1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
|
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 251067, 6348]
NotebookOptionsPosition[ 243537, 6132]
NotebookOutlinePosition[ 243930, 6149]
CellTagsIndexPosition[ 243887, 6146]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["setup ", "Section"],
Cell[CellGroupData[{
Cell["This loads the package.", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258751485*^9},
CellID->836781195],
Cell[BoxData[
RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9},
3.522586258751662*^9},
CellID->2058623809],
Cell[TextData[{
"We define an atomic system consisting of two even-parity lower states and \
two odd-parity upper states. We apply a light field with components at \
frequencies ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), and ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition)"
}], "Text",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, {
3.522540911043191*^9, 3.522540911147507*^9}, 3.522586258751843*^9},
CellID->525777075],
Cell["\<\
Work with real and imaginary parts of the density matrix variables.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->145610755]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{"DensityMatrix", ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}]}], "]"}],
";"}]], "Input"],
Cell[CellGroupData[{
Cell["Define the atomic system.", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258751924*^9},
CellID->429217524],
Cell[BoxData[
RowBox[{
RowBox[{"system", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AtomicState", "[",
RowBox[{"1", ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"2", ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"3", ",",
RowBox[{"Energy", "\[Rule]", "0"}], ",",
RowBox[{"NaturalWidth", "\[Rule]",
SubscriptBox["\[CapitalGamma]", "3"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"4", ",",
RowBox[{"NaturalWidth", "\[Rule]",
SubscriptBox["\[CapitalGamma]", "4"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
"}"}]}], ";"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9},
3.522586258752063*^9},
CellID->433132487],
Cell[TextData[{
"Define the optical field with three frequencies, ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
", ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
", ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
", and ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
"."
}], "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, {
3.522541679413973*^9, 3.522541681294852*^9}, 3.522586258752202*^9},
CellID->133602844]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetOptions", "[",
RowBox[{"OpticalField", ",",
RowBox[{"CartesianCoordinates", "\[Rule]",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"PolarizationVector", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], ",",
RowBox[{"PropagationVector", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",",
RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",",
RowBox[{"CartesianCoordinates", "\[Rule]",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"field", "=",
RowBox[{
RowBox[{"OpticalField", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["\[Omega]", "1"], ",",
SubscriptBox["k", "1"]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]", "1"], "/",
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
SubscriptBox["\[Phi]", "1"]}], "}"}]}], "]"}], "+",
RowBox[{"OpticalField", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["\[Omega]", "2"], ",",
SubscriptBox["k", "2"]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]", "2"], "/",
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
SubscriptBox["\[Phi]", "2"]}], "}"}]}], "]"}], "+",
RowBox[{"OpticalField", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["\[Omega]", "3"], ",",
SubscriptBox["k", "3"]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]", "3"], "/",
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
SubscriptBox["\[Phi]", "3"]}], "}"}]}], "]"}], "+",
"\[IndentingNewLine]",
RowBox[{"OpticalField", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["\[Omega]", "4"], ",",
SubscriptBox["k", "4"]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]", "4"], "/",
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
SubscriptBox["\[Phi]", "4"]}], "}"}]}], "]"}]}]}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->534530029],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "1"]}], "+",
SubscriptBox["\[Phi]", "1"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "1"]}]}], ")"}]}]], " ",
SubscriptBox["\[CapitalOmega]", "1"]}],
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "2"]}], "+",
SubscriptBox["\[Phi]", "2"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}]], " ",
SubscriptBox["\[CapitalOmega]", "2"]}],
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "3"]}], "+",
SubscriptBox["\[Phi]", "3"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "3"]}]}], ")"}]}]], " ",
SubscriptBox["\[CapitalOmega]", "3"]}],
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "4"]}], "+",
SubscriptBox["\[Phi]", "4"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "4"]}]}], ")"}]}]], " ",
SubscriptBox["\[CapitalOmega]", "4"]}],
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
",", "0"}], "}"}]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell["\<\
The Hamiltonian for the system subject to the optical field. Each field is \
assumed to interact with only one transition\[LongDash]the other terms are \
set to zero.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258752645*^9},
CellID->462076121],
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"H", "=",
RowBox[{
RowBox[{"Expand", "@",
RowBox[{"Hamiltonian", "[",
RowBox[{"system", ",",
RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "_", "]"}], " ",
RowBox[{"ReducedME", "[",
RowBox[{"_", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
"0"}]}]}], "]"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258752779*^9},
CellID->494599775],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"Energy", "[", "1", "]"}], "0",
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "1"]}], "+",
SubscriptBox["\[Phi]", "1"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "1"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "1"]}],
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "4"]}], "+",
SubscriptBox["\[Phi]", "4"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "4"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "4"]}]},
{"0",
RowBox[{"Energy", "[", "2", "]"}],
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "2"]}], "+",
SubscriptBox["\[Phi]", "2"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "2"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "2"]}],
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "3"]}], "+",
SubscriptBox["\[Phi]", "3"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "3"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "3"]}]},
{
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "1"]}], "+",
SubscriptBox["\[Phi]", "1"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "1"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "1"]}],
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "2"]}], "+",
SubscriptBox["\[Phi]", "2"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "2"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "2"]}], "0", "0"},
{
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "4"]}], "+",
SubscriptBox["\[Phi]", "4"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "4"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "4"]}],
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"z", " ",
SubscriptBox["k", "3"]}], "+",
SubscriptBox["\[Phi]", "3"], "-",
RowBox[{"t", " ",
SubscriptBox["\[Omega]", "3"]}]}], "]"}]}], " ",
SubscriptBox["\[CapitalOmega]", "3"]}], "0",
RowBox[{"Energy", "[", "4", "]"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell["The level diagram for the system.", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258753087*^9},
CellID->358620443],
Cell[BoxData[
RowBox[{"LevelDiagram", "[",
RowBox[{"system", ",",
RowBox[{"H", "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Energy", "[", "1", "]"}], "\[Rule]",
RowBox[{"-", "1.5"}]}], ",",
RowBox[{
RowBox[{"Energy", "[", "2", "]"}], "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
"]"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.52258625875322*^9},
CellID->167259034],
Cell[BoxData[
GraphicsBox[{{{{},
LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{},
LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{},
LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}, {{},
LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}},
{Arrowheads[{-0.07659574468085106, 0.07659574468085106}],
ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}],
ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}],
ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}],
ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.5}}]},
{PointSize[0.0225]}},
ImagePadding->{{2, 2}, {2, 2}},
ImageSize->94.]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
"MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258753521*^9},
CellID->577766068],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"RotatingWaveApproximation", "[",
RowBox[{"system", ",",
RowBox[{
RowBox[{"H", "/.",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[Omega]", "3"], "\[Rule]",
RowBox[{
SubscriptBox["\[Omega]", "2"], "+", "\[Omega]43"}]}], ",",
RowBox[{
SubscriptBox["\[Omega]", "4"], "\[Rule]",
RowBox[{
SubscriptBox["\[Omega]", "1"], "+", "\[Omega]41"}]}]}],
"}"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["k", "3"], "\[Rule]",
RowBox[{
SubscriptBox["k", "2"], "+", "k43"}]}], ",",
RowBox[{
SubscriptBox["k", "4"], "\[Rule]",
RowBox[{
SubscriptBox["k", "1"], "+", "k41"}]}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{
SubscriptBox["\[Omega]", "1"], ",",
SubscriptBox["\[Omega]", "2"], ",", "\[Omega]43"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"TransformMatrix", "\[Rule]",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SubscriptBox["\[Omega]", "1"]}], ",",
RowBox[{"-",
SubscriptBox["\[Omega]", "2"]}], ",", "0", ",",
"\[Omega]43"}], "}"}], "]"}]}], "+",
RowBox[{"\[ImaginaryI]", " ", "z", " ",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SubscriptBox["k", "1"]}], ",",
RowBox[{"-",
SubscriptBox["k", "2"]}], ",", "0", ",", "k43"}], "}"}],
"]"}]}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[Omega]", "1"], "\[Rule]",
RowBox[{
RowBox[{"-",
RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",",
RowBox[{
SubscriptBox["\[Omega]", "2"], "\[Rule]",
RowBox[{
RowBox[{"-",
RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",",
RowBox[{"\[Omega]43", "\[Rule]",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-",
"\[Delta]2"}]}], ",",
RowBox[{"\[Omega]41", "\[Rule]",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-",
"\[Delta]1"}]}]}], "}"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"k43", " ", "\[Rule]",
RowBox[{
SubscriptBox["k", "3"], "-",
SubscriptBox["k", "2"]}]}], ",",
RowBox[{"k41", " ", "\[Rule]",
RowBox[{
SubscriptBox["k", "4"], "-",
SubscriptBox["k", "1"]}]}]}], "}"}]}]}], ")"}], "//",
"MatrixForm"}], " ", "//", "Simplify"}], " ",
"\[IndentingNewLine]"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Delta]1", "0",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
SubscriptBox["\[Phi]", "1"]}]], " ",
SubscriptBox["\[CapitalOmega]", "1"]}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"t", " ", "\[Delta]1"}], "-",
RowBox[{"t", " ", "\[Delta]2"}], "+",
RowBox[{"t", " ", "\[Delta]3"}], "-",
RowBox[{"t", " ", "\[Delta]4"}], "-",
RowBox[{"z", " ",
SubscriptBox["k", "1"]}], "+",
RowBox[{"z", " ",
SubscriptBox["k", "2"]}], "-",
RowBox[{"z", " ",
SubscriptBox["k", "3"]}], "+",
RowBox[{"z", " ",
SubscriptBox["k", "4"]}], "+",
SubscriptBox["\[Phi]", "4"]}], ")"}]}]], " ",
SubscriptBox["\[CapitalOmega]", "4"]}]},
{"0", "\[Delta]2",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
SubscriptBox["\[Phi]", "2"]}]], " ",
SubscriptBox["\[CapitalOmega]", "2"]}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
SubscriptBox["\[Phi]", "3"]}]], " ",
SubscriptBox["\[CapitalOmega]", "3"]}]},
{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
SubscriptBox["\[Phi]", "1"]}]], " ",
SubscriptBox["\[CapitalOmega]", "1"]}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
SubscriptBox["\[Phi]", "2"]}]], " ",
SubscriptBox["\[CapitalOmega]", "2"]}], "0", "0"},
{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"t", " ", "\[Delta]1"}], "-",
RowBox[{"t", " ", "\[Delta]2"}], "+",
RowBox[{"t", " ", "\[Delta]3"}], "-",
RowBox[{"t", " ", "\[Delta]4"}], "-",
RowBox[{"z", " ",
SubscriptBox["k", "1"]}], "+",
RowBox[{"z", " ",
SubscriptBox["k", "2"]}], "-",
RowBox[{"z", " ",
SubscriptBox["k", "3"]}], "+",
RowBox[{"z", " ",
SubscriptBox["k", "4"]}], "+",
SubscriptBox["\[Phi]", "4"]}], ")"}]}]], " ",
SubscriptBox["\[CapitalOmega]", "4"]}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
SubscriptBox["\[Phi]", "3"]}]], " ",
SubscriptBox["\[CapitalOmega]", "3"]}], "0",
RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[TextData[{
"Set ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
"-",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
" = ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
"-",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
", and phase-matching: ",
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"-",
SubscriptBox["k", "1"]}], "+",
SubscriptBox["k", "2"], "-",
SubscriptBox["k", "3"], "+",
SubscriptBox["k", "4"]}], "=", "0"}]],
CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}], "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->525228576],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"Hrwa", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Hrwa", "/.", " ",
RowBox[{"\[Delta]4", "\[Rule]",
RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}], "/.",
" ",
RowBox[{
SubscriptBox["k", "4"], "\[Rule]",
RowBox[{
SubscriptBox["k", "1"], "-",
SubscriptBox["k", "2"], "+",
SubscriptBox["k", "3"]}]}]}], "/.",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
SubscriptBox["\[Phi]", "j_"]}]], " ",
SubscriptBox["\[CapitalOmega]", "j_"]}], "\[Rule]",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], "+",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}]}]}]}], "/.",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
SubscriptBox["\[Phi]", "j_"]}]], " ",
SubscriptBox["\[CapitalOmega]", "j_"]}], "\[Rule]",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}]}]}]}]}],
")"}], "//", "MatrixForm"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Delta]1", "0",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}]},
{"0", "\[Delta]2",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}]},
{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"0", "0"},
{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"0",
RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[TextData[{
Cell[BoxData[
ButtonBox["IntrinsicRelaxation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRelaxation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
" supply the relaxation matrices."
}], "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.52258625875446*^9},
CellID->610306692],
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"relax", "=",
RowBox[{
RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
RowBox[{"TransitRelaxation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522586258754587*^9},
CellID->645617687],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Gamma]t", "0", "0", "0"},
{"0", "\[Gamma]t", "0", "0"},
{"0", "0",
RowBox[{"\[Gamma]t", "+",
SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
{"0", "0", "0",
RowBox[{"\[Gamma]t", "+",
SubscriptBox["\[CapitalGamma]", "4"]}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
Cell[BoxData[
ButtonBox["OpticalRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
" supply the repopulation matrices."
}], "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellChangeTimes->{3.522586211804159*^9},
CellID->854192725],
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"repop", "=",
RowBox[{
RowBox[{
RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
RowBox[{"TransitRepopulation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
RowBox[{
RowBox[{"BranchingRatio", "[",
RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
SubscriptBox["R",
RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellChangeTimes->{3.522586211804293*^9},
CellID->465762594],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]], "[", "t", "]"}]}]}], "0", "0",
"0"},
{"0",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]], "[", "t", "]"}]}]}], "0", "0"},
{"0", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellGroupingRules->{GroupTogetherGrouping, 10000.}],
Cell["Density-matrix and field variables for one point", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->314466782]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vars", "=",
RowBox[{
RowBox[{"Join", "[",
RowBox[{
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], "/.",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}],
",",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "4"}], "}"}]}], "]"}]}], "]"}], "//",
"Flatten"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell["Density matrix evolution equations:", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->398692331],
Cell[BoxData[
RowBox[{"TableForm", "[",
RowBox[{"eqs", "=",
RowBox[{
RowBox[{
RowBox[{"Expand", "@",
RowBox[{"LiouvilleEquation", "[",
RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Rule]",
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}],
"]"}]], "Input",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->298399236]
}, Open ]],
Cell[BoxData[
TagBox[
TagBox[GridBox[{
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Delta]1", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]1", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]1", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]1", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]1", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]3", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]1", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]3", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]3", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]3", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]3", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"\[Delta]2", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Delta]3", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]},
{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"\[Gamma]t", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
Column],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]]], "Output"],
Cell["Initial conditions for density matrix:", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->8183146],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"inits", "=",
RowBox[{
RowBox[{"InitialConditions", "[",
RowBox[{"system", ",",
RowBox[{"TransitRepopulation", "[",
RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
"]"}]}]}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t0", "]"}],
"\[Equal]", "0"}]}], "}"}]], "Output"]
}, Open ]],
Cell[TextData[{
"Field evolution equations with finite difference approximation (first-order \
upwind scheme) for co-propagating beams. ",
StyleBox["h",
FontSlant->"Italic"],
" is the the grid spacing in the spatial dimension."
