diff options
Diffstat (limited to 'mathemathica_fwm/fwm_degenerate.nb')
-rwxr-xr-x | mathemathica_fwm/fwm_degenerate.nb | 2535 |
1 files changed, 2535 insertions, 0 deletions
diff --git a/mathemathica_fwm/fwm_degenerate.nb b/mathemathica_fwm/fwm_degenerate.nb new file mode 100755 index 0000000..9a95bfe --- /dev/null +++ b/mathemathica_fwm/fwm_degenerate.nb @@ -0,0 +1,2535 @@ +(* Content-type: application/mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 7.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 145, 7]
+NotebookDataLength[ 102785, 2526]
+NotebookOptionsPosition[ 99915, 2423]
+NotebookOutlinePosition[ 100292, 2440]
+CellTagsIndexPosition[ 100249, 2437]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["General setup", "Section"],
+
+Cell["This loads the package.", "MathCaption",
+ CellID->836781195],
+
+Cell[BoxData[
+ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
+ CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}},
+ CellID->2058623809],
+
+Cell[TextData[{
+ "We define an atomic system consisting of two even-parity lower states and \
+two odd-parity upper states. We apply a light field with components at \
+frequencies ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition)"
+}], "Text",
+ CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, {
+ 3.522540911043191*^9, 3.522540911147507*^9}},
+ CellID->525777075],
+
+Cell["Define the atomic system.", "MathCaption",
+ CellID->429217524],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"system", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]",
+ SubscriptBox["\[CapitalGamma]", "3"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"4", ",",
+ RowBox[{"NaturalWidth", "\[Rule]",
+ SubscriptBox["\[CapitalGamma]", "4"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
+ "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9}},
+ CellID->433132487],
+
+Cell[TextData[{
+ "Define the optical field with three frequencies, ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ ", and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ "."
+}], "MathCaption",
+ CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, {
+ 3.522541679413973*^9, 3.522541681294852*^9}},
+ CellID->133602844],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"field", "=",
+ RowBox[{
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]1", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]1", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ "\[Phi]1"}], "}"}]}], "]"}], "+",
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]2", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]2", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ "\[Phi]2"}], "}"}]}], "]"}], "+",
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]3", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]3", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
+ "\[Phi]3"}], "}"}]}], "]"}], "+", "\[IndentingNewLine]",
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]4", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]4", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
+ "\[Phi]4"}], "}"}]}], "]"}]}]}]], "Input",
+ CellChangeTimes->{{3.522534194542496*^9, 3.522534219533982*^9}, {
+ 3.522540920436486*^9, 3.522540924714358*^9}},
+ CellID->534530029],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]1", "-",
+ RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]1"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]4", "-",
+ RowBox[{"t", " ", "\[Omega]4"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]4"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]2", "-",
+ RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]2"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]3", "-",
+ RowBox[{"t", " ", "\[Omega]3"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]3"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
+ ",", "0"}], "}"}]], "Output",
+ CellChangeTimes->{3.522533257349164*^9, 3.52253422045873*^9,
+ 3.522536315439293*^9, 3.522540739248025*^9, 3.522540970145529*^9,
+ 3.522541564921328*^9, 3.522542172549766*^9, 3.522542936599973*^9,
+ 3.522544786198204*^9, 3.522544854264734*^9, 3.52254522556669*^9,
+ 3.522545943915771*^9}]
+}, Open ]],
+
+Cell["\<\
+The Hamiltonian for the system subject to the optical field. Each field is \
+assumed to interact with only one transition\[LongDash]the other terms are \
+set to zero.\
+\>", "MathCaption",
+ CellID->462076121],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"H", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Cos", "[", "_", "]"}], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"_", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input",
+ CellID->494599775],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{"Energy", "[", "1", "]"}], "0",
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]1"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]1", "-",
+ RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]4"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]4", "-",
+ RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}]},
+ {"0",
+ RowBox[{"Energy", "[", "2", "]"}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]2"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]2", "-",
+ RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]3"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]3", "-",
+ RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]},
+ {
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]1"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]1", "-",
+ RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]2"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]2", "-",
+ RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"},
+ {
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]4"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]4", "-",
+ RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]3"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]3", "-",
+ RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}], "0",
+ RowBox[{"Energy", "[", "4", "]"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.522533260351258*^9, 3.522534225599567*^9,
+ 3.522536320272253*^9, 3.522540741905562*^9, 3.522540981472922*^9,
+ 3.522541568259588*^9, 3.522542173099244*^9, 3.522542936745729*^9,
+ 3.522544786457194*^9, 3.522544854514756*^9, 3.522545225737479*^9,
+ 3.522545944334553*^9}]
+}, Open ]],
+
+Cell["The level diagram for the system.", "MathCaption",
+ CellID->358620443],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LevelDiagram", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]",
+ RowBox[{"-", "1.5"}]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]",
+ RowBox[{"-", "1"}]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
+ "]"}]], "Input",
+ CellID->167259034],
+
+Cell[BoxData[
+ GraphicsBox[{{{{},
+ LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{},
+ LineBox[{{-0.9, -1.}, {-0.09999999999999998, -1.}}]}, {{},
+ LineBox[{{0.09999999999999998, 0.}, {0.9, 0.}}]}, {{},
+ LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}},
+ {Arrowheads[{-0.07659574468085106, 0.07659574468085106}],
+ ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}],
+ ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}],
+ ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.}}],
+ ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.5}}]},
+ {PointSize[0.0225]}},
+ ImagePadding->{{2., 2}, {2., 2.}},
+ ImageSize->94.]], "Output",
+ CellChangeTimes->{3.522533274929177*^9, 3.522534231598043*^9,
+ 3.522536287987677*^9, 3.522536326037291*^9, 3.522540747140555*^9,
+ 3.522540990177467*^9, 3.522541571244472*^9, 3.522542173445689*^9,
+ 3.522542937562187*^9, 3.522544786610477*^9, 3.522544854751983*^9,
+ 3.522545225868822*^9, 3.522545945164071*^9}]
+}, Open ]],
+
+Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
+"MathCaption",
+ CellID->577766068],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"RotatingWaveApproximation", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Omega]3", "\[Rule]",
+ RowBox[{"\[Omega]2", "+", "\[Omega]43"}]}], ",",
+ RowBox[{"\[Omega]4", "\[Rule]",
+ RowBox[{"\[Omega]1", "+", "\[Omega]41"}]}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]43"}], "}"}],
+ ",", "\[IndentingNewLine]",
+ RowBox[{"TransformMatrix", "\[Rule]",
+ RowBox[{"MatrixExp", "[",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "\[Omega]1"}], ",",
+ RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]43"}],
+ "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Omega]1", "\[Rule]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",",
+ RowBox[{"\[Omega]2", "\[Rule]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",",
+ RowBox[{"\[Omega]43", "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-",
+ "\[Delta]2"}]}], ",",
+ RowBox[{"\[Omega]41", "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-",
+ "\[Delta]1"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}], " ", "//",
+ "Simplify"}], " ", "\[IndentingNewLine]"}]], "Input",
+ CellChangeTimes->{{3.522537910365833*^9, 3.522537961926054*^9},
+ 3.522538015680879*^9, {3.522538077788326*^9, 3.522538108632129*^9}, {
+ 3.522538220981776*^9, 3.522538294286786*^9}, {3.522538364562097*^9,
+ 3.522538365489798*^9}, 3.522538408544395*^9, {3.522538642590504*^9,
+ 3.522538692268066*^9}, {3.522538753179414*^9, 3.522538789067889*^9},
+ 3.522538841634358*^9, {3.522539728181287*^9, 3.52253981610592*^9}, {
+ 3.522539877916903*^9, 3.522539880715579*^9}, {3.522540013440722*^9,
+ 3.52254005705363*^9}, {3.522540998041653*^9, 3.522541007397957*^9}, {
+ 3.522541371243734*^9, 3.522541473321752*^9}, {3.522541586733216*^9,
+ 3.52254160084184*^9}, {3.522542443165734*^9, 3.522542553763046*^9}}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Delta]1", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1"}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"t", " ",
+ RowBox[{"(",
+ RowBox[{
+ "\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-",
+ "\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ",
+ "\[CapitalOmega]4"}]},
+ {"0", "\[Delta]2",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2"}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3"}]},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}],
+ "0", "0"},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"t", " ",
+ RowBox[{"(",
+ RowBox[{
+ "\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-",
+ "\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ",
+ "\[CapitalOmega]4"}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}],
+ "0",
+ RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{{3.522541474095441*^9, 3.522541485568013*^9}, {
+ 3.522541574936735*^9, 3.522541601520124*^9}, 3.522542174052798*^9, {
+ 3.522542462309133*^9, 3.522542468302471*^9}, {3.522542523892669*^9,
+ 3.522542555317527*^9}, 3.522542937866057*^9, 3.522544786796598*^9,
+ 3.522544855009029*^9, 3.522545226303203*^9, 3.522545945473287*^9}]
+}, Open ]],
+
+Cell[TextData[{
+ StyleBox["Assume that it is degenerate four-wave mixing ",
+ FontWeight->"Bold",
+ FontColor->RGBColor[1, 0, 0]],
+ " ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ "-",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ " = ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ "-",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ "."
+}], "Text",
+ CellChangeTimes->{{3.522541626868227*^9, 3.522541723219086*^9}, {
+ 3.522541835758232*^9, 3.52254185271491*^9}}],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Hrwa", "=",
+ RowBox[{"Hrwa", "/.", " ",
+ RowBox[{"\[Delta]4", "\[Rule]",
+ RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}]}]], "Input",
+ CellChangeTimes->{{3.522541725461055*^9, 3.522541787947193*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Delta]1", ",", "0", ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1"}], ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "\[Delta]2", ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2"}], ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}],
+ ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}],
+ ",", "0", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4"}],
+ ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}],
+ ",", "0", ",",
+ RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.522541788900106*^9, 3.522542174067565*^9,
+ 3.52254256103613*^9, 3.522542937980884*^9, 3.522544786810239*^9,
+ 3.522544855387083*^9, 3.522545226372991*^9, 3.522545945925881*^9}]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["IntrinsicRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
+ " supply the relaxation matrices."
