1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
|
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 102785, 2526]
NotebookOptionsPosition[ 99915, 2423]
NotebookOutlinePosition[ 100292, 2440]
CellTagsIndexPosition[ 100249, 2437]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["General setup", "Section"],
Cell["This loads the package.", "MathCaption",
CellID->836781195],
Cell[BoxData[
RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}},
CellID->2058623809],
Cell[TextData[{
"We define an atomic system consisting of two even-parity lower states and \
two odd-parity upper states. We apply a light field with components at \
frequencies ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), and ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition)"
}], "Text",
CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, {
3.522540911043191*^9, 3.522540911147507*^9}},
CellID->525777075],
Cell["Define the atomic system.", "MathCaption",
CellID->429217524],
Cell[BoxData[
RowBox[{
RowBox[{"system", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AtomicState", "[",
RowBox[{"1", ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"2", ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"3", ",",
RowBox[{"Energy", "\[Rule]", "0"}], ",",
RowBox[{"NaturalWidth", "\[Rule]",
SubscriptBox["\[CapitalGamma]", "3"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"4", ",",
RowBox[{"NaturalWidth", "\[Rule]",
SubscriptBox["\[CapitalGamma]", "4"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
"}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9}},
CellID->433132487],
Cell[TextData[{
"Define the optical field with three frequencies, ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
", ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
", ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
", and ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
"."
}], "MathCaption",
CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, {
3.522541679413973*^9, 3.522541681294852*^9}},
CellID->133602844],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"field", "=",
RowBox[{
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]1", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]1", "/",
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
"\[Phi]1"}], "}"}]}], "]"}], "+",
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]2", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]2", "/",
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
"\[Phi]2"}], "}"}]}], "]"}], "+",
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]3", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]3", "/",
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
"\[Phi]3"}], "}"}]}], "]"}], "+", "\[IndentingNewLine]",
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]4", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]4", "/",
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
"\[Phi]4"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.522534194542496*^9, 3.522534219533982*^9}, {
3.522540920436486*^9, 3.522540924714358*^9}},
CellID->534530029],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]1", "-",
RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ",
"\[CapitalOmega]1"}],
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]4", "-",
RowBox[{"t", " ", "\[Omega]4"}]}], ")"}]}]], " ",
"\[CapitalOmega]4"}],
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]2", "-",
RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ",
"\[CapitalOmega]2"}],
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]3", "-",
RowBox[{"t", " ", "\[Omega]3"}]}], ")"}]}]], " ",
"\[CapitalOmega]3"}],
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
",", "0"}], "}"}]], "Output",
CellChangeTimes->{3.522533257349164*^9, 3.52253422045873*^9,
3.522536315439293*^9, 3.522540739248025*^9, 3.522540970145529*^9,
3.522541564921328*^9, 3.522542172549766*^9, 3.522542936599973*^9,
3.522544786198204*^9, 3.522544854264734*^9, 3.52254522556669*^9,
3.522545943915771*^9}]
}, Open ]],
Cell["\<\
The Hamiltonian for the system subject to the optical field. Each field is \
assumed to interact with only one transition\[LongDash]the other terms are \
set to zero.\
\>", "MathCaption",
CellID->462076121],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"H", "=",
RowBox[{
RowBox[{"Expand", "@",
RowBox[{"Hamiltonian", "[",
RowBox[{"system", ",",
RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "_", "]"}], " ",
RowBox[{"ReducedME", "[",
RowBox[{"_", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
"0"}]}]}], "]"}]], "Input",
CellID->494599775],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"Energy", "[", "1", "]"}], "0",
RowBox[{
RowBox[{"-", "\[CapitalOmega]1"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]1", "-",
RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]4"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]4", "-",
RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}]},
{"0",
RowBox[{"Energy", "[", "2", "]"}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]2"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]2", "-",
RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]3"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]3", "-",
RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]},
{
RowBox[{
RowBox[{"-", "\[CapitalOmega]1"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]1", "-",
RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]2"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]2", "-",
RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"},
{
RowBox[{
RowBox[{"-", "\[CapitalOmega]4"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]4", "-",
RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]3"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]3", "-",
RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}], "0",
RowBox[{"Energy", "[", "4", "]"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.522533260351258*^9, 3.522534225599567*^9,
3.522536320272253*^9, 3.522540741905562*^9, 3.522540981472922*^9,
3.522541568259588*^9, 3.522542173099244*^9, 3.522542936745729*^9,
3.522544786457194*^9, 3.522544854514756*^9, 3.522545225737479*^9,
3.522545944334553*^9}]
}, Open ]],
Cell["The level diagram for the system.", "MathCaption",
CellID->358620443],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LevelDiagram", "[",
RowBox[{"system", ",",
RowBox[{"H", "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Energy", "[", "1", "]"}], "\[Rule]",
RowBox[{"-", "1.5"}]}], ",",
RowBox[{
RowBox[{"Energy", "[", "2", "]"}], "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
"]"}]], "Input",
CellID->167259034],
Cell[BoxData[
GraphicsBox[{{{{},
LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{},
LineBox[{{-0.9, -1.}, {-0.09999999999999998, -1.}}]}, {{},
LineBox[{{0.09999999999999998, 0.}, {0.9, 0.}}]}, {{},
LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}},
{Arrowheads[{-0.07659574468085106, 0.07659574468085106}],
ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}],
ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}],
ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.}}],
ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.5}}]},
{PointSize[0.0225]}},
ImagePadding->{{2., 2}, {2., 2.}},
ImageSize->94.]], "Output",
CellChangeTimes->{3.522533274929177*^9, 3.522534231598043*^9,
3.522536287987677*^9, 3.522536326037291*^9, 3.522540747140555*^9,
3.522540990177467*^9, 3.522541571244472*^9, 3.522542173445689*^9,
3.522542937562187*^9, 3.522544786610477*^9, 3.522544854751983*^9,
3.522545225868822*^9, 3.522545945164071*^9}]
}, Open ]],
Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
"MathCaption",
CellID->577766068],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
RowBox[{
RowBox[{"RotatingWaveApproximation", "[",
RowBox[{"system", ",",
RowBox[{"H", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Omega]3", "\[Rule]",
RowBox[{"\[Omega]2", "+", "\[Omega]43"}]}], ",",
RowBox[{"\[Omega]4", "\[Rule]",
RowBox[{"\[Omega]1", "+", "\[Omega]41"}]}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]43"}], "}"}],
",", "\[IndentingNewLine]",
RowBox[{"TransformMatrix", "\[Rule]",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "\[Omega]1"}], ",",
RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]43"}],
"}"}], "]"}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"\[Omega]1", "\[Rule]",
RowBox[{
RowBox[{"-",
RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",",
RowBox[{"\[Omega]2", "\[Rule]",
RowBox[{
RowBox[{"-",
RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",",
RowBox[{"\[Omega]43", "\[Rule]",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-",
"\[Delta]2"}]}], ",",
RowBox[{"\[Omega]41", "\[Rule]",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-",
"\[Delta]1"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}], " ", "//",
"Simplify"}], " ", "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.522537910365833*^9, 3.522537961926054*^9},
3.522538015680879*^9, {3.522538077788326*^9, 3.522538108632129*^9}, {
3.522538220981776*^9, 3.522538294286786*^9}, {3.522538364562097*^9,
3.522538365489798*^9}, 3.522538408544395*^9, {3.522538642590504*^9,
3.522538692268066*^9}, {3.522538753179414*^9, 3.522538789067889*^9},
3.522538841634358*^9, {3.522539728181287*^9, 3.52253981610592*^9}, {
3.522539877916903*^9, 3.522539880715579*^9}, {3.522540013440722*^9,
3.52254005705363*^9}, {3.522540998041653*^9, 3.522541007397957*^9}, {
3.522541371243734*^9, 3.522541473321752*^9}, {3.522541586733216*^9,
3.52254160084184*^9}, {3.522542443165734*^9, 3.522542553763046*^9}}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Delta]1", "0",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1"}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"t", " ",
RowBox[{"(",
RowBox[{
"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-",
"\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ",
"\[CapitalOmega]4"}]},
{"0", "\[Delta]2",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2"}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3"}]},
{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}],
"0", "0"},
{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"t", " ",
RowBox[{"(",
RowBox[{
"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-",
"\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ",
"\[CapitalOmega]4"}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}],
"0",
RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.522541474095441*^9, 3.522541485568013*^9}, {
3.522541574936735*^9, 3.522541601520124*^9}, 3.522542174052798*^9, {
3.522542462309133*^9, 3.522542468302471*^9}, {3.522542523892669*^9,
3.522542555317527*^9}, 3.522542937866057*^9, 3.522544786796598*^9,
3.522544855009029*^9, 3.522545226303203*^9, 3.522545945473287*^9}]
}, Open ]],
Cell[TextData[{
StyleBox["Assume that it is degenerate four-wave mixing ",
FontWeight->"Bold",
FontColor->RGBColor[1, 0, 0]],
" ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
"-",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
" = ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
"-",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
"."
}], "Text",
CellChangeTimes->{{3.522541626868227*^9, 3.522541723219086*^9}, {
3.522541835758232*^9, 3.52254185271491*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Hrwa", "=",
RowBox[{"Hrwa", "/.", " ",
RowBox[{"\[Delta]4", "\[Rule]",
RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}]}]], "Input",
CellChangeTimes->{{3.522541725461055*^9, 3.522541787947193*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Delta]1", ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "\[Delta]2", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}],
",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}],
",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4"}],
",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}],
",", "0", ",",
RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.522541788900106*^9, 3.522542174067565*^9,
3.52254256103613*^9, 3.522542937980884*^9, 3.522544786810239*^9,
3.522544855387083*^9, 3.522545226372991*^9, 3.522545945925881*^9}]
}, Open ]],
Cell[TextData[{
Cell[BoxData[
ButtonBox["IntrinsicRelaxation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRelaxation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
" supply the relaxation matrices."
}], "MathCaption",
CellID->610306692],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"relax", "=",
RowBox[{
RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
RowBox[{"TransitRelaxation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
CellID->645617687],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Gamma]t", "0", "0", "0"},
{"0", "\[Gamma]t", "0", "0"},
{"0", "0",
RowBox[{"\[Gamma]t", "+",
SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
{"0", "0", "0",
RowBox[{"\[Gamma]t", "+",
SubscriptBox["\[CapitalGamma]", "4"]}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.52253328148618*^9, 3.522541927263808*^9,
3.522542174082849*^9, 3.522542571871882*^9, 3.522542938071843*^9,
3.522544786827352*^9, 3.522544855406043*^9, 3.522545226441606*^9,
3.522545945953746*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.522542008327447*^9, 3.522542028419855*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Version using complex DM variables", "Section"],
Cell["Remove explict time dependence from the density matrix.", "MathCaption",
CellID->690131918],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetOptions", "[",
RowBox[{"DensityMatrix", ",",
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input",
CellID->718931880],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
RowBox[{"Label", "\[Rule]", "None"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
CellChangeTimes->{3.522542122980978*^9, 3.522542174200228*^9,
3.52254257611812*^9, 3.522542938179186*^9, 3.522544788879686*^9,
3.522544855426596*^9, 3.522545229935206*^9, 3.522545945983281*^9},
ImageSize->{432, 33},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}]
}, Open ]],
Cell[TextData[{
Cell[BoxData[
ButtonBox["OpticalRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
" supply the repopulation matrices."