}], "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->142706944],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"fieldeqs", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}],
")"}]}], "-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}],
")"}]}], "-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}],
")"}]}], "-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}],
")"}]}], "-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}]}], "}"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]}], "}"}]], "Output"]
}, Open ]],
Cell["\<\
Field evolution equations with finite difference approximation (first-order \
upwind scheme) for fields 1 and 2 forward propagating, fields 3 and 4 \
backward propagating. \
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->97303873],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"counterfieldeqs", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}],
")"}]}], "-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}],
")"}]}], "-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
"-",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",",
RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
"h"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}],
")"}]}], "+",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",",
RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}],
"/", "h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",",
RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}],
"/", "h"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{"(",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}],
")"}]}], "+",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",",
RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}],
"/", "h"}]}]}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Eta]", " ", "c", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
"+",
RowBox[{"c",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",",
RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}],
"/", "h"}]}]}]}]}], "}"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",",
RowBox[{
RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
"h"]}], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",",
RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",",
RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",",
RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
RowBox[{
FractionBox[
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "+",
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",",
RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
RowBox[{"c", " ", "\[Eta]", " ",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t",
"]"}]}]}]}]}], "}"}]], "Output"]
}, Open ]],
Cell["\<\
Initial conditions for fields (assume uniform in space).\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->138519002],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"initfields", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "2"], " ",
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"t0", "/", "tp"}], ")"}], "2"]}], "]"}]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "4"], " ",
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"t0", "/", "tp"}], ")"}], "2"]}], "]"}]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}]}], "}"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox["t0", "2"],
SuperscriptBox["tp", "2"]]}]], " ",
SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox["t0", "2"],
SuperscriptBox["tp", "2"]]}]], " ",
SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
"0"}]}], "}"}]], "Output"]
}, Open ]],
Cell["\<\
Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \
fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->3468672],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"boundaryconds", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "2"], " ",
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "4"],
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}]}], "}"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox["t", "2"],
SuperscriptBox["tp", "2"]]}]], " ",
SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox["t", "2"],
SuperscriptBox["tp", "2"]]}]], " ",
SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}]}], "}"}]], "Output"]
}, Open ]],
Cell["\<\
Boundary conditions for counter-propagating fields. Fields 1 and 3 are \
constant, fields 2 and 4 are pulsed.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->102411945],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"counterboundaryconds", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "2"], " ",
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "4"],
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
"0"}]}], "}"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox["t", "2"],
SuperscriptBox["tp", "2"]]}]], " ",
SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox["t", "2"],
SuperscriptBox["tp", "2"]]}]], " ",
SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Im", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
"0"}]}], "}"}]], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Results", "Section"],
Cell["\<\
Choose number of spatial points.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->573833124],
Cell[BoxData[
RowBox[{
RowBox[{"n", "=", "100"}], ";"}]], "Input"],
Cell["\<\
All system variables for all spatial points.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->289922153],
Cell[BoxData[
RowBox[{
RowBox[{"allvars", "=",
RowBox[{"Flatten", "@",
RowBox[{"Table", "[",
RowBox[{"vars", ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],
Cell["\<\
Equations for all points for the co-propagating case.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->605757010],
Cell[BoxData[
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{"alleqs", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"DeleteCases", "[",
RowBox[{
RowBox[{"Flatten", "@",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Join", "[",
RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",",
RowBox[{"Alternatives", "@@",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
"_"}], "&"}], "/@",
RowBox[{"(",
RowBox[{"boundaryconds", "/.",
RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",",
RowBox[{"(",
RowBox[{"boundaryconds", "/.",
RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}],
";"}]], "Input"],
Cell["\<\
Equations for all points for the counter-propagating case.\
\>", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->546154363],
Cell[BoxData[
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{"allcountereqs", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"DeleteCases", "[",
RowBox[{
RowBox[{"Flatten", "@",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Join", "[",
RowBox[{
"eqs", ",", "inits", ",", "counterfieldeqs", ",", "initfields"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",",
RowBox[{"Alternatives", "@@",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
"_"}], "&"}], "/@",
RowBox[{"(",
RowBox[{"counterboundaryconds", "/.",
RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",",
RowBox[{"(",
RowBox[{"counterboundaryconds", "/.",
RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}],
";"}]], "Input"],
Cell["Choose tolerance for NDSolve.", "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->53519095],
Cell[BoxData[
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{"NDSolve", ",",
RowBox[{"PrecisionGoal", "\[Rule]", "5"}], ",",
RowBox[{"AccuracyGoal", "\[Rule]", "5"}]}], "]"}], ";"}]], "Input"],
Cell[TextData[{
"Here we choose parameters and integrate the equations for the co- and \
counter-propagating cases. Black is ",
Cell[BoxData[
FormBox[
SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
" pulse before the medium, blue is ",
Cell[BoxData[
FormBox[
SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
" pulse after the medium, red is ",
Cell[BoxData[
FormBox[
SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]],
FormatType->"TraditionalForm"],
" pulse after the medium. Solid lines are co-propagating, dashed lines are \
fields 1 and 2 forward propagating, fields 3 and 4 backward propagating. "
}], "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->434761194],
Cell[CellGroupData[{
Cell["case I", "Subsection"],
Cell[BoxData[
RowBox[{
RowBox[{"params", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3.0", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3.0", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",",
RowBox[{"c", "\[Rule]",
RowBox[{"3.", " ",
SuperscriptBox["10", "8"]}]}], ",",
RowBox[{"\[Eta]", "\[Rule]",
RowBox[{"2", " ", "3.", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"794.7", " ",
SuperscriptBox["10",
RowBox[{"-", "9"}]]}], ")"}], "2"],
SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ",
RowBox[{
SuperscriptBox["10", "6"], "/",
RowBox[{"(",
RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",",
RowBox[{"t0", "\[Rule]",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ",",
RowBox[{"tp", "\[Rule]",
RowBox[{"4.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
RowBox[{"3.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]",
RowBox[{"1.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "3"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]",
RowBox[{"6.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]",
RowBox[{"0", " ", "1.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "3"]}]}], ",",
RowBox[{"h", "\[Rule]",
RowBox[{"1.5", " ",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"alleqs1", "=",
RowBox[{"Expand", "@",
RowBox[{"Evaluate", "[",
RowBox[{"alleqs", "/.", "params"}], "]"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{"alleqs1", ",", "allvars", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"15.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{"allcountereqs1", "=",
RowBox[{"Expand", "@",
RowBox[{"Evaluate", "[",
RowBox[{"allcountereqs", "/.", "params"}], "]"}]}]}], "]"}],
";"}], "\n",
RowBox[{
RowBox[{"countersol", "=",
RowBox[{"NDSolve", "[",
RowBox[{"allcountereqs1", ",", "allvars", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"15.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Join", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "2"]}],
"}"}], "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "2"]}],
"}"}], "/.",
RowBox[{"countersol", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "5."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"5.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",", "Blue", ",", "Red", ",",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Dashed"}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Time (\[Mu]s)\>\"", ",",
"\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{GrayLevel[0], LineBox[CompressedData["
1:eJwt2Gk4Vd/bB3AhIRQRKRkSQtIkDlbuZIg0KEqE0CBzpkw5Z5tCmTKT0MmY
MSqllTmU8ZyUKPETKSFTGfvv57qeV/v6vNp77f29v2tdW9LGxfgyKwsLy4Y1
LCz/dw1jCfOt/MvEdipeqtneFPAdMXW5PsfEio/kKnJiKeD8TsZOfJqJP83y
5dQUUsA0ucko/CcT/8ofkDj4lQIyyhySF78w8ZncgCFJA3VosAp5w97AxK3J
m3ZultKANa+DBM9GM3HYMcPYpiFN8AugFk/vZOJ8YG4Sfq8FUx6NVdZSTJw3
V7T/zIgW2DlyN7ZvZ+Kgzn8j9/9owXHz+L4CYSZ2yOKXtxIF2KaWx2nLxcT8
AQsb46wBqmc7bBjjDHxusnawZhJg2UFcuOIJA/N/sOQI3KINty7gQE9g4Gg5
1dHL6TowfGJlqwRiYPEti293lOqAobbG81YKA2dGeelP1euAiOKLKfEDDHxk
8K105U8deLJSealVhoFb2CyVJ9V14XtmkbY4DwMLXDKokx/QhTOj6etaerrx
2+a0Z7+V9UHOwy96m2M3DjAWFtdjMwS9nhMr06lduFRG5PLanFPgmXyFc8Pz
TlxVYd9/veAsxCstPcxo7sBfHA/aCXGagcV4mVvBShsWDXhepu9jCbzqCUuC
6u/wwf6hb9f1bICXzZu1ObEVz1cp1RTfuAwKkYPaHB3NeJft3rAGdXtIumPA
enfnG7zW8/7rIwJOML79q/+N4Ebsahik/yDCFazdVvf+97oeFz0wcb3NvAFS
mlvt0rfU4bhcK++fXJ7A2lLT+fVkDf73SvnVH29vSHy7c2ad2CvcIuLhtNzj
A41/mtBATxUONV9IPLjiB8p0n3/vjj3FScLTjfv23QJV7V0vDBfKcf/PlRWx
9VSo1PvON/GjHL889vX4Pz4q7DueaxvTX44X87hTvwhQQdFkJ+/71+X42sVY
2SRRKkhclbS2DC3HDeKDvZO7qMAVuYXDbVM5tmoumdTUp8Knbi7jxN1luO2K
SdjhICosNjAZtfXFeDSAdb37NBXYkoTs7+QWY+Nbt75WzlGBx9501TSyGE91
PjOd/0sFMd6PcuPGxTiOUr3d9R8VtEz6AjYPFeGejNgJXR4ahH4blHVgKcJ+
m7QVqDtpwM8x6SeoWYgPjiuXbTalgejHPfwDEoW4tGRTOrcZDaQKXHPy2Qux
o+/j+SVzGhw4Md2J3hVg3tHV2Z5LNDBNnNtpb16AtYVUxp2caJAus9zxyicf
j3p2eG0PpoGcHpf01ae5OEqYezawhAZNLKKwOT0Xvzz8fvN0GQ1sX8hbNtJy
8Yt31A+XKmiQsft48g6jXCw8vkuJUkUDIcFonq//5eDiilKB9joasA4Kzp3n
z8G63w1aaO9p0O8r0WTgSMf6Dp63+Rdo4Htg738Lp+l4JaH+/MElGghPAEv+
ITqWTTn6yHSFBsaXbCnr2Og4bpFeGruGgBa9nOL6lIf4+d1A/zEuAp4KKiZp
vMnGvy4+ExMXJSC6+NA1JaksHN72US9dlQCl2SnVnLVZ+FOJulAChYB2tQKu
7WOZeJnXoS1CgwDexm2FvKWZ2OIpY8FRi4DIvjUT45qZeGmHhzSPPgF8/Mmj
pk8ycOqcUVeFKQFG6dzhur4ZuL/621u/8wTckQ2QV4EM/H35WNbhCwRwIxsn
oY77mP/78MdXFwngcFCcYfxIx6ENETbxdgSsNtSsnpJKw5/PnNua70aA5qn9
mVpjqZgTi5hpuhPg3/cIlEtTcSpvpW27BwGLvyOCN6BUHBEq1j/iTcD8dhPu
drMU/L3gwJHfAQRM3BwTMoxNwqemz8g7hBMwoCiwW4clHmcqPhj6dZ8A/TDp
Lyut97D4jl5LjgcElA6qRD9NuIfTOU2Xt2YSQCSa/5ZVuIdv/ZFNQdkEyLA8
quQ2jcNKp6uPX8ohwJFxCHUWxuAdrsf3bSsm4P1ug8nbXjE4z7g/nKOEAHTb
IhMgBlsGqy79Ir3dl3XtlaJoLHA4eldFGQF2Rgl3FdiicP8OpzyxSgKmZl5k
PC2OwGUD3e12LwmoyxtgkTsagW2+H4mWqCbg3kV225TecFyhUW7TS1rljZGs
P3s4Hl2d1jqCCQhI/VoCF8JwcYRe91QNASdOrhV4MhmK2Sn8Ugm1BEiwy3tI
h4Rixt5GQqWOgAYnd9V1pSFY12nY07We/D7AUftubTBWyv+9tbaRgP45+R0o
LQgrXV78adREQFHByZAS5SD8WWGq9QPpU4Ipx+LMCdx1vKxi6A0BiaMK3efK
qDgwS2jv+xYCrqWfOtCiS8WFj3hvGLQScCP7h6Ln80A8EyFZU026yjOgksJ3
C2cG1RLJbwnQ3fawqbHKF8+/4ExXbCPAsp117MN3HxxaHe56m7Qn1Wb9D2Ef
7HpzwmmQNH1Y8hSflzcu3Jk/FNFOQHUi7YbEIy/cUPHQrI80U38wfh/TE8+q
vf0r10EAW1Fmr+k+D5x143fxS9KiVizL1y654/DRlEaWTgL28Vtv94u5gSPe
17Fpk7bxFLd9MOGK459MzWHSvrKBIWVirnh3JD3/L2mpJ69OhqU4412FKsF7
ugig+mn0dpg4YFxwoSiedMnAktjsE3scnZq5VEf6i/ZLGxGBa9h0RtF1gjRf
nm+uhusVzGnfxy3cTeadhzJu3W6HdRKq3mqQdnRdUA5RtMV+Q8PlVqTTmc89
8yMuYc6ICzWBpBPdpjzSuqywkoPIbDrpWTWX1f/uWuCN68VOPCNtzDoRpmhg
hh/HX21vJ13W6sjvyWGKP3784/Ef6Y33fqa+qjPGGifaYY50/1OmPs/qCXyW
f/wAO4OAFL1u8/te+th22PjERtKmHzuclSYB39yzNmoLaZnuVLbADhVsx8Ix
K05aa1ThzBHaDlzNbUbdQVr5nHfQNzdu1J7Lul+atGOLe4ToRWX0sGcdjxTp
6dybdn8dNNGMuvN6MdIa9UjcQVMHKUtp7BUiHbgPeD41GCJ3n5sB3KQHO7P8
pWVOo4AP8lPL5PMSnDtm+uzPoufe5uHjpKW16Pb3is6h3eqbjvWSbvLe+dXg
9wUUnGe+p5701ZIcU9aDlmjxJ9IoIB08c2/EotoaXf3wxiWKtEk0M0vV0gbt
G1rT6kJaRkHooiCLHTqxa8HgBOn5JhORqazLiOLyYnoX6eTVnqjcb9eQqGbX
04/k97RPFTYICruOkkK0GYWkKSrn11rtckRzRlWb/Un3OfX6bXZyQTFLkwKC
pHvY7271CXNF3G3db/vIPGHj3QtXzruhj/PLhZmkoyecKo4s3kB2ejeGJEnf
1OCLU37rjhJDhlW/kPm1jih22Z7ugeYNxp8mkVaWmZRf1PRCLJX88qykuy+6
ZpXRfFDD/t2TFeS8FBq+GzSz80UhZhrPjEkHq8lJser5ofnsXzK/3hFwSOhr
tjFPANJKM1oVJn1iRLbbx5CK1tNlEnTIeaV8Npluq6aitj3HspvJ+ZZlBglI
KdFQ1c4rZvqkWeoGjFs3EmhOsb1Js5mA8vtJDNGeIMTcoJXLQvZFRnzjjLNe
MGJIb+G1J/slMnJmU/3zYPRPmybe3kD2oc/Jsw5pIaiBbmYYRfaRsMm69y+t
w9BRyd7mEbLP/Hm8eyx+RiCzg7aFf1+Q/cL2aL7UIhLtlstlVyRtsti9eW17
JGpMN9xoUUXub9+VzhWV3kGpw/pa5c/I/NSPfFjxjEIj9sf4DlUQ8FCz0PEk
Syz6NGlUl/2Y7AO1Ov8F1VikbMHhmVVIQMyB3jsP3WJRtPGLwfQC8v4K64r+
DMUizrMeP8PzyHnYYvvrQWMcUu1d6tSgE8A5J+o8FRGPHge7OHGkEXBWMs65
63U8EglubfuWQkCWEZdL+Ww80oses6hLJt9nzh8XD8sEtOvCHS73RHI+zjHd
/u5NREEJ+wvLYwnorLrrydKbhEbmwm4XhpF5u8USsFE2DfX/UEwJI/fH4QLv
gN/maUjieuc3XlcC9n6YCOiOSUMQRvGIdSagdc/nW/GLaYgmcdQsxoGA5a9V
VJH2dCRX4n3e6TKZH233YAnPDLQ3L6mDTu7XguwzOsmDmeiNovhXPk0CVPlC
BbRWM1HAMZ5uYXUCLopsGRgVzUJmsiG5YmoE5CgevnnobBbSS5BYI3GQzI9J
ZEFPUxY6z3kx/J8iARdydmwQepyNVk6HDstvIyBT/+zHWC86cvqsLqj+lwYN
xqN0tXt09Cm1IntojgZjFr5ugyV09Mrmi1rYDA32uWVy7x2jI9E+lbA3EzSo
TxnX6DR/hHK3VtdIf6PByI/gLD7IQePPXzQZd9FA4W7l9cj1eehS8juF0Fwa
aLWHGBbJ5iH9ctHFz3TyfLfBVLFDOw/FSOYK7c+mARE7/0vAPw89p0yqvU+n
waeEQ26p43nIvTHk4kIsDW5nVHnnt+UjI+EnR+v8aDBc8ir4TXQhigyjHrU2
Is933Y0ZbIIl6KLuIwvxMSo4bXGefNxVjra8MJp/J0SFEy1XU8H6KbLaPbKp
TvoWxIXaGeqUV6GrkiWu5YL+wC7FGRw5U41iRG81lEz7wP3tbQ8/a9agux1d
HV4x3vCjPImz6L9alFdk9HTW2BNEwnr3/X5cjzgEH8rH/7oBfwe3fR0/14is
Kp2r+etdYbJwf1f4YhNiWpVl2fs4QXNlbVhaTTPKb9ifOWRuD8a6p2vtrrUi
K7qa9M6uy4A3n6/J3v8OPTp+eNdmExsA031sxHwbkpxIK4mIsQSvbXwtImkd