+}], "MathCaption",
+ CellID->610306692],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"relax", "=",
+ RowBox[{
+ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRelaxation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellID->645617687],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Gamma]t", "0", "0", "0"},
+ {"0", "\[Gamma]t", "0", "0"},
+ {"0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
+ {"0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ SubscriptBox["\[CapitalGamma]", "4"]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.52253328148618*^9, 3.522541927263808*^9,
+ 3.522542174082849*^9, 3.522542571871882*^9, 3.522542938071843*^9,
+ 3.522544786827352*^9, 3.522544855406043*^9, 3.522545226441606*^9,
+ 3.522545945953746*^9}]
+}, Open ]],
+
+Cell[BoxData[""], "Input",
+ CellChangeTimes->{{3.522542008327447*^9, 3.522542028419855*^9}}]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Version using complex DM variables", "Section"],
+
+Cell["Remove explict time dependence from the density matrix.", "MathCaption",
+ CellID->690131918],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input",
+ CellID->718931880],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
+ RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
+ RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
+ RowBox[{"Label", "\[Rule]", "None"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
+ RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.522542122980978*^9, 3.522542174200228*^9,
+ 3.52254257611812*^9, 3.522542938179186*^9, 3.522544788879686*^9,
+ 3.522544855426596*^9, 3.522545229935206*^9, 3.522545945983281*^9},
+ ImageSize->{432, 33},
+ ImageMargins->{{0, 0}, {0, 0}},
+ ImageRegion->{{0, 1}, {0, 1}}]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "MathCaption",
+ CellID->854192725],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[",
+ RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
+ SubscriptBox["R",
+ RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
+ CellID->465762594],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"},
+ {"0",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}], "0", "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{
+ 3.522542126889324*^9, 3.522542174305952*^9, 3.522542579319489*^9,
+ 3.522542938528408*^9, 3.522544791355964*^9, 3.522544855628949*^9, {
+ 3.522545232720883*^9, 3.522545241737016*^9}, 3.522545946211666*^9}]
+}, Open ]],
+
+Cell["Here are the evolution equations.", "MathCaption",
+ CellID->314466782],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//",
+ "Expand"}]}], ",",
+ RowBox[{"TableHeadings", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
+ "]"}]], "Input",
+ CellID->298399236],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ",
+ "\[CapitalOmega]4", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ",
+ "\[CapitalOmega]3", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxDividers->{
+ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {},
+ "Rows" -> {{False}}, "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ OutputFormsDump`HeadedColumn],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$, TableHeadings -> {{
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 1],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 2],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 3],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 4],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 1],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 2],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 3],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 4],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 1],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 2],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 3],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 4],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 1],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 2],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 3],
+ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 4]},
+ None}]]]], "Output",
+ CellChangeTimes->{{3.522542134400776*^9, 3.522542138220477*^9},
+ 3.522542174324492*^9, 3.522542207187112*^9, 3.522542582215765*^9,
+ 3.522542938655801*^9, 3.522544793068121*^9, 3.522544855825677*^9,
+ 3.522545244285186*^9, 3.522545946433595*^9}]
+}, Open ]],
+
+Cell["Make plots from paper.", "Text"],
+
+Cell[BoxData[""], "Input",
+ CellChangeTimes->{{3.522545604432086*^9, 3.52254560497677*^9},
+ 3.522545837580253*^9}],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]3", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]4", "\[Rule]", "0"}], " ", ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "3"}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0.5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "0.5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "15."}]}], ",",
+ RowBox[{"\[CapitalOmega]3", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "10."}]}], ",",
+ RowBox[{"\[CapitalOmega]4", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "0.001"}]}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]3", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9},
+ 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9,
+ 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9,
+ 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9},
+ 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, {
+ 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9,
+ 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, {
+ 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, {
+ 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, {
+ 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9,
+ 3.5225448127211*^9}, 3.522545891693146*^9}],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Re", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.", "params"}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"Im", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.", "params"}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",",
+ RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "Full"}], "}"}]}]}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.522542076105163*^9, 3.522542106948172*^9}, {
