aboutsummaryrefslogtreecommitdiff
path: root/Optimization/l1eq_pd.m
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
commit3983eb46023c1edd00617729ba929057fda8d0bd (patch)
tree816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/l1eq_pd.m
downloadl1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz
l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/l1eq_pd.m')
-rw-r--r--Optimization/l1eq_pd.m209
1 files changed, 209 insertions, 0 deletions
diff --git a/Optimization/l1eq_pd.m b/Optimization/l1eq_pd.m
new file mode 100644
index 0000000..80c058e
--- /dev/null
+++ b/Optimization/l1eq_pd.m
@@ -0,0 +1,209 @@
+% l1eq_pd.m
+%
+% Solve
+% min_x ||x||_1 s.t. Ax = b
+%
+% Recast as linear program
+% min_{x,u} sum(u) s.t. -u <= x <= u, Ax=b
+% and use primal-dual interior point method
+%
+% Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter)
+%
+% x0 - Nx1 vector, initial point.
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if
+% the duality gap is less than pdtol).
+% Default = 1e-3.
+%
+% pdmaxiter - Maximum number of primal-dual iterations.
+% Default = 50.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+% Default = 1e-8.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+% Default = 200.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter)
+
+largescale = isa(A,'function_handle');
+
+if (nargin < 5), pdtol = 1e-3; end
+if (nargin < 6), pdmaxiter = 50; end
+if (nargin < 7), cgtol = 1e-8; end
+if (nargin < 8), cgmaxiter = 200; end
+
+N = length(x0);
+
+alpha = 0.01;
+beta = 0.5;
+mu = 10;
+
+gradf0 = [zeros(N,1); ones(N,1)];
+
+% starting point --- make sure that it is feasible
+if (largescale)
+ if (norm(A(x0)-b)/norm(b) > cgtol)
+ disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
+ AAt = @(z) A(At(z));
+ [w, cgres, cgiter] = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('A*At is ill-conditioned: cannot find starting point');
+ xp = x0;
+ return;
+ end
+ x0 = At(w);
+ end
+else
+ if (norm(A*x0-b)/norm(b) > cgtol)
+ disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
+ opts.POSDEF = true; opts.SYM = true;
+ [w, hcond] = linsolve(A*A', b, opts);
+ if (hcond < 1e-14)
+ disp('A*At is ill-conditioned: cannot find starting point');
+ xp = x0;
+ return;
+ end
+ x0 = A'*w;
+ end
+end
+x = x0;
+u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
+
+% set up for the first iteration
+fu1 = x - u;
+fu2 = -x - u;
+lamu1 = -1./fu1;
+lamu2 = -1./fu2;
+if (largescale)
+ v = -A(lamu1-lamu2);
+ Atv = At(v);
+ rpri = A(x) - b;
+else
+ v = -A*(lamu1-lamu2);
+ Atv = A'*v;
+ rpri = A*x - b;
+end
+
+sdg = -(fu1'*lamu1 + fu2'*lamu2);
+tau = mu*2*N/sdg;
+
+rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);
+rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)];
+resnorm = norm([rdual; rcent; rpri]);
+
+pditer = 0;
+done = (sdg < pdtol) | (pditer >= pdmaxiter);
+while (~done)
+
+ pditer = pditer + 1;
+
+ w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv;
+ w2 = -1 - 1/tau*(1./fu1 + 1./fu2);
+ w3 = -rpri;
+
+ sig1 = -lamu1./fu1 - lamu2./fu2;
+ sig2 = lamu1./fu1 - lamu2./fu2;
+ sigx = sig1 - sig2.^2./sig1;
+
+ if (largescale)
+ w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1));
+ h11pfun = @(z) -A(1./sigx.*At(z));
+ [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx;
+ Adx = A(dx);
+ Atdv = At(dv);
+ else
+ w1p = -(w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1)));
+ H11p = A*(sparse(diag(1./sigx))*A');
+ opts.POSDEF = true; opts.SYM = true;
+ [dv,hcond] = linsolve(H11p, w1p, opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx;
+ Adx = A*dx;
+ Atdv = A'*dv;
+ end
+
+ du = (w2 - sig2.*dx)./sig1;
+
+ dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1;
+ dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2;
+
+ % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0
+ indp = find(dlamu1 < 0); indn = find(dlamu2 < 0);
+ s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]);
+ indp = find((dx-du) > 0); indn = find((-dx-du) > 0);
+ s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]);
+
+ % backtracking line search
+ suffdec = 0;
+ backiter = 0;
+ while (~suffdec)
+ xp = x + s*dx; up = u + s*du;
+ vp = v + s*dv; Atvp = Atv + s*Atdv;
+ lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2;
+ fu1p = xp - up; fu2p = -xp - up;
+ rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)];
+ rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau);
+ rpp = rpri + s*Adx;
+ suffdec = (norm([rdp; rcp; rpp]) <= (1-alpha*s)*resnorm);
+ s = beta*s;
+ backiter = backiter + 1;
+ if (backiter > 32)
+ disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)')
+ xp = x;
+ return
+ end
+ end
+
+
+ % next iteration
+ x = xp; u = up;
+ v = vp; Atv = Atvp;
+ lamu1 = lamu1p; lamu2 = lamu2p;
+ fu1 = fu1p; fu2 = fu2p;
+
+ % surrogate duality gap
+ sdg = -(fu1'*lamu1 + fu2'*lamu2);
+ tau = mu*2*N/sdg;
+ rpri = rpp;
+ rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);
+ rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)];
+ resnorm = norm([rdual; rcent; rpri]);
+
+ done = (sdg < pdtol) | (pditer >= pdmaxiter);
+
+ disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',...
+ pditer, tau, sum(u), sdg, norm(rdual), norm(rpri)));
+ if (largescale)
+ disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end