}], "MathCaption",
CellID->854192725],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"repop", "=",
RowBox[{
RowBox[{
RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
RowBox[{"TransitRepopulation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
RowBox[{
RowBox[{"BranchingRatio", "[",
RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
SubscriptBox["R",
RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
CellID->465762594],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"},
{"0",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}], "0", "0"},
{"0", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{
3.522542126889324*^9, 3.522542174305952*^9, 3.522542579319489*^9,
3.522542938528408*^9, 3.522544791355964*^9, 3.522544855628949*^9, {
3.522545232720883*^9, 3.522545241737016*^9}, 3.522545946211666*^9}]
}, Open ]],
Cell["Here are the evolution equations.", "MathCaption",
CellID->314466782],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TableForm", "[",
RowBox[{
RowBox[{"eqs", "=",
RowBox[{
RowBox[{"LiouvilleEquation", "[",
RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//",
"Expand"}]}], ",",
RowBox[{"TableHeadings", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
"]"}]], "Input",
CellID->298399236],
Cell[BoxData[
TagBox[
TagBox[GridBox[{
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
"\[CapitalOmega]4", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
"\[CapitalOmega]3", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}], "-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxDividers->{
"Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {},
"Rows" -> {{False}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
OutputFormsDump`HeadedColumn],
Function[BoxForm`e$,
TableForm[BoxForm`e$, TableHeadings -> {{
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 1],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 2],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 3],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 4],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 1],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 2],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 3],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 4],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 1],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 2],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 3],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 4],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 1],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 2],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 3],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 4]},
None}]]]], "Output",
CellChangeTimes->{{3.522542134400776*^9, 3.522542138220477*^9},
3.522542174324492*^9, 3.522542207187112*^9, 3.522542582215765*^9,
3.522542938655801*^9, 3.522544793068121*^9, 3.522544855825677*^9,
3.522545244285186*^9, 3.522545946433595*^9}]
}, Open ]],
Cell["Make plots from paper.", "Text"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.522545604432086*^9, 3.52254560497677*^9},
3.522545837580253*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"params", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]3", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]4", "\[Rule]", "0"}], " ", ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "3"}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0.5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "0.5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "15."}]}], ",",
RowBox[{"\[CapitalOmega]3", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "10."}]}], ",",
RowBox[{"\[CapitalOmega]4", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "0.001"}]}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]3", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9},
3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9,
3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9,
3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9},
3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, {
3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9,
3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, {
3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, {
3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, {
3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9,
3.5225448127211*^9}, 3.522545891693146*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.", "params"}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.", "params"}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",",
RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "Full"}], "}"}]}]}],
"]"}]], "Input",
CellChangeTimes->{{3.522542076105163*^9, 3.522542106948172*^9}, {
3.522542247272649*^9, 3.52254227331632*^9}, {3.522542379859035*^9,
3.522542404138859*^9}, {3.52254260442503*^9, 3.522542738601174*^9}, {
3.522544168650641*^9, 3.522544235160111*^9}, {3.522544324681123*^9,
3.522544357750749*^9}, {3.522544495634713*^9, 3.522544514917687*^9}, {
3.522544546544331*^9, 3.522544579418693*^9}, {3.52254589412908*^9,
3.522545902384872*^9}, {3.522545984364466*^9, 3.52254603852176*^9}, {
3.522546191788578*^9, 3.522546295569195*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwtlPs7E2oAgDGFjuRSWZc5dsYsc9nF5jL2fcPmMk6TkEWJmuSkTrpQdEIk
SkkiTiUKlSOVU55k36c5apVVCockSkrkUrlU5HSepx/e5/0L3pccvmXFBg01
NbXQ7/xv3rPtAzMzvjjgEWnYUGgGuir1f4dRvjikvaFA1WIGkpIrxvc1++Bv
b5jkG1vMwUHj6PvnM8V492ZSW14PFZg00Epipd44qDi0MGErDUybbVzAt/XC
e2WEJZFcS/Crj5g9dsgT+7FOkjg+dHA61sav4p0HDu9SGDknWIHr1OwRe38P
XEq4Zjhy1Ro0tX88oqgV4TLzEKlYyxY0EhbPP2sswitG28j05Qwgt4b5e2OF
2BNsiljHZIJOZlmUtNkdj2TzqEdpLPCZo8fjMt1x4KXYwSQeGzz/59PhvgI3
nOVb1dkeaAfqA551n9B0w0FLpIenMjkgLSSVeHKdK/50y+BO6wcuEEfYSgrl
ApzPkFEd1zqAtrFVOtuoAmxd4HF58JAjiEhPvu2ZBfFx34YPZxycAO1dezbv
A8B9p8cNzlc5goOKytOv7/Dxm+d+B9IfcEFFxpwd7P0umFo9Jzaz3gY88pOJ