+ 3.522542247272649*^9, 3.52254227331632*^9}, {3.522542379859035*^9,
+ 3.522542404138859*^9}, {3.52254260442503*^9, 3.522542738601174*^9}, {
+ 3.522544168650641*^9, 3.522544235160111*^9}, {3.522544324681123*^9,
+ 3.522544357750749*^9}, {3.522544495634713*^9, 3.522544514917687*^9}, {
+ 3.522544546544331*^9, 3.522544579418693*^9}, {3.52254589412908*^9,
+ 3.522545902384872*^9}, {3.522545984364466*^9, 3.52254603852176*^9}, {
+ 3.522546191788578*^9, 3.522546295569195*^9}}],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJwtlPs7E2oAgDGFjuRSWZc5dsYsc9nF5jL2fcPmMk6TkEWJmuSkTrpQdEIk
+SkkiTiUKlSOVU55k36c5apVVCockSkrkUrlU5HSepx/e5/0L3pccvmXFBg01
+NbXQ7/xv3rPtAzMzvjjgEWnYUGgGuir1f4dRvjikvaFA1WIGkpIrxvc1++Bv
+b5jkG1vMwUHj6PvnM8V492ZSW14PFZg00Epipd44qDi0MGErDUybbVzAt/XC
+e2WEJZFcS/Crj5g9dsgT+7FOkjg+dHA61sav4p0HDu9SGDknWIHr1OwRe38P
+XEq4Zjhy1Ro0tX88oqgV4TLzEKlYyxY0EhbPP2sswitG28j05Qwgt4b5e2OF
+2BNsiljHZIJOZlmUtNkdj2TzqEdpLPCZo8fjMt1x4KXYwSQeGzz/59PhvgI3
+nOVb1dkeaAfqA551n9B0w0FLpIenMjkgLSSVeHKdK/50y+BO6wcuEEfYSgrl
+ApzPkFEd1zqAtrFVOtuoAmxd4HF58JAjiEhPvu2ZBfFx34YPZxycAO1dezbv
+A8B9p8cNzlc5goOKytOv7/Dxm+d+B9IfcEFFxpwd7P0umFo9Jzaz3gY88pOJ
+k6AzNr2taWMUqguSGPVmcYY8/FQh4Ao3/oxY85Z+i+l1xF15XlVHVTbo/LPp
+Ip1TDnhkt25udRgLEctfuJ0LsMf5stmbaP1M1EJzS+LN52LT/cETSIOBjl0o
+lTc322Fbv+WtGTI66hTozBiWsfGFVMh+RrJAFh3RwH8PC2dotFyUm1CQXViA
+lz2XiU9YVRzSX2uC9j1ILOW+tMXg1DyVp8QYVWstx5IUa3wz6ciTqXAD1O9q
+2rHJjI6biBy1eD1tVBw8k/bgGA0HJn6bS3H6Kl+9tYtto07Fx9qMXUyDe+Tl
+w3jBwT0U3Dduce4i7uR/iimZeDVmit3mFF6ZiP7Er3HSRmR7Eo57KnoQNjzN
+P5CnzNqTTMTe74d6a+ZqgDWXSvev32iEE2SJ46UmBBC9V2us4E9dTI2Puu0e
+pw4OhN+crF5AwGcG3txKbf3CFx3umDxF+og6sw0ex4je83Fa38J3fYUo3lJn
+dGgql68fTCmX8T+Aqs+a4681BuV6NYsYCwUEeNYiqzxl1ld5joKs+zl8LlQW
+rYltvKKOAg4S3yqjjWAT8q97ZEJAPQxTb2MqEVKN3J9YcTWQjKyb1iIkwfDj
+s9J3tU7Lx7SnupUsMvyNbyXd4PNRXpI/pLx8nQJ19Z/UeEjb5H60nqu5TlR4
+PCxCK0TWy+9Nb8ldlkODQae3Brx3/srf2a+MqxuwhNqkO2TSUi2QGlN1V2eX
+NWxdU7SkXWgA7sWLdenqDFhET9aePGcMGs4BJo3JhKva6EmRAhMgf8gONF/H
+giuUi6NLlL+AGFFpt3kmG05Zkr1Gb37vtY4YTf3bDq4e2j4wMmEJdEWaVimT
+HLjGqu89pcQWfFEND77g2UPGjVTC43tMIIWdF3OiHOD8hOiBhjgWqL1yd6NH
+niNMqRMolBkMIOXYhAZ1OcGiRiH7mxoFTNbk+EWaO0Psqbl0RyUBaZt/cVUF
+ukDTPW+Nl72go0XZYXacdD7UhEt6O2o5qNtTmHnmGoArJFbFT/0dkb/agtH9
+WyCkDOYu8nRxQgGvFfZvDQQwo1HidKLSEQXd27ZXXC2ACpP1eUd2OKBjlGK3
+DrErlBjG1Kso9kiV8Fg76pUr7OyUWK97wkG0tS795w+4wYjV6yU/JdqhFMEF
+5Uu6O7xikdlKFLJRjdfTEHKTOzSp3e0/m8lCQ34zw2tjhHBp7+ijFgcmClFd
+VL+nKYIVTJudg5EMdN870MiuUATlpcGWNStt0SoJH/rwPWAjS79+Ubc16gug
+bl7f4wF1dt51S8yyQn89zCKWx3vC6rLEq4MxdLTda0IxYOAFu6837VDJLFFN
+umjfTmdvGNx/d9dIAQ05dejFhu4TQ2leWuWqYSqymf9veGGlDxT9MbPyca45
+qt5FLfMN8oXZoUWmxW/M0I9/wx//Rv8B4k6yBw==
+ "]]},
+ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
+1:eJw1lX04E3gcwDdTkZfkZRuhxjYrZ142htX8jG1mXCH0KqbkvS5KLyolWhQP
+e6507rru5PUqruT0wvdXJC9FiV6koRd56VKW0Cl39zx3f3yez/+ffz40+bbA
+LRoEAiHyH/41/1ny6OysP5Y/uaLUV87Uqy4afIdi/HGWDt+rS/y1/tDh85/S
+Ov2w+E3yWq4RAebc04kwsvfDXcMFMSUcIhyjxLUVZ8vwha07Z47v0oCuP6V/
+6Kp9se2WfEVKMwksG1lFSet88ShxS3SV1xzISfbpfdIoxeEihqpqcC58oUeb
+COyl2KXp+gKzm1rwrZ+MM3HcB7etfnh6SF8HziSxA86PSLDAPmiKcEMPaph5
+73lBEqy3POlUYaAB3Huqzm24LsaTwTvaFXMNoYlkZvwLRYx3E6wU912Nod4O
+FRxIEuHZ+NVhf70gQ69jacy6Tm9cdLluf7ipGUw76/NdHL1xP4n+9DnVEp7f
+/nhi8Acv3HipSRwYSYObwc/6T2p6Yc3bho+11tIhc0MG9XSEEHP148YnM1gg
+i7RfVVjviUc0q6XfmrPh8cQa7R1MT9yb5XNCkuMEkYrDt3xyEE7vacx05fGA
+NfI0jz/ugUM2RBSXWK2AYw0Xz7y+I8Dbtd+Th0yFcD5r/k7OkRX4yt31Aw+b
+RHA/IEp2CC3HWYvdN6piJXDI4SZ9tyEfM7WXTRp2iMBpgfnXxFduWN22t/2L
+hhCKn305q/2TK363oPZTjxEfqGV9XueCeTh5piMs5iUHulleh/jGLjjs6tj1
+B9gO8stL6js7uVhTriiYGGVCr6f2rGEpB3+aW2cXedIKbHriPIL2OWHqkCLE
+1mMxcMODpTwXR/yBRl7zjrAI0u7uL3F5YY/71AW5wVupUD1vJV6Vboc7t0Xu
+30qlwLBwSU8s3RZXnlYGckrJ8Ova2cy7+SxcuV6lc4BIgfXbVRw2kYlZ/HMz
+KVZUKBvDJsf2WWPs/FJ3eNwUPiYWTb6cWII7E3qIkgRzqHXXAhrPAlPGkqPM
+fBfD0VMtOfsOU7FU6TrSKKNB2G8lRzZHG+E3jw+mTPOtIe7AvIkfftTF2p35
+HbcYDDgqvzZVbULCDs/T51MqmSA+0TP1k4Ua8vSn69pu2ADOHCSPDBaCidaC
+iIMWLDBYa10WJRj3IDeabPa5bQP6taYOZE8S6npSdWW2jAnKBprutFwPPbv0
+5aC9BgOCj1GHWuKM0Kmz0vEKd2sYcFjiS2FS0er7lY3TCTSIoulmdossED3V
+LS8WLYYJrZn+Ficaenjm0XDqMnMoKnjXUlljjTI/pN6h3zSFANbApe/dmYjY
+dIdRTaTCK0X390uVLESQmXTK/+m3a7hld93oMpTsKmVWlJAhI7GqWTvFDvUj
+5UJ9Ywq07pHp2hIdED16PsMqjQqN5zwcWY6OqCr0s6pKbQb1HZwQRoQTwuLC
+4vIuS0gUl/QzsjmoptVqZ53QCizrqHHMK1yEajN2VccyQVes+U36lDO6ejKm
+IU/PDj63j73t4/OQf4FwWXwsB9ah3gpljCuyeHTZrfWeG1z/vTlacsoNGUyn
+7BG9RbDOmb0xVOWOZrLkYpJQBFO1yoCtjOUowlPSnRslAS3GZ2F7yAp0y5gX
+ymGLwTQvnOusECDugxcfLgwIod9HlP3zZQ/EltDyMrIFEEQw+XBkG0LxTkvl
+3YGuEPy6gTe00BM9Xf3cR2TOgdDWHQdk1Z6oYt7QNzaZbMi3/tWrRyZEx6VO
+zRZ2S6E99YFWzEshao71fqyziAGsTSuGi496ofwi/5x912iQ7lne8sLWG2mu
+od5XCSyhVtq1gXbPG1nX0fONeWbwLmB2bFOiCNmzywtzP5NhQ3sFsVVTjHKq
+TvyYkGYMbb4hRtxCMcq+pC5TJxjCmlUC5CeQoJ9rzkrrswxgMJiZsHlAgrTa
+48vTBvXgQkcOtWyPD3Jr4gdprNeBZOlkw+hCKaK6bwxLZmgDedjSyrFUiogP
+9vrOQfOgViFO27XcF9WYhL29oJwDe36vmI5R+aJbfaRc+2kSuPfoJ21Mk6H4
+SVKRMEcDuCnq2FSKH9q8suAgIZwIbOMn8sKLfihacbyubyUBqlOYpf6h/mih
+4SubI/u/1v/3B/T/H/4GZmzqsA==
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->{{-60, 60}, {-0.0007146440279521698, 0.00040010361659988916`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic,
+ Scaled[0.02]}]], "Output",
+ CellChangeTimes->{{3.522542156195219*^9, 3.522542182530973*^9},
+ 3.522542280444924*^9, 3.522542411408412*^9, {3.522542593479043*^9,
+ 3.522542626285554*^9}, 3.522542681997767*^9, {3.522542723280386*^9,
+ 3.522542748242407*^9}, {3.522542949188668*^9, 3.522542977352989*^9},
+ 3.522543024498731*^9, {3.522543088219265*^9, 3.52254311067984*^9},
+ 3.522543163269546*^9, 3.522543203476909*^9, {3.522543258287421*^9,
+ 3.522543307465341*^9}, 3.522543371309052*^9, 3.522543444314203*^9,
+ 3.522543500408285*^9, 3.522543615581949*^9, 3.522543654012719*^9,
+ 3.522543714809282*^9, {3.52254383655232*^9, 3.522543954209074*^9},
+ 3.522543987854934*^9, 3.522544040177055*^9, 3.522544138645664*^9,
+ 3.52254423961056*^9, {3.522544332311615*^9, 3.522544359410752*^9}, {
+ 3.522544499019484*^9, 3.522544519115584*^9}, 3.522544551529608*^9,
+ 3.522544583202106*^9, 3.522544798152048*^9, 3.522544856018762*^9,
+ 3.522545918022345*^9, 3.522545953245106*^9, {3.522545984075476*^9,
+ 3.522546042552423*^9}, {3.522546198674039*^9, 3.522546306798113*^9}},
+ ImageCache->GraphicsData["CompressedBitmap", "\<\
+eJztnQe4VdWVx5/wqCZmxpRJMkbNxMTJmEkyTkwmKkWwBTWKLYpdxN4QsRsT
