diff options
Diffstat (limited to 'Optimization/l1eq_pd.m')
-rw-r--r-- | Optimization/l1eq_pd.m | 209 |
1 files changed, 209 insertions, 0 deletions
diff --git a/Optimization/l1eq_pd.m b/Optimization/l1eq_pd.m new file mode 100644 index 0000000..80c058e --- /dev/null +++ b/Optimization/l1eq_pd.m @@ -0,0 +1,209 @@ +% l1eq_pd.m +% +% Solve +% min_x ||x||_1 s.t. Ax = b +% +% Recast as linear program +% min_{x,u} sum(u) s.t. -u <= x <= u, Ax=b +% and use primal-dual interior point method +% +% Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) +% +% x0 - Nx1 vector, initial point. +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if +% the duality gap is less than pdtol). +% Default = 1e-3. +% +% pdmaxiter - Maximum number of primal-dual iterations. +% Default = 50. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% Default = 1e-8. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% Default = 200. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) + +largescale = isa(A,'function_handle'); + +if (nargin < 5), pdtol = 1e-3; end +if (nargin < 6), pdmaxiter = 50; end +if (nargin < 7), cgtol = 1e-8; end +if (nargin < 8), cgmaxiter = 200; end + +N = length(x0); + +alpha = 0.01; +beta = 0.5; +mu = 10; + +gradf0 = [zeros(N,1); ones(N,1)]; + +% starting point --- make sure that it is feasible +if (largescale) + if (norm(A(x0)-b)/norm(b) > cgtol) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + AAt = @(z) A(At(z)); + [w, cgres, cgiter] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = At(w); + end +else + if (norm(A*x0-b)/norm(b) > cgtol) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + opts.POSDEF = true; opts.SYM = true; + [w, hcond] = linsolve(A*A', b, opts); + if (hcond < 1e-14) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = A'*w; + end +end +x = x0; +u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); + +% set up for the first iteration +fu1 = x - u; +fu2 = -x - u; +lamu1 = -1./fu1; +lamu2 = -1./fu2; +if (largescale) + v = -A(lamu1-lamu2); + Atv = At(v); + rpri = A(x) - b; +else + v = -A*(lamu1-lamu2); + Atv = A'*v; + rpri = A*x - b; +end + +sdg = -(fu1'*lamu1 + fu2'*lamu2); +tau = mu*2*N/sdg; + +rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); +rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; +resnorm = norm([rdual; rcent; rpri]); + +pditer = 0; +done = (sdg < pdtol) | (pditer >= pdmaxiter); +while (~done) + + pditer = pditer + 1; + + w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv; + w2 = -1 - 1/tau*(1./fu1 + 1./fu2); + w3 = -rpri; + + sig1 = -lamu1./fu1 - lamu2./fu2; + sig2 = lamu1./fu1 - lamu2./fu2; + sigx = sig1 - sig2.^2./sig1; + + if (largescale) + w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1)); + h11pfun = @(z) -A(1./sigx.*At(z)); + [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; + return + end + dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx; + Adx = A(dx); + Atdv = At(dv); + else + w1p = -(w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1))); + H11p = A*(sparse(diag(1./sigx))*A'); + opts.POSDEF = true; opts.SYM = true; + [dv,hcond] = linsolve(H11p, w1p, opts); + if (hcond < 1e-14) + disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; + return + end + dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx; + Adx = A*dx; + Atdv = A'*dv; + end + + du = (w2 - sig2.*dx)./sig1; + + dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1; + dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2; + + % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 + indp = find(dlamu1 < 0); indn = find(dlamu2 < 0); + s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]); + indp = find((dx-du) > 0); indn = find((-dx-du) > 0); + s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]); + + % backtracking line search + suffdec = 0; + backiter = 0; + while (~suffdec) + xp = x + s*dx; up = u + s*du; + vp = v + s*dv; Atvp = Atv + s*Atdv; + lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; + fu1p = xp - up; fu2p = -xp - up; + rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; + rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); + rpp = rpri + s*Adx; + suffdec = (norm([rdp; rcp; rpp]) <= (1-alpha*s)*resnorm); + s = beta*s; + backiter = backiter + 1; + if (backiter > 32) + disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)') + xp = x; + return + end + end + + + % next iteration + x = xp; u = up; + v = vp; Atv = Atvp; + lamu1 = lamu1p; lamu2 = lamu2p; + fu1 = fu1p; fu2 = fu2p; + + % surrogate duality gap + sdg = -(fu1'*lamu1 + fu2'*lamu2); + tau = mu*2*N/sdg; + rpri = rpp; + rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); + rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; + resnorm = norm([rdual; rcent; rpri]); + + done = (sdg < pdtol) | (pditer >= pdmaxiter); + + disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',... + pditer, tau, sum(u), sdg, norm(rdual), norm(rpri))); + if (largescale) + disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); + else + disp(sprintf(' H11p condition number = %8.3e', hcond)); + end + +end |