k6AzNr2taWMUqguSGPVmcYY8/FQh4Ao3/oxY85Z+i+l1xF15XlVHVTbo/LPp
Ip1TDnhkt25udRgLEctfuJ0LsMf5stmbaP1M1EJzS+LN52LT/cETSIOBjl0o
lTc322Fbv+WtGTI66hTozBiWsfGFVMh+RrJAFh3RwH8PC2dotFyUm1CQXViA
lz2XiU9YVRzSX2uC9j1ILOW+tMXg1DyVp8QYVWstx5IUa3wz6ciTqXAD1O9q
2rHJjI6biBy1eD1tVBw8k/bgGA0HJn6bS3H6Kl+9tYtto07Fx9qMXUyDe+Tl
w3jBwT0U3Dduce4i7uR/iimZeDVmit3mFF6ZiP7Er3HSRmR7Eo57KnoQNjzN
P5CnzNqTTMTe74d6a+ZqgDWXSvev32iEE2SJ46UmBBC9V2us4E9dTI2Puu0e
pw4OhN+crF5AwGcG3txKbf3CFx3umDxF+og6sw0ex4je83Fa38J3fYUo3lJn
dGgql68fTCmX8T+Aqs+a4681BuV6NYsYCwUEeNYiqzxl1ld5joKs+zl8LlQW
rYltvKKOAg4S3yqjjWAT8q97ZEJAPQxTb2MqEVKN3J9YcTWQjKyb1iIkwfDj
s9J3tU7Lx7SnupUsMvyNbyXd4PNRXpI/pLx8nQJ19Z/UeEjb5H60nqu5TlR4
PCxCK0TWy+9Nb8ldlkODQae3Brx3/srf2a+MqxuwhNqkO2TSUi2QGlN1V2eX
NWxdU7SkXWgA7sWLdenqDFhET9aePGcMGs4BJo3JhKva6EmRAhMgf8gONF/H
giuUi6NLlL+AGFFpt3kmG05Zkr1Gb37vtY4YTf3bDq4e2j4wMmEJdEWaVimT
HLjGqu89pcQWfFEND77g2UPGjVTC43tMIIWdF3OiHOD8hOiBhjgWqL1yd6NH
niNMqRMolBkMIOXYhAZ1OcGiRiH7mxoFTNbk+EWaO0Psqbl0RyUBaZt/cVUF
ukDTPW+Nl72go0XZYXacdD7UhEt6O2o5qNtTmHnmGoArJFbFT/0dkb/agtH9
WyCkDOYu8nRxQgGvFfZvDQQwo1HidKLSEQXd27ZXXC2ACpP1eUd2OKBjlGK3
DrErlBjG1Kso9kiV8Fg76pUr7OyUWK97wkG0tS795w+4wYjV6yU/JdqhFMEF
5Uu6O7xikdlKFLJRjdfTEHKTOzSp3e0/m8lCQ34zw2tjhHBp7+ijFgcmClFd
VL+nKYIVTJudg5EMdN870MiuUATlpcGWNStt0SoJH/rwPWAjS79+Ubc16gug
bl7f4wF1dt51S8yyQn89zCKWx3vC6rLEq4MxdLTda0IxYOAFu6837VDJLFFN
umjfTmdvGNx/d9dIAQ05dejFhu4TQ2leWuWqYSqymf9veGGlDxT9MbPyca45
qt5FLfMN8oXZoUWmxW/M0I9/wx//Rv8B4k6yBw==
"]]},
{Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
1:eJw1lX04E3gcwDdTkZfkZRuhxjYrZ142htX8jG1mXCH0KqbkvS5KLyolWhQP
e6507rru5PUqruT0wvdXJC9FiV6koRd56VKW0Cl39zx3f3yez/+ffz40+bbA
LRoEAiHyH/41/1ny6OysP5Y/uaLUV87Uqy4afIdi/HGWDt+rS/y1/tDh85/S
Ov2w+E3yWq4RAebc04kwsvfDXcMFMSUcIhyjxLUVZ8vwha07Z47v0oCuP6V/
6Kp9se2WfEVKMwksG1lFSet88ShxS3SV1xzISfbpfdIoxeEihqpqcC58oUeb
COyl2KXp+gKzm1rwrZ+MM3HcB7etfnh6SF8HziSxA86PSLDAPmiKcEMPaph5
73lBEqy3POlUYaAB3Huqzm24LsaTwTvaFXMNoYlkZvwLRYx3E6wU912Nod4O
FRxIEuHZ+NVhf70gQ69jacy6Tm9cdLluf7ipGUw76/NdHL1xP4n+9DnVEp7f
/nhi8Acv3HipSRwYSYObwc/6T2p6Yc3bho+11tIhc0MG9XSEEHP148YnM1gg
i7RfVVjviUc0q6XfmrPh8cQa7R1MT9yb5XNCkuMEkYrDt3xyEE7vacx05fGA
NfI0jz/ugUM2RBSXWK2AYw0Xz7y+I8Dbtd+Th0yFcD5r/k7OkRX4yt31Aw+b
RHA/IEp2CC3HWYvdN6piJXDI4SZ9tyEfM7WXTRp2iMBpgfnXxFduWN22t/2L
hhCKn305q/2TK363oPZTjxEfqGV9XueCeTh5piMs5iUHulleh/jGLjjs6tj1
B9gO8stL6js7uVhTriiYGGVCr6f2rGEpB3+aW2cXedIKbHriPIL2OWHqkCLE
1mMxcMODpTwXR/yBRl7zjrAI0u7uL3F5YY/71AW5wVupUD1vJV6Vboc7t0Xu
30qlwLBwSU8s3RZXnlYGckrJ8Ova2cy7+SxcuV6lc4BIgfXbVRw2kYlZ/HMz
KVZUKBvDJsf2WWPs/FJ3eNwUPiYWTb6cWII7E3qIkgRzqHXXAhrPAlPGkqPM
fBfD0VMtOfsOU7FU6TrSKKNB2G8lRzZHG+E3jw+mTPOtIe7AvIkfftTF2p35
HbcYDDgqvzZVbULCDs/T51MqmSA+0TP1k4Ua8vSn69pu2ADOHCSPDBaCidaC
iIMWLDBYa10WJRj3IDeabPa5bQP6taYOZE8S6npSdWW2jAnKBprutFwPPbv0
5aC9BgOCj1GHWuKM0Kmz0vEKd2sYcFjiS2FS0er7lY3TCTSIoulmdossED3V
LS8WLYYJrZn+Ficaenjm0XDqMnMoKnjXUlljjTI/pN6h3zSFANbApe/dmYjY
dIdRTaTCK0X390uVLESQmXTK/+m3a7hld93oMpTsKmVWlJAhI7GqWTvFDvUj
5UJ9Ywq07pHp2hIdED16PsMqjQqN5zwcWY6OqCr0s6pKbQb1HZwQRoQTwuLC
4vIuS0gUl/QzsjmoptVqZ53QCizrqHHMK1yEajN2VccyQVes+U36lDO6ejKm
IU/PDj63j73t4/OQf4FwWXwsB9ah3gpljCuyeHTZrfWeG1z/vTlacsoNGUyn
7BG9RbDOmb0xVOWOZrLkYpJQBFO1yoCtjOUowlPSnRslAS3GZ2F7yAp0y5gX
ymGLwTQvnOusECDugxcfLgwIod9HlP3zZQ/EltDyMrIFEEQw+XBkG0LxTkvl
3YGuEPy6gTe00BM9Xf3cR2TOgdDWHQdk1Z6oYt7QNzaZbMi3/tWrRyZEx6VO
zRZ2S6E99YFWzEshao71fqyziAGsTSuGi496ofwi/5x912iQ7lne8sLWG2mu
od5XCSyhVtq1gXbPG1nX0fONeWbwLmB2bFOiCNmzywtzP5NhQ3sFsVVTjHKq
TvyYkGYMbb4hRtxCMcq+pC5TJxjCmlUC5CeQoJ9rzkrrswxgMJiZsHlAgrTa
48vTBvXgQkcOtWyPD3Jr4gdprNeBZOlkw+hCKaK6bwxLZmgDedjSyrFUiogP
9vrOQfOgViFO27XcF9WYhL29oJwDe36vmI5R+aJbfaRc+2kSuPfoJ21Mk6H4
SVKRMEcDuCnq2FSKH9q8suAgIZwIbOMn8sKLfihacbyubyUBqlOYpf6h/mih
4SubI/u/1v/3B/T/H/4GZmzqsA==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->{{-60, 60}, {-0.0007146440279521698, 0.00040010361659988916`}},
PlotRangeClipping->True,
PlotRangePadding->{Automatic,
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.522542156195219*^9, 3.522542182530973*^9},
3.522542280444924*^9, 3.522542411408412*^9, {3.522542593479043*^9,
3.522542626285554*^9}, 3.522542681997767*^9, {3.522542723280386*^9,
3.522542748242407*^9}, {3.522542949188668*^9, 3.522542977352989*^9},
3.522543024498731*^9, {3.522543088219265*^9, 3.52254311067984*^9},
3.522543163269546*^9, 3.522543203476909*^9, {3.522543258287421*^9,
3.522543307465341*^9}, 3.522543371309052*^9, 3.522543444314203*^9,
3.522543500408285*^9, 3.522543615581949*^9, 3.522543654012719*^9,
3.522543714809282*^9, {3.52254383655232*^9, 3.522543954209074*^9},
3.522543987854934*^9, 3.522544040177055*^9, 3.522544138645664*^9,
3.52254423961056*^9, {3.522544332311615*^9, 3.522544359410752*^9}, {
3.522544499019484*^9, 3.522544519115584*^9}, 3.522544551529608*^9,
3.522544583202106*^9, 3.522544798152048*^9, 3.522544856018762*^9,
3.522545918022345*^9, 3.522545953245106*^9, {3.522545984075476*^9,
3.522546042552423*^9}, {3.522546198674039*^9, 3.522546306798113*^9}},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnQe4VdWVx5/wqCZmxpRJMkbNxMTJmEkyTkwmKkWwBTWKLYpdxN4QsRsT
RUSNCnbABgiISG+CIiJNuvQqHenSRJpwZv/W2f/NuXjeue/exzeQmckXn957
z9l77bXXXn2tfdZVd17f5Jar7ryh8VVHnnbHVbdff0PjZkeeetsd7qvKB5WU
VDqspOSgWkeW8N9RSYn+RO7/8Z/D+cPXBX9xvP2rarRjx47o5ptvjho3bhzd
eOON0eWXXx6tW7euUuLnW2+9Nbryyivtn9tuuy3auXNnffu5etSxY8eoQYMG
gBU1adIkWrVqlU3kX6vEOyWV9Za9VMf+Vo7mzp0baUWV7W+V6JBDDinxYGqI
krQxapcHuopNUa+iKywWtZVy96dFixZR8+bNA8wvvPBCdO6552qQxx57LLri
iivCz8zRqlWrkz0GZsyYYZDv3r27JM8rJ/lXzjjjjOjhhx+OJk+e7BDD3yrR
q6++Gh7X65X88/71nH3JA1VFpqhf+MrqVgiVOftRM/rxj38czZ49Ozy1evXq
qFKlStGmTZvsM78PGzZMoH/wwQfRT37ykxzQZ82a5c9xFED3r4Vh/XvalBUr
VkR169aN1q5d61+pEu3atSs8rtfTpq2dPcXJ+2CKIlZWt+L4PCjemd/7n9av
X28U4c5VmHz79u323bx588Lva9as0WjuMNtXGzduDHypTZs2gWmU+r+c4Dyv
a6cWLlwYXXLJJcYnKu8FmXu1JO3dWuV87uQKzFHB5dXeN0j2W/Yr/1O1atUC
MFX8XzeCbfz8+fPtt8WLF4eZJkyYYN8xC7Px34FlVuY/7Sv3aslxZU5RPUyx
bdu2qGHDhtGWLVvssydfDZeYoaSwKSprisRJqAxOogsvvDBme+Wco1Y5nzul
AnNIXlUQHSKRCm5czqk+OFqwYIH9dO2110bLli2Lli5dGp1wwglR/frGdPJC