+RUSNCnbABgiISG+CIiJNuvQqHenSRJpwZv/W2f/NuXjeue/exzeQmckXn957
+z9l77bXXXn2tfdZVd17f5Jar7ryh8VVHnnbHVbdff0PjZkeeetsd7qvKB5WU
+VDqspOSgWkeW8N9RSYn+RO7/8Z/D+cPXBX9xvP2rarRjx47o5ptvjho3bhzd
+eOON0eWXXx6tW7euUuLnW2+9Nbryyivtn9tuuy3auXNnffu5etSxY8eoQYMG
+gBU1adIkWrVqlU3kX6vEOyWV9Za9VMf+Vo7mzp0baUWV7W+V6JBDDinxYGqI
+krQxapcHuopNUa+iKywWtZVy96dFixZR8+bNA8wvvPBCdO6552qQxx57LLri
+iivCz8zRqlWrkz0GZsyYYZDv3r27JM8rJ/lXzjjjjOjhhx+OJk+e7BDD3yrR
+q6++Gh7X65X88/71nH3JA1VFpqhf+MrqVgiVOftRM/rxj38czZ49Ozy1evXq
+qFKlStGmTZvsM78PGzZMoH/wwQfRT37ykxzQZ82a5c9xFED3r4Vh/XvalBUr
+VkR169aN1q5d61+pEu3atSs8rtfTpq2dPcXJ+2CKIlZWt+L4PCjemd/7n9av
+X28U4c5VmHz79u323bx588Lva9as0WjuMNtXGzduDHypTZs2gWmU+r+c4Dyv
+a6cWLlwYXXLJJcYnKu8FmXu1JO3dWuV87uQKzFHB5dXeN0j2W/Yr/1O1atUC
+MFX8XzeCbfz8+fPtt8WLF4eZJkyYYN8xC7Px34FlVuY/7Sv3aslxZU5RPUyx
+bdu2qGHDhtGWLVvssydfDZeYoaSwKSprisRJqAxOogsvvDBme+Wco1Y5nzul
+AnNIXlUQHSKRCm5czqk+OFqwYIH9dO2110bLli2Lli5dGp1wwglR/frGdPJC
+VdezskmTJon5BzZV3pXF7K0arDE65phjorFjx5Zr7vJu3qlFjr8v1lZ7H+F5
+r23bvHlzdNBBB0VTpkwx9alGjRrRiSeeGC1atMiG27Bhg73q2H0qu4rZaWnU
+smVL2P/etJjv9ZM93bVr1y467rjj9p4yiwnnG/q0woeu4GJq7yOc+i063v90
+7LHHBsFcpQxhPXTo0Oioo46q5xfAhjdq1CgaNWoUo1bOfusk/zPwLlmyJPzs
+eFNUpUqVshQE/3ad7J9PrtDgxS2obuGY20ub79KlS3TWWWdJsYqGDx8eXXfd
+dUkV1KmdYZDLLrssevzxx6VeuXVyHmMRk/2KcF+nTp3otNNOCxP27ds3Ovro
+o/NMWCf755MrNHgRq6lbIfT5PTjBc8u2bdtGl156aXTLLbdExx9/fDRgwIAg
+p7DJbr/99mCTNW3aFBqR4tW7d++v6bdlvKINgJdiSZxzzjnRDTfcENWrVw9q
+y/N2nfLAU+zgRa+mKNx57O8Ln8W++OLE+Av3vzmmDCa+dVQodPDPP6R8948V
+eO7/2rsHOnxV/3/r/3/rv/bTGSnfnfk/8FyBIB0TfxetmLoginbvtk+HV2D6
+H/nxNi5bs/ccFQH9Xj9sn5uei1ZMWWCfbk557ib/3Np5y6NBd7W3T/cXNtU9
+foj1i1dFbWs3jYa3eqvkloypJr4x2J5bPWtJcVOVRmOe7xO1rdU0eu20e6Kd
+W7dnLazHNU/ZoyyuwNnutr9Vol07voo6nPlA1PWiR22ouYMnpOLyRv/8ljUb
+bYFd/9TCnl81c3HJfXmmtl804fyhk+3FpWNnuUlbRP1uezFzwhm9R9nzq2ct
+jjqc9aCt9Z4waoakjSesGvW//cWoywWPRLt37Y4mdhgStatzR7Rpxbqbypyz
+ajSoeTtg41P0SeehWui9haH4LvtbLdq4fK2hbFKHITbi5hWfGxCOVkrSoLjB
+v7fjy23RK/WaO4Lobe85Yog6/vHBaGDzdiVFgVI5Gvty/6h93WbRF6s3BGPO
+bYBtBAf+xjLBqRwtHD7VELF80rzwbgI5OirlBam5H2LXV7uiTmf/OXr3nleC
+29ERoQ372SfzM0Ea9miX6I0z7ndbu2uP+yCBpSJBWjB8ik2/eNSMABLDciI/
+fKxrKkjX++ccKEamQx9+s6TUfzel6wcxlqYv8lRZMEhQ5Jvn/tVWqmEdLxKT
+EEZSQXIs0qb/9INPwrvC0uD7XysUpDv9ECLj8a8O8vbqnqnmDBqfCdLHL/Y1
+0t7+xdbwLstxICXptVCQJrz2roHkQAvDOrKO3rq4ZdTv1hcyQep2yWPRgDte
+jrmO/256jxG2nC1rNxYLUufz/mqkuOfxPULiy3WbNH3Ou9f55zYsWW3TOzDC
+uyumfGrfLfl4VqEgNfNDuMNvQ8zoObKkmv/OHepwuLNAmtJ1mD23eeXnASS3
+ibacyW8OLRYktxobFmkukBx2YjB7jcoECS2gx9V/s096F+n0/l86Jo9QoSB9
+0iU+tJBodf/dGw3ui0a17pmcPufda/1z2zZucXTYLBr/yqDwrjtpUbdLW5UL
+JPtFgHzQonPU+fyH7ZMG631Dm6h/05fyAuLOoS1izeyl4d2Jrw824HZu2xHP
+kU+QCpB3rvpbUKM02Ifu0Dq+lBcQJ8Oi10+/14SM3l04YloQHgVu0h1+CIQH
+fMTJtZIagUT3bFwWSLBUp0DlLMfpBfburL5jigXp84UrbYh5QyYGkJwgiVc6
+Y1EmSChhCA4+6d3X/3BfNPLpHkmmUihIUrnWffpZGHbjsrWeU49LBamJMOz0
+QzQGRzUlNf13fW953p26ZysC0rj2A6L2J90Z7dr5VQAJ0flKfbeZL/XLBClg
++L2JAaRRbXqZLIS+igTJKSBR9yuesE8atvuVT5piktikVJAWfhTrRmvnLgvv
+zh4w1r5zmC4WpC4XPhIN/WunHJDe+3MH5FlekBw3tumdFhneXTNnqX3nFJws
+kL4Rf8jOJaka/fznP7e4vn87N3mlak7ySqE/10z9OSXtpWrKKpr61e7Yss3L
+pfdLDvbfxRpCs+irHTszsZfka8Kee8eOAgpPObCXmflR1UJybgHhZ/+4fk5m
+p1T8Z5+kIh3Z56jYpyoZGFw5fWGsCI+eETA4//1JgZlkYbDPjc+abccnveuO
+VzhOzfJjsIwkj6rZP+dJESnXz9UyM0iyUDazz+igIGnZ6+Yv9wr45EyUYYeP
++Fv3HJSZ9L/g4Xwo0+P5EjZKy3yuavK5r2dcFPWzO7QCIpHOkYm/kc/0QFHI
+wYHTVEytd4c3FX/X+OdQu8Dz1G4fehrao7Bu27QlC3+xnaekC7cc/u5JG8kX
+pxZav/5c1eRzX89SKOjnRA6EgEikQGSiNSmyhZqkktwkA62BC4yZGd5dNn5O
+sBfKQZb7C381c37OyEYweKuwgts8KPgVRjzVPQdjTvtFJciLsTkDx3nRvya8
+u3X9ZvtuWvfh8Rw2W/VcPOULtpeW+VzuAfxa6kCen2vm/JyREpAmb2/3QAW7
+0hls3/Tf4cxEp8NvkYWxsW37R+3r3YlCH95989y/mLuFT3cULi18rLwsaZET
+Sq/Yz7mx+xoZKErauVrmrH5jgp6YhSIMyLcvi2W63jUbpvFT5UVRGaHsqtk/
+lysQnvfnMqLsWQSVNMG1YkIT8s1lYav75XtUDb07rt0AsxYhsnJgq4zQc9Xs
+n8sVuC7z59jdmB4Sz0JV0kmg5TqRZ6j6pPPQVFQ19s+Z3VUvtrsO8d85VSVo
+eRmoSjNeBFLSXaBhcTnqSF+TAdKmz7wd3v/j8K6FYIhQvDu+UJDE05Pugm/5
+7/re/FzU6/rWeUFaMmamP7qfBpDA3Ksn32WYKxKkpLtAIDkdMOhAWSA5UWLv
+OtES3u1x9R6sNy0OpKS74Ft7TbVlzcZMkJzExGNhn/Tu0IffxJKtCEhJd4GG
+JYBkKsjEuZkgEd/ode0zOSBN7vS+aZS4zosEKeku0LBO6Q+e1SyQcAq7E5vz
+7qKR04OrrkiQku4CDYv7+7VT7zEXUhpIV/vnCDYxPUEqH/BGfQknLh9I9sut
+Gixhef+jCPOapwjFJfGQCsiaucuCsSRAwjlz5/a2MFuGy1KArJq5OBiwAsRh
+iA3IC8i89ybGx2D+8vCu8bS749N1e2GbJJBm9//YhnUsLgw7/tVBhi/IMQsk
+XLd6Lrkcp8lXBCScs9AIzjMNO2/IhLD6LJAMm17w6N3k6SoSpAHNXg6HVsNq
+Mz8d9kkmSFDaAO8c17vyNa+Zs7RYkJLqqIbdvvlLG9atOBMksDvi6Xdy3t2w
+dHWIuBcI0i2ansiLG2LKW8NKvu2/I/j4Yau3ktPnvHuVf07a+rR3Pio5NHHO
+zAPrzlmRICkCSHxKIOEK6nPTc3lBUhAq+S4nTnrcbcWBJJfMF6vXh2GHtexC
+1DkvSMo+4LTqXTtxcXZAsSCNat0zSHgNy6mRtpsF0ujnegeTSu9O6vhefOK2
+7SgWJMSk26gckNxJCzIpCyTMEKdw57wrl7jj58WC1PGPf44+evLtnGHlS8P5
+nwUSoRSC28l3FU91vK1QkHyGSsKK/6jkO/47YulwZUIkaSBd6Z9zyov5jzld
+ejd54vKBZL8IkM8mzw/az3f9d6gVCh9dlQHI+kWxzjln4Ljw7jtX7Yl03Bxm
+yxCxAmR6Tx8jX7cpDJZUubIAkc7jjLrwbny6HrVPtxa3SSihHc58wD5pWNOp
+vWKaBZJszq0bvwjvTrKsoThiWiRIBKn73vJ8DkiOawf1PQuk4Y93wxuV824y
+4FQkSObg8jJJwypQyYZkgcRyel/fJufdPadrYqEgKZ9ty9qNwYP0PRGrN/sg
+1iyQyCEa9miXHJCCZdu2f7EgLR03J6QiCaRwkN2waSBd4Z+TeEY7+Cf/HRHF
+wffGVclpiYTlAEm22LaNW8KwsLv3HnwjiZFUkJI6lN7lxCmiWCRIkKjEqYY1
+oeCdpVkgBU3TmZt6N5w4p0EWCZIjz5AioWGJEr96yt2m6GaBNP6VQSZOv9q+
+I7wrXkUMv0iQSIBwIOSA5EzFOF60an0mSO8/1CHEgfSuU2jCcSkQJJ/CFixW
+Eh6+vxfJI1qyQEI1U8aU3kX7HP5EtySjyZZnAkTulZXTF4bByDCz9fUelQrI
+5f65YOM+06PkB/47B1jU85qn9yw2nzwTIEmnowAhdRQpTSZmFiBuE0PClgD5
++KV+wemYDyNlgGQ2lt97DYt/U5boFRkguU1Uum14V869tfOWFwvSW41aRkPu
+fz0HJMtwuuSxvCBJpyZLT+9KeMDlCwRJyaBKQ3O6cMkP/XdjHfLNb+SQnwXS
+6Gd7eZ16dwCJTSelZFSbnsWCJINm6bjZAaRZ3v4nNpQFUlKntncrIXWLBEQ5
+UVs3fBEAUSYhYb0sQJKiRe86nBhuwFdaCnM5QIKhySuoYbf4lD9iZGkgXeaf
+U1ISAvif/XeKuTlKygJp/+e25LZ1kcM/rSNMWkBX6COldcgD8QEUCpAv0ugu
+z0CffM7kfuldaiTkdisH+vZfcktu4xYFRJONW9LiJMryNYeN90we5r8zf5GX
+Y1lokwaAiBLaQkThpX7lQdv+yGhRMnOyjUoWiiQxlo2fE1CEBOpywSN5UaR6
+AFRTveukcEBvWub8AZLBUprzc5s2beIckMpknAVYK2fgTYpDcu1JZSILb+S+
+dzgjtlj1rlOjUKfy4a3kwMxcqZHzcxlNQJSvnYpPEh3l2BZOFD/HGsvCJ/ap
+nFmHeQ7rtGR7t0v7UVG/vrOirVt3puaVHyCpKzkINKSlNeQwBFomyZ4c4hYO
+dW/koE1yFb00C2043Ia17JJ4t1q0YFzMDi6p9VRUp1bb6MwGb0QvvfhxtGLF
+ptjbdSDlseTOooO9V4eMNKJTMYHFzGvHMfPDA1YexMBNYirn3UuTssWb+zH2
+akYzpq+KLj6vU/RyrTuiznd3iqZNWxn99S/vR/VPah+dVKdddP99g93+rkuL
+zB0A6S2VPQL3amiRhUAlhi2bMDcgcEDTl4I7MAuB8mk6QetVwqqYdtHb3aYa
+wi65+K3ozYta4j+p5A/12rVbotdeHR+d80enPp3+ejR1yorUQMwBkAgjmk92
+qMjCpCVw144zF4VJ0qlwYOD7z8KkXER4FYTJnj2n2wF+8P4h0RdfbI8+eORN