6BH3ilBpuBnoxirLx5V1Ivreo+usWs9CwYcLZe6hXSgrRhTxLZ+C1PfOn3ae
60b0zwa7u5INQUAw407JhW70jM71/mqgIYQbtyE1y260kV+Llf+KIdzsUHh4
/HI3clh41Za63xBMW747uLt3I+urUUaRHQYg8MpmpSa6G9Hm3mzq5TaACLqp
hEVzN1pj3Vc1FaUPvu7oSpwaA61tcN+k+lYH/lW4hw1oMFD8qXLjpGc6EDyf
l6eoxUDHHEuH2Ok6EOWz6WeTLgOVm1j0cgfoQFbgd5elMwy0rN5qXbtHB5oj
43zsnBkogIvo6U46CpvpI3dUHjLQ0R+jUeduaMMTZtSTTzxM9P3JldeuJwFs
Kgu2R2xkIhvtIw8MNQEEEpvC1QSZ6LxOnYqKAoDruVWr5K1MlLzZ6jJlHYDS
JyceU3kmYj2QVrzyWgvyBo5f7tJjIgofu/3VA1pw/we3cDPBRNeVBkbWnUZw
/K0M4R3KRCln5FZClBEsFx75JRPBRGI8c6KSGxFccPKtD4llogSeacniDk0Q
mRpz0c5kovcx46ckT2lC3FxzM37FRMoLB7+Zm2oA9Azvd65lIml3/ydZhzRg
6inLA7FGJrLibbdi26IBJ2+qevq/YyIvFlku0X514FnKlaT0kevlO5IRZ6sO
1X31d8a+MBGPlrZFpY46OFQP/EkeYqJIDcUrM7Lq0Bog3P5njFyvpaxQ7TgF
fCz3q+X+YiLVMrbEUx0UkDt8km76m4nq5SxEl8oo8FHcYQPHHBNJSMvG1MRT
4P//b6D4az+/ZXpT4H/bFEqw
"]]},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwt2Hk0Ff//B/AbUmSpkOVTyF6WRAvJO69k+RCiUJSEimQne4R7J5Q9e7Kv
WbJF8o64tuz3JqVItJBPlEgb3/md8/trzuOcmTNz5v18vt5zZqedm9lFFgqF
wruOQvm/I0EhAupWmNh40f/Iu4daEPDBwu3KEhMPRYZqm3dpgWuvjIPYNyaW
jo1/83xUCyxSO4wiPzNxug/f0tpPLZBRZt95bpyJqwc2ZqwcBmg/T+1ka2fi
T4rhQuF0gHVPwvlPxTKxUL8c/eDkUQgMDq34Jk16v4vmj2M6sOBNb7SVYGK/
Su+aNisdcLjKSe8XZWK3kEv3ct114Lh10lipIBPLnddkS83Uge3qxRvtOZiY
qr9rr92SDjz+PmDHmGNgrT3Sd4NLdeGPs5hgbQ0DV6idDN0hqQ/XrXCIDzBw
3EDGH5cThjBt/PcfccTAd7qbVi47GYKh9uGGnkMMvGip5OkdZghCCo8WxPYx
8FTNOwq91hBq/tZd6JFh4IMWTTd1RI7Dp+xybTEuBt5+2VS899NxOPkxc0P3
yDDWuHlsSCnJGOS8A2O3Xx3Gx/TYBUX5TEFvxPjvt/QhHHzGwVeF2xx8Ui9t
5G0YxA0L73N2SVpBktLvvKyuAdzQ15QdU3oezs498Cj924ezZQXrqvTsgVvj
zm9+jV7cMu0Yc13iMnCz+rJ0JffgoGuWn5/JOIN89KQ2+0AXnuQXsg9cdIOU
WwYst6U7Mb3RrrXX0RPmRN8GeUbQseydz68MvnuDrcfq3qknbXjNV/7n1Jgv
SGj+45Ap/BSHrdBuNJcEAEt3y+BbkxasUujf/vxJMCQ/k17csKMZV3235E27
EAr0Hx1oYqQR3z3mmmTz5AYo5/uv9f5bj8PUJzseyYSDmvauR4Y/q/HOWavR
QasIqNP7xPNlthrPrlgwW89HgMrxIvu419X4+wW6bpVDBCiYS3M/f1KNO4Y1
qFTXCBC/vNPWhlaNpf67JLUlLAI4ooXZPfiqcc7N5z2lxRHwapjDLFnxAV60
9WoYWYyAX+1MRmtbBc7QuMMWd4MKrCkCTreKKnDUe7VTDVQqcDlZrFpEV+AU
x++5byKpsIN7VG7OrAKrTx3cL5ZABS3zseBt78rx4j/FX4NzqUB7PynrTCnH
AorsHMVPqbCFfT6QX7MMm9a+CMuh0EBkdM+WCfEynJL35t1FNhpIlLoXlrCV
Yc3aLFbZjTTYZ/xtEPWW4vnPxSH3eGlgkbwk7WRdim+ZWyk4idIgU+bPQLN/
CWb/+br8nAYN5PQ4pC7XF+HcNZ5Q7EmDDooIbMsswtNmUpRxHxrYP9ptQ79R
hJ8c2RD4y48GWYrHUyWNivBT0Qbr3SE0EOCP5Xo7VYjn1jxyL0bTgGWSf+n0
lkL8tN6S/988GrwOEO8wuJqPI83lRR8N0iBg396pn6b5uJdz6vQ1Bg0EvwCl
5GA+bvIMtN8zQgOzC/aHNrDmYxkV1fcpYzTo1iusaEvLw7fmxkOOfqBBPb9C
yuHOXBwjWs3z9xcNYisOOipJ5GCBwwLJazsJUPq+oFa4Pgcfv6nZTJUioF+9
lEN0JhvzqTn+3iBLADd9exl3VTbuO7v3IUWBgOixdV/mNLOxbn3z+rb9BPBs
Sf1oUZOFR8dUeyP1CTDK5IzUDcjCuUU3WwYNCLglG7z7AGRh8emoh3xGBHAi
OxeBgbt4hGWt+LYpAezOCouM2UzM+FLpb2pFwGp7y+oJiQw85dvyXNCZAM0T
qtlaM+lYWWeLi6gLAUFjBaBclY5v7BVbEncj4NfXqAhelI5LlYUZwl4ELIua
c/afScMrA0bFrwII+OI3I2AYn4LXNRl3p0QSMKGwVVGHkoT9U/u7V/II0Cek
xv/2JOIPMaI/LhQQUDV5ILb+TiK+x74W0llIQFiy9VdZ+URcXvQthyghQIZS
UMdpkYDnj1kLvK4g4CrjIBosi8Psv++pPG8g4LmiwfzNa3HYdxNjgPURAejm
2WyAOCxd+xsrNREgGsCy/lJ5LK46OR3n30yAg9Gd2/KsMZhIObL4rpWAhcVH
WfUVUTjlkMEBth4CnhZPUOSORWGJFz8rf5BOPMdmn/YyEm9QHfP8+IyAA51G
skFskRiWxIab+ggITn9bCVYE3n2xb/bgEAHGJuu31szT8Iarx3O5hwkQZ9vt
LUWl4d7HwtkTpNtdvNQ2VFFx42YDFz8muT7A3tq7PgIbSI0fC35BwOul3ZIo
Ixy3shVK7x8loLzUhFqpHI6P0OQMZkif4E/7N8E6DCsrS53TfUVA8kf5YcsH
objwenIu4zUBjpkn9nXrhuLXRX2pLm8I8MydVfBpCMFt2H6QdZyARp/gukM8
17EMNZZFeoIA3e15HfTGAPza3MD50CQBNv0sMy8++WM+1tHVGtI+oXabZgX9
semVteVd7wjIn955gueaL2YR2cW/aYqAx8k3PMULrmFbnVq1a6SZ+pNJKkwf
/GxhtuUNadby7JcWKt6YTvX5nTNNgMh5yh/HC174/ujp8lXSKltsRQPjPHH4
dfanlu8JsPMRs7/3xR1rJ3zaukY6QDaE+mCHO961WG1s9IEAiZpmEyLNFSve
9ppLIR0aePjlgLkzpp7kMpL4SEDlxO8d32uccM1aKK8d6XHtJjuhrY7407SU
ahZpnuKAosPul/DPc10PR0hrch2as+13wEUvXe5u+kTmy/2nMlXBHjf1K0wf
Jp3JbPApibqAjb+uRl8hneyx4J0xdB6rdY0nJZH+ru62OnX7LOYq71x9RNqM
5QuhYHAGc/fWdb8h/aDn6hYfdgu8X6pw6Q/pzYmf05ufmmFZIjlMaIZc73qm
PteqMVZNo7ork07TG7a+e00fmw55PjlG2mJ0wFVpHrCwv42bOWmZ4XTWkIED
uP3+v6F2pLU+yp88ekMSS1kf+OZMWtnSN/y9ByfK15Gle5C+2u0VJXJOGR2j
iP/0Iv2tyM9hxVkTJX2VivEkfbgNiTlr6qBKM40IF9IhKsD1qt0Qqe1xGnMg
PTmYEyQlY4rOXqxLPE06bKPk4pjTKdReIFuuT1pKK98psdwSpXt1ye4n3eEr
/dbgqxW6LpXDKkr6cmWhBct+GxTztkmLlXTEYuKHs49t0clcyYlp8n2YxzJz
1GzsUPuB6fGnpGXkBc7xUxyQkSan1l3Syx3mQgs5F1GDbB6LN+nU1ZGYoveO
yDL68v1tpJ3SBQ3CiSuIg6068R25nocOnF5/ftdVFH++/HUp6TGXl4HbXNzQ
u86/icqkR9hu/+NPuKO+S34sX8j8YDPFn5dOe6AhrvnhItKxX1xqj/7yRLcy
pNI3k/Y7zJOg/MwLJRfzxj8h82gbVeEmmumNrNebzF4hrSwzv/uX5jWE1uTb
68k8D59zz3lwwx91yRwQkiTzX2bYO3nGIQBFJ+YUlJH9iVCXk2DRC0Tynwe/
7SF9UOBtrhlXMDq/T7Jfnuyb8QfZYX/DULS0KyxhgezroTfm3/oehyKNc0ly
lqRlmeFbJZRuoLYOuxuNZL8pTyfMejaHIT2+R0EeZP+r76YwREbC0Q+1QwUV
LwnISqIvuupFIJFP3GcXyfkRHb3I19YQgSQzOkZVSTv4m5xyzqAienWcdPEI
AYLmG5432RIoL89JyIZBzn8u35Gzn6MQp9B7+ho5/xxZC5arzkYj+TA13nWk
zX8Nb1vfH41sb6dKr3aT+9snJcvyqlsoWM2t6XMnmZ+2Dy/++sSgbeH/piW1
EZCnWXbVhBKPErb439lBzmsR9adBP9Xi0QMl+vwYOc/j9r28lecRj14GVYon
PyTvL7+h/Me7eBSMrDhWa8k+CNv/d4+egDz5pDdlVhKwcUnEdSEqCV1S/ha0
JZ+AUzsTXIeeJKH8AyxFRbkE5BhxuFV/T0KtMpyHD+WQ77Pwh5u3zR3E8SG/
5FQW2Q9LpsfK3mR0Qq64wCaVgMHG2z6UlylohR7T0BlN5u06JXizbAayMfm9
b5Hc/6ZLfYO/Wmegb9euCAq5ErD3xZfg4bgMlPgnPkj9KgE9e95cT/qVgfxy
yoc9HAn487YxVKg/EzlNNHQ22JL50faKEPfJQgYtsfnZJwjgZ1vUSZ3MRmfO
x/aMKxKgxkPbqrWajZw5iEIHeQLOCQlPfBTJQTHDIrc/yBFQqHDE7+CpHJRw
RDFkXJLMj3l06UhHDvrD1SV4T5gAq0JJXoH7uUi1n2biwEZAtv6p0fhr+Whc
KfEExwsatJt9zFdPzEebnrqr8zFpMHM2wGOyMh8VLhZaCw/RQMUjm3PvTD7a
v3baTOQZDdrS5g4PWhcgtYz8ffOYBh9mI3J4oBC90W1Q/FBAA/nbdVeiNxWj
F3cehvB70ECrn2pYLluMbo+WtTS4kN93vBYKA9rFaP9nSsKZKzQIi1/+b2tQ
MdIQqZqLs6fBqzsHPdLnilF6hF/1iDkNbmY1+pb0lSBhR3e2FnUaTFc2R3TG
lqHlgvF129aokDVMz2Llr0QDIz6DB0Op4CLsOn9/qBrZ269fjveOAOPuy+lg
W49o8xqrdfLhkEBzMNSpbkStr0c9Ol/fADaJjRHRi4/RHtHnGrphoXBXtC/v
jWYLul4lUFbyNxhmq1M2lk+1ovVT3kvbpANBiHip8vV+G1oOEs2JE/aDlcnt
b+cs6cj8bFtk2mkfmC9THYr81YEMA1QDLtA9oauulcho6UKGPXyxOrLuYKZr
2urg2IPksqplG3qdAW873ZKr2ouWtW5Kw7nLABYqrGHLfShRR+jmP4H2cG07
T7dQxgCStwtbvK9nC7rxyrsTHgyiCzd5WA6EW0HpC6sHXrQhJPbdJ7qtxBzS
n7u+krYcRsGOvi1H0k1hK3/WrUqrYXTSYfcL7ihTiDTrQ+o2w8jjZOrDj/6m
4Dcgn3f84jCqfdbeis+YgkX3J2cvr2EkLbrH/acweX2z3d+W2GHUpTLzKjPz
BETlW4if7RpGzUcSRb6dMoEAL3QpQZ2BjjW/qq3vN4S1Wi9i4jAD7ZGYiqmq
M4SI5eJiBS0GuiN2P+9xpiHE+PN97tBloPNBIVabnA0hJ+ST2++TDBSg4b8x
bKMhdEUn+Du4MlC/zrv2Xl0D2Jb/4daBPAbazfNkfcagPtQwY2pecTHRPp5A
QlNQF+zqSkWjNjPRSk26kAhFF7Ymd0Sq8zPRUOPHCs4ZHXC3XD2f+g8TVQYI
NMo26YDSKxcui91MVDXH/tHEVgeKJ45fHNJjImbd1JBRxTG4O8sp2BXGRBG1
63hLT2vD8WcyYb40JhK+fubSvLY2/Ck7+p9MFBO1KaZp6O3RBiuXgDZqPBOF
6HMrK7Frg9DCjJt2Nvl8zx0XX9QehYSlri7czESYfpyIEzgKMDKt6trKRHlV
ZxRX1h2FhXrKvR108nxdlOTxBcDET80nqJeJ3nlP+aR1AnD9Ltp5aIyJBGrf
H30cAPB4rO3WzDgTzSq+LKki4+L8eOJH6jsmSl964l1/CqAnWLD/xwwTXTqi
v3FZCcDfRlW96D8mSuN/37hnO4DcEZN8i69MFP7GOSeAA2BUzJmXfYmJHihe
rBlZ1oL//7+BGPSaae1pLfgfF8Rdkg==
"]]},
{RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwt2Hk8Vc0fB/DbJSRbUtbs+5ZKlsrkm6SyJGXJ7p6rqJDsIooSKltZy3Pt
HrKnp6SR5IaErhtJWSpkSYQWled3ntfr99d5vf84r5kzM9/PzBw5mp+NJ5VC
oQitolD+e8ZR4sLrf7Dxco6nxaKFOISP2/mdXGJjnmDrP6bHxcG3U5ku85WN
PR4d21gRJQ52mUzL+Gk2np6n//OwVhyUdbjkXIbY2EF+TPetuAQ8dbv0jPMp
G4co62jqzUjAqqYYkaNJbIwr2m9W5knBucjoyq9KbOzqGq7trCYLc4GtD9zl
2ZjDpGpMf4cs0E/ztnZJs7FUkbSxvLksWDjdGCwTZePvCUVUBR9ZkDIs5SHW
sHFNinXDqxpZaFzspvXO9GKvM7vfcSM5+H1KRvRuXS/eEqfQNeQhD+cdcVQQ
9OIVs04h1wFF+Gj1R1IW9eKPJsJn2mcUwdxk1/2OHb142iL4hglFCcQ0G+Zk
dHtxUQ6POV1FCer+1Ht0KPdirPZkr0OwEnxiVJjI8PXi8FtIcp2oMhyZuMXd
3sfCZVTpkV+ECqgGnkuSOs3CP6sEqE5a6lDdvHWy34uF81uWl432qoOh4NSe
NE8WHqmr+q7jpA4Hyxy+rXFjYQ5iXMwsXh1Oj2x3+X6YhXNt4b7uOPm+xZw6
S5+FqSe76JIFGmCg5MmM42Bh6TMn3fapaYFZn9Wfr9kvsRl/q/gBXR0IyjzO
I3i/BzMj0A68XRduaP8qyG3rxmnipTbJ6QbgPFPjX/bnBX55svDK/HoE/Dtv
/hLZ2YmflPmuPyu7B/g5Qqht6R14S1Dq8LSzKWgkjppwdbdhoYDdYu+MD0DG
1YPUa0rP8Bq5BW9bQ0uYkR6JOBvbivc0Cvx9ts4a3P1XtnxoasHmqq71nBJH
QN5Ikn5L/Al2brTQ/MfPFqjtj3tGDj3Gd1capvu4HCD9udIC96ZHmENP55bM
DUdo/c5Ew30PsHJP7yP3KWfQKQz7t/PAPcz9l/o4h4MbGJioNZj/rMVZiesE
pRvcYfkpu7e5pRIvtNz25Wr2AI6MDd5XSyqx71JJCvOpB/B5263YJVZi/4qf
jrFtHrCJ/7XqjE0l7hT+9/WPbg8wth2M3Pi+As91+1i1DnnA5bFRlVOUCowf
RV2b+uUB67i+nBMxKsdRBtWEoy4NVM3WKJ64V4KNMvQGfW/TgEmRgI23SnBb