VdezskmTJon5BzZV3pXF7K0arDE65phjorFjx5Zr7vJu3qlFjr8v1lZ7H+F5
r23bvHlzdNBBB0VTpkwx9alGjRrRiSeeGC1atMiG27Bhg73q2H0qu4rZaWnU
smVL2P/etJjv9ZM93bVr1y467rjj9p4yiwnnG/q0woeu4GJq7yOc+i063v90
7LHHBsFcpQxhPXTo0Oioo46q5xfAhjdq1CgaNWoUo1bOfusk/zPwLlmyJPzs
eFNUpUqVshQE/3ad7J9PrtDgxS2obuGY20ub79KlS3TWWWdJsYqGDx8eXXfd
dUkV1KmdYZDLLrssevzxx6VeuXVyHmMRk/2KcF+nTp3otNNOCxP27ds3Ovro
o/NMWCf755MrNHgRq6lbIfT5PTjBc8u2bdtGl156aXTLLbdExx9/fDRgwIAg
p7DJbr/99mCTNW3aFBqR4tW7d++v6bdlvKINgJdiSZxzzjnRDTfcENWrVw9q
y/N2nfLAU+zgRa+mKNx57O8Ln8W++OLE+Av3vzmmDCa+dVQodPDPP6R8948V
eO7/2rsHOnxV/3/r/3/rv/bTGSnfnfk/8FyBIB0TfxetmLoginbvtk+HV2D6
H/nxNi5bs/ccFQH9Xj9sn5uei1ZMWWCfbk557ib/3Np5y6NBd7W3T/cXNtU9
foj1i1dFbWs3jYa3eqvkloypJr4x2J5bPWtJcVOVRmOe7xO1rdU0eu20e6Kd
W7dnLazHNU/ZoyyuwNnutr9Vol07voo6nPlA1PWiR22ouYMnpOLyRv/8ljUb
bYFd/9TCnl81c3HJfXmmtl804fyhk+3FpWNnuUlbRP1uezFzwhm9R9nzq2ct
jjqc9aCt9Z4waoakjSesGvW//cWoywWPRLt37Y4mdhgStatzR7Rpxbqbypyz
ajSoeTtg41P0SeehWui9haH4LvtbLdq4fK2hbFKHITbi5hWfGxCOVkrSoLjB
v7fjy23RK/WaO4Lobe85Yog6/vHBaGDzdiVFgVI5Gvty/6h93WbRF6s3BGPO
bYBtBAf+xjLBqRwtHD7VELF80rzwbgI5OirlBam5H2LXV7uiTmf/OXr3nleC
29ERoQ372SfzM0Ea9miX6I0z7ndbu2uP+yCBpSJBWjB8ik2/eNSMABLDciI/
fKxrKkjX++ccKEamQx9+s6TUfzel6wcxlqYv8lRZMEhQ5Jvn/tVWqmEdLxKT
EEZSQXIs0qb/9INPwrvC0uD7XysUpDv9ECLj8a8O8vbqnqnmDBqfCdLHL/Y1
0t7+xdbwLstxICXptVCQJrz2roHkQAvDOrKO3rq4ZdTv1hcyQep2yWPRgDte
jrmO/256jxG2nC1rNxYLUufz/mqkuOfxPULiy3WbNH3Ou9f55zYsWW3TOzDC
uyumfGrfLfl4VqEgNfNDuMNvQ8zoObKkmv/OHepwuLNAmtJ1mD23eeXnASS3
ibacyW8OLRYktxobFmkukBx2YjB7jcoECS2gx9V/s096F+n0/l86Jo9QoSB9
0iU+tJBodf/dGw3ui0a17pmcPufda/1z2zZucXTYLBr/yqDwrjtpUbdLW5UL
JPtFgHzQonPU+fyH7ZMG631Dm6h/05fyAuLOoS1izeyl4d2Jrw824HZu2xHP
kU+QCpB3rvpbUKM02Ifu0Dq+lBcQJ8Oi10+/14SM3l04YloQHgVu0h1+CIQH
fMTJtZIagUT3bFwWSLBUp0DlLMfpBfburL5jigXp84UrbYh5QyYGkJwgiVc6
Y1EmSChhCA4+6d3X/3BfNPLpHkmmUihIUrnWffpZGHbjsrWeU49LBamJMOz0
QzQGRzUlNf13fW953p26ZysC0rj2A6L2J90Z7dr5VQAJ0flKfbeZL/XLBClg
+L2JAaRRbXqZLIS+igTJKSBR9yuesE8atvuVT5piktikVJAWfhTrRmvnLgvv
zh4w1r5zmC4WpC4XPhIN/WunHJDe+3MH5FlekBw3tumdFhneXTNnqX3nFJws
kL4Rf8jOJaka/fznP7e4vn87N3mlak7ySqE/10z9OSXtpWrKKpr61e7Yss3L
pfdLDvbfxRpCs+irHTszsZfka8Kee8eOAgpPObCXmflR1UJybgHhZ/+4fk5m
p1T8Z5+kIh3Z56jYpyoZGFw5fWGsCI+eETA4//1JgZlkYbDPjc+abccnveuO
VzhOzfJjsIwkj6rZP+dJESnXz9UyM0iyUDazz+igIGnZ6+Yv9wr45EyUYYeP
+Fv3HJSZ9L/g4Xwo0+P5EjZKy3yuavK5r2dcFPWzO7QCIpHOkYm/kc/0QFHI
wYHTVEytd4c3FX/X+OdQu8Dz1G4fehrao7Bu27QlC3+xnaekC7cc/u5JG8kX
pxZav/5c1eRzX89SKOjnRA6EgEikQGSiNSmyhZqkktwkA62BC4yZGd5dNn5O
sBfKQZb7C381c37OyEYweKuwgts8KPgVRjzVPQdjTvtFJciLsTkDx3nRvya8
u3X9ZvtuWvfh8Rw2W/VcPOULtpeW+VzuAfxa6kCen2vm/JyREpAmb2/3QAW7
0hls3/Tf4cxEp8NvkYWxsW37R+3r3YlCH95989y/mLuFT3cULi18rLwsaZET
Sq/Yz7mx+xoZKErauVrmrH5jgp6YhSIMyLcvi2W63jUbpvFT5UVRGaHsqtk/
lysQnvfnMqLsWQSVNMG1YkIT8s1lYav75XtUDb07rt0AsxYhsnJgq4zQc9Xs
n8sVuC7z59jdmB4Sz0JV0kmg5TqRZ6j6pPPQVFQ19s+Z3VUvtrsO8d85VSVo
eRmoSjNeBFLSXaBhcTnqSF+TAdKmz7wd3v/j8K6FYIhQvDu+UJDE05Pugm/5
7/re/FzU6/rWeUFaMmamP7qfBpDA3Ksn32WYKxKkpLtAIDkdMOhAWSA5UWLv
OtES3u1x9R6sNy0OpKS74Ft7TbVlzcZMkJzExGNhn/Tu0IffxJKtCEhJd4GG
JYBkKsjEuZkgEd/ode0zOSBN7vS+aZS4zosEKeku0LBO6Q+e1SyQcAq7E5vz
7qKR04OrrkiQku4CDYv7+7VT7zEXUhpIV/vnCDYxPUEqH/BGfQknLh9I9sut
Gixhef+jCPOapwjFJfGQCsiaucuCsSRAwjlz5/a2MFuGy1KArJq5OBiwAsRh
iA3IC8i89ybGx2D+8vCu8bS749N1e2GbJJBm9//YhnUsLgw7/tVBhi/IMQsk
XLd6Lrkcp8lXBCScs9AIzjMNO2/IhLD6LJAMm17w6N3k6SoSpAHNXg6HVsNq
Mz8d9kkmSFDaAO8c17vyNa+Zs7RYkJLqqIbdvvlLG9atOBMksDvi6Xdy3t2w
dHWIuBcI0i2ansiLG2LKW8NKvu2/I/j4Yau3ktPnvHuVf07a+rR3Pio5NHHO
zAPrzlmRICkCSHxKIOEK6nPTc3lBUhAq+S4nTnrcbcWBJJfMF6vXh2GHtexC
1DkvSMo+4LTqXTtxcXZAsSCNat0zSHgNy6mRtpsF0ujnegeTSu9O6vhefOK2
7SgWJMSk26gckNxJCzIpCyTMEKdw57wrl7jj58WC1PGPf44+evLtnGHlS8P5
nwUSoRSC28l3FU91vK1QkHyGSsKK/6jkO/47YulwZUIkaSBd6Z9zyov5jzld
ejd54vKBZL8IkM8mzw/az3f9d6gVCh9dlQHI+kWxzjln4Ljw7jtX7Yl03Bxm
yxCxAmR6Tx8jX7cpDJZUubIAkc7jjLrwbny6HrVPtxa3SSihHc58wD5pWNOp
vWKaBZJszq0bvwjvTrKsoThiWiRIBKn73vJ8DkiOawf1PQuk4Y93wxuV824y
4FQkSObg8jJJwypQyYZkgcRyel/fJufdPadrYqEgKZ9ty9qNwYP0PRGrN/sg
1iyQyCEa9miXHJCCZdu2f7EgLR03J6QiCaRwkN2waSBd4Z+TeEY7+Cf/HRHF
wffGVclpiYTlAEm22LaNW8KwsLv3HnwjiZFUkJI6lN7lxCmiWCRIkKjEqYY1
oeCdpVkgBU3TmZt6N5w4p0EWCZIjz5AioWGJEr96yt2m6GaBNP6VQSZOv9q+
I7wrXkUMv0iQSIBwIOSA5EzFOF60an0mSO8/1CHEgfSuU2jCcSkQJJ/CFixW
Eh6+vxfJI1qyQEI1U8aU3kX7HP5EtySjyZZnAkTulZXTF4bByDCz9fUelQrI
5f65YOM+06PkB/47B1jU85qn9yw2nzwTIEmnowAhdRQpTSZmFiBuE0PClgD5
+KV+wemYDyNlgGQ2lt97DYt/U5boFRkguU1Uum14V869tfOWFwvSW41aRkPu
fz0HJMtwuuSxvCBJpyZLT+9KeMDlCwRJyaBKQ3O6cMkP/XdjHfLNb+SQnwXS
6Gd7eZ16dwCJTSelZFSbnsWCJINm6bjZAaRZ3v4nNpQFUlKntncrIXWLBEQ5
UVs3fBEAUSYhYb0sQJKiRe86nBhuwFdaCnM5QIKhySuoYbf4lD9iZGkgXeaf
U1ISAvif/XeKuTlKygJp/+e25LZ1kcM/rSNMWkBX6COldcgD8QEUCpAv0ugu
z0CffM7kfuldaiTkdisH+vZfcktu4xYFRJONW9LiJMryNYeN90we5r8zf5GX
Y1lokwaAiBLaQkThpX7lQdv+yGhRMnOyjUoWiiQxlo2fE1CEBOpywSN5UaR6
AFRTveukcEBvWub8AZLBUprzc5s2beIckMpknAVYK2fgTYpDcu1JZSILb+S+
dzgjtlj1rlOjUKfy4a3kwMxcqZHzcxlNQJSvnYpPEh3l2BZOFD/HGsvCJ/ap
nFmHeQ7rtGR7t0v7UVG/vrOirVt3puaVHyCpKzkINKSlNeQwBFomyZ4c4hYO
dW/koE1yFb00C2043Ia17JJ4t1q0YFzMDi6p9VRUp1bb6MwGb0QvvfhxtGLF
ptjbdSDlseTOooO9V4eMNKJTMYHFzGvHMfPDA1YexMBNYirn3UuTssWb+zH2
akYzpq+KLj6vU/RyrTuiznd3iqZNWxn99S/vR/VPah+dVKdddP99g93+rkuL
zB0A6S2VPQL3amiRhUAlhi2bMDcgcEDTl4I7MAuB8mk6QetVwqqYdtHb3aYa
wi65+K3ozYta4j+p5A/12rVbotdeHR+d80enPp3+ejR1yorUQMwBkAgjmk92
qMjCpCVw144zF4VJ0qlwYOD7z8KkXER4FYTJnj2n2wF+8P4h0RdfbI8+eORN
Inelfo/B5BWXvx2ddsqr0diPl6Q5sg+A/BgpM8kuE2nKjJDoOGHwJguJc9+N
i2LWL16ViURiRBLKP/Tc8KYb+0TXXtMTsrS9ndrtw2BYCZMbN261Z06u1z76
cNinaR7CDPtIkJOd6URgDuRJJT0Lcjwz8n3JnF29+ouobu22UdcunwSWLPsU
Va+Khx7SuPXmvsad+veflebuyIA+WQFlkcmuH5Qc4b8zt6kzxse1H5AK/SV6
bkf83JgX+gbLsPvbUw36zz7bFKAXv4VXV/XQO6Ee3dV8oD3bs8f0NCOyHNAH
D9ikeSVHBpw+GRJrLs2AXvkLBJkEPVRzXZOe/q3E/nqzWtDv2LEr+vOD7xn0
Q4bMSxPV5YDe2TbGOFA6Bb3lh/mkhyzoVbSyftHKVMoRE4N54OvDk1otAX3z
Owca3Y8auShti8sBvTNqgzda0IckbqdaZ0GPW0LsMTjKEpQj6OWD+XzBCq+5
xJRz/XW9jP85KZ02TTmgT6bgCPokNWVBb5lo17XOObVJyhH0Kt2a3nOETzaF
52yLrrqiu8nATz9dd0lh0KsAQdFNh++SH+/1HT6ZNOgb+edgiTggCNimUY6q
RaliFl8T9Dz3pwu6ROed+2a0bNnGRnmgt18Es7LVyOz4F/8dsSDlQKShotFe