+Inelfo/B5BWXvx2ddsqr0diPl6Q5sg+A/BgpM8kuE2nKjJDoOGHwJguJc9+N
+i2LWL16ViURiRBLKP/Tc8KYb+0TXXtMTsrS9ndrtw2BYCZMbN261Z06u1z76
+cNinaR7CDPtIkJOd6URgDuRJJT0Lcjwz8n3JnF29+ouobu22UdcunwSWLPsU
+Va+Khx7SuPXmvsad+veflebuyIA+WQFlkcmuH5Qc4b8zt6kzxse1H5AK/SV6
+bkf83JgX+gbLsPvbUw36zz7bFKAXv4VXV/XQO6Ee3dV8oD3bs8f0NCOyHNAH
+D9ikeSVHBpw+GRJrLs2AXvkLBJkEPVRzXZOe/q3E/nqzWtDv2LEr+vOD7xn0
+Q4bMSxPV5YDe2TbGOFA6Bb3lh/mkhyzoVbSyftHKVMoRE4N54OvDk1otAX3z
+Owca3Y8auShti8sBvTNqgzda0IckbqdaZ0GPW0LsMTjKEpQj6OWD+XzBCq+5
+xJRz/XW9jP85KZ02TTmgT6bgCPokNWVBb5lo17XOObVJyhH0Kt2a3nOETzaF
+52yLrrqiu8nATz9dd0lh0KsAQdFNh++SH+/1HT6ZNOgb+edgiTggCNimUY6q
+RaliFl8T9Dz3pwu6ROed+2a0bNnGRnmgt18Es7LVyOz4F/8dsSDlQKShotFe
+mJzZZ3QqvQhmqB0tEGqv6WF2cEZnn9UhanRR12jdui1/CoBl+JgFs8ORr1vf
+HWAeeGfbUI6YBfOCD+PidKom06hEMAcaX7jSq+Wl0by5a41CoBTH5y8qjkqw
+MOR6EvQUdJOhhaM1C/rx7QeGUKq860kqUQGv9UzwoY1veOgnT1pup/PG63tz
+Wv9UGPRKDA5BhZ4jS37iv5s3ZGLAVRb0g+5uH719+eP2SdAn6UVlpE6tCjQu
+6EeOXBTVq9vepJPjlBcWB33gz053EfTrFnxm381/f1Im9CQwOUrOgT5JOYJ+
+mJMVzhK0T9/00DtpZKvEdtm1a/cFxUFPJqiq6gR9Mic3DfqLU3iToN+0aZtB
+1fnNyaGKVPl1SLBDPPTsEapvyxbDgP784qDvdM5DIWvzKP8d6bbu5CbxnAq9
+ZABmkaCfPn2lQfXxmCV7ynITdP8tD33HDpPsucdaGvTnFQa9ck6drPNO3/El
+P9VOOw3XUUVe6JOuLUE/cMBsgwo/gCokoXtVFAn6N16faM893upDRMS5xUGv
+TgzkcAn6oHuv35wJfTJ8JujbvjQ2OvXkV8FngB66VxD7Hzz0r782waB/8onh
+QN+wOOgH37cnMibo5WYlypoFfbdLW4WEAUF/3z3vRldfFTv6Bb3iH3CGf/TQ
+v9J+vEH/1JMfAf05hUGv5EWyKKhCpxrqZzqNG78ImYdp0HvRYrlR8HtK9ySt
+Lm30FnwkB3oV3iOJD/XQt2s71qB/5K9Dnem36+zioKdvECM7uVlydIITys91
+cQb0q2YssncXjpgWcO8gMT7uKCPUdjnqCnQv6N/sNNl40913DUJa/bE46NHl
+yUQgHUnQU4WmThJZ0IdS1BWfB+gXLvzccDr0/fkBeqP7hg/Zp2976Pv2mWkW
+4C039Yk2b95+Vh7o7RfBjLtHRUlHJ9ahLLEsmNGMZHML5uHDFxjM8+etDTAn
+qf07HuZhH3xqtoc7GWhkDQJgGRqZ0gWp7UZ/cXpMyb9q932uDAlNWTBbZru3
+tgUzuw/+tm3bGWBO0vh3Pczjxy01nQbXltMo0xqrZVDJ1xJnx8wM0Nupdfo4
+nss06L365HuV3GFeS53QR1t8gD5un1RNBI07PmafBP3MGavM83bWGW9EEycu
+b1Ac9FbcUe9OS/b5uf+O6go5/9PUVEEvbdid8gC902fQsnKgxzJUw6Hveeid
+5DJNGNdin94z/lAc9Oy+s9zsk3QaKHHI4LnRl1/uCPb+1Ldjl5yjgswVkahI
+n5mkDYvO/vxzo3NWpEI40sfjhKAq0ZYtO6J7nWzgtLR+emT0ldPGTytsWd7f
+E9LuSA+Pl1WT4aILz+9sw0O0DzvGPHrUYmOJck05BTVrdRa29nkjSf2fIfv0
+mRkqqxBXpLOS4vJ9vzonqy3ywLNNb+8ffb7uS9/kvODVqQ0E7Eir+8BtGkM7
+ZTJq/cxII2w+n3VGh6hr58lWne/U57TVeWU+x7bQ3k2YsMyGmTJlRSjKoeDC
+qHHzl/650ujdQXMMqQ3P7hRNmrT8lOIWZl2sPC/Swm64vpdZqeg67hvbRqdz
+Bj9Z91tfQiJmLUxKNckVWlivnjNsYZ9//mVYmFgmmQU/9Nu2YMG66LJLuhk7
+7PDGRAOjfmGr82680L/EgRPOGhEWwOjxzjTvIakSbd/+lfmy7zijTZASaeai
+ludkd/COaXmcnzMbxP65ZDEVHp5Bzdv5DIAqnHHjl8Bw5x0DovXrt/prfgpe
+XuiK5shCy/vLn9+LzvjD68ZK5KKdPWt1dHad52UopK3sggTEVhHyWNfgjbyj
+aX/sPvukCislShFsOMxPM2hgTJEcBGe9nlTYopLJedgFJONrUStXbjYd6sUX
+xgSLnyhO61rNo243vZi6V1qRGA1SWSu64LzO2Bc5K0rSyo8SpIh2YLbgo8Pw
+gegKk0KXpTqX+UMnh2W55diy3PKCUxTe2LJBy+j52s2jTRu3ppn9Wpl5OX1b
+OFEhHB1o8Y2oSgceOqBZnFChleF7bd9unE2PF23sx0t0dUa20qb1jHj6ndBM
+UE4dSBvaczQYDNQRr8cZHq3u6l2StZiBiexfLQa6ZTFOZoTF4BCC8FBwj/CL
+4bkrLnvbmNMTrYYTUIl73efT5kJ+mONw+OvwxGpzHH+wyR2/CH5HaWTX1moV
+fTR8YZpX43wNueMrcy2Pfq53IDucIgy5dOmGsJ51n8bOmFn9xngHcFVjR6+0
+H2fK6R/P7EBYhVNxfGGUp8Wp7pWaRu0UohEW71h9cPbBqB7/wyN2OJwamub0
+0OI++2R+SAXU4qAmAIZdq4AG6SJN98d+s5YsXh81va2fIeKmG3qblv774lbm
+A25W5auVjRix0IZ20jmsjGyZV065J6pb62WcI1krE3nRBUsre/CBIdGVl8ed
+PbQyFAIyCvEl/IvfNkLPaHHwP87VM0+PiDZs2Pq7whanmBwWhvzjokkkMAoV
+etrBHp/yRT5yW+zNR8tJc/loheS5q7hOK3SrY5U5K1TRD9bHUX6FzrKzVaEB
+c9A7dZwEqRxX3Aqli382eX5Y4bnndIpaPPKBfdIKVeUx/MUBRmF/e/Kj1BX6
+7yyxVz4ErRAdhnfdsQrVHs7mDI0gf+pXiJf+gfsHGwmB6fffmwdF/2dxK6Tt
+InG7pN8eHHq10evmVWjTYW2Hn3t2tFHOwgWfl6Q5vrTCkFk4bWFYoWMqNq5j
+MmGFilyTT3y0XyFecSwensWa+fDDBazwPwpboWJQSgrG/6g9JGeF0d1RDCuk
+YhmrceWCVWb9YW9lrdC3dbL4gFaI6cC4c2avCSuEc6MtIN9iS7aancMRHy2M
+rr6y+96r1J1facvc/5m+pcmfuTdS93glrotUVC91N8gBJyeLaIl2Y0D/2O+6
+ZMkGvxtV43YZceq7Jcvw+/hxS9O8lecmEE2YjDCFklm7dP7EXkXXVK2TZY7X
+jmsFfp7YEDYANqMNQRbCxv49/4YcSI3x/KWRle1qs8rJ+yJTN0ahFFNCfa2B
+QgFof7AksHCIn67frS+YurbDaQDIZ0jYkW2aI1Ybo0p1zrg2Bt+5E+P2SRtD
+jwW8ssNadPY99auZGjB06HxTnozjXdA5eqf7NEt1TOu7fwBkJyuZ4+sXRVZO
+XhSZuRs4+NFdsZu0G7hdJeS1G+qGi+sE+gVF7jhl7QYRP988PuzGrbf0xf9g
+n1SKNeaFvubDIj7xi8QxGT16sWXTyJHQ9uWxFjH5edm7sb8TodNyKHNvh6ye
+ArzCFQSwUKRwpCrUcfGfukYPORtiz15UC/3UfbFYdPNNfUxZgPekefo9L7O2
+BdaP9o3BIb0V5+ljLYflbAi1cWwISUS/8sueOXOVpdfgieAfMuGc+Dy67L0o
+OTCTq3NnkYcxeUtjWmKhtojyaFBDV3MdF6f1GUpefWW8t6CrmpqNzGarZjmT
+DHPMWelZuzPJ369A3qF255T6r5iaxie5/Ag5wLwcEyv5tacI3LEvv/SxHROO
+C7wSYYZ/6aj8x+XA2AvNkrx0cU9vQfmbaG1OtAHi1yFxdpMt22mofgeqBScD
+Pl7ozWnS5pFZvfqLkrSAkudkVromP5W2gaxExu/Vc0YwyCXGyNI71r6rbpSA
+gdrkmh72PLbBffcONkNs585dPwqLOSBTvpUfmrhHMbWMSrEb+g5CsBuWrg47
+gY2geJN2ItwiEHe0NQ8W8eOWLYZl7oTSoem4rJ2YP3+djT9y5KKgC9PvBr0X
+/fg3fk5nNVic+ryGnex57NDnnxtNfpdyKguR5v9z/RDLvD8xLVNXkQGsPFgC
+OZGKMhN9hytt3/6Vj2lXC61OiKMwNI4VnsGKSAtTaieoN0SXxrmgnRj78RLD
+7OxZq/fYXeNmBwvot/5MoFeNGbMYIeZUvFfsHc4HeSXr1289LP9m7M/Oi2Vc
+qJi1GXZDRa34GiNtBp7oiy9K9j+qZlLWrrJ5fbANjceQAIZTkfwlUVXs6LBZ
+TEOqEkX1XoaQNm2i6OOX+oXLovr3mxXHFdZ9GVQuvIkQB+6Z//KbQsojOe2k
+g/E8RHDbrf3M0ecY5A/yb8r+SGDXz2Vcspi2KZIatGOjSJn4meLqmF733D3I
+Ph3qNwVeAvf3N3gZNwdBHw1f6ONl37SWymQIojqTw4Rr0224TcvGIxWIv+HF
+ICwBf/TB6TjvpnYcVdGmcVKRFOTFa9NocEU4gzuzTvCbRv4BWSkyHdEp8F4Q
+dHMW7ffK3rQ0r4UwQ8YBmgrXGolcObOcVadSeB9Y9dC7HA8VmOEZ1AwUSCfb
+4qjUoUbVCAYifjxOyir9BOjaBFsAAtx0OEFAYK9rn7GFchKgVHoZOBF8uocE
+b5A8dMLXE48PxzqzT4Ebvdzf8Mo1QbU8xHhXySUAR+AKnIE7p6dFc+eu+XZh
++JJzXi03yCAWJcnfNHDA7OAzdEfVYtH40UPH6fFxPPOtrlNKdB0pBcXwVzyt
+eOocD8ennGazVfJEigrEbVyk4gAKwpUKPQwtXTseQtzvjg8lELhM3YlPIK7U
+FFSEJ6H43bt2xRGdGiaj4dDYazAHoCbL+Km/jTDzj+jPtwpD4Pl+RpImCDD0
+ur41EAuHo0YuCjEGdXii/wOEQX6ycIgH+vRTX4vWOD2utschJ1KZEOCc9zav
++DyNIZT6VyiooJdDn5ueNTz1bPI0/bF0Eys7Yvr7th0BfVC7TDHR4qcffBIk
+Xhy5rInSbUWSQIoXmlXhycSWhR4J0bjTc3Ax6ItLW6EVWr4oXwUOwCzsinCH
+TsAhpG+kcMeuogOTQVbLixi0LAiI04NpQTVOmpFazT9PXzOcX76HgGHoJI0/
+baGNM779wFC5QtDmuWfj/Athsr/jOQQrmOtkjzW80nhLOZ2cWFEdeeKPPDw0
+GvzuXERTGmgZWJMP1awBB9m4dgNCngxRzPPOjXN65UNVriTRnEp7YXfSpOX+
+2ugqhl2wxbPkdFMFVDNl/up6fvOXtnN2/d9Fj1rmYh1/IGD8kF+nhg8RaxGS
+iHyJWQiZZJaw+STon+5fd0qUqd2kuDr9oRIvua9xHPAVuRHOPEzjJxl4O9cP
+TugOHgzMjqMJdRR73NG0fwJ1NexEEeR6+/LHLQEHIbHDvU7K4uWXdkNIeP2j
+CrqRoS1JRGnnoaZ/Htc6Y4M+RCqKqK6HnzNoXMibEJ4IXShV78gEM1EBWAM/
+Lm4mTAUcfYQ6nP1cEiOwioU8SJ8kV2PBAtPBsuKn8nrRKBswyVb+N/8dXKBN
+61H2ST5IxS0IdorSxo1bGrb8tx5EYMSRzLbjTaODwjdT5leECIZulObG7nVd
+a+u+eILfTRrVIjRoK+DGFbY+mfxZSLM5MrHxhMfoDeRE1Fl+dKQ+1jYIQ6M/
+95xOHmF5YuXychjDdOghIVboURJT714zgpcD7y9J48TU01j/bzxApLZT/sFy