U0WSLYMGRIO6a+uFEix3m/bGsIAGuVoWmQqWJTiv56zWr1IabBBJ4hv5UIyh
DRe736UBdVRkyWFdMRZ3Zz6v76DB23BZ5sHThXi1Wohc9BINwnW3fPh5uBD3
0Is3i/6ggegsUP7WL8TfT+jdKV+mgY0HsYOboxDzBRd97vyXBu1mxZUtWQV4
xj0wdG4NAfdENDN2PcvHU+qf7zVsIiCpUt9LWz4Pr3myX/+oCQHai3MGxavz
sKasVPUzUwK6DMvWSE8y8LMG9d/6+wngb5Uq569mYMVt2TyClgQkDq6anTFi
4DvXLF6k2xEgsC5zwq4uFxMuX96t9SZg5enjFWv5HPxxs6tJbCIBRtbbGMaT
2fg9rG1LukZAxGAR6FRnY/uFlOWMJAKW5xNiBVE2Zsk8p+emEfBN2pa361gW
NtX03xyTQ8Bs6OQG85QMXBZpfqe8jIBhTWEtU8oNzIxeovozCdgfpzj0pyMN
d3++82LxGQHVo3pJ926mYed9lMygdgIupjvNq2ikYeuqdlXfTgKUKUX1vHap
uFZ1u+pOFgGne/VRT3ky1r6/du3edwS80jr45UpwMnZtlo/OGCIAXXFmACTj
fKbr1MQwAdLh1NXHK5Lw9stNOVHvCaBb3rymwXEd316f654wQcDcQkPuvcoE
XGfw7hPfPAFPSocpqnsTsLnkvOfmrwSkuXASWQPxWJbfvctqgQC9Z5YqEZzx
uLpi0TV2iYDI7JEqcIzDn2a7/Tp+EsALXM2dq2Mxj8vIbPMqOrxdUldAOTH4
+KzERC2VDhVlhy5V6cTgkrO2LQwOOliLZB1IdbqIB4vllANW0yF9QoNlXxON
A3Xz47/y0GGfVAGz9UE4XhD/7eskSAfXLupk/6cwHMCwxBuF6BAUTVs7JRqG
+Y0v8XaTLvwoZy0QHIKVRfZk6gnTgaOCMWC3NRA71tlFjYrQQcKN8tvLIwD/
XDS4E7uBDlvXuUufSz6LN7sd6FXcSAdakAzx1+wZHBhTJOAsSofoc7sGum1P
4eGn+7YUi9OhavjXpsU6b/zSPEV5iwQdhkwe0sSEvTAFItc/IG3Et2PGvYuO
S/t39TZJ0mHR0G/lwzVnTK2emCjdRAcb6myc5sFj2K/v7U1JaTrUdJxeF8Rl
hw2PbN2RSPrtPfZ+vhUrXPPQ1tNDhg7GExpH9lxQwByPeGBSlg469iExY/68
aH7n5dsmcnQ43R6QIOGig9yfK37JJr2rBcmcMjJFO69t9TeWp0PUVuB789Qc
+W5xzLtOerQnL0JR+TBqbV/PHCCtaFzonVZhj9ZY188cV6ADM0Rp5OC8IxLU
dZotJX2iqtiOut0VJfwQ+DhB2jaJnWfgSkMTxQrlzop0UNbY4CJCoSMW3/6I
VNLfmLZic3meiG6+ClpJZ670XS8Z80JZHx8XyinRwTtb9GBM3En0ak+yiTnp
HXoOq93UTqNVFy6/8ifNy8p8vOO5D6oajHe8SXrQZ+DcRh8/dNv4AquedB/n
NcmwuDOoy+qoUS9pbKP187iDP0qwm87+TLqY8aLvqNpZdO7Y5mlOZTokzfrc
3bN8FhXz8mqLkw7dJZCq8zwAxXd5Euqk3RMq/aRvBSKZh1qJBqT3v7ay5PMJ
Ql8yLItMSOsof1FfNgpGkkM1NeakxQKTeD4JhCDv+2bV1qRXPdk8/mo4BB3m
+MOwIT0l2NPSUh2K+CwfxxwmzXI5k1dzIQwxXkU7WJIuN+8cPUYPR/ame11N
SccaqspTzc6hyIefnxuSdlWJpZWpRaCmxoG8//qnv2Ek34YvEvFNy46Ikhbi
2PVheTYSyQy9vbzqv/bmMhQKXp5H4Qqq6RPk97cMLRDmd6PQfiQt0EHaalyF
FWYejY6WDM6W/jfe72y/vmiMRnOdkQaxpFXYMcLy2hfQmLDCtBNpkec1W4P/
uoA8WFNcOqQpT4ZtOoQuooljS4kU0jP3+QOkL15E2z4T4S/I+R2o2pl2duEi
0m91YKWTrr2d0SvRF4NS5mhN0qRzb7Qu+JrFIs6o5qPvyPWTmLiwvuV+LII2
g6OZpOlhh46eyrmE3lwWSOUgffhMZGAT32X04d2jnjpyfaIT5TfWn7+MJmtV
wt1Ji9pyv3roHodqpfr5q8j1zmmxfUmQFYeO6wf9sCY9t4fYQDe5ggYHz1t9
IeulQ6fJlk85HmlYJhvJkY7gC+lznk5AO1ZTtRzJevPiKPpW7ZyIkhfMQ4fJ
+rRdZm1c3ZWIYg+m6HiQ1v6kbV9RfRWF7/j06ZgUWT8t4/1/gq6jP3lfz8uS
9d7VIPLj8MR15Fa2yyCezIeGmj1ixQ5JKHbMyn1WjGz/0CHNkk3JqD7vxZ8K
Mk8KjMpPH6KkoFWhQWFUMn8kDJ9E/DRIQZKNvHVWZD4l6w5cLfBPQX6aya4Z
68n+anBXfH+fgiIbdfilyTyzEyc+/9Waisxm3F9RyDzkWZLwnUu4gQ7wWoRJ
kXl5VC7V92XTDeSdlT63m5sOeZZr/GoXb6C9owO27lzk/Bd/9wt0vYkEyqem
MzjJ/LBn+//Yko4crzcefk+hQ8+Da0GUgQz0urqA9vEHAVLjnMGj/JlIu7J8
uu87Ad7CEcFP9mSiro2R3sxvBFBPnQyJvZOJzKL2m95aJEBXyiyMJzoL7S7c
kqAwR0DmeUqkkEoOmuO+WccYJ+BjWUjkvFMOEuj69oQ2RsCW/tlIVnIOGpdM
7Jb7SEDH5nfnbyznIMZU6/v0UQJ+jzyIFuu6hZp8OThc3hLgbhIQKxuUi3ze
Nd4/9pIAEc4F08xRBnq9qHlV/AEBBgKXhY1XGOgzY0PzsX8IcBETH56QyEO3
DtEupdcTUKy5O1T/aB5Cc/ebVtcSoG+bWNbHzEMLMVSRh+R+7VisILjhTj5i
GaTIXCT3c8b+o69TggtRbcFh5/hwAp7aTBQaphWi40Ml51xCCZh0DvcfrSpE
HFvjLbSDCdjqz+DdMlmILCajuZn+BLRkzezqcSpCfu7h1C4vAsanYvMEoBjN
GdcLAXke0bhWfzJxbSkae65woFGbAOOuS+YVKqUoNMuSa7smAXaCdprdJqWo
zrm/oUyNPB+kfPssHFGKTIiDgtcUCXhzU98/e6YU5Zy5nqAlQcCV3Achf7/4
G4W7JS8McZLjXfUo9llSObpjOzbL95o837FaczlEqpA3N+wbD6KBjCbzu7F2
FXLYbMAePksDxiWm9fn9VeiEQbpgvx8N8g2eUX9GVCGv96Vp2JsGRbltx2fH
qpD+1vxZfxca2NV7Zsw4VSP9eSHRU3tp4HrBy61fqwYdM9mwWC1EAx9x3y93
XtaiA8qr8gfyPcCq/UQ2uN9Dns0HUwOy3SH1Mt3ctPYBqtl4IVhb2A045Xli
Exca0admC5W3r5zhtvSLgndGj1EDV3GgwSFHmKrN4Kn40Izq56duZU3ag1jc
wNb5Oy0oyThwbcoRW/gxKjUyY9+KYmNiLbf/sIEv5dtexi8z0ZCURpnEY2to
q2+Oy3nchpweaNHDlyzAZt/hZrpXB1pK/Ip5uA4A3ujwOH9bJwp+dswpRNYU
wG4rx8VvL5DZ2wzFkhqAYCmBdrGcbpT+YDB3b60R7EvRUU+t6UHdkSKb0UED
KOt3rAm4/BItEPdkzGe3QfYr3zdK9iwUW1TK4DXRAWGR3KtVjixUF5RY7Ure
f+JtXiBDVxbKuM+WeqSkA6HdGgUWniyUZp+2nMmjA3btn04FBLBQO7X/bubt
zSD8iPbncRIL3W7ElrsatCGh0E7WuY2Fjivu1yqgakF4ADqeatiLRKSu7FvV
pQb/3g2IG97Vi5SczOz0/lGD2G+lpZrGvSghJPTqOYYaXA9bP83c14u4vvEc
0gtQg7yoT36/jvSiqw9/uZ8WV4O2xNQwum8vauhKcGJ7qcLGwvGregW95Pw6
z7uvV4E69vW6N3xs5KfDUff2piLQ6sukE4TYKC6fml4ZrQjC6cx4QxE2cmpK
tU09pQhn7FfcMiXZqHuO3zgJFEH7jQ+fnTobaY82Z7vMKkDpsIXnSzM22q2j
qWtirgC3p3hF2y6ykc6/9dyT6+TB4rnyxZDLbDS4T1b//Qp5fy7f81k5gY2y
JKK+TU/LgaNPeMulFDaSO+P6W4cpB2Jzk34mDDZq5dzOE31ODlKX2trwIzaS
cfAyU5uUBej7uM23mY0EbZn3lPvJ+/09yl+bWtnogwVDRLdVFg6FGgRFdLLR
2vDBgPN5ssD3q0RuxyAbnWSX/93jSN7nB1uuTg6x0bllwWCLA7JwqnH4e+Z7
NvLWOzXary8LHZGiXd8n2WjU4qLPpg2yEOa6zbDkMxsVLMeE93PIguruQ4V2
82zk0iG0AmMy8FrmlCDXEhvxGwS9X3giA///34F+3l2b9JQhA/8D1+XkPw==
"]]},
{RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Ff8bB/AbFfkKSZJkK0u2tCniw0Moa5QlCqGQfcuW7HcK2SNrRIgQ
ooQP2UIJ904iRdpQQkmLSr/pnN9f97zOvXNnPjPP834+Z8TsPU1Ps9BoNO4V
NNq/T4JGBNf9IPENffv1jdUaEPze3PPsIonP8dQVSbVpgMdjSUeRLyS27n7X
UcDQAPOrXYaXPpL4E2sFAy9ogKTiarGTYySOH13DkasE0GEb83BlB4n3sBpt
/YwBVrRE8R1LJPG1xOyK3c81ISQ0vPKLBImPPLMUXlbVhnm/zgY7cRIHWYeP
PDDVBkc3js4nwiSukyJZrjprg4F12mjZRhKnE1KPQ9K0QUi5lN1hDYnNNI08
xT9pQ9PXfnvmDBP7P3SsXizQgd+uIhvv1DLxl5rBYhbBQ3DBCof5AxM/ntm+
zKujD2+N/mwWRUyc9ClwkMVWH/S1VO/1qjAxr70L/6pAfRCQuz8vsoeJH73c
tgnK9KH2T92pXkkmVvs6zH6V2wCm8iu0RDiZWOZw7Y7elwZwdDKHrWeIgdu8
By+EXDQCab+QRCE3BlZvdJW/wGkCukNGf75kDeIH+5SUv640A/+rZ9i57w3g
Wk606oGAFaQp/CrM6+7HUrPXNO/m2sKJmWrvsj992NxHTvqRugOsPXDlF9+B
x/hyShiNKeAEa1kDWLrTe/H5unZktNkVZOMmtFb3d+Otm+rV2955Qka8Hstl
iYf4wAfJWx12PjAj/Oq8T3QnDpaTFVv10Q/svJd3vmlpx6x1Qmk7BgNAXG2z
Y86mNqzh3hSZlRsMLD2tA6+MW7GQ/7NJ/ppQSH8kscC2pRlzJ4x2fjweDp3f
u9D4UAPO9IqbXKiPAMWioL+PD9fjz68+lkVtiYL9Wtvv6/+swdqVGz+NHYmG
Ot0prtkPNXgwZeZgn1k07DIocUh6UYP9DnpvbLCKBjkzibVPW2pwrZq82CXH
aBB1ErOzodfglbtfBXAERsOauE2rvdfXYH8l77rEvGh4zlhjmi5fjQUk6BeT
pqNhqYNkPmivxCxO4vdfn4sB1owNLvEllXi1kKUne0gMcLqYL5vHVeJM7XU7
ZMNiYMvaYekZ00o839Lb7kTEgIbZaCj/6wo8xJ6w1JQRA/R3E1KutAqsMJtp
+/RuDKxbPRfCp1aOKy5OSdxajAHB4R3rxkXL8VDSmn0eP2NAvMyr+ObKckzz
ZV0h/ycG9hh9GUCPy/DPw7Z1+SvpYJ6+KOFiXYYThEYs7dbTIUfyd39z0E28
PpjXDCnSQVp3zTan+hJczyep5e1Ehy6aIPDnlODA3LsRCWfp4HBfxqYzogSn
W7N2lrrTIU/e4OpWwxK8pj/JlPSlwwa+RM5Xb4qxzJv/LNjC6cAywbdoua4Y
izDZfEcz6PAiWLRLz60IN4z5Be7opEPwnp1vfpoU4U8TRkPTD+mwcRZoN/cV
YaHrr//m99LB9JSDChtrET5YuKdq1QAdenSLK9szC/Evn1jD0ud0qOeTy1B9
eB0XSw+xmMzRIbFyn7OCeAGO++DySJKfAIWv8/uLVxXgJdteyTIBAp4ol60R
ns7HvEcdardvJmBtp1D52tv5+Kn4esstogTEja6YnVHLx8nEqfSh7QRwrbs6
aV6bh0duPBNNVCXAMIfjkk5wHjbZLZlDIgLipUJllCAPh3Ack+YHAjiQvfuG
/lzMQ5q4XtYmYLWr3ALzQw62ZYg4GhgRsNzRunxEPBvbNS+d5rAlQO3I7nyN
6SzMlXFmBc8pAs6P3gDF21nYN100YZ0DAUufY6O5URbe9POuL7sTAd+EzTie
HM/Eo6m7lTs9CJgNnN6gn5yBjdaqLweGEjAuxyuvTUvDxT6Fk60ZBBwito39
6U3FjQZFHdKZBNyeUEqsv5KKDYPdVl7OIiAy3fqzlGwqPh0jUKqXS4Ak7UYd
h3kKttHysc+6ToAbcx8aKE/Cgu2G92NvEfBUXm/u4rkk/J/zRZ17FQSgiyfy
AZLwcelf215XEiAczLLqTEUizmwMJ2WqCXA0vHJZljUBn3b4O5FYR8D8wv28
+spYzNXMOVLSTEBb6ThN+mAsPvkrdF0WJiD15EqHzJFLeM7XMf5iCwFKDw2l
zq+8hM/KN2tbPSAgNOtVFVgR+KjnilsDHQQYGa/irZ2jY0Or4JdFnQSIrpTx
2xZDxzxpQ4f9uwjocPfdz3Y7BgdvCu/n6KaeD6x+8HhVNB7zbfBjf0TAi0WZ
rSg7CptMOztgyhVlxjFVilF4xbH8GK/HBBzhyzycYh2J+wfWnOrpIyB9UpZh
UR2Ob4Y8sTYcIMA558ieHp1wXPJXbe4tZZ/rH+T874VhV5m7LwMHCWjwD61T
4bqAQz8KdF9hEKAjVNjV2RCMFcLYGwpJAmyesEw/mwrCJx7qV2x+SoB/uP1/
HzYGYZvKyU1JlIveih3hOheA+dJ7LT2GCGhKj/ARvXEOiwo5bh+mTB6aSNtF
+uM2g18e6BkBrBX5I+a7/PCU2IAZbZgAQVvab+dTvrjG7cyiNeVd6+yEQ5J8
MK4qX32Hsr2/iMO1WS88P/M7+PgIAcFSYTHVW7wwrdXpRTFl8dpmYyLTAx9C
6rfmKYeHqI70m7nikItLqUHPCaga/7Xla60LrvfWKrtHeUyr0V6A1xlPQrvs
V8pcpcElql5ncHxE5Ua5UareOVVm7J44Yp9oFXc7ym5ePxVj5Byw8dlc2WTK
OeQ9/5uxp7CeCJcpppzuPe+XPWiLE050jE9S/qrsufzm8gn8rPQHc+0LAkxZ
Zgk5veOYdvytvCLl6l63df6rzXFG0oMZI8o8qR+zmttMsZPmI+6zlF/Uk4c4
l43wfzvV0iMoZ+oyrHPPHcLhc0fDrlA2H+73UJgDXDVh0HuDsiQjizWsXwmz
qp05V0NZY1L2qGbEVvyVfTyykbKiRUDUO28OlCPyfbaVsluPb6zgSUWkqTDX
0Eb5S0mg4w9XNbRQx/7m3/eq7UjEVU0breKku/w7PmwXcD7v0Ef3rMoM/v3/
xEDB+W2SJqixoCHu3/kj2bcujLocQw/qf0j8u75tGkUuqRUWaJ1OheC/6+8K
kHil99kKbWJucXGh7FRVbM6y1wbRGpJ5/q0/eiH1/YkmO7RH1oRnB2WzRLJg
v409+rP3hhPnv/XJbjjJR3NEXC3PNryn7u+3LjOB+YLTaDN9t2AT5avLQwkl
75zREd508ZOUXbI26kURZ9GXXCUJacoqSparbLe7oZuLu0PmqOc96j4Swu/u
idK5I4V9KQ+tvLw5iPBCa8J8z+6gjE3lf56x9EaK/KxsU1Q9Jc6639Fc8kFZ