mJzZZ3QqvQhmqB0tEGqv6WF2cEZnn9UhanRR12jdui1/CoBl+JgFs8ORr1vf
HWAeeGfbUI6YBfOCD+PidKom06hEMAcaX7jSq+Wl0by5a41CoBTH5y8qjkqw
MOR6EvQUdJOhhaM1C/rx7QeGUKq860kqUQGv9UzwoY1veOgnT1pup/PG63tz
Wv9UGPRKDA5BhZ4jS37iv5s3ZGLAVRb0g+5uH719+eP2SdAn6UVlpE6tCjQu
6EeOXBTVq9vepJPjlBcWB33gz053EfTrFnxm381/f1Im9CQwOUrOgT5JOYJ+
mJMVzhK0T9/00DtpZKvEdtm1a/cFxUFPJqiq6gR9Mic3DfqLU3iToN+0aZtB
1fnNyaGKVPl1SLBDPPTsEapvyxbDgP784qDvdM5DIWvzKP8d6bbu5CbxnAq9
ZABmkaCfPn2lQfXxmCV7ynITdP8tD33HDpPsucdaGvTnFQa9ck6drPNO3/El
P9VOOw3XUUVe6JOuLUE/cMBsgwo/gCokoXtVFAn6N16faM893upDRMS5xUGv
TgzkcAn6oHuv35wJfTJ8JujbvjQ2OvXkV8FngB66VxD7Hzz0r782waB/8onh
QN+wOOgH37cnMibo5WYlypoFfbdLW4WEAUF/3z3vRldfFTv6Bb3iH3CGf/TQ
v9J+vEH/1JMfAf05hUGv5EWyKKhCpxrqZzqNG78ImYdp0HvRYrlR8HtK9ySt
Lm30FnwkB3oV3iOJD/XQt2s71qB/5K9Dnem36+zioKdvECM7uVlydIITys91
cQb0q2YssncXjpgWcO8gMT7uKCPUdjnqCnQv6N/sNNl40913DUJa/bE46NHl
yUQgHUnQU4WmThJZ0IdS1BWfB+gXLvzccDr0/fkBeqP7hg/Zp2976Pv2mWkW
4C039Yk2b95+Vh7o7RfBjLtHRUlHJ9ahLLEsmNGMZHML5uHDFxjM8+etDTAn
qf07HuZhH3xqtoc7GWhkDQJgGRqZ0gWp7UZ/cXpMyb9q932uDAlNWTBbZru3
tgUzuw/+tm3bGWBO0vh3Pczjxy01nQbXltMo0xqrZVDJ1xJnx8wM0Nupdfo4
nss06L365HuV3GFeS53QR1t8gD5un1RNBI07PmafBP3MGavM83bWGW9EEycu
b1Ac9FbcUe9OS/b5uf+O6go5/9PUVEEvbdid8gC902fQsnKgxzJUw6Hveeid
5DJNGNdin94z/lAc9Oy+s9zsk3QaKHHI4LnRl1/uCPb+1Ldjl5yjgswVkahI
n5mkDYvO/vxzo3NWpEI40sfjhKAq0ZYtO6J7nWzgtLR+emT0ldPGTytsWd7f
E9LuSA+Pl1WT4aILz+9sw0O0DzvGPHrUYmOJck05BTVrdRa29nkjSf2fIfv0
mRkqqxBXpLOS4vJ9vzonqy3ywLNNb+8ffb7uS9/kvODVqQ0E7Eir+8BtGkM7
ZTJq/cxII2w+n3VGh6hr58lWne/U57TVeWU+x7bQ3k2YsMyGmTJlRSjKoeDC
qHHzl/650ujdQXMMqQ3P7hRNmrT8lOIWZl2sPC/Swm64vpdZqeg67hvbRqdz
Bj9Z91tfQiJmLUxKNckVWlivnjNsYZ9//mVYmFgmmQU/9Nu2YMG66LJLuhk7
7PDGRAOjfmGr82680L/EgRPOGhEWwOjxzjTvIakSbd/+lfmy7zijTZASaeai
ludkd/COaXmcnzMbxP65ZDEVHp5Bzdv5DIAqnHHjl8Bw5x0DovXrt/prfgpe
XuiK5shCy/vLn9+LzvjD68ZK5KKdPWt1dHad52UopK3sggTEVhHyWNfgjbyj
aX/sPvukCislShFsOMxPM2hgTJEcBGe9nlTYopLJedgFJONrUStXbjYd6sUX
xgSLnyhO61rNo243vZi6V1qRGA1SWSu64LzO2Bc5K0rSyo8SpIh2YLbgo8Pw
gegKk0KXpTqX+UMnh2W55diy3PKCUxTe2LJBy+j52s2jTRu3ppn9Wpl5OX1b
OFEhHB1o8Y2oSgceOqBZnFChleF7bd9unE2PF23sx0t0dUa20qb1jHj6ndBM
UE4dSBvaczQYDNQRr8cZHq3u6l2StZiBiexfLQa6ZTFOZoTF4BCC8FBwj/CL
4bkrLnvbmNMTrYYTUIl73efT5kJ+mONw+OvwxGpzHH+wyR2/CH5HaWTX1moV
fTR8YZpX43wNueMrcy2Pfq53IDucIgy5dOmGsJ51n8bOmFn9xngHcFVjR6+0
H2fK6R/P7EBYhVNxfGGUp8Wp7pWaRu0UohEW71h9cPbBqB7/wyN2OJwamub0
0OI++2R+SAXU4qAmAIZdq4AG6SJN98d+s5YsXh81va2fIeKmG3qblv774lbm
A25W5auVjRix0IZ20jmsjGyZV065J6pb62WcI1krE3nRBUsre/CBIdGVl8ed
PbQyFAIyCvEl/IvfNkLPaHHwP87VM0+PiDZs2Pq7whanmBwWhvzjokkkMAoV
etrBHp/yRT5yW+zNR8tJc/loheS5q7hOK3SrY5U5K1TRD9bHUX6FzrKzVaEB
c9A7dZwEqRxX3Aqli382eX5Y4bnndIpaPPKBfdIKVeUx/MUBRmF/e/Kj1BX6
7yyxVz4ErRAdhnfdsQrVHs7mDI0gf+pXiJf+gfsHGwmB6fffmwdF/2dxK6Tt
InG7pN8eHHq10evmVWjTYW2Hn3t2tFHOwgWfl6Q5vrTCkFk4bWFYoWMqNq5j
MmGFilyTT3y0XyFecSwensWa+fDDBazwPwpboWJQSgrG/6g9JGeF0d1RDCuk
YhmrceWCVWb9YW9lrdC3dbL4gFaI6cC4c2avCSuEc6MtIN9iS7aancMRHy2M
rr6y+96r1J1facvc/5m+pcmfuTdS93glrotUVC91N8gBJyeLaIl2Y0D/2O+6
ZMkGvxtV43YZceq7Jcvw+/hxS9O8lecmEE2YjDCFklm7dP7EXkXXVK2TZY7X
jmsFfp7YEDYANqMNQRbCxv49/4YcSI3x/KWRle1qs8rJ+yJTN0ahFFNCfa2B
QgFof7AksHCIn67frS+YurbDaQDIZ0jYkW2aI1Ybo0p1zrg2Bt+5E+P2SRtD
jwW8ssNadPY99auZGjB06HxTnozjXdA5eqf7NEt1TOu7fwBkJyuZ4+sXRVZO
XhSZuRs4+NFdsZu0G7hdJeS1G+qGi+sE+gVF7jhl7QYRP988PuzGrbf0xf9g
n1SKNeaFvubDIj7xi8QxGT16sWXTyJHQ9uWxFjH5edm7sb8TodNyKHNvh6ye
ArzCFQSwUKRwpCrUcfGfukYPORtiz15UC/3UfbFYdPNNfUxZgPekefo9L7O2
BdaP9o3BIb0V5+ljLYflbAi1cWwISUS/8sueOXOVpdfgieAfMuGc+Dy67L0o
OTCTq3NnkYcxeUtjWmKhtojyaFBDV3MdF6f1GUpefWW8t6CrmpqNzGarZjmT
DHPMWelZuzPJ369A3qF255T6r5iaxie5/Ag5wLwcEyv5tacI3LEvv/SxHROO
C7wSYYZ/6aj8x+XA2AvNkrx0cU9vQfmbaG1OtAHi1yFxdpMt22mofgeqBScD
Pl7ozWnS5pFZvfqLkrSAkudkVromP5W2gaxExu/Vc0YwyCXGyNI71r6rbpSA
gdrkmh72PLbBffcONkNs585dPwqLOSBTvpUfmrhHMbWMSrEb+g5CsBuWrg47
gY2geJN2ItwiEHe0NQ8W8eOWLYZl7oTSoem4rJ2YP3+djT9y5KKgC9PvBr0X
/fg3fk5nNVic+ryGnex57NDnnxtNfpdyKguR5v9z/RDLvD8xLVNXkQGsPFgC
OZGKMhN9hytt3/6Vj2lXC61OiKMwNI4VnsGKSAtTaieoN0SXxrmgnRj78RLD
7OxZq/fYXeNmBwvot/5MoFeNGbMYIeZUvFfsHc4HeSXr1289LP9m7M/Oi2Vc
qJi1GXZDRa34GiNtBp7oiy9K9j+qZlLWrrJ5fbANjceQAIZTkfwlUVXs6LBZ
TEOqEkX1XoaQNm2i6OOX+oXLovr3mxXHFdZ9GVQuvIkQB+6Z//KbQsojOe2k
g/E8RHDbrf3M0ecY5A/yb8r+SGDXz2Vcspi2KZIatGOjSJn4meLqmF733D3I
Ph3qNwVeAvf3N3gZNwdBHw1f6ONl37SWymQIojqTw4Rr0224TcvGIxWIv+HF
ICwBf/TB6TjvpnYcVdGmcVKRFOTFa9NocEU4gzuzTvCbRv4BWSkyHdEp8F4Q
dHMW7ffK3rQ0r4UwQ8YBmgrXGolcObOcVadSeB9Y9dC7HA8VmOEZ1AwUSCfb
4qjUoUbVCAYifjxOyir9BOjaBFsAAtx0OEFAYK9rn7GFchKgVHoZOBF8uocE
b5A8dMLXE48PxzqzT4Ebvdzf8Mo1QbU8xHhXySUAR+AKnIE7p6dFc+eu+XZh
+JJzXi03yCAWJcnfNHDA7OAzdEfVYtH40UPH6fFxPPOtrlNKdB0pBcXwVzyt
eOocD8ennGazVfJEigrEbVyk4gAKwpUKPQwtXTseQtzvjg8lELhM3YlPIK7U
FFSEJ6H43bt2xRGdGiaj4dDYazAHoCbL+Km/jTDzj+jPtwpD4Pl+RpImCDD0
ur41EAuHo0YuCjEGdXii/wOEQX6ycIgH+vRTX4vWOD2utschJ1KZEOCc9zav
+DyNIZT6VyiooJdDn5ueNTz1bPI0/bF0Eys7Yvr7th0BfVC7TDHR4qcffBIk
Xhy5rInSbUWSQIoXmlXhycSWhR4J0bjTc3Ax6ItLW6EVWr4oXwUOwCzsinCH
TsAhpG+kcMeuogOTQVbLixi0LAiI04NpQTVOmpFazT9PXzOcX76HgGHoJI0/
baGNM779wFC5QtDmuWfj/Athsr/jOQQrmOtkjzW80nhLOZ2cWFEdeeKPPDw0
GvzuXERTGmgZWJMP1awBB9m4dgNCngxRzPPOjXN65UNVriTRnEp7YXfSpOX+
2ugqhl2wxbPkdFMFVDNl/up6fvOXtnN2/d9Fj1rmYh1/IGD8kF+nhg8RaxGS
iHyJWQiZZJaw+STon+5fd0qUqd2kuDr9oRIvua9xHPAVuRHOPEzjJxl4O9cP
TugOHgzMjqMJdRR73NG0fwJ1NexEEeR6+/LHLQEHIbHDvU7K4uWXdkNIeP2j
CrqRoS1JRGnnoaZ/Htc6Y4M+RCqKqK6HnzNoXMibEJ4IXShV78gEM1EBWAM/
Lm4mTAUcfYQ6nP1cEiOwioU8SJ8kV2PBAtPBsuKn8nrRKBswyVb+N/8dXKBN
61H2ST5IxS0IdorSxo1bGrb8tx5EYMSRzLbjTaODwjdT5leECIZulObG7nVd
a+u+eILfTRrVIjRoK+DGFbY+mfxZSLM5MrHxhMfoDeRE1Fl+dKQ+1jYIQ6M/
95xOHmF5YuXychjDdOghIVboURJT714zgpcD7y9J48TU01j/bzxApLZT/sFy
EZ34MQ9JQY+S8ZkfbRjm7v7bx5Et1glYNG8TwbznQ9TLl230EdtSU28QXhCj
4wENw/oyKOMc/y4eA3RF7pNw6NXqpRRMduxFqycBQ7d27M28EUH/6YckERpm
zLAz+4xOu233EI8o4hyIXBBFpiimhA/HWicrtGPycFW71LVLHNBwR9jH60qt
yBgdxWnR0E+B+ehn+1HYMlQOsiLdf+viXNXYYrvIyQKLZW2k4VbaC7APh33q
/V9VLCKjxmN0d3K2Uuo1w99KPm9huGb2POr4b7Xtf+5gDiZuoREyCEY6QWSf
FExSYR1X9xWIiT8mDhntFliiUz5+4UcmrKz0qR947kp7LGiW8lTOBNyVw3j9
tb3MubFhw9aSX/rV8SzDWqD48W72/KEpYCjVnRRYUdHsAWN/o6M6LD6q3MSn