+EZ34MQ9JQY+S8ZkfbRjm7v7bx5Et1glYNG8TwbznQ9TLl230EdtSU28QXhCj
+4wENw/oyKOMc/y4eA3RF7pNw6NXqpRRMduxFqycBQ7d27M28EUH/6YckERpm
+zLAz+4xOu233EI8o4hyIXBBFpiimhA/HWicrtGPycFW71LVLHNBwR9jH60qt
+yBgdxWnR0E+B+ehn+1HYMlQOsiLdf+viXNXYYrvIyQKLZW2k4VbaC7APh33q
+/V9VLCKjxmN0d3K2Uuo1w99KPm9huGb2POr4b7Xtf+5gDiZuoREyCEY6QWSf
+FExSYR1X9xWIiT8mDhntFliiUz5+4UcmrKz0qR947kp7LGiW8lTOBNyVw3j9
+tb3MubFhw9aSX/rV8SzDWqD48W72/KEpYCjVnRRYUdHsAWN/o6M6LD6q3MSn
+iC1HsLHPnv9JQn5x9ECm43oF5vl7D5DRJLORa+4DYdHtziRVtlXsY6huBgIz
+oaHJSoOFY684dv3vHijYKyoGOJv33sTvpMx8qEcXHR5gN6CLKhscq//hhyED
+HrTASb/asVNoIC3w7rti0/EoMdct26zggJSx9YtWFlgwcGYCmbrF2FHoL/2E
+uPed3WOfZCOqsgQC1OEgC4HD4bRpz15jiYDfGuzC+bFHv5sCwrf982Q/K6cD
+W5iGIb9K8D9MOs6vO7s6C+TJkIrAp5/6RzG5eRTHkZMgBZYgnJHAhwHvFjrm
+hb7ChzIH3u421ZsyNexRTEqogzbIUAZaJd4m/ICbNm3zGnMVu5cHrZdnyd/j
+TrM0A/q7/nmqGeD5MBjiVXDPX3gQwS/mE6TmtPJQnOVOp4odjg44WWuuAWjE
+PVpgYUMDPwobRIABnDjD18fxQ64BNVE/8qfFYGscw+ZvEscHasFWpx3+zC+P
+BJuxZmw1M72MO1a+nwLB9xIkRVoCJIV6iK/r3xI7hoBgLHcKFSWhR4IPGvpd
+KLWAF5QEOtbOXZavUmKvn/6QQAf7bkfmlUG/9hOi+DLhyhWbveFR3ciXySBr
+ChZBh8qUHNqO8sujVY5sIvgSHCHNJ6bsairUIHVODNnyKCFHJ9BBzrKvv5Oj
+XPl8Y8cu9QZJqYlohCJ8a83cZQXe7C57AFMDTwoTTuowxCezWCUcNhUh9iM8
+OtbMXmpWB8FEYudkQuIVww3pxLDS1Ej1o0EhI7LbGDv/nAJBjKKq1ggG+uSw
+YIKSAe0sfTFKbKfB975qwzkiktOJNBUwgq4tWmJmMILG5mipwBKP0/wojrQs
+9QgV2hl4x/oJn35qhOmvfDrSY4Qr2nFJsfPwwIXurKB0kZ3sNvJwv0Lon5/R
+EzhatCN2OkWaM1u5zvQ2IAfK9HI3A54q6VWYdXAX6Gda9+FyiUgjgnEd44ch
+TR6noxmz7QeYpVVg9cWpflYMJxaAReD4oc/rsgI5lbXGFFDNnFkUcgM8W9ev
+59SQuHVYYtfxSpnnz0FH24QtazcengKBXgGlXBUBD+AVhnaQHOEBRIaDXRRu
+p3rK20Ftm9sT+/QLMTAHoFgiHk2c3acXhpaTE7yQQhKGohk3Q0klQpTcf5/5
+6736U9WMM3gdDOPJ6ztG9R3PnzF9lQ4DzjpYKwvRGlfNXHxkCgSHe2xjptHR
+nnUDBc0NUHtQd1QZAOsk55MhUU5w3wbHRothWN326ZcelxQ/o+KDajd9vsoW
++6W+n8usb6fZMBfWOjTn8xxN92z99Ej7pNRIXEpcVwnsrevdF9125nPRxg1b
+vyticgimBzeVA4AE8uDfKO3/kgLXkQkixM3JUWZopgD5BEi+56eGhXL/KCcJ
+2jZZvWOnbC1KX5xSaZ9+5VcHd0AewB3ki6gfcJBh153kB8ChiZoNehiI7CMZ
+E3BUfM9vdprsvetxPHTB8ClR50aP2TpeOPUBqzck/+UfPB9irUiVDx/rasyP
+5yAHhK5TItJi+iGf2ak8HCouZqoEUO47KAR7BTtKYVl4GFRl6HJrZysQXlxT
+JEsE341SUGVrcc4BK3ZltbDlnlzYUavrh8KXzqrMDeTOCKiXTerEtrEYJ8aD
+nxPMdX2if9TqxHtZWq2mbgz4JsEFmAV5uiTDx1Hrb9jzgEtiOVWPKJJowCwX
+jCL3YFPIe0fUP0sBVfIaSURXKWd/+amrmuikPJmz6gwfMyR27fwqnr2meaV5
+Dd8jj2Bj4KFmZmwK9tIdW6m0eDbavjTWPh3rEYTBbX4vb5pQ3lBggUxtPxSx
+WRw6DMW/uZzG55oHzXHChGWeicQZ3Fh7Deu9EL3bup9VFTp8VfZoB4WsH30A
+nsKNHKX+N1zw+GSQkIsdhbGtaUlbUsZpYEzXLbbCe/lKNA9sE7cXCjZOyNdO
+vSf8BgXSEx6PIDwHpVzKMK2YVNr0G78kzG1gIt6EXwunj9OW6haG0BP9aIZQ
+L9DR6Wf1HYOWI4/SMF8St2Txeq/OHGpAoV/h016+fKMdVSwRzgE1jrAfjhad
+t2DutFYGYH7jGfQEtzFpeaLxif2mKVfgAkZJuB9bkhOOgc6QMESYJseBGwuo
+4pPkV4Hz8OELPAOraoFIwAHXMCLGdPIpX33MXj/9PsH6YGvcaqPoIF3c3c7o
+vZCESzbbMV564c8lkADytmzZkVb9oasZxnsf6qxZq727uapdfAL9sgjUf+6C
+cgtPgzRjEb/ziwDF07p/FA4mi+AmD2xIj5foxefH4PVNbE0pVb5mEKJgOTyk
+FXpoEWoQgafzeL8IXBGkVKJVQ8GcFqfAF1gJc5xfhFM/zbThHLAI/EWEeNkJ
+fyCivzz0Pp57+ySXjEqB2rcbl1qqohVQrYi5QaL5iX5OPAJcI2CqEGrw9a1N
+8NEao8DKkGP9kJwIHH8IIuPoXBbllDe4my+UtDp8BSvEbIkhI5fdKfVUkr4M
+4p2KEdX2sln7LxWHzUAMINMdDfymsJXEEMXeC+wxzjsWOyOjGaGCkm2ATang
+7kUXdglJm1Lw0DSoIcKyd5SWhk8tijLn66+N71I4yS8K5zRmKjydqWmxBIUR
+I3ULLrAk4hi/KDRZuAyUpmg1i+L8w/FJo1SoHweech3lbtqrNddvMxbVpHEP
+klLtU30/PZ4B2PSwR7uEhAQEFzglE4MeZr8sbGWxbVbTtCf8psgQVoMKI5UC
+Xku+9NYNX/iyfosJK4Mw+BZXfxGdf+6bZm07BpdWOaTFoWU/2yYOIMl8Y3FE
++Ul9cKQYKyWl5shFm8bodurevxW2vNioOdj0aJRINCtEr5aH/kLIHCpFOYFd
+eLeNdchSrcuxHkg8s+r0tX791rSzoRs+pCpjU8r7h5UDh8An7xi3dD5ICaGE
+XMQzBxQ/zbNQ++VHnpdy2PDF4eLGih4YF4tofDaRGDUhAkoGcaArgKXKG/Le
+FIahlwNeAsxDJ+PTKqS0ys8+2xSXJg2e613fcYgPEYUkxMqmtb90TMgVdkBI
+j8sfWK6CxPkMlH/yTNJnkdlSkP2oGAScnRKaMw+xBXQF4IAfOApT1gs9TQB7
+3botXp0qtfx8uA39Ojdv3n5sxqqnTV0RQujn+VWTjU7ZGwFTtEX6dcfQVAum
+FEIb+p47eILJPxxxPyyMomVRkddLYASqxRhm2yErelM6S7GyxwOkRb4SvJAj
+RCTOkZfKJchOIFcLsXbcXnhg9zdt2pbGKhV3gp9RdD937hpkOzQf8gbVQ4GK
+2Is8nQIwhg0tYND/2SEnbip7NKF5QKcUILOxSCDMWTp1FJjeVN2zTIQbKUmw
+TdDEQUdvJJkND4ebvUTTI/hQgvANYr7xPOoshfBX+lUly29+6xFGAwW4/TVX
+9yC1+tcp4CjwT2dJaunJZCDoQoC+ig/Q000b4fCC07WmTFlhe6IovJRIqncu
+88cAbZtOXmAJhHIMUOCdBepNlxpmuvhrE80YRkrAJFCX8A3u3tPzqmzMHmy/
+EOYEkxAcmhXMCm2cE44pCOY4gZoavY4Nhb0ieZEsYJT3oQOmVqtM3JHUK/Pp
+dx6rY8cutbTqxle9QzQwrbov3uTvWC1/m9ajQnYSUogh6dvQs8d02yCoGjW0
+Y4eJ9iy/Q+XKpqarF885rCsjlQTrs86I45bX+GNHVAySBInccIAJTmkeWSJu
+9fHiv2HsB0cvlikespFP9zAtHaOKAwD+iVJjSu5heif4ibkioSTOvvTorGkW
+NgQLOpEVKJ64QLCjcGjB/t3B1g2ltLxQ2e9/eYyO8w2GIDLH+MrWFKoZJugH
+CHYgbXr9UV1KTmcNjwqsv6Hvz7e8iT+c9po9S7UZVWcOixKj/Hz1ld0T8r+G
+uZhwYiwePcNQwqnE5UQ7KxgYLQer2sJTyfIEDyW9VfgVQYIHDvUBAw/5do+f
+nlrm57yq8XuPCCwX3BNkAC5atD7N/lReHWEesp1ZHGoq0Xqn/HzLQ0BSE4wO
+lCofE0uZs6scWZKS724eB1eb6+w6053gDRoyTivUK7oZJohh/9esFnR5TVpl
+xX0eA3A9da5Q7g4BIzRFKoYdt/tFyutaIpHHPr1n2FZSQUSEy0mabyd+BufJ
+ElQnmKWqJmO595fN6g7EitSMy26y0L1kSZy++96QeZ6Dl5qedukl3Qx/Dlne
+oMl5nRnRb3XucS4jvP8pgWfONpl4KLZ0EnQ8wLvec+LDD+TH8/4rMM0zdzpO
+YRkg5ZPJn/lMvdiaA1n4BZyAjk2TasnXc/rmDH53boiecSKQ87xKYh49Wnz/
+KlOkFFnOQOT+rg0tqHQ0i1zJhJWiKO8ufBVvrXqdovf8q1+9KSMOf3yvTktO
+nB3uX8V4QfrpVZKIlQbNb3zvJGF5ULu/6ggLKjPMQq1SfSmaquPxwzmVNwtW
+CdqP9jyFIWCjyf5cR/r3sGcxFzjjFElQeiaXlCqoFy78/H8XXq3Id05CKu/v
+EsdiKiBTSYP0YLf99qme32I4DwwN7o7yC9koaSJx4mw4epsp3cadPvNKWn/Z
+v42wHEs5XZOe4yLEwv9kpWLm3OlYJLO/+Z1xf0mFl2nzBfbABiKXe2iO8L/t
+1QDPxlTYiNwusKU6KHwTdfw8Sdd1ObC4P0sMM+dOxyLZbOrZdorHBvWY6Odg
+iswW2HgsPePeFqSxYx76Hokl/qyGVBs6xUrHX7J4vQIZkLec5+VA5P4sC8yc
+Oxfqe/3qICEQhg52WuLgku/L9xjGlBr/IEGOUveaNTUxKm6WM74yuubMXuOV
+9g60LFfJAjhu9diH+ZCa5qcR5MqZ79tnps//qWKNBtTohwoNZ8L7BMaqVpqu
+tmReucI4TbuUTxQhFRiqGTFioYxtAsOMQruDB4sDXmoFADbwNMpWUL6Ktqwa
+Yfr+Y0GrqwJbQ0XmxRfFGrUzU/C4pbFtRQ5N57yht+1mv76zFJ39fN2XAX1F
+LkIyfN7ctT57N17EoEFzTN7zG3UvvtwwHBGsDdgd1pkWOm3qirSuE4ocsnnc
+dsaae7wzTWF75RCOGbO42EVQx6FGpLE7+rvGLah9QE/E16nav+fajLIdwjOE
+AxMpxrMUJhB1JTRI6jrtSIDUMrIfHsri1AIxBwalaoM0+DXvvNV1ig/HhXzA
++fPXFbs6Ot46KOxTQz8b9x6wRURhnXFX3ZdL4ZDBkY0G6ER1WjGSIm2smfa9
+PgFOCSs4zviKTPwi4QVbF10Y946O6/1qWAkVGCZH46PhCw3LVAHDzykdoZ9F
+WiXmrxLQqsdqxw6TlJhEcwS3fPtUJLQUjLu9tk9pdyv/OgGBbA+Hr+MSi3Xn
+pCIQcMwc5ZQJwX8kIGA6KMwxAWXzUdyqbLB8ENgvmhengLNGy5xX0S9MADrG
+wnwcL1OeBezLbYl9uj8MnhHIkW8OZqas97RL6xWP0n1McG5niCvhlQPZru3Y
+YjAuCNR/g7h5GgSKDVGUSMzPB26Vk60waM+e00v+XBwE9JJgCCdOUyFQVGbV
+qs0mvok+rlyxWXlBc+asiYOUHy0sFgLFwtwMqRAozEGePeuna67bEaUejPSF
+zgQQi4QAkaJc7jQIFBLAK81zNG5yclQ5HKH79Lovi4XAaS8hLyINAjFxx89t
+qjdenxhSSMjfRYFAshc5PYdKOcpp00tCwvg49GQ0KaeR7Fgx2SKnxyJRrkHZ