pbo7jCgHqnKlKD7yRYp6RQ2/qPq0i630FM7xQzEn+1JvUFaUnJNZUjuHrj1n
K5ml6p1x0qugOiII8Zu0FJhT/VCu/3jiuGMw+ppRd3CM6p9oZWlxFt0QlObD
bDtFed+GV9dNOUORanii0Qmq/4zeSzGC9MPRteTYdBGqP1Vemn3pawpHRob7
VtGp/pUio3jFFSIQF+OA/hTV37S2cdNenkiUlxVknd9PQE1uBlNwKAo93aId
PkblRV5a54KHbjT6cEAidyvluLiF9e33opGl+dPLjlS+OAYZH3PNjkHOe79P
jfQQsNGM7WmjHYFScHNwCpVX5zkDhk58jEWhgX9rVaj8c2a98e32iTik2Uq+
VKXy0WyJwb/qSRwqbdJ5qkLlp8KUgkXF7Xhk1pcjK9NI1U/7+2d//BMQj2qG
21A9AYVq5W7GtGRUOTny3ZHKa0HltvM/9yejVB4lciuV50l7RuILvZORn8i5
iLEy6vyybBXfXyejO/5CHrqlVD9scvh0rTMFfV90y5qk5gH7oqDHfGwako83
TztFzZdjYikegy1p6HCUgtaPKwQUGK7xrPmahnYvHLeOS6PuZ/F3Tz+bK2h6
L2dPcTLVHxak94+d6SjiU21hTRwBAw2X/WkjGYiF/3yJcBhVbxdooTxS2Ujs
hVK+HjX/3pYFhH62zkZrTbX2eFLzceez2VBGUjZq2qaFkqj52bvj5YW0pWx0
9uVU3UNrAn6/aggXeJKDDhslanAeo+pHyzda1D8Pbd0hYjSrRQDfygXtqxP5
qJJsuSMnRsB+LjqvxnI+ivyMV9QKE3BSYNP4pGAB2l9jar9XiIBiOfXAfccK
0DvZcVuFjVT9mMWVDXUVoACZE5afOQmwKt7KveHWdbRZSaCg8Tsd8g8dG04+
V4SG9c+NOVL7lw7TySLl1CK0YZ16uAe1v5k+Eew9UVWErq39fdCvgw67vPM5
dk4XoVPNdm5+mA7tmTOqA9Y3ULam1/ShGjq8/xBdwAXFqMcfNWtl0kH2ct3Z
uP9KUf2FYX/CkQ4aT2L0K6RK0a7BU87yp6j9Hbe5XL9WKXL2n/ncf5IOkcnf
PvGeL0V6SxN9HBZ0eH5ln3fWTCn6PB7VYXGYDhfzGgJu9t1EB2pFLxnL0+Ft
VXP0w8RypGr7qLzlSwzkMTrzWPmqEE42OSrhFwPumzzmbg3WoBXAYbHsHA1G
PU5ZYFePhPYplN0SjYIUuqO+dk0DuhhweMaDEQErxdmj4xaa0I/TviqZgeGQ
K9xX+FKtFYl7FItkfgyFDzUZ7BVvHqCWbJpqM18ICBAjuz7fakffFyqs33EE
wo8JoVczFp1IlL3r42l9f5gr3z14aakLRfmoTN1q8IHuugdEdms3Wv9r4hPX
Fi8w1TF54Ojci5SqG3e8v+8KmN+y9frux0ikJfPsXiMnAPNdrJHf+tDMjwu6
Zh4OcE6Iq0cgux91eQzLjKnagU6yokxK9QCyDIMrR72toOyZVbUvfRDlOgly
sWSbQdZTj+cSFgxUrno0YHuCCfDy5cVXWTFQMWM5juWCCVwy7UPKNgyEFyYt
J91NILBfttDgNAPt2P+enTQ0AfOeKVdfXwbS4U5QV+aijm+2/9OayEAavC++
KiQfgdgic9ET3Qz0zPY13VDdGIJ90ZkUZSa6OpvpY9OoD3/v+BLjqkwk12o7
6HxdH6K/lZbKaTDRniMP7WIu6UNC0PqPXTpMdPGX8uxXC30oCJvy/HWUiRyf
KvfdWtSD7riUIEcPJnLW2f8pYI8e8Be9j1cqZKIJdZth9ZZDUEsm1D7nJFHc
O0HLu2w6YF9XJhzLQ6L3Dsn7Cue1gTe965IyH4lc1+uuLRzRBi+LZdurm6nf
LwW4jpVrg8Jzd05zGRJtMZws1DTRhtJxg9ODuiTSDNO8UH/tIOR+4NjYHUki
uduqbd/0tMDgkWRkAJ1EGp4P2fSUtOB3ueYnyVgSef/e1FYlpgVW7sHtMckk
GntVcbrmhyYIzE97auWTqP98/pbUEk1IWezuxs0kGnBhZbvHrgkw9Ha3xwMS
aftGrpdfBJivp13b0kmiL4+4R2onAIwD9/uff0win+wlu2/3ATh/lYipjJJo
anuEqJEHQNNoe/z0GImo0Ks2tgZwbRr/fvU1iaqnRfPtDwH0hm588n2aRJIs
8e5N4gBBNruVSz5R6/e02cvKAyCtblxk/plEXL4bFKz/aMCwiCv36kUS8Vwh
9Ts+aMD/32+gZ+kdkWhYA/4Hn94+Yg==
"]]},
{RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Vt3bB3BpIBlK5soYUojIUNm5eIrMQ26eDOk+p0whmUVJZMycKYnI
mDkexI5EKPOdSCUNplQipKLfedd6/zrrs9bZ66x1zr6+17WPGN3d7CwzExPT
9nVMTP93DWcKD6j5ycBkMG/d+jQhCJiguTsvMnBgy/xznyohcHsuRYrMM3CX
bC4HU7cQ0NLaDSM/M/Cs+fIJC+YdIKWwScz2LQPvLZtTYnfbAU9Ohz3d8ISB
eXZwbak7sRPWPbrGczKOgd9MWnI6cwvDpaDgsnlJBpaNWbCVXBKFOa+2entx
an2rVEA9ixiQ59naeoQZuDWbq9ZGUAwMrJNHi/kZ+Fp6VWXfETHYqV7ISmxm
YHuWsnr3UDFo/NFLH5wdxBrEMbFEPnH44yLC/6B6ECuCQWTRcQm4fApf8YZB
7HzGIktpWBI+Gq3uEEWDuCPQLd9pVhL0tY/UdR0axK+Oa34pY5ICAdmGORHl
Qfx5qZ3mICMF1as1Z7qkBrF0i5pL/CUpmMou1RZhH8QFa3yyneLSYD6ZydI5
NIBlBHef3Ry0B/Z4XYrbeX4A8wUoiLjR94HOkNHqfEY/TnvGqHo/qwDeaedY
uer6sP29GC+e7QchWf53blZHL37SajkUla4ONrOVHsWr3XjNbPsXNe2jwHH4
5m+ew8+xSnX9M7VeLeBY78vckdKFy8+41HOIH4d90ePam3o78JhK02KhsB6k
xugx35B8il9IHSxqkjOCWeF3gRdD2/BDlc4ofTVTsPdYU/zwqBW/pf2TElpk
DuIaO8hMwcdYa/nEx1csNGDubO57Z9yM++zfKMXlW0HKM8kFll1NmG8plsar
bg1ty+1obKgeZyroVK4k2IJCnv/f5ydqscbrkYONf0+DmrZMg/5KFXaxaKku
Yj8Dv54wBltay/DoXkHWnK10WJ/K6xRTUIaLPy4lmfHQgd2JtkaLLsNPlOdq
1gnQYRfH8J5ZszL8wsGk2kqEDpoWo0F870txklCExbQcHa5/Gpd2YSrFtHLV
40l6dNi26dslHo0SHCnUZPbrKh2EhvdvGxMtwRJsVhanwuggXnwhv2hDCTZV
lir4L4IOykbzfeh5MX6+N3q/cxwdaCmLkk7WxXhCvftmWSYdMqX+9Db5F+EV
6dJnVbV02KOzebdDbQGOaO23vTdFh3YmIeDLLMAnJx8t+H2mA9Gw167tagEu
9pvk0ftKhyw5gzQJwwJstdF//uMCHXh54tjffcjHfxt7v/xZowPzOM+i1bZ8
HJwaeuUBDwGvA0Tb9c7n4a4x0zkVRECAsuKHFdM8PDIa/7JOkwD+r8BUpJqH
97Hp8atpE2B2hjjEsj4P872aSpfXJaBTJ7+sNT0Xq3vvCv5tSkAtj2zqkad3
MSH/2HP7WQLiylQd5cVzsNN/OsxKkQTI/5hTy9+YgyMKDpnGRBPQo168WXg6
GytkjLu9v0EAR9vOEo6KbOyXqMwVlkhA9Oi6r7Ma2fhAuFtV7i0COLelTdKq
s/DhP6Ir/5QSsPakec1E/BZW7DhhuaWHAA0TpWzN6QxscYFV8HcvAYGj90Ch
IgNvuv3NY7KfgF/fo0K5UAZulLr4vuYFAUvCFmw9/6bj5E1scTJvCPjqN82r
n5CKVfXms5w/EzAmyy13jCkZPy4/p2y4kQTd8N1vV7uSsLXiSsSDTSRUjKvE
1d5Mwq2PpoYFWEkISbH+Lr0vCestx5wbZiNBiuleDRstES9Bt5DSVhLOD6qi
vpJ4bPjviZ8WQiS8kNP7FuETj7ubTUNidpCAImyyAeLxrpWapUc7SRAOYN54
rjQOaxIOGbtESCANb97Ytz4W/5ftWFEtQcLcQkNWbVkUHrIfVtCTJeFx4RjT
nn+iMFPRykcjORKSbDcQ6SORuE1AwNNEngSVp4bSgRsisdykvqCeAglBGe/K
4VQ4Lr1Q6cGvTIKR8Ubu6m/XsafPyAjzQRJEN+z12h12HQ8d5eL5TPmJq6ca
S0UYVveq/1WpSgIbbGp5vjEUH2t44i14mITXi3sl0K1r+PYZbvPPlEuLjcPK
Fa7hjtziX/VHSDDhST+RaB2ChTon8gwRCSmT+wYsK4Px93NY3whIOL4zt72t
PgDH2tbk1B0nwa6HefrllD/W/dDTdVKHBO9g+pYZfn9cRArOf6Gc91HMhNPH
Fx/dbqPGf4KE9aXZI7QDXliHxzfumD4JQqeZ/jie8cT6P+dvdlI+sM1e+FL8
Rfx33USyngEJdG8R4s7XC3ht2t5f25CE4EtHRnotXDDhIdS51ZiE8rHfu35U
O+EO64dXAim/1X5IF+B2xJI62jKfKGuwH5q17yGxbraBWakJ9X0vrCiEyRJY
eMWjj92UhExGnXdR1Bm8LNOOnCj/UHdf+3DDBvfo600LmJFgxvw1XFbvX1wY
IbH7POXKrvPbvDfR8G6VywaNlF/XMnTZ14zwyblthLk5Cek6A9a3fXTx7/9W
jDMo04Z73eS/AeZyaJZ+S1lzcp+51lUJXB9gfNPmJAkKlr7XPnmwoWr+5zKp
lM93ekYJ2SqgVo74/B7K8wV+5E8XDTSttMy23oKEI61IxEXjGNqy3Y6mTPnK
AWB/9UQf+U+IRdApj/flBO6WMkVGmdl3blDerZnnlFRqiWKmTgS9otzuK/lO
7/sp5PhGSesPZYfyfBrzQTt05aLljBCNhNCFpAmbRns0KsTnrULZIo6Ro2ZH
R7x/+8eNKEvt47XlYSJR2+qX/STlpXYLgbmcs2ixpNvOh/JTesrgM20HlGzx
wjWMctraUGzBJ0c0v+pkk0DZKYNf71q4M5Kz/y6TQfmQitXG0zLnUcG3/hd3
KLMNpDUfeuaKrgxfPH2X8qjryCU+V3f05+/h9hzKQxtu7PAPv4A4N6ZszqKM
zeRWzll5oEbNmT2plPOzu4dOylxEye13JW5Qjvvq+kDr10Ukf3bvyhXKfkc4
ExWeeaLk/NlCd8r2UWXuwpleSLmuQMmGsu6wkSG7qzeiyWdXHKOsIPVt7y8N
H1QhcHiPLGUBrzjWKU5fVPeKI4OL8rrH+ydejPminLCyjXPU+5zh6mttrfBD
WcPVzt2UB2wv5FRe9UfHoKajgHKJ/vPxf8kAtPHcyYhLlEPV94gz61xCA4ov
a/Up20mH0otlAtHP0QZzAcqqvO/umrEHod1xQXbj1H7Yuv7Ih19fg9CMU9ZQ
PuWZuVSJ3P7L6NCV2w8dKRtNSA/46wcjHrfDXePUfjv0xmK+uzEYDaiOzadR
lmZc4xaXv4qCd7lcN6DM9HjMrGtrCHr5wHi2kNrPVbdTB4WGriGLpG35KlQ9
ZCW3LbjphKK5vw8E+qn6iY5e2N5aF4p0q0PmHSiT/sYnXW6FIa+YvpEoqt74
LVhePLQPR0c9hpzvUfW6weDgItdAOOLNO8smQXlOi+AltSNQx+87HLep+u5S
eGTBLhWJDtk6aVyn6j+Q3XfI5nMU+l3drSJH5YXj+ntLFTbRyPuT3NQNXWo/
/hrg29gTjaaerazMUPkiPyVvWVoRg36J6GpkUHk03jrxctU7FmUliqh1a5PQ
08Dz03QyFuVuVn2/lXJDpZZAvlUcivd9OG2iRT3f2Fi2YFc8unHsDle7Jgm5
GiXnjZkSkEyTQGmoBpVP6o8DV9QSkOPAkFoJlY/xyiMxuR4JaPG4i3wPlZ+B
+1hKl98nIGG+5tjNh6h6FyS+3GlLRNkRTRI0FRJYF4Xc5qKS0VA4T+ZxKt9P
iiW69T9KRj7VRzV1qPzPMdzsXvUjGUVaLDD+ofrDofxldy+7m0gihrVPZS+V
B5YMj5+KKSgkLpdjSZKEvvob3kwjqShav7NsnOo/Oyc2+IxzpCFzB8fTlVR/
cuIO9HmslYZa5VXXXab6F7OLs2/o/TSUb1wgwClAgvJOHX/W4HTEqspI27yd
qs/LTEFbpW8hJa4Pc65Uf/xY7Bv03foWauiba2JnIUHx5deggfhbSCAnMaiQ
6q9d+99cTv5F3Z+38cUQMwl/3tUHC/RkovvVK5OcqwTYa3uGinpnob/CNOuv
cwTwbFg4ljaejereRhGXhghQ47zOrbmWjZ5ay7XfZBBgKyA4NimUgyJ+mD26
P0BAvuxRP9WTOchWud+nj5oXVC2ii4fac5Arp+emb+0EnMqX4OK9fxdFqSqy
RdYSkK17cjjBJw/xK2R8VEoi4InZZJ56Uh4SvPJ4eTyegGmbAI/x8jxkJRpd
ERNLwAGPbDbF6Ty0eNBecZiad1rTZ4/0Wd9D9a3aLrrBBEzMhOZwQj6aWI3P
jj1PwL4bNc7RWwpRixf/8H9aBGj2hOmXShcia7YhC3Zq/qJx0WR7tQuR7c7F
blsNAkISlr5wBxYibF5WsaxKwKubqh4Zs4WoOrfYkkWOgIiset+i7iJ0tXn/
5xQ+Aj6WN4U+jStBDVVLTMGT1Hw40Ja1nqccXeUNHF8OpoOIbPuypnw5iu1s
1O0PokN2WLvJZd1yNKXraF8YQIe7ak+ZVwLLkSUtKc/Yiw73sjrOff1UjnJF
bNNDHKj5teZs6qx1BeI8aP03wJAOdlcdT7+Uq0T0HAOTNn46uAq6fbvfX4Xe
9vid3Z1/Bow6HTLAvha1zG/Slk+xh8TrpP6xqnrUYORUYLFqBxvEWUOjFxrR
vL/h6+paG7gt3J37RqMZ9XhUMW2RPgUzVamspR9a0KO9rw8bPrQEgfCRA9/v
tyIXfWGLHlEL+Dm+892sZRtiPqgizdFqBt9KlPojf7Uj9QnxXNMoE+ioaQm/
1dyBGpO2+D2INgCz46YtpGMXMo/q4dTI1gXMZ9V8V+k5ittxSnJLyz8AtAPr
Q5a60UH2JpW5fwF8dnJ2CtzqRTqFg4vvuTXgeILC3sTKPmSleBCzNKlC8ctT
lZ7X+9EfQaMGqYtKkPHC7ZWk5QBa6Jl/pFW2H7h5smLKTw2g4k3bWL0T9kOk
WTdStxtAu1Y3v3rotR/8evflGpwdQA6F9/5cP7wfaJ1TLp6eA0gN9xPcXfLA
3URfbY4bQA3ROV+XZuQgKo8matMxgF74ndZqPiwLAZ7oXKL6IPpR+qPpPL8M
/H3gGT52ZBAlsRaPCKyTgdClwkJZzUFU3sP5gzGzB2L9t39uPz6I/giFsgTh
PZBzZcr9t/kg+vYuczT63B7oiE70J90G0Vals72366WBL28iRiV3EN0zCY23
d6HOp4zY6lfsDPSI/s257bcE0GuKhaO2MtClRdZPXJMSwJ3SHqnOw0DVNg9W
XQYk4ILl2um0HQyk2WQ/blUkAfKvXNlpexmoj+Qw3WAlAYVjBmf7dRhITKJY
J71OHG7PsPF3hDAQt3NVh/d16jz+TCrE9zoDjUcZpb3zFIM/JVpfpKIYaMXJ