iC1HsLHPnv9JQn5x9ECm43oF5vl7D5DRJLORa+4DYdHtziRVtlXsY6huBgIz
oaHJSoOFY684dv3vHijYKyoGOJv33sTvpMx8qEcXHR5gN6CLKhscq//hhyED
HrTASb/asVNoIC3w7rti0/EoMdct26zggJSx9YtWFlgwcGYCmbrF2FHoL/2E
uPed3WOfZCOqsgQC1OEgC4HD4bRpz15jiYDfGuzC+bFHv5sCwrf982Q/K6cD
W5iGIb9K8D9MOs6vO7s6C+TJkIrAp5/6RzG5eRTHkZMgBZYgnJHAhwHvFjrm
hb7ChzIH3u421ZsyNexRTEqogzbIUAZaJd4m/ICbNm3zGnMVu5cHrZdnyd/j
TrM0A/q7/nmqGeD5MBjiVXDPX3gQwS/mE6TmtPJQnOVOp4odjg44WWuuAWjE
PVpgYUMDPwobRIABnDjD18fxQ64BNVE/8qfFYGscw+ZvEscHasFWpx3+zC+P
BJuxZmw1M72MO1a+nwLB9xIkRVoCJIV6iK/r3xI7hoBgLHcKFSWhR4IPGvpd
KLWAF5QEOtbOXZavUmKvn/6QQAf7bkfmlUG/9hOi+DLhyhWbveFR3ciXySBr
ChZBh8qUHNqO8sujVY5sIvgSHCHNJ6bsairUIHVODNnyKCFHJ9BBzrKvv5Oj
XPl8Y8cu9QZJqYlohCJ8a83cZQXe7C57AFMDTwoTTuowxCezWCUcNhUh9iM8
OtbMXmpWB8FEYudkQuIVww3pxLDS1Ej1o0EhI7LbGDv/nAJBjKKq1ggG+uSw
YIKSAe0sfTFKbKfB975qwzkiktOJNBUwgq4tWmJmMILG5mipwBKP0/wojrQs
9QgV2hl4x/oJn35qhOmvfDrSY4Qr2nFJsfPwwIXurKB0kZ3sNvJwv0Lon5/R
EzhatCN2OkWaM1u5zvQ2IAfK9HI3A54q6VWYdXAX6Gda9+FyiUgjgnEd44ch
TR6noxmz7QeYpVVg9cWpflYMJxaAReD4oc/rsgI5lbXGFFDNnFkUcgM8W9ev
59SQuHVYYtfxSpnnz0FH24QtazcengKBXgGlXBUBD+AVhnaQHOEBRIaDXRRu
p3rK20Ftm9sT+/QLMTAHoFgiHk2c3acXhpaTE7yQQhKGohk3Q0klQpTcf5/5
6736U9WMM3gdDOPJ6ztG9R3PnzF9lQ4DzjpYKwvRGlfNXHxkCgSHe2xjptHR
nnUDBc0NUHtQd1QZAOsk55MhUU5w3wbHRothWN326ZcelxQ/o+KDajd9vsoW
+6W+n8usb6fZMBfWOjTn8xxN92z99Ej7pNRIXEpcVwnsrevdF9125nPRxg1b
vyticgimBzeVA4AE8uDfKO3/kgLXkQkixM3JUWZopgD5BEi+56eGhXL/KCcJ
2jZZvWOnbC1KX5xSaZ9+5VcHd0AewB3ki6gfcJBh153kB8ChiZoNehiI7CMZ
E3BUfM9vdprsvetxPHTB8ClR50aP2TpeOPUBqzck/+UfPB9irUiVDx/rasyP
5yAHhK5TItJi+iGf2ak8HCouZqoEUO47KAR7BTtKYVl4GFRl6HJrZysQXlxT
JEsE341SUGVrcc4BK3ZltbDlnlzYUavrh8KXzqrMDeTOCKiXTerEtrEYJ8aD
nxPMdX2if9TqxHtZWq2mbgz4JsEFmAV5uiTDx1Hrb9jzgEtiOVWPKJJowCwX
jCL3YFPIe0fUP0sBVfIaSURXKWd/+amrmuikPJmz6gwfMyR27fwqnr2meaV5
Dd8jj2Bj4KFmZmwK9tIdW6m0eDbavjTWPh3rEYTBbX4vb5pQ3lBggUxtPxSx
WRw6DMW/uZzG55oHzXHChGWeicQZ3Fh7Deu9EL3bup9VFTp8VfZoB4WsH30A
nsKNHKX+N1zw+GSQkIsdhbGtaUlbUsZpYEzXLbbCe/lKNA9sE7cXCjZOyNdO
vSf8BgXSEx6PIDwHpVzKMK2YVNr0G78kzG1gIt6EXwunj9OW6haG0BP9aIZQ
L9DR6Wf1HYOWI4/SMF8St2Txeq/OHGpAoV/h016+fKMdVSwRzgE1jrAfjhad
t2DutFYGYH7jGfQEtzFpeaLxif2mKVfgAkZJuB9bkhOOgc6QMESYJseBGwuo
4pPkV4Hz8OELPAOraoFIwAHXMCLGdPIpX33MXj/9PsH6YGvcaqPoIF3c3c7o
vZCESzbbMV564c8lkADytmzZkVb9oasZxnsf6qxZq727uapdfAL9sgjUf+6C
cgtPgzRjEb/ziwDF07p/FA4mi+AmD2xIj5foxefH4PVNbE0pVb5mEKJgOTyk
FXpoEWoQgafzeL8IXBGkVKJVQ8GcFqfAF1gJc5xfhFM/zbThHLAI/EWEeNkJ
fyCivzz0Pp57+ySXjEqB2rcbl1qqohVQrYi5QaL5iX5OPAJcI2CqEGrw9a1N
8NEao8DKkGP9kJwIHH8IIuPoXBbllDe4my+UtDp8BSvEbIkhI5fdKfVUkr4M
4p2KEdX2sln7LxWHzUAMINMdDfymsJXEEMXeC+wxzjsWOyOjGaGCkm2ATang
7kUXdglJm1Lw0DSoIcKyd5SWhk8tijLn66+N71I4yS8K5zRmKjydqWmxBIUR
I3ULLrAk4hi/KDRZuAyUpmg1i+L8w/FJo1SoHweech3lbtqrNddvMxbVpHEP
klLtU30/PZ4B2PSwR7uEhAQEFzglE4MeZr8sbGWxbVbTtCf8psgQVoMKI5UC
Xku+9NYNX/iyfosJK4Mw+BZXfxGdf+6bZm07BpdWOaTFoWU/2yYOIMl8Y3FE
+Ul9cKQYKyWl5shFm8bodurevxW2vNioOdj0aJRINCtEr5aH/kLIHCpFOYFd
eLeNdchSrcuxHkg8s+r0tX791rSzoRs+pCpjU8r7h5UDh8An7xi3dD5ICaGE
XMQzBxQ/zbNQ++VHnpdy2PDF4eLGih4YF4tofDaRGDUhAkoGcaArgKXKG/Le
FIahlwNeAsxDJ+PTKqS0ys8+2xSXJg2e613fcYgPEYUkxMqmtb90TMgVdkBI
j8sfWK6CxPkMlH/yTNJnkdlSkP2oGAScnRKaMw+xBXQF4IAfOApT1gs9TQB7
3botXp0qtfx8uA39Ojdv3n5sxqqnTV0RQujn+VWTjU7ZGwFTtEX6dcfQVAum
FEIb+p47eILJPxxxPyyMomVRkddLYASqxRhm2yErelM6S7GyxwOkRb4SvJAj
RCTOkZfKJchOIFcLsXbcXnhg9zdt2pbGKhV3gp9RdD937hpkOzQf8gbVQ4GK
2Is8nQIwhg0tYND/2SEnbip7NKF5QKcUILOxSCDMWTp1FJjeVN2zTIQbKUmw
TdDEQUdvJJkND4ebvUTTI/hQgvANYr7xPOoshfBX+lUly29+6xFGAwW4/TVX
9yC1+tcp4CjwT2dJaunJZCDoQoC+ig/Q000b4fCC07WmTFlhe6IovJRIqncu
88cAbZtOXmAJhHIMUOCdBepNlxpmuvhrE80YRkrAJFCX8A3u3tPzqmzMHmy/
EOYEkxAcmhXMCm2cE44pCOY4gZoavY4Nhb0ieZEsYJT3oQOmVqtM3JHUK/Pp
dx6rY8cutbTqxle9QzQwrbov3uTvWC1/m9ajQnYSUogh6dvQs8d02yCoGjW0
Y4eJ9iy/Q+XKpqarF885rCsjlQTrs86I45bX+GNHVAySBInccIAJTmkeWSJu
9fHiv2HsB0cvlikespFP9zAtHaOKAwD+iVJjSu5heif4ibkioSTOvvTorGkW
NgQLOpEVKJ64QLCjcGjB/t3B1g2ltLxQ2e9/eYyO8w2GIDLH+MrWFKoZJugH
CHYgbXr9UV1KTmcNjwqsv6Hvz7e8iT+c9po9S7UZVWcOixKj/Hz1ld0T8r+G
uZhwYiwePcNQwqnE5UQ7KxgYLQer2sJTyfIEDyW9VfgVQYIHDvUBAw/5do+f
nlrm57yq8XuPCCwX3BNkAC5atD7N/lReHWEesp1ZHGoq0Xqn/HzLQ0BSE4wO
lCofE0uZs6scWZKS724eB1eb6+w6053gDRoyTivUK7oZJohh/9esFnR5TVpl
xX0eA3A9da5Q7g4BIzRFKoYdt/tFyutaIpHHPr1n2FZSQUSEy0mabyd+BufJ
ElQnmKWqJmO595fN6g7EitSMy26y0L1kSZy++96QeZ6Dl5qedukl3Qx/Dlne
oMl5nRnRb3XucS4jvP8pgWfONpl4KLZ0EnQ8wLvec+LDD+TH8/4rMM0zdzpO
YRkg5ZPJn/lMvdiaA1n4BZyAjk2TasnXc/rmDH53boiecSKQ87xKYh49Wnz/
KlOkFFnOQOT+rg0tqHQ0i1zJhJWiKO8ufBVvrXqdovf8q1+9KSMOf3yvTktO
nB3uX8V4QfrpVZKIlQbNb3zvJGF5ULu/6ggLKjPMQq1SfSmaquPxwzmVNwtW
CdqP9jyFIWCjyf5cR/r3sGcxFzjjFElQeiaXlCqoFy78/H8XXq3Id05CKu/v
EsdiKiBTSYP0YLf99qme32I4DwwN7o7yC9koaSJx4mw4epsp3cadPvNKWn/Z
v42wHEs5XZOe4yLEwv9kpWLm3OlYJLO/+Z1xf0mFl2nzBfbABiKXe2iO8L/t
1QDPxlTYiNwusKU6KHwTdfw8Sdd1ObC4P0sMM+dOxyLZbOrZdorHBvWY6Odg
iswW2HgsPePeFqSxYx76Hokl/qyGVBs6xUrHX7J4vQIZkLec5+VA5P4sC8yc
Oxfqe/3qICEQhg52WuLgku/L9xjGlBr/IEGOUveaNTUxKm6WM74yuubMXuOV
9g60LFfJAjhu9diH+ZCa5qcR5MqZ79tnps//qWKNBtTohwoNZ8L7BMaqVpqu
tmReucI4TbuUTxQhFRiqGTFioYxtAsOMQruDB4sDXmoFADbwNMpWUL6Ktqwa
Yfr+Y0GrqwJbQ0XmxRfFGrUzU/C4pbFtRQ5N57yht+1mv76zFJ39fN2XAX1F
LkIyfN7ctT57N17EoEFzTN7zG3UvvtwwHBGsDdgd1pkWOm3qirSuE4ocsnnc
dsaae7wzTWF75RCOGbO42EVQx6FGpLE7+rvGLah9QE/E16nav+fajLIdwjOE
AxMpxrMUJhB1JTRI6jrtSIDUMrIfHsri1AIxBwalaoM0+DXvvNV1ig/HhXzA
+fPXFbs6Ot46KOxTQz8b9x6wRURhnXFX3ZdL4ZDBkY0G6ER1WjGSIm2smfa9
PgFOCSs4zviKTPwi4QVbF10Y946O6/1qWAkVGCZH46PhCw3LVAHDzykdoZ9F
WiXmrxLQqsdqxw6TlJhEcwS3fPtUJLQUjLu9tk9pdyv/OgGBbA+Hr+MSi3Xn
pCIQcMwc5ZQJwX8kIGA6KMwxAWXzUdyqbLB8ENgvmhengLNGy5xX0S9MADrG
wnwcL1OeBezLbYl9uj8MnhHIkW8OZqas97RL6xWP0n1McG5niCvhlQPZru3Y
YjAuCNR/g7h5GgSKDVGUSMzPB26Vk60waM+e00v+XBwE9JJgCCdOUyFQVGbV
qs0mvok+rlyxWXlBc+asiYOUHy0sFgLFwtwMqRAozEGePeuna67bEaUejPSF
zgQQi4QAkaJc7jQIFBLAK81zNG5yclQ5HKH79Lovi4XAaS8hLyINAjFxx89t
qjdenxhSSMjfRYFAshc5PYdKOcpp00tCwvg49GQ0KaeR7Fgx2SKnxyJRrkHZ
05eaV0b3ojlqUKUbjkIxziIhQFNXQkAaBMd7CNas2WKnAPntzqTyYMnrFOMs
EIK7/RCqwMFHfWvKc/Jb0zgMxkPzAbfjylEGJS96FlokBEpXo+tTGgRKKFMa
PZAqk1SctPvbU0seyjO9/aJJVaJLrWzapFLx6Y8GkbvlhzYRYp5Oc4z5bz6+