+05eaV0b3ojlqUKUbjkIxziIhQFNXQkAaBMd7CNas2WKnAPntzqTyYMnrFOMs
+EIK7/RCqwMFHfWvKc/Jb0zgMxkPzAbfjylEGJS96FlokBEpXo+tTGgRKKFMa
+PZAqk1SctPvbU0seyjO9/aJJVaJLrWzapFLx6Y8GkbvlhzYRYp5Oc4z5bz6+
+r0nVt5J7ssqetNT2hJ0m8OLsP1VWiGU6tTvvYsuAgBACB4mAdRoEMhfj3W5v
+xKXpxS9JZityetK1nNVin9Kml9kvdoNar8zdJLMscnpuZnTKYZ7pS800uufu
+QUbcS5duUOlTklkWCQFORhUepEFQ10OAgCVREiPVaT2qRYNfOkZUEQgwV1o/
+M7JMCNQDgggnW9DtrSmhVNb4pQ+uFjj9XX4IuiMxLIn0t6U857OizU2H2oOX
+VhnxMEu1oChy+sWL19v0xCTKnr7UbCIidNhADv9H+tfFLCns/0txEKhMHN9N
+GgRyLdN12zhb92mhkh23hdohFDm9MlLBa9r0ihiQWyj8H+G/U6sweGaR0+se
+NzysZU8fyzvyQui1Euq19vTFgoEWCQF+Wney7FMaBMrNFK+GUjQ9kSt4AuGB
+jOklMomZJf4nCOAsqr0uG4KYC+HywPHkCE+tamg0Lx5gEjcpfZQhQFooQwIt
+9h3ME5HHXUzN/EAkmKhvVhocisuRDwjjpfOFgMARpuByXkwcbCKDX0lAwU+i
+pjCIGFgcqiRKLuEuD4qxP7dZZYKn+KtTn2w8/DcqqV6T6ETx13x0ckjyJ7tt
+Ai8ItjmnX7ky6D6gHscCXhO3Ozf62dThxRF3ye1lQhpfK81mkhjhXg89wEfv
+sYTyApv7UxxtqWmGIoyF3qFkY6lNFh5CDGYcJY6l6V5t9blyX6cCrFRedc4g
+IitoVX9KWn+B0Fb30CLc6JWNBg8+mAKIicrRQRpCdQqKbg50nDKuahm/LAPa
++LzQaQBLcePGreo9QR6O/BMFAnywB5iRsQJRS/Cm4TcAImQp/UhxIbotuNLP
+qMCuEzapAPs6T0s6IKr4lDtIyYsBnZmXD9r9nyRTdGP32MlVw5yh2NC0b1K/
+W9gVkh/h51heuBWDdluqJUnDqHJeuLNKlw2oCzJnA4LldD6cH6MHUh5MgZ3Z
+D/WYxRELNyB8pMapsDFIFyUeJ7ESYXH0OjK2T1mY3bBhq5E7QT9hVpe30qSi
+HJj9e2utHhpi7dptXlu80IpqhI7AHy20qK+Sf/Huq+V6GjqVGycDh7YB6iRF
+qpf8URno3N/5L8X1Ro/5WzVTJpBSokuUbE4trWuVpI7/XsHlspFYai51fLAY
+VW6T1PsNDU/pq+XA44HRNLu8DcxjDWdPO14CGOjp4BLzDPXEKc/Kn0YBUL+Z
+NFT63hQhCIbBLTyipjiN5+8Lj9nNxw/z2EMTgxMqxIV8wLGFKuYwq15GKmUh
+rNw0BQNK9cVKAdPE6tU3lA1CnHFn5UMBgAMkm6a4huHqIrF82UYzKHBIQjQw
+RRga/S1EUKqPQXXMQt1s31SfOkShTnmcqKePFC5XDtAm3z/x2EM6k6SBqsrK
+IRJueKPAWNKWMgjl66VhTwSKBs3p57Y93b6mgmXsoXJg7++kK/fP/Cs4i2Hw
+rJpTS/h32tQVsljUt56EvCzEEVViCMJ3Qhxd1JHrNLgsB+L+Tjpn6wYpFDju
+odeVrngW0F6I3sjnoZZ88LE07J2dwJT6zfv2fHbZjLwaGdhLM7N8ArHZ0XBl
+bCDAIOBGqBwQ5RbD2j/91PgK5iwQ4fAslbiwQORSSC4rKAJE3WcDV8c4IZ/G
+QLyyux1mQJTnlJCBE8Vlgqhu/NL3SEzS7arskryuLQoD8ZeeNvYGkXIrd0Lq
++hnIsFMiWNnQxdkcVLWgVLj/1qXEygd3/y4UwF8nAMSRRy88hsLgW7wnU42v
+lVSVBuDeBZyU4go6hzb7jtsyC4TuWA8d5iI+DiK+mJK4rJwpqqwpZZq90n58
+yR0pw0jxIjaII4KjpOuq4dbn+/hBgdCp9QX0QXUXkEHeNEfb04MghNKogMiC
+jug5q2j78tgA3dUJd2CB0KnHLcq90upQrUj5UQRZYon06TTQ1OGZIAtcmOek
+JqGH8R1l5Y8WBtrvPOJw4eAFw98E8sjc2rZtp9JouHlXvL9s6EoN/+AdJ6Yj
+BV9CGEqm6WWaD0D75fceYwQUMH/YDNieszNDS6ZkpnIaTOok7ia1yTt1nKSa
+RutbznfckPdImDUjRHmCB4gewoQdAQh3Nw5j5buQCOLsjTIBkv1GmgLuUvxf
+1T3iOFaENKEyxwAK3MUTPXSMglcDvQl04TJVY7ykn6dZmdCVWsogVifmjYNE
+dy9jlPI6gd6WhUGn4g14I2uEvrDDEArKVyGgKmafBp2ucVDYBwHgxbk1amZM
++nM9VhhodTxoeLVxBKtuhCx2JbLobgyCKmmgybdBSAhllT7KpR6Z1rr2ul5m
+zjtWVyB0J/lREPr4VBHQTvVVggmJiuTzgceyASs1bz/sGnE1edJymdLKF+BQ
+tioMMBUGcK5JToMwaMkKJMr+IG9YtzCkQRfXfle3YAInB1BQkuDRgth9frww
+yJRsj37zkK/PpLs5ATVlhcDjFJxJgyy+BK2asVXsNvx6qm5hg7mcr0Cw1HQP
+NouzFoSheJBYrVwNcsksaazH9JI7U8a4JMFjcUsCktNInygMErXV4K4uAsaU
+QbptVO6G9BfCr2lAyOPMpSNkGvCpQFwo3EOaCLdPAoXTEZVG0d2n6nIE0yBY
+Vdhsin4QVEHmgnlH+cqawLJ09GCfipnNflGHVhR0DC7Af/21CcqLoHe1Ow1l
+zrEiDJQhgNTKH46CDsAcaDrEWtW+G+oCm+RsNq846nQ7E8MSd2JKCr5JjjnS
+Tyk/xqCBc/bFlGd5TGJpIcQQlY7MjvCzKacQw2ofzKb+5NwAw7B+NoWzFcpD
+xu+D2c5On00hY1LDG/m7s/bBbOekz6aLhJAFToHaV7M13Gs2bDxHJgqK4omG
+XTk1UmH+isymWzvI6odKkNzuHChGmNQ298Fs0rxVNOkUrBCOVAQY59Q+mEoq
+K1fAMixev+8nvsMlw4HfZ1PFUWEqtn3ajmJXSGKnxNunfTCblEu4F20T2LWB
+A2bLlQ4Q8j7cXcRs9suFfg7E9p3NBigbXRcFKUzOZelpc5SLC0ul2ivzXJ5Z
+NA6sWjhkMetIVZG+1h5M/hp6UGCUYaXeU/HZLvazUXKFmo4dt2zZRn/ZRqgN
+ps/4PpitkZ+NlofqnOVMD3kq8COgmmBx31vx2aQ7YdiDRUJiTiOQbY8XTRVG
++2C2S/1sdEZBYaQ8ym3WN/xsaMbYkJzkfTDbZX62qVNW2Now/Fat2ixTl2QW
+9Ru7r7DZ9n8WRW4vkdhyqRJ17NgxatCggQVomjRpYkHVtIDM5R4z1OGhxIN0
+p7z7Ii2z34n7U8lUJGb2XzZEbtsPBcJmzJhhWNm9e7fM4xzwr/AYIUOLBDJ6
+TDgCkZFPzgm2P72Q03qilAMj+yOLQQG6WbNmRQItbfVXevohTxQjEO5N1gKp
+NLLYcX8QQIEdTJu2skAs7O/kg9Kcn9u0aVPVZx01btw4wJpWDHuV/T3YmD+9
+zOD0EAj2LwKV9C5sJfxW/MbVemklveXAzf4KhNfI+Xnbtm1Rw4YNoy1bthgp
+iXbsKFgsOkZJdVs6mfFQBChRUBJH25IlG9IqzJaHQaofgGu39U6aNClq3rz5
+19e+11KaeLpCfcJpjxbs9JGHitv7AyOgr7PSsmVL2InWn7b8tKs40i4s2dfP
+HQAx/MoeS1BOo0aNCKAe4FjaH7F6UeySJUui+vXrl3mO0u6sS7u6rbzP/V97
+90CH7wDIfpAa1Lt370w16H8Lyv+fFDNJ0WxFI4Rko6qYefHn8PJ+UXLQfwMR
+m8xc\
+\>"]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Re", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.", "params"}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"Im", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.", "params"}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",",
+ RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "All"}], "}"}]}]}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.522542762323259*^9, 3.522542764447953*^9},
+ 3.522546267445561*^9, 3.522546298673073*^9}],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJwtlXtU02UDgEFHAg7lNvhxGTE253AyNrYxA937wmSwDQo+QpSUAJG4JF5A
+kWOhXCYjChMEDC8YwhwLEQ35KJP3VawcyhKUo+JYoOAngspFFPi4VOf0x3Oe
+/59/HlrCrv/sWGJiYpLwN//Y/3HmyOJiGK7/Zd5dW/seMDZa74EpYZjEz8+7
+VrQM5OY1vD3cHYp/bOEWmuaaA7PO5fF23qE4m9UabV1rAYoc027XFSvwSzEr
+eeUTS3D/pey/5Ek5bnLVjxxgkoHbTda5jBg5zq9gjjxXWYGSzBDDw5syfK/5
++m9bzFaCeUYyRewtw37vT25PiLQGH4Yq+FNfh2BiIHHuVJgNOJPBiWh4EYwX
+kjbclifaghbmsTFRZDDWP2i88VRpBzofTR5tvyrFWQNXPuHesge/LXW2/95R
+ilm/j4/1fOQA2rzgiZyMIGzsrJSYWhLAwDufEtO9EdckUZbMTTqBGeEKf1/e
+RpxztWsizsUV9P365ptnVRKcO0bG7pvdwPWox/0VJAkmdhk+k+xwB0e2Konv
+4gNxl0A7R+hpQLHdO/xkWwDeX/u0jeDRwYOpzRZ7mQF4bneFWZofA2xX5d0I
+KYGYNbotn6VkANaLR8f8JwB+tlBIZDLpoKi98czQ72I8ba84XsqigoavLPfx
+Czbg6betjrGpi+K7EUmKXLgeSwX3vC72EiiXe51xwNYf+5BGUckLNvJZ6bqQ
+PvgB/slzIGHBlo/qHs+ftTi9DmcqeKHr2UJEaP6U1EaJcBXFUKCyFKIeliTX
+394XV44fstvxngCV1qvbursFOG7w/6OaDh9kCLBYtD3Px6JiecXRJh5a3ZsG
+Ig/6YKVxvLa+hYsEcVEykS8Pv2pwydOe9UaH73yp9n3ijUt273m73IODmpd9
+hMPzvXB8/EW3xndr0XCge28qg421nCOXfppmo5oti0fulLIwublaG0xio092
+G/kcUyaOFYbpU13WIM1rTCk6SMctTtOj91Z7ojfp5949nXLHgxSX9DoSC7X6
+mSOaiIrrd0YMOaqZqLBSV3Iwj8Cp1KbVs90MFPuDuiAx2Q6XpZeXmjE8UFrO
+sqmqU2S84viaGpULFRUm/DzdTFmKqbqXl/b+YI+k3/ROn6ZOIv1YtkPiUTNk
+vYWuSRJPAPNVGcuFVSSwotWJ6xCwFMrVSlp6jz0oa6eRZxKs4Lnwn6V7Wqkg
+qoh4rkuzg17Hd7U5Mj3AANdd7sgk4O2lDVbu9QyQRCMf6QmiwqxYJXdeywRT
+5nP9Oh8a3KxS6Lh0Fjh34pXuYgsdPgwKN5QCTxDBGrhc7seE9Zf7yl96rwGD
+qp5yzzIW3EfEG5NJbLB/WHfg2sgamDobx61+wgbK9KZbFlleMKsi9zv6xFrQ
+ka0gs025sJjPf/9DPgfcrAU8Fo8H1RaSXxhV3qDtD/6mVfE+0KRPiEpquCBd
+qu5fVcyHZ8TjlrpKHnC7RqQxrwjgg2TvEM0FH0CWktbmTwuhqyzKxDjCB7P6
+16N/+otgtfO86P6sAMRAg7YsZR3UKKoWtgQIwdVLt5KDKz+AOo3RrrOXD2KE
+nG3RRj/YUGAbZs3kgOnWsojPVq2H/XstVXe7XP7uPBuo37QB7u4c9bFSvWpz
