_levels;
-%two_levels;
-
-% load EM field description
-field_description;
-
-%Nfreq=length(modulation_freq);
-
-
-
-%tune probe frequency
-detuning_p=0;
-N_detun_steps=100;
-%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting
-detuning_p_min=-200.0;
-detuning_p_max=-detuning_p_min;
-detuning_p_max=1000;
-detuning_freq=zeros(1,N_detun_steps+1);
-kappa_p =zeros(1,N_detun_steps+1);
-kappa_m =zeros(1,N_detun_steps+1);
-detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;
-
-fprintf (stderr, "calculating atom properties\n");
-fflush (stderr);
-pfile='rb87_D1_line.m'; % the parent file from which L0_and_polarization_submatrices calculated
-cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices writen
-[s, err, msg] = stat (pfile);
-if(err)
- %file does not exist
- disp('Big troubles are coming, no file to define Hamiltonian)');
- msg=cstrcat('File: ', pfile, ' is missing...exiting');
- disp(msg);
- return;
-else
- pfile_mtime=s.mtime;
-endif
-[s, err, msg] = stat (cfile);
-if(err)
- %file does not exist
- cfile_mtime=0;
-else
- cfile_mtime=s.mtime;
-endif;
-if ( cfile_mtime >= pfile_mtime)
- % matrices already calculated and up to date, all we need to load them
- load(cfile);
- else
- % calculate E_field independent properties of the atom
- % to be used as sub matrix templates for Liouville operator matrix
- [L0m, polarizability_m]=L0_and_polarization_submatrices( ...
- Nlevels, ...
- H0, g_decay, g_dephasing, dipole_elements ...
- );
- save(cfile, 'L0m', 'polarizability_m');
- endif
-elapsed_time = etime (clock (), t0);
-fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
-fflush (stderr);
-
-global atom_properties;
-atom_properties.L0m=L0m;
-atom_properties.polarizability_m=polarizability_m;
-atom_properties.dipole_elements=dipole_elements;
-
-
-% phi is angle between linear polarization and axis x
-phi=pi*2/8;
-% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z')
-theta=0;
-% psi_el is the ellipticity parameter (phase difference between left and right polarization)
-psi_el=-5/180*pi;
-
-
-
-fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
-fflush (stderr);
-wp=w_pf1-w_sf2 +80; %Fg=2 -> Fe=1 +80 MHz
-Ep=logspace(-2,1,100);
-for cntr=1:length(Ep);
-
- %light_positive_freq = [wp];
- E_field_drive = [0 ];
- E_field_probe = [Ep(cntr) ];
- E_field_zero = [0 ];
- E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive;
-
- % we define light as linearly polarized
- % where phi is angle between light polarization and axis x
- % only sign of modulation frequency is important now
- % we define actual frequency later on
- [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear);
- % we add required ellipticity
- E_field_lab_pos_freq.x*=exp(I*psi_el);
- E_field_lab_pos_freq.y*=exp(-I*psi_el);
- E_field_lab_pos_freq.z=E_field_zero;
-
- E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq);
-
-
- light_positive_freq=[ wp];
- % we calculate dc and negative frequiencies as well as amplitudes
- [modulation_freq, E_field] = ...
- light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
- light_positive_freq, E_field_pos_freq);
- freq_index=freq2index(wp,modulation_freq);
-
- atom_field_problem.E_field = E_field;
- atom_field_problem.modulation_freq = modulation_freq;
- atom_field_problem.freq_index = freq_index;
-
- problems_cell_array{cntr}=atom_field_problem;
-
-endfor
-
-save '/tmp/problem_definition.mat' problems_cell_array atom_properties Ep ;
-fprintf (stderr, "now really hard calculations begin\n");
-fflush (stderr);
-% once we define all problems the main job is done here
-[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
-%[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
-
-%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning;
-save '/tmp/xi_vs_power.mat' Ep xi_linear xi_left xi_right E_field_pos_freq wp;
-
-%output_psr_results_vs_detuning;
-output_psr_results_vs_power;
-
-elapsed_time = etime (clock (), t0)
-
-% vim: ts=2:sw=2:fdm=indent