ucX6jBiccg1oDUtgoC1ivMsh1HldYG7aXTubgdpP3+1PWhCFxMWODtzEQEOs
lqdqSVGAoY9Kbi0MdDK5aEXMXBTmapnu7Gqj1hOvjW+DKBj7qXkHPmcgM/kH
Px8LiwL77wKxQ6MMlDFtopNYLQKNo60x028ZSDWz5TE9QQRcGseW094zkP76
dexm7iLQFcTfszzNQBy57vUx+0TA305JveALA82IsC++3CwCe44a59G+M5Cy
l2QZTAnDsIgL16ZFBvr36YW+znZh+P//I6iUVqJz4Z4w/A/bixFC
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
FrameLabel->{
FormBox["\"Time (\[Mu]s)\"", TraditionalForm],
FormBox[
"\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["case II", "Subsection"],
Cell[BoxData[
RowBox[{
RowBox[{"params", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3.0", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3.0", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",",
RowBox[{"c", "\[Rule]",
RowBox[{"3.", " ",
SuperscriptBox["10", "8"]}]}], ",",
RowBox[{"\[Eta]", "\[Rule]",
RowBox[{"2", " ", "3.", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"794.7", " ",
SuperscriptBox["10",
RowBox[{"-", "9"}]]}], ")"}], "2"],
SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ",
RowBox[{
SuperscriptBox["10", "6"], "/",
RowBox[{"(",
RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",",
RowBox[{"t0", "\[Rule]",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ",",
RowBox[{"tp", "\[Rule]",
RowBox[{"4.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
RowBox[{"3.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]",
RowBox[{"1.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "3"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]",
RowBox[{"6.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]",
RowBox[{".5", " ", "1.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "3"]}]}], ",",
RowBox[{"h", "\[Rule]",
RowBox[{"1.5", " ",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"alleqs1", "=",
RowBox[{"Expand", "@",
RowBox[{"Evaluate", "[",
RowBox[{"alleqs", "/.", "params"}], "]"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{"alleqs1", ",", "allvars", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"15.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{"allcountereqs1", "=",
RowBox[{"Expand", "@",
RowBox[{"Evaluate", "[",
RowBox[{"allcountereqs", "/.", "params"}], "]"}]}]}], "]"}],
";"}], "\n",
RowBox[{
RowBox[{"countersol", "=",
RowBox[{"NDSolve", "[",
RowBox[{"allcountereqs1", ",", "allvars", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"15.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Join", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "2"]}],
"}"}], "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "2"]}],
"}"}], "/.",
RowBox[{"countersol", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "5."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"5.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",", "Blue", ",", "Red", ",",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Dashed"}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Time (\[Mu]s)\>\"", ",",
"\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{GrayLevel[0], LineBox[CompressedData["
1:eJwt2Gk0Vt3/BnAhIUOZqVTmTEnKvB/fRCLpUVSSZCqZhzsz930iRWXMnMxk
HuJJaSMRkuF2VKhQEiWUaKTf+a/1f3XW59U+6+zre+29znYHL0tnVhYWFv41
LCz/94xmiQ6u/0FiH8mDaysDdCB4ytrrwhKJG+bJ5doEHfDskXPa+pXEevtV
bJ6V6YB1Wof51U8kFpeIK903rgNyahzbT78hMf9rrQk1U114fCbqCftjEnf/
I7NTXkoP1jRfEjoWR2IhQcObL9/qQ0gYvfKrLInXKMa6ygwZwIJ/e6O9FIlj
ONEX+ykDcHLnbu+VJPHdFOAq/24Ah04lj5aKUuvBl/WeEgCbtUs4HblI/I/z
eZM8e4Cmb30Og7ODeCTcmXNwHuCP21bRu3WD2LLV1zVB3BDCbXAEDQZxwvT6
WpcsI5g8vLJpGxrExhdqBqSrjcDMUO9et84gPjU6Gz3fZgRiyvcXtmoM4h2C
tFe1n4ygbqX+bLfcIDa/MCf1UdcYpnMqDLfyDGK7oMld28eM4eiHrHVdz5m4
69pB+oSaCSj4h8RtdmfijLeCa1TZzODA88MrXzMGcNykU+3fwiNAS3Ph5L/X
jzNvGnMnlB6DZNXf+dmdfXi82lOWn/Mk2M7W+JSuPMMGAvH4U6Ad8Ore/C2k
24P1Ncriwg84AC9bAGtnSjc+zqYeUu7rDEqxE4YcfZ04QzcA5+m6Quo1U9br
sk8wD9HdvUfAA2Ylx0N9I9vxVMtu05oYb7D3Wd31rrkN15/8wO9L+oKU/ian
LPFH2MVExWiaiwasXS394xYtmPddRsTawABIeSq7uG7LQ7y1zCn11/MgaP/e
gcaeN2LWnIEg7pUQUCsI+ttzsAF3btNnV1EPBy3DHffNftbitF3h0rvX06H+
wDTf3MdaPPdqIViInw7qh4od41/V4mSV7K5FATooW8nyDjXX4mld9/3lEnTY
dm67vd3lWqzppXaRXZEOXLHiHD6CtbhJ8+iKhQkdRphclikqNVhE3W2P0SU6
/HpMDra2VeKhWzPSnl/pwJYq7HqtuBKLqQ1p1izRgcfVetU6thLvqI+Z//KD
Dlt4XyrMWlbiCaFqcP9LBwOr0TCRtxXYJc5HYz8PAy6/n5B3Y6nAgi23vSNk
GbCRYz5ESL8Mk/eIc0LWDJB4uXPj2LYybHq/fB3nSQZIlXoX3WEvw0o/Zrb+
PMUAjcNf+1FPKS4LTagZPMsA65QlWddTpbixzlzhggcDsuT+9D0MuoPfxVqP
SEQyQOEAl8y5hmL8YiMpHlHFgA4WCRDJKsbNbz84falhgON9Rbt2RjEOX600
O3uXAdkqh9KkzYsx+7O2Ke1GBggLxfGMvyvCvN0Cyr2PGMA6IbR0YmMRtjhT
18QYYsCr4G0dpu4FWA1928z3kwHBGrve/fy3AOcuPCV3/WaA6Byw3NEswJqf
bvMeXWGA5VlHnXVsBdhWyGTl+hoCug4UVbal5+Mg5mrNey4CGoSUU/We5GFb
18jTmyQIiKvUPK8qlYvlMuv3pmoRoPptQatobS5+oJn/KE6HgF7tUi7JmRx8
Y0vWrig9AnjbN5fxVufgTrbCWhcDAmJH18zN6udg3k2zIuwmBPBtTPtgXZeN
3woj8WJrAsyzuK8aB2djG5kEWY8TBFyTD1PcC9mYThMTV7MhgBs5eAj33cJe
NPyw/DQBHG7Ki4Mfs7BenOIQ3YmA1cctq0ekMrFMa8OfRB8C9I/szjGYycBZ
2pbC8n4EhI4Wglp1BjZznme950/Ary8xkfwoAyfpJB/vDyBgWdKKu/dkOqbt
9G8eCSNgLnBG2CwhFW/4T/eo1VUCxpQFVIxYkvErR63VF7cIMImWebPSnYTX
apwzWMgmoHpib1zDzSR8ZbQvfW0OAUTKqS/ySkl488D6G/J5BMixFNZzWyfi
695vz5gUEeA+qIn6y+Jx1eJBb5ZKAoZUTOevXIzHTmJXsz9SRldscwDicX6M
7cJAFQGSwaxrXSrisMeJG79TawhwMr95XYntBmb9OZG+pp6AhcX72Q2VMbjR
y9/Y9AEBj0rGWBT2x2CnZUcLjiYCkk6zO6YPX8UDj855NVPe+8RcPpT9Kv65
N++LAiYgLGO8CmyisUhXy8zLFgIOW6wVqJu/jC2NlFPCWgnYxq7oLxN1GReM
lhzd+oiAxx5+Wuuqo7CwyPjqyTZqf4CjtWdtJP74uGFNeTsBr5YUpVHmJZwR
JSKl3UFARalFVJXaJbybpdK8jfIRofSDiacIzM5f0Nb7hICUD0rM4zV0HHCr
RuRRFwHns45odBnTcdmNvlDNbgJ88z4q0+5FYM+ki9N3KDfSwup1+MJx3Lmb
z6KeEmC8Ob+jvTEYv0qseyD+jAC7XtaZF9NBuCV7gzuNMo3usP6jaBD+2XJM
p5dyweT2I3wXA/DU7L7DAb0ENKUwfLcVXsTyd9pyn1AmTSaS1Ukalh8ZlxXu
I4CtImfYWt0fa9SI42LKEmdY/pw/64cNvMwGZimrb7SXDIn3xVlMI8Gd/QQ4
0LY63p7zxrfjn2wvoxwsHxFVs8UbB6y6fp6kLFX30CI63ROnaa2f2jRAAD1E
b7jPyg1f2Bxty6BcNfZ7y7c6V/zpNWO4ivIbwwcOYgLn8ULmA8YoZb6S4GI9
bxesutx+jJ1J5Z1HZ9a+1wmfV91tqUjZ3funWpSyI25RSAkyp5xF3qPdiTmL
v7kR3R6UU3wW/DMHzuD726/tj6X8Tdtr9d11W8wmavKhkLIl61y0sulJbNRk
VvuQck23+0YahzXuk1UpZFLekPQp4+EjS7yB51LzJOVXDaQJz+ph/O7pJMs3
yukHmKduXTTBL1w+nmcZJMD6ZZ+n6jzgy5eUv3NRlmNmsEX07cUvPfaXbaBs
8EHp6D6GNP5XtCdSiLLa8YBL73240WlRu0vClN27/GIkTquhvLKbRYKUvxYH
Ov1w00f77vHN8VHWa0Nb3fSN0M5O55PrKEeoA8/IYzNE49Wa/kO9z0R/bqiM
3L8o+qx0xjxlglN6cdT1GLpi1OE5RlnGoMA1qeI4uv222bmHckeA7LjpFxuk
y10d3kD5XFWRNeseO+SyV7PxFuXIxaQp2yZ7xB+zLERQtoojc7XsHJDlQFyC
I2U5JeHTQixOqJ9RqLqP8nKHldhCrjOauz/yaQvltNXnN4rfn0fhqbvbe6j9
dM0QNb0UfQGde5Yzfpuyzt4Ta8/scEfRNS0S3pRHPYZDRDy8UBBb3cw6ys/Z
r28KivZG0nZkWB+VJ2yp8tPlhA8yAeOdyZTj5jzu7vvlizjetkwLUQ7U40tU
e+qH/Ba2LPRTebWPqfSSzPJHSTv8BWMoq8nNK/7Sv4h01JvKF6n8M09759Yw
glCa/yGrAmpeysx6Jk46BaPptr+ZQDlSW0GK9UAIEnIsSxntIUBTeDzPkicM
davOFa+lfHhKnhlkRkeVhs466tS86ry2+vqsiY5a9cS211PzLU9eEpBSZaCl
iLEHGpRZHo1Zdm8gUERUF69iJwG1t1IHJZ5fQqYCgjKfqT7JTm5f9DwQiQKa
XcutKMfGLgq23YtET7sUZu4/pvowyOKYW2YUGq2WoIdQfSRqtW7ogX00qlPJ
kB2i+iyUJ+C57acYtIws7D/ep/qFrXC52jYWWcWMa0pStvrFFFnbG4tUTyu1
H26kzrdp1eMV1deQXa/9mqL/qPy0Tb1Yod1AZrN5bCp3CcjXL3O3YElAJmEq
5rfKqT7QfhT6UysBhZypiMsqIyBeY/havk8CmoyUiEkrpdZXWlfx/W0CelB4
vvhyCTUP4o6fb7cnIv7PAVd0CwjgXJLwXIhJRkuVOxw5Mwk4tj3Rc6A5GR05
GCgynU5ArjmXV+23ZOTK+XfpcRr1PYu+e/nb3UQawnv0LqZQ83Gc9PmxKwUJ
V08tNyQQ0N94ncYynIq6RUPu1kRTeQtnCdsgn4nIXd+n46nzcbI0IOzLqUw0
/C/TSdSbgF0v5sKY8ZmIn8YrlelJQPfO1+HJvzLRm4vejhluBPwZb6SL9WYh
jvt5woHOVH4M/SK30bLR/LEXz6up81qIfdEobSIHSdvndG/SJ0CL77KAwWoO
suTqrZXRJeC0mPjYB4lcVGtzOURRm4Ai5X8CNY/logDP5lrlPVR+rGJLn3fk
ovkDaUPrVQiwKZLmFy7PQwI/Aob3bCYgx+TYy4SLBUhKvdbJ4AcDHlt+KNBO
KkDM5nyvD0sMmLEN9pmoKkCfijrCYhcZoO6Tw71rpgBF9suUdM8xoC19Vq//
VCHqurHDRvY9A6Y+RubyQRH6hmTbDw8wQOl6/YXY9SUo69ea6tBiBhj0RplV
yJegpc6vR8gC6n7Hb63cZ1iCcEah4Y48BhAJy58FQkuQ5Wih9NMsBozc1PTJ
mC1BqCB0cS6BAVeyGwPuPLuDDJzD/v4XwoDJqoeRT+LKUJNHzsGT5tT9jtme
zSZUhSZ0zLOlZ+jgIe45Xz5Qi9QeiKq8EqbD4a5zGWDfgHIf+/i0yoRD4mUn
M6PaRrR7WTgjXSgU2KU4I2MXm1DW9aikhq9BcEvyWf5r/RY0JdXqfDs+AD7W
pnJWvGul8r9jZc6SBmLRw+pfytvQ5NMqXdpnX/gxsXl89ng76k1wkZRv84b5
st0DV391oMB35+Qcgjygs741OrOlE3mntGi/PuUKlsb/tjqd70avv86f3jPg
DFjkREve7h50//0bOQUrBwBrdTZi+RnabLmwFBtvBxc383WJZfahE1PJm99c