+OhYnEKrEMC5DPLN2iTPqDwkqrv4RwMLjDX1WSg8UaUIZL9gF4cK3RaeHUhgo
+aqhd9NwmAF65MWxdEslA0R17cxTNAfCEaH6CIqWjUnqNpFcRCDXLkytvLNCQ
+/osu85SngTDWNNew54I7Yn26YbiuUAJlXQ99lXVuKD+gXveEvRF2fT5Db+a4
+olbZ/a20zo2Q6oQ+7iM5o1cRi68/TQ+CldX9qosEgbbqtaYdJCm8rLb9avCQ
+A7ot32QnOCmF0TmMGq4tBW0OF8NQcTB8FBY7trXJDj2LYu5MHAiGpzzFEq99
+tujCHyWEJjsEGofMrbg7bVCm7F37iI0M9smKYrQ51shh2M2Dd14G37DOHjKN
+WolaVdLD+9fLYcHQtZrPu61Q9iXtTIpRDg3/u37n24/JyK93Rca2wwpYZTlT
+TsxYIkHWZOoXjqGwyTThwbq7Fohj/zDhZGMovKW2+bWjzRw1ZzHPh0WHwZb7
+Ts5c9TL07w/gvz9AfwG21tEN
+ "]]},
+ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
+1:eJw1lGk41HkAgAk5k4wZ4zY004gwY5wzzf83jmHMaB07EkWOtUlRsaUlOVqy
+SqVLh47JzVakIvX//VrUDqGsDkeiQkOhpKiw7fPsfnif9/v74aVExPv/tEhO
+Tm7jd/41uzdxbGHBB3Xk7hu5Xz2E91/W2g5ifFBF6Ejm8cARPD2j6lNapwi1
+BZm7NljJcKU29XCCjQj567trh8aO4Tm6sa3FuUJUe+JsfsbsO7zrneCmxpQ3
+suttra4ImsSNm+iXEoK9kT2z1ilk6D2el+jV96xJgFYH1ydekEzhc8s3Ebk2
+AmQyr5dYL5nG14iEdtMHvJDbp1DNJxYz+LkEa7+qUU8UGfbex4n2Fb9BOzLp
+GOCJAqvweGLCPN7WPXWosYGPVhw7vynARh7eU9DXuajLRztuj0dLkALEV4GC
+1AQPtFCkfiBrdDHsY5TGBHe6I991t65xpWpw1l6T7cBwR3k1kni1yqXwefPH
+g8On3VABRxxdWa8N74p7B04ouqEI/4en38aSYNb638inwl1R3jXRmrgrBlAY
+aeN7BuchCelJrHcUBT6dDlLdQeOhN8wI24t9VBi5P+NPrzyATpB78zl/W0L6
+aPcR9gcMFR+JDD9QzYA5jZfPDd3nolt7gfw5SwdY9bvaL3b7ViOu1m1Dk+su
+8KFftDAdcFD2nqMT0XEcmG57d3mSNhtFeLYviux2hsylhvNxr53RB6PCJUu3
+smBx79wF1UIn9MCSRQG+VpBc9sKtSOyI/Cer0jeuMoOP6W7pbB0HFO+pl0Ls
+IsL88hK8s5OF/MupXNWG7314qgvapXbotW52mn7IJL6iJxYLSGaitPhvdwbJ
+PVzWRrHA0YGBQKVZ85bJL9y0B3tKHF7aoCSR2DEoZDEmczXt2bzcErXISPWa
+3dqYZN1C1oN8OlJV0au9qK+LhWzrt7OWpyHxr6JgYqUBVjaBiDnJ5qh5m0Wz
+jtAU+xh36fOraVO0t/eY5aCCOVbnogIpjkZIN9PwJamNimWflOYlZ5DRYUua
++l4pHQutLNkXtYmACr/sHEUmVlhsqvL06bMaqO/x8VZTXxssO+LWTC1RAekZ
+OZQXyGwx/sGemUKjKciz1le/0cjAUNYwaXT4DBwUUxSylzExrXXmZdHcD9jL
+S+NBB1oYmGadni2JpwAmTbfvLnltix1tpGjMRiwBOxmSuWSiDSbOIb+RxhLA
+TL3BjVwjK2zQ1tRbl0YGxTqzWwuULLBoikbWYw8jUP5MclCtiYpNq3wbkDIp
+gDQfY2wCzbBLBePSKzfMgZ/A436DpinmRx+sOe5CA1uuOy2ZBgbYTpk06c7Y
+SkA837FnnEXAWnYLNSzlbYE1dUmxbEIJayrCGHQGA6TkX5/1ZX/l4h12gdRw
+JqDLEVomCge4cfySAWquHZg8xMmJlH+LG98hx9Kus0Dqqcz9KoZKUIOvaJU5
+Yw98nheLt0h14Jf2ibcv2I5Ak/BjUlMaBQaDvoqjMU7g5vPuu5TslbCh+q9N
+niedgbLyhpi4ISYMtrfesLbfBUT1Tj2tVXeGM3VH/X6mckBLalsIJ5QDVahf
+XNsDV4PhJDK2x4YN9Y5sZNnv5wL2ibBDZjRHOODlkXv+GgbkQm7P8U4yYYAc
+8f2+eACKCqOBDncVFA81Or5ZxgOdxm01vHwaXNuyI1VYywMmRvfab5dSYL65
+xK1H6AqinM6aGWQawvaURyoxr1xBJxi+dzhMF9LDVsuKs93AIEmnZDGNADN5
+5dKXlu5A2T/uHN69FNYJutZT2txB6ByvjP9ODY77LUyExXkAbZ/wq7cWK8P1
+7RXyLYp8oNT5yl+LqAhbvQMJrDN8sGzlD05bS+VhkC8XiLieYFaxxihxah4f
+FtO2Rg16AlG+fJV64Ff8j448ctluL5DiU26nnzqDJwo+N44tEwB0UKlLXesT
+TpIZmzFKBUA6Yuodv+gjXrefn7aT4w3keIS0R84f8N3VFbMx/d5gpl2/yiN3
+Enfp0UzYkCYE5JTmls8W4zhr19TmFF0RIF/d0p/XNIZb6zyLOHNZBDqY3MLW
+Ihleu4tW6rPWB2wzUJvqyh3B//s9+P/3/wBZ5dLn
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->{{-60, 60}, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{
+ 3.522542775492355*^9, 3.522542960547408*^9, 3.522542995770412*^9,
+ 3.522543035134631*^9, {3.522543296264867*^9, 3.522543319510829*^9},
+ 3.522543384500983*^9, 3.522543455525264*^9, 3.522543514229852*^9,
+ 3.522543626701997*^9, 3.522543667475726*^9, 3.522543726018032*^9,
+ 3.522544871173848*^9, 3.522545966092067*^9, 3.522546271481462*^9,
+ 3.522546301931841*^9}]
+}, Open ]]
+}, Open ]]
+},
+WindowSize->{960, 1029},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+ShowSelection->True,
+Magnification->1.5,
+FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)",
+StyleDefinitions->"Default.nb"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[567, 22, 32, 0, 109, "Section"],
+Cell[602, 24, 66, 1, 63, "MathCaption",
+ CellID->836781195],
+Cell[671, 27, 151, 3, 43, "Input",
+ CellID->2058623809],
+Cell[825, 32, 1762, 59, 121, "Text",
+ CellID->525777075],
+Cell[2590, 93, 68, 1, 63, "MathCaption",
+ CellID->429217524],
+Cell[2661, 96, 1155, 29, 179, "Input",
+ CellID->433132487],
+Cell[3819, 127, 689, 25, 63, "MathCaption",
+ CellID->133602844],
+Cell[CellGroupData[{
+Cell[4533, 156, 1586, 45, 125, "Input",
+ CellID->534530029],
+Cell[6122, 203, 2005, 57, 124, "Output"]
+}, Open ]],
+Cell[8142, 263, 217, 5, 86, "MathCaption",
+ CellID->462076121],
+Cell[CellGroupData[{
+Cell[8384, 272, 528, 16, 98, "Input",
+ CellID->494599775],
+Cell[8915, 290, 2450, 67, 124, "Output"]
+}, Open ]],
+Cell[11380, 360, 76, 1, 63, "MathCaption",
+ CellID->358620443],
+Cell[CellGroupData[{
+Cell[11481, 365, 464, 15, 71, "Input",
+ CellID->167259034],
+Cell[11948, 382, 1077, 18, 177, "Output"]
+}, Open ]],
+Cell[13040, 403, 102, 2, 63, "MathCaption",
+ CellID->577766068],
+Cell[CellGroupData[{
+Cell[13167, 409, 2629, 57, 233, "Input"],
+Cell[15799, 468, 3242, 90, 172, "Output"]
+}, Open ]],
+Cell[19056, 561, 724, 27, 42, "Text"],
+Cell[CellGroupData[{
+Cell[19805, 592, 247, 5, 43, "Input"],
+Cell[20055, 599, 2272, 66, 106, "Output"]
+}, Open ]],
+Cell[22342, 668, 384, 12, 64, "MathCaption",
+ CellID->610306692],
+Cell[CellGroupData[{
+Cell[22751, 684, 272, 7, 71, "Input",
+ CellID->645617687],
+Cell[23026, 693, 1053, 27, 120, "Output"]
+}, Open ]],
+Cell[24094, 723, 92, 1, 43, "Input"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[24223, 729, 53, 0, 109, "Section"],
+Cell[24279, 731, 98, 1, 63, "MathCaption",
+ CellID->690131918],
+Cell[CellGroupData[{
+Cell[24402, 736, 230, 5, 71, "Input",
+ CellID->718931880],
+Cell[24635, 743, 672, 14, 71, "Output"]
+}, Open ]],
+Cell[25322, 760, 390, 12, 64, "MathCaption",
+ CellID->854192725],
+Cell[CellGroupData[{
+Cell[25737, 776, 459, 13, 98, "Input",
+ CellID->465762594],
+Cell[26199, 791, 1836, 51, 146, "Output"]
+}, Open ]],
+Cell[28050, 845, 76, 1, 63, "MathCaption",
+ CellID->314466782],
+Cell[CellGroupData[{
+Cell[28151, 850, 424, 13, 71, "Input",
+ CellID->298399236],
+Cell[28578, 865, 32297, 840, 580, "Output"]
+}, Open ]],
+Cell[60890, 1708, 38, 0, 42, "Text"],
+Cell[60931, 1710, 117, 2, 43, "Input"],
+Cell[61051, 1714, 2257, 48, 98, "Input"],
+Cell[CellGroupData[{
+Cell[63333, 1766, 1777, 45, 125, "Input"],
+Cell[65113, 1813, 28311, 470, 339, 4676, 83, "CachedBoxData", "BoxData", \
+"Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[93461, 2288, 1347, 39, 125, "Input"],
+Cell[94811, 2329, 5076, 90, 336, "Output"]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+
+(* End of internal cache information *)
|