r0nVt5J7ssqetNT2hJ0m8OLsP1VWiGU6tTvvYsuAgBACB4mAdRoEMhfj3W5v
xKXpxS9JZityetK1nNVin9Kml9kvdoNar8zdJLMscnpuZnTKYZ7pS800uufu
QUbcS5duUOlTklkWCQFORhUepEFQ10OAgCVREiPVaT2qRYNfOkZUEQgwV1o/
M7JMCNQDgggnW9DtrSmhVNb4pQ+uFjj9XX4IuiMxLIn0t6U857OizU2H2oOX
VhnxMEu1oChy+sWL19v0xCTKnr7UbCIidNhADv9H+tfFLCns/0txEKhMHN9N
GgRyLdN12zhb92mhkh23hdohFDm9MlLBa9r0ihiQWyj8H+G/U6sweGaR0+se
NzysZU8fyzvyQui1Euq19vTFgoEWCQF+Wney7FMaBMrNFK+GUjQ9kSt4AuGB
jOklMomZJf4nCOAsqr0uG4KYC+HywPHkCE+tamg0Lx5gEjcpfZQhQFooQwIt
9h3ME5HHXUzN/EAkmKhvVhocisuRDwjjpfOFgMARpuByXkwcbCKDX0lAwU+i
pjCIGFgcqiRKLuEuD4qxP7dZZYKn+KtTn2w8/DcqqV6T6ETx13x0ckjyJ7tt
Ai8ItjmnX7ky6D6gHscCXhO3Ozf62dThxRF3ye1lQhpfK81mkhjhXg89wEfv
sYTyApv7UxxtqWmGIoyF3qFkY6lNFh5CDGYcJY6l6V5t9blyX6cCrFRedc4g
IitoVX9KWn+B0Fb30CLc6JWNBg8+mAKIicrRQRpCdQqKbg50nDKuahm/LAPa
+LzQaQBLcePGreo9QR6O/BMFAnywB5iRsQJRS/Cm4TcAImQp/UhxIbotuNLP
qMCuEzapAPs6T0s6IKr4lDtIyYsBnZmXD9r9nyRTdGP32MlVw5yh2NC0b1K/
W9gVkh/h51heuBWDdluqJUnDqHJeuLNKlw2oCzJnA4LldD6cH6MHUh5MgZ3Z
D/WYxRELNyB8pMapsDFIFyUeJ7ESYXH0OjK2T1mY3bBhq5E7QT9hVpe30qSi
HJj9e2utHhpi7dptXlu80IpqhI7AHy20qK+Sf/Huq+V6GjqVGycDh7YB6iRF
qpf8URno3N/5L8X1Ro/5WzVTJpBSokuUbE4trWuVpI7/XsHlspFYai51fLAY
VW6T1PsNDU/pq+XA44HRNLu8DcxjDWdPO14CGOjp4BLzDPXEKc/Kn0YBUL+Z
NFT63hQhCIbBLTyipjiN5+8Lj9nNxw/z2EMTgxMqxIV8wLGFKuYwq15GKmUh
rNw0BQNK9cVKAdPE6tU3lA1CnHFn5UMBgAMkm6a4huHqIrF82UYzKHBIQjQw
RRga/S1EUKqPQXXMQt1s31SfOkShTnmcqKePFC5XDtAm3z/x2EM6k6SBqsrK
IRJueKPAWNKWMgjl66VhTwSKBs3p57Y93b6mgmXsoXJg7++kK/fP/Cs4i2Hw
rJpTS/h32tQVsljUt56EvCzEEVViCMJ3Qhxd1JHrNLgsB+L+Tjpn6wYpFDju
odeVrngW0F6I3sjnoZZ88LE07J2dwJT6zfv2fHbZjLwaGdhLM7N8ArHZ0XBl
bCDAIOBGqBwQ5RbD2j/91PgK5iwQ4fAslbiwQORSSC4rKAJE3WcDV8c4IZ/G
QLyyux1mQJTnlJCBE8Vlgqhu/NL3SEzS7arskryuLQoD8ZeeNvYGkXIrd0Lq
+hnIsFMiWNnQxdkcVLWgVLj/1qXEygd3/y4UwF8nAMSRRy88hsLgW7wnU42v
lVSVBuDeBZyU4go6hzb7jtsyC4TuWA8d5iI+DiK+mJK4rJwpqqwpZZq90n58
yR0pw0jxIjaII4KjpOuq4dbn+/hBgdCp9QX0QXUXkEHeNEfb04MghNKogMiC
jug5q2j78tgA3dUJd2CB0KnHLcq90upQrUj5UQRZYon06TTQ1OGZIAtcmOek
JqGH8R1l5Y8WBtrvPOJw4eAFw98E8sjc2rZtp9JouHlXvL9s6EoN/+AdJ6Yj
BV9CGEqm6WWaD0D75fceYwQUMH/YDNieszNDS6ZkpnIaTOok7ia1yTt1nKSa
RutbznfckPdImDUjRHmCB4gewoQdAQh3Nw5j5buQCOLsjTIBkv1GmgLuUvxf
1T3iOFaENKEyxwAK3MUTPXSMglcDvQl04TJVY7ykn6dZmdCVWsogVifmjYNE
dy9jlPI6gd6WhUGn4g14I2uEvrDDEArKVyGgKmafBp2ucVDYBwHgxbk1amZM
+nM9VhhodTxoeLVxBKtuhCx2JbLobgyCKmmgybdBSAhllT7KpR6Z1rr2ul5m
zjtWVyB0J/lREPr4VBHQTvVVggmJiuTzgceyASs1bz/sGnE1edJymdLKF+BQ
tioMMBUGcK5JToMwaMkKJMr+IG9YtzCkQRfXfle3YAInB1BQkuDRgth9frww
yJRsj37zkK/PpLs5ATVlhcDjFJxJgyy+BK2asVXsNvx6qm5hg7mcr0Cw1HQP
NouzFoSheJBYrVwNcsksaazH9JI7U8a4JMFjcUsCktNInygMErXV4K4uAsaU
QbptVO6G9BfCr2lAyOPMpSNkGvCpQFwo3EOaCLdPAoXTEZVG0d2n6nIE0yBY
Vdhsin4QVEHmgnlH+cqawLJ09GCfipnNflGHVhR0DC7Af/21CcqLoHe1Ow1l
zrEiDJQhgNTKH46CDsAcaDrEWtW+G+oCm+RsNq846nQ7E8MSd2JKCr5JjjnS
Tyk/xqCBc/bFlGd5TGJpIcQQlY7MjvCzKacQw2ofzKb+5NwAw7B+NoWzFcpD
xu+D2c5On00hY1LDG/m7s/bBbOekz6aLhJAFToHaV7M13Gs2bDxHJgqK4omG
XTk1UmH+isymWzvI6odKkNzuHChGmNQ298Fs0rxVNOkUrBCOVAQY59Q+mEoq
K1fAMixev+8nvsMlw4HfZ1PFUWEqtn3ajmJXSGKnxNunfTCblEu4F20T2LWB
A2bLlQ4Q8j7cXcRs9suFfg7E9p3NBigbXRcFKUzOZelpc5SLC0ul2ivzXJ5Z
NA6sWjhkMetIVZG+1h5M/hp6UGCUYaXeU/HZLvazUXKFmo4dt2zZRn/ZRqgN
ps/4PpitkZ+NlofqnOVMD3kq8COgmmBx31vx2aQ7YdiDRUJiTiOQbY8XTRVG
+2C2S/1sdEZBYaQ8ym3WN/xsaMbYkJzkfTDbZX62qVNW2Now/Fat2ixTl2QW
9Ru7r7DZ9n8WRW4vkdhyqRJ17NgxatCggQVomjRpYkHVtIDM5R4z1OGhxIN0
p7z7Ii2z34n7U8lUJGb2XzZEbtsPBcJmzJhhWNm9e7fM4xzwr/AYIUOLBDJ6
TDgCkZFPzgm2P72Q03qilAMj+yOLQQG6WbNmRQItbfVXevohTxQjEO5N1gKp
NLLYcX8QQIEdTJu2skAs7O/kg9Kcn9u0aVPVZx01btw4wJpWDHuV/T3YmD+9
zOD0EAj2LwKV9C5sJfxW/MbVemklveXAzf4KhNfI+Xnbtm1Rw4YNoy1bthgp
iXbsKFgsOkZJdVs6mfFQBChRUBJH25IlG9IqzJaHQaofgGu39U6aNClq3rz5
19e+11KaeLpCfcJpjxbs9JGHitv7AyOgr7PSsmVL2InWn7b8tKs40i4s2dfP
HQAx/MoeS1BOo0aNCKAe4FjaH7F6UeySJUui+vXrl3mO0u6sS7u6rbzP/V97
90CH7wDIfpAa1Lt370w16H8Lyv+fFDNJ0WxFI4Rko6qYefHn8PJ+UXLQfwMR
m8xc\
\>"]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.", "params"}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.", "params"}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",",
RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "All"}], "}"}]}]}],
"]"}]], "Input",
CellChangeTimes->{{3.522542762323259*^9, 3.522542764447953*^9},
3.522546267445561*^9, 3.522546298673073*^9}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwtlXtU02UDgEFHAg7lNvhxGTE253AyNrYxA937wmSwDQo+QpSUAJG4JF5A
kWOhXCYjChMEDC8YwhwLEQ35KJP3VawcyhKUo+JYoOAngspFFPi4VOf0x3Oe
/59/HlrCrv/sWGJiYpLwN//Y/3HmyOJiGK7/Zd5dW/seMDZa74EpYZjEz8+7
VrQM5OY1vD3cHYp/bOEWmuaaA7PO5fF23qE4m9UabV1rAYoc027XFSvwSzEr
eeUTS3D/pey/5Ek5bnLVjxxgkoHbTda5jBg5zq9gjjxXWYGSzBDDw5syfK/5
+m9bzFaCeUYyRewtw37vT25PiLQGH4Yq+FNfh2BiIHHuVJgNOJPBiWh4EYwX
kjbclifaghbmsTFRZDDWP2i88VRpBzofTR5tvyrFWQNXPuHesge/LXW2/95R
ilm/j4/1fOQA2rzgiZyMIGzsrJSYWhLAwDufEtO9EdckUZbMTTqBGeEKf1/e
RpxztWsizsUV9P365ptnVRKcO0bG7pvdwPWox/0VJAkmdhk+k+xwB0e2Konv
4gNxl0A7R+hpQLHdO/xkWwDeX/u0jeDRwYOpzRZ7mQF4bneFWZofA2xX5d0I
KYGYNbotn6VkANaLR8f8JwB+tlBIZDLpoKi98czQ72I8ba84XsqigoavLPfx
Czbg6betjrGpi+K7EUmKXLgeSwX3vC72EiiXe51xwNYf+5BGUckLNvJZ6bqQ
PvgB/slzIGHBlo/qHs+ftTi9DmcqeKHr2UJEaP6U1EaJcBXFUKCyFKIeliTX
394XV44fstvxngCV1qvbursFOG7w/6OaDh9kCLBYtD3Px6JiecXRJh5a3ZsG
Ig/6YKVxvLa+hYsEcVEykS8Pv2pwydOe9UaH73yp9n3ijUt273m73IODmpd9
hMPzvXB8/EW3xndr0XCge28qg421nCOXfppmo5oti0fulLIwublaG0xio092
G/kcUyaOFYbpU13WIM1rTCk6SMctTtOj91Z7ojfp5949nXLHgxSX9DoSC7X6
mSOaiIrrd0YMOaqZqLBSV3Iwj8Cp1KbVs90MFPuDuiAx2Q6XpZeXmjE8UFrO
sqmqU2S84viaGpULFRUm/DzdTFmKqbqXl/b+YI+k3/ROn6ZOIv1YtkPiUTNk
vYWuSRJPAPNVGcuFVSSwotWJ6xCwFMrVSlp6jz0oa6eRZxKs4Lnwn6V7Wqkg
qoh4rkuzg17Hd7U5Mj3AANdd7sgk4O2lDVbu9QyQRCMf6QmiwqxYJXdeywRT
5nP9Oh8a3KxS6Lh0Fjh34pXuYgsdPgwKN5QCTxDBGrhc7seE9Zf7yl96rwGD
qp5yzzIW3EfEG5NJbLB/WHfg2sgamDobx61+wgbK9KZbFlleMKsi9zv6xFrQ
ka0gs025sJjPf/9DPgfcrAU8Fo8H1RaSXxhV3qDtD/6mVfE+0KRPiEpquCBd
qu5fVcyHZ8TjlrpKHnC7RqQxrwjgg2TvEM0FH0CWktbmTwuhqyzKxDjCB7P6
16N/+otgtfO86P6sAMRAg7YsZR3UKKoWtgQIwdVLt5KDKz+AOo3RrrOXD2KE
nG3RRj/YUGAbZs3kgOnWsojPVq2H/XstVXe7XP7uPBuo37QB7u4c9bFSvWpz
OhYnEKrEMC5DPLN2iTPqDwkqrv4RwMLjDX1WSg8UaUIZL9gF4cK3RaeHUhgo