PQnGCWqKiTX9aF3Q2/CQ7mNQ+sKmxu/yAKodnfTk/nMEMoY8R2SPM5GJhZHU
3nQzEBDKvlZlw0SOga0WvRFmcNXyGdK2Y6LGZofGQBczCOxTyj/kzEQn97sp
smuYgXXXtJufHxNdKxOb/NZnCgIPHVZa4phIgvSp0FpvCjEF1ttsO5moYMgo
flucCQT7IZdE7UEkbKe7T/qpEfy96xc9pjeINBqKacR/RhC5XFKibDCIwpbq
BBfyjeBGkOCnDuNB5C/Q77scagS5EdNev48OIra7rouVO42gMzYxyMlzEGU8
G6vvTN0PIgVT1/bmD6JgMY04W19DqCNv1I3wkOjUi/RcbwsAh/pSyZgNJGrV
mWM7pA8gkNJxVVuIRIyBYi5NJQDv46tn0jaRaJh2h6m7DkB1xIPHWpFEQ4ON
bn+bDaBk7JDzwAESTSpw7D+nYQC3PnKLdhIkSr+XrfjnCIJDT+WIgMskspg0
+x6khuBP2b7PcjEkqrK8Oym0AYGNR3BbVAKJRLo93uT26YPYwoyXYQ6JNm7i
CxA5og+JS52d+CGJToRsq7Wy1gN4Prnbs5VEC6lt45maerDQwHJ7SzuJzplK
vV8R0wOLQC1aaA+Jap3OKAq/0gWe38XbdUZJJG/+qeOGoy40jbZdm3lDogaJ
M201Rrrg1jT2Pe0tie69yeRZkNeF7jDR3u8zJHJpMwM8qwNBdru1iz+T6O7I
f9yH+3RA4R+LAusvJCoafvPqR40OvNzqxs+xRCJ6eGcRTtaB//+/gc7wMI7f
DtCB/wFEHUjK
"]]},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwt2Hk0Vev/B/ATQpJKKqlMGQpJcjNcnnwos7g6KEoyFJGSecpMCGcfMpMp
ROao3HquEpkynLNTUiGVIUlUoui3v2v9/trrtfZ61tp7P5/n/fmsLeFw0cKZ
g0ajbVtFo/3vGkuLDWz4SeIO2+ONPPMGEPjR6uL57yT+NhAmV7DWEDy6ZZzE
5kg8HeezdFTKEKwy2kzjPpF4n0/98LilIcgocUucektiv44tohuaDOHJ6ein
XE9IfPRAgseRGCNY9V+kED2ZxJ2XMn1yFE0gKCSsak6axCVJkxbkIzOY9W69
by9J4m2aYR2X35mBkztfa48oiW1lP/mlrTIHE9vUofKtJA5ca6gXKGkOO9TL
eB3XkHjQI/DspJM5PPjW68CeZuNhx6AB92lz+O0mtvVOPRvrCT6fB24LuGKD
Q32AjYM7pgV+nqXD+6PL28URG9+eSVUuD6CDsa7mvU4NNtZY4dM4f40OwgpN
s2IqbNw36yIkVEeH+uWGM50ybNxShVnrV+gwkV+pK8bPxqhPTacywxKOjefw
dAywsNCB7YeqXlrBbu+g5B3uLGzY9t1MK/oE6A8cXZ7L6seS7HsqPwJPg0/G
Wd719/pw7qn58rZER0hV/FWU196L1Tk7man15+DkdK1n+fIznP4Pb/KpEXdY
9/f1X0J/d+O32mP+zZaesI7Tj6M9rRMryIud7rDxBvmEUV3u3nbclJHCVljw
g/RrRhyJ0k/xVibIRhUEwbToSPDlqFY8dmx+0scvFOw9V/aP/deCfQtFJs5P
h4Ok1nannG2PcXHPjgfWfFHA0dHcN2LWjCdW7xF1PB0DaV3S8zw7H+Kbn00d
+kquQutCGxoeuI9lbT5f8rkXD0rFAX+6DRux7DGT80WD10BNd0+T8WId9pfy
PjtRmQQN+hMCM1N1eIfM6QD3hiRQNil1ZLym7rs2Nk4/SAIFS+l1z/+rw12r
5vJHu5JA/JyEvV1MHT52IKs1ZzIJ1iRs4/bcVIfR2LNhulQyvGKtsUjbW4ur
NKLe1qQlw9ITkv2I2pzOghM/jFQZwJm+2fVaaRV2MEgu9NVgAL+r1YpVQhX+
U/1xfb4WA3aue7l72qIKV/G8kZ7WZYC25VDIlneVeGF+J7erOQNiPozKutEq
8UPXNax5FwZs5P4SJKRVgZcNbpccymCAyMt9G4fFK/BExWSXWDYDJMsvldzi
qsAVc5/il3MZoHJ0rg91l2N9d53e2iIGWKV9l3a1Lccj209pL1cxIEfmd+/D
gFt4/Mc5JNrKgN36a6TONZZiweVH8cFfGNBGE4EtOaW4Tb8pZ+QrAxyb5Oxa
w0uxTreQi843BuTtNcnYZVqKG1Kcpf/8ZMBmoWT+kbESrPvg/qZTHARwjAp9
P76xBPef14m/JUTA60DxNiP3YjwY3MV/RZWAQJX9Y4v/FGOOM0GH09UJ2DoD
tFuqxVgh8OD2qr8JsDjjqMHDWYxzPq8uIA8R0KFfUtWSWYQtNxZPcxkQ0Cik
kK75tBDnpkwHfLUmILlK1UVRsgBvFajbP+dDgOK3WbWS1QU4/7dszJgfAT3q
5WtEJ/Px7B/iXX8AAetad1Ssq8nHAS/cKm+GEJAwtGpmWisfG40GOeyJJkBg
Y8a4VX0edpJD3PkpBJjm8MXpBebhW/mG+85cJ+CabIjcQcjDdcxVDmLpBPAh
hwube3PxLdfNn5hZBHC7Kcyzp3Jwkb2Ss1UBAStPmlfMJbMxPYfeZlpFgJb5
gXztySys6S4jOVxNQPDQTVCqycLBL5/7XKglYOlrfNR6lIVjHrj/CbtDwA9R
S76eE5m449uiT2QTATP+k5uNiXScbfeg7VsrAcMKgnuP0FKxrZ1ud+grAgxi
pd4ud6bgnvr15ZlDBNSMHkxuvJ6CTwss45rXBESk2X6VlU/BlSd3xQ+8JUCG
drOBz4qJ4/M84mljBLizVVFfBQM77ubt75si4Pleoy9XfRk4oryFgT8RgK6e
zAdg4GKbj8xb0wSIBnKsPluZjC3SFW39ZghwMr2eKM+ZhDMdr374+pWA2fmm
vMaqeFwRgfY7/CTgcdkwbffheKxQVH9v1yIBKae4HDMH4/CR7DW+7ygffGoq
G8wVh/29jJOtfxEQkjVSDTax+K+SWRnxFQKOmq0WrP8Sg812Kxt0URbnkvOW
io7BRgeNM73+EPDkgpcaT000ThdY2/4vjQl8wP2oe3UUrnHeoivHyYTX3+V2
oexI3Ffs1IMpV5abRVcrRWLh+bJIcy4mmAtlGjJtI3Au5z5Xt9VMSBuXZ1nX
huG7TZv4Q3mY4JJjrtKhF4Z52mdZvylfLpxS8LkXimWl1mI/Xibc9wlp0BC4
gs3uyK44rWGC3o6ittb7gXiVmbfgzrVMsOvhmHwxEYBXFz2bDKfsE+awdmpr
AC7niP49Rrn4vYS5gK8ftr7vO3+DnwkP0sIvi9/0xbmDph8XKZMGo6nKpA8+
W2C0+591TOCszB+0UvbGR/qfpi9QFjlN++1yxgvb8xx7oifABOWN9qJBjMv4
Rvg2lELZwUfM8cbMJRxm771Vaj0TAmVDo2t3XsK65sK+LpQl6x+axWZ64HXZ
W8TLKYcFaQ72WrphzXF9uvQGJlQP/9r5rd4V39BIfmNH+a3uvw7Cgi44K/FE
zXXKWvwa0/Y9TpjmVaL0i7L7pUWlaAVHTNut82bPRibkkPd8bsWfwackU/ot
KX9Tv7gylngSRw4kJt+kbMExE6tgdAJrJ1oe76Bc2+m+0YfbCo9FCpyborwh
5VPWw8cWOOOQ4b+8gtR+NpIG/CtH8Zl3aXQpypn6LNtcXwNsJx+nrEXZ6mWv
h+IXwNJ+dfRjlGVYWZyhvQcxd/PNprOUtcflj+mE78Ln8344+lFWsvaL/ODJ
h3gN1c2jKbt3eMWLnFJCFtc5QhmU50r9nX66aaHKhfEvGZQ1W5CYm9YR1BoZ
WphHOVQZ+F89MUaT06fTCiiP9hUES8n8gw7HiHf9zxG8u+aHXOkIdE9o36As
pV3smlJpjTrvFn7PpNzmJz1i9NUGFQunTRGUz1WXWHH8ZYeq/34mGks5aj7l
48kH9kgv4x0RQNkymSxQs3NAMfqeuq7/ez/5zaeEaE4og2vzASvKP9oshWcL
nBH/3vP22pSfOqSxu3TPIfFH67pkKWesDCSVfnBB65xyL/NTds3aahQZex45
nbxrNUN9b42Dx1ef3uOOTFOXfJ9R5mNlNGt0XUDvM7nZtygPXRgM2nLhIgq7
EXQ+kvIAV+L2gNhLiCd4SdOGMrbYu3j2uCdSrZAyUqScPHPhjs7SZdQvx7Wp
h6oPf00BplKXFxqp/PMsk7J9fNVF0RxvFD6p/NiBspLMF7klLV+kKUTSp6l6
FPZO5p0Q8EM2rolztymverzv4/NhP7RHS6L9PGXWqUsFteEB6Kd4qeFbqt4r
jLtHTzgFojWtr4lEylHquyU59INQashMpTpl1c0jhRb8IeiHfNKZq9T52cCp
ObY0E4JuaAouylGemk3fVdR/BeWn2zl1Uufv6EdZVoBxGIorPdL4hzqvGm8s
5549CENdf73JuU5ZlowUlFQMR+jRQevdlGmPhy06N0SgpS5l/cN8TKjLTWeL
DESi6mmmkBWVF3mprfMe+lHozl3/TBaVJwkJ85ta7kWhMh/NOWPKTgFmdLfs
aDQ7FCT2FzcTtlryPP/XPhaxjr52HaXyK5jfb+Dkp3i0+sRyewGVhy6cN3/U
nExAO8P4iE/LBFgusbas7klAZ7379ipTVpxQtK6suYYajIc+NFD5Otry8cWy
TxJ6re1ukU7lc5FWhbsZjUDd5/RUHlP5LaL+OHhRjUDNKYnHBmcJYKgMXivy
JND3OR3Dz1+o/iXPU7nwjkC025H31lL5b7XN8fONViYSuyNQJ0n1D97vIh6z
8aloZ4ZE0/1RAugSTI/+/1KRUHlhTO0IAQWmay7WfUtFwyIFWSXDBGiULFz0
truOMnRMs6++ofqRNen5c38aclbnXq8wSEDf/UQf2mA6WvVzzaGvvQRkXKGF
bJDNRiqqNS/9/yXgfblfyFfbbDTBjetEqH65/8VMCIuRjehxEuP37xHQue/N
ldSlbHTYw+3MbAMBv0fuhwn35KCkL42VWjUE2Ot6RYn75KFfrUoqNsUECHHN
H8kYzUcmDR3mN+IJUBOIEdReyUe312ZrdVwl4JTwtuFxkQKEXT7IzsYQUKJw
yF+VXoAaegZ/qkQSoGqZUD7QVoCuFmwrywoiwKZk1/rNtwsRchbY+cKNgHwD
+kvCtxiJ0s8nbTei+pfFeLF6SjEyz98nOa5PwOTJQM/R6mL02MiVrD5CgLJn
Pt/+yWKksRCToQYEtGROa/bZ3kT5XEebZdUI+DgVVSAAJWhVlqvtFWkC5BMb
ziesLUOJoqO1W1aoebMn2rhStgz1ZnJ8S/1FzYfrrRR6dctQ+NRw9oZFBkQQ
Pz4LBpehewLfJWjUvPfquqpn1nQZWsxqkG+eZMDVvPt+t57dQkr8kcdbSQa8
r34Y9TS5Ak0L/KP/uYyaD1mteZxC1ahE7n32b0MGiCm0LWgrVqONBuNmQvoM
yI9uM79iUI2Km5l8cocZUKj2lGMxuBr1eZtkmiEG3MxrPzvzoRpNHFTXiVSm
nq/BOX3atgbtebdqLlGEAXbhLqdf7K1FESWDxd6sZLiwzePL7f46FOXLz/Dj
SIajHeeywL4Racyqh09tSgRmjJPxkbr7iKPn5K4z2xOAS5I3KmH+AXISu3uH
tSEOckWfFb3Raka2c5HKXU9jYKounbdy7BGavqgyP5MfBcKxg8pfb7cgUdZs
+dpjEfBzdMfItHUryn+bbGWgFQZfKg70xy21IVmOVuONKcHQ3vAoNru5HTlv
CIh3zPIHC71/Hjm5dKLU7Zqp4Yo+gLccby480I1e9xWpjvR6Algpc0b8eIbo
ISPcv+9eAN8dAh3C2b0osGeHqOagC+gRSnLM2j70ckVTLAE5QfkLm1qvmH50
08xUoPaaPWQ993glbc1CGZEzR8gJGxAUyrtWbcNC8yNquZJ9NhBn8Qyp27GQ
D69KScRdG/DvlS8ycWahy3w3Gv1ibMCqY8LNy4uF9pYeVP5Lmlr/0GG5OZmF
jLbVM346n4D4Yivxk+0s1LA8Ier/zRoCvdBZpjobWbC5hhZ0LeHPHa/YYU02
+v2JN2VYyRKifpSVKWizUbEf19/Pd1pCUsCmT216bOSp2q09tUCHgtCJi7+O
sVGz9v4LTbfp0J7ADHDyYKNGCa+Mz8J02FL88drBIjYKUynrdfhlAfVkUv0r
fhKpbdOO4Bw3B4eGctH4DSRKInmOn3huDoJpbXHqQiSyNlk4jlvM4ZL1yumM
7SQKeBNW15BvDoqvLvBbyZGo5KLBm+O25lA2bOLcr0+iGFd6E7vEDHKn+La2
R5DIVd1x31KOKZh0yUT4xZDo8BblreYhpvC7QuezTDyJZt7M6zw+ZQo2FwJb
ogkSRdtbSP8SNQXh2cmLuvkkSudeb/aw0ASY39vb8UMSqXc8XfKoNgYYeH/A
4xGJJC2O1IQSxjDbSLuxs5VEm1Mkz1V4GYOZv5pPcDeJLv1xTD+mZgz8v0ol
NIZItKJXo/rhsRE8GGq5NvmWRIw0vLf7phG4PRheyHhHoncX7QufXTWCzpCt
PQuTJPJ31WkTMzOCALsD6qWfSeQmu0K/pGwEuw+ZFVt9JdFi1WGJoc1G8FLM
bT33dxKtLnwjYr9oCP///wXVpabu//PaEP4P1Yd9rg==
"]]},
{RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwt2Hk0Vd0bB/AbKrzKS8RLkTJUhjS8GWLnoSjzXFSSWabMQ2b3ZIwMIUpE
6JoVzbsiY2W49yKUITKUKWMp9TvvWr+/zvr8sdfaZ+/n+zxnHTEbD2N7FgqF
wrOOQvnvGU2JDqr5zsTG/k//ZLcegaAxc4+LS0y8hefCvM3YEXB/K2knOs/E
x18LGAOLCphnNurFfmVipzjOtGPKKiApv0Hs3AATqxcl1zmUqMDr80QT22sm
Hjgk/EkyRRXWvYjiM01i4j1n5CUoXkfhckh4+bwEE7sE20qpvgCY82l4bL2T
if8Ysuk96QSwc+VsaBNh4vzRBD+tUQDdM2n9NAEmdjwX+CuZQx22KRWz23KQ
6587jE2YqsOzxXYbxhQDP19t6iycUYdfLqICD+4zcIDB9dvFcscg1BKH+QID
F/PMNKx+0oRR/TXhHYiBcb9MwLHvmqCjofKoVZmBxe0mzXM2aYGgzJM50UMM
nHRJ6VmkohbcX6u50CrJwG92Z3FxJ2nBRG6ZhigXAwsrPKCrHD0BJuM3N7Z0
07HKi6lcidKTsNvnctI2Vzqmssd4LT3WhcpXByZ7nOj40LL7Vw6GLihxf1FP
tafjxBd94/umdEGbdnqZ4zwd555Lj6sU0QPXoX/PrRjRcZS/lAlB1YNK3bm9
dAU6Tnue0hJlog+KEvaN0ax0HDBVepf9jwFodeuvzWd1Yu1CYYuxRiPwzXRg
537UgTvD7sf8s9cc0uR+5uc0t2O2k1o3ZZcs4exUlSdt7R2+6NYefuOyNWw6
cv0n35G3WDg15VvMB1vYxOrP0pzeirOu7KuLdnAE6fhhjQ3tzTikwT1Ut8gF
MhK0Wa5KNOGTPIK79/z2gCmRoWAvagPWoH2X19fyAmvP3/tHXtTjCmPhDaZj
PrBTVdju5j91WHKWde61lz+wtLzsGDJ4iavtD6rpaQZB+huJhY3bn+NfHxzV
aJtDoGGlEQ12P8YJtFK37KwwkC8I/PP2ZC0eOJifMy4aAYoae57o/KjGgvhh
0a/jkbD6msl4