aqhd9NwmAF65MWxdEslA0R17cxTNAfCEaH6CIqWjUnqNpFcRCDXLkytvLNCQ
/osu85SngTDWNNew54I7Yn26YbiuUAJlXQ99lXVuKD+gXveEvRF2fT5Db+a4
olbZ/a20zo2Q6oQ+7iM5o1cRi68/TQ+CldX9qosEgbbqtaYdJCm8rLb9avCQ
A7ot32QnOCmF0TmMGq4tBW0OF8NQcTB8FBY7trXJDj2LYu5MHAiGpzzFEq99
tujCHyWEJjsEGofMrbg7bVCm7F37iI0M9smKYrQ51shh2M2Dd14G37DOHjKN
WolaVdLD+9fLYcHQtZrPu61Q9iXtTIpRDg3/u37n24/JyK93Rca2wwpYZTlT
TsxYIkHWZOoXjqGwyTThwbq7Fohj/zDhZGMovKW2+bWjzRw1ZzHPh0WHwZb7
Ts5c9TL07w/gvz9AfwG21tEN
"]]},
{Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
1:eJw1lGk41HkAgAk5k4wZ4zY004gwY5wzzf83jmHMaB07EkWOtUlRsaUlOVqy
SqVLh47JzVakIvX//VrUDqGsDkeiQkOhpKiw7fPsfnif9/v74aVExPv/tEhO
Tm7jd/41uzdxbGHBB3Xk7hu5Xz2E91/W2g5ifFBF6Ejm8cARPD2j6lNapwi1
BZm7NljJcKU29XCCjQj567trh8aO4Tm6sa3FuUJUe+JsfsbsO7zrneCmxpQ3
suttra4ImsSNm+iXEoK9kT2z1ilk6D2el+jV96xJgFYH1ydekEzhc8s3Ebk2
AmQyr5dYL5nG14iEdtMHvJDbp1DNJxYz+LkEa7+qUU8UGfbex4n2Fb9BOzLp
GOCJAqvweGLCPN7WPXWosYGPVhw7vynARh7eU9DXuajLRztuj0dLkALEV4GC
1AQPtFCkfiBrdDHsY5TGBHe6I991t65xpWpw1l6T7cBwR3k1kni1yqXwefPH
g8On3VABRxxdWa8N74p7B04ouqEI/4en38aSYNb638inwl1R3jXRmrgrBlAY
aeN7BuchCelJrHcUBT6dDlLdQeOhN8wI24t9VBi5P+NPrzyATpB78zl/W0L6
aPcR9gcMFR+JDD9QzYA5jZfPDd3nolt7gfw5SwdY9bvaL3b7ViOu1m1Dk+su
8KFftDAdcFD2nqMT0XEcmG57d3mSNhtFeLYviux2hsylhvNxr53RB6PCJUu3
smBx79wF1UIn9MCSRQG+VpBc9sKtSOyI/Cer0jeuMoOP6W7pbB0HFO+pl0Ls
IsL88hK8s5OF/MupXNWG7314qgvapXbotW52mn7IJL6iJxYLSGaitPhvdwbJ
PVzWRrHA0YGBQKVZ85bJL9y0B3tKHF7aoCSR2DEoZDEmczXt2bzcErXISPWa
3dqYZN1C1oN8OlJV0au9qK+LhWzrt7OWpyHxr6JgYqUBVjaBiDnJ5qh5m0Wz
jtAU+xh36fOraVO0t/eY5aCCOVbnogIpjkZIN9PwJamNimWflOYlZ5DRYUua
+l4pHQutLNkXtYmACr/sHEUmVlhsqvL06bMaqO/x8VZTXxssO+LWTC1RAekZ
OZQXyGwx/sGemUKjKciz1le/0cjAUNYwaXT4DBwUUxSylzExrXXmZdHcD9jL
S+NBB1oYmGadni2JpwAmTbfvLnltix1tpGjMRiwBOxmSuWSiDSbOIb+RxhLA
TL3BjVwjK2zQ1tRbl0YGxTqzWwuULLBoikbWYw8jUP5MclCtiYpNq3wbkDIp
gDQfY2wCzbBLBePSKzfMgZ/A436DpinmRx+sOe5CA1uuOy2ZBgbYTpk06c7Y
SkA837FnnEXAWnYLNSzlbYE1dUmxbEIJayrCGHQGA6TkX5/1ZX/l4h12gdRw
JqDLEVomCge4cfySAWquHZg8xMmJlH+LG98hx9Kus0Dqqcz9KoZKUIOvaJU5
Yw98nheLt0h14Jf2ibcv2I5Ak/BjUlMaBQaDvoqjMU7g5vPuu5TslbCh+q9N
niedgbLyhpi4ISYMtrfesLbfBUT1Tj2tVXeGM3VH/X6mckBLalsIJ5QDVahf
XNsDV4PhJDK2x4YN9Y5sZNnv5wL2ibBDZjRHOODlkXv+GgbkQm7P8U4yYYAc
8f2+eACKCqOBDncVFA81Or5ZxgOdxm01vHwaXNuyI1VYywMmRvfab5dSYL65
xK1H6AqinM6aGWQawvaURyoxr1xBJxi+dzhMF9LDVsuKs93AIEmnZDGNADN5
5dKXlu5A2T/uHN69FNYJutZT2txB6ByvjP9ODY77LUyExXkAbZ/wq7cWK8P1
7RXyLYp8oNT5yl+LqAhbvQMJrDN8sGzlD05bS+VhkC8XiLieYFaxxihxah4f
FtO2Rg16AlG+fJV64Ff8j448ctluL5DiU26nnzqDJwo+N44tEwB0UKlLXesT
TpIZmzFKBUA6Yuodv+gjXrefn7aT4w3keIS0R84f8N3VFbMx/d5gpl2/yiN3
Enfp0UzYkCYE5JTmls8W4zhr19TmFF0RIF/d0p/XNIZb6zyLOHNZBDqY3MLW
Ihleu4tW6rPWB2wzUJvqyh3B//s9+P/3/wBZ5dLn
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->{{-60, 60}, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.522542775492355*^9, 3.522542960547408*^9, 3.522542995770412*^9,
3.522543035134631*^9, {3.522543296264867*^9, 3.522543319510829*^9},
3.522543384500983*^9, 3.522543455525264*^9, 3.522543514229852*^9,
3.522543626701997*^9, 3.522543667475726*^9, 3.522543726018032*^9,
3.522544871173848*^9, 3.522545966092067*^9, 3.522546271481462*^9,
3.522546301931841*^9}]
}, Open ]]
}, Open ]]
},
WindowSize->{960, 1029},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
ShowSelection->True,
Magnification->1.5,
FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[567, 22, 32, 0, 109, "Section"],
Cell[602, 24, 66, 1, 63, "MathCaption",
CellID->836781195],
Cell[671, 27, 151, 3, 43, "Input",
CellID->2058623809],
Cell[825, 32, 1762, 59, 121, "Text",
CellID->525777075],
Cell[2590, 93, 68, 1, 63, "MathCaption",
CellID->429217524],
Cell[2661, 96, 1155, 29, 179, "Input",
CellID->433132487],
Cell[3819, 127, 689, 25, 63, "MathCaption",
CellID->133602844],
Cell[CellGroupData[{
Cell[4533, 156, 1586, 45, 125, "Input",
CellID->534530029],
Cell[6122, 203, 2005, 57, 124, "Output"]
}, Open ]],
Cell[8142, 263, 217, 5, 86, "MathCaption",
CellID->462076121],
Cell[CellGroupData[{
Cell[8384, 272, 528, 16, 98, "Input",
CellID->494599775],
Cell[8915, 290, 2450, 67, 124, "Output"]
}, Open ]],
Cell[11380, 360, 76, 1, 63, "MathCaption",
CellID->358620443],
Cell[CellGroupData[{
Cell[11481, 365, 464, 15, 71, "Input",
CellID->167259034],
Cell[11948, 382, 1077, 18, 177, "Output"]
}, Open ]],
Cell[13040, 403, 102, 2, 63, "MathCaption",
CellID->577766068],
Cell[CellGroupData[{
Cell[13167, 409, 2629, 57, 233, "Input"],
Cell[15799, 468, 3242, 90, 172, "Output"]
}, Open ]],
Cell[19056, 561, 724, 27, 42, "Text"],
Cell[CellGroupData[{
Cell[19805, 592, 247, 5, 43, "Input"],
Cell[20055, 599, 2272, 66, 106, "Output"]
}, Open ]],
Cell[22342, 668, 384, 12, 64, "MathCaption",
CellID->610306692],
Cell[CellGroupData[{
Cell[22751, 684, 272, 7, 71, "Input",
CellID->645617687],
Cell[23026, 693, 1053, 27, 120, "Output"]
}, Open ]],
Cell[24094, 723, 92, 1, 43, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[24223, 729, 53, 0, 109, "Section"],
Cell[24279, 731, 98, 1, 63, "MathCaption",
CellID->690131918],
Cell[CellGroupData[{
Cell[24402, 736, 230, 5, 71, "Input",
CellID->718931880],
Cell[24635, 743, 672, 14, 71, "Output"]
}, Open ]],
Cell[25322, 760, 390, 12, 64, "MathCaption",
CellID->854192725],
Cell[CellGroupData[{
Cell[25737, 776, 459, 13, 98, "Input",
CellID->465762594],
Cell[26199, 791, 1836, 51, 146, "Output"]
}, Open ]],
Cell[28050, 845, 76, 1, 63, "MathCaption",
CellID->314466782],
Cell[CellGroupData[{
Cell[28151, 850, 424, 13, 71, "Input",
CellID->298399236],
Cell[28578, 865, 32297, 840, 580, "Output"]
}, Open ]],
Cell[60890, 1708, 38, 0, 42, "Text"],
Cell[60931, 1710, 117, 2, 43, "Input"],
Cell[61051, 1714, 2257, 48, 98, "Input"],
Cell[CellGroupData[{
Cell[63333, 1766, 1777, 45, 125, "Input"],
Cell[65113, 1813, 28311, 470, 339, 4676, 83, "CachedBoxData", "BoxData", \
"Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[93461, 2288, 1347, 39, 125, "Input"],
Cell[94811, 2329, 5076, 90, 336, "Output"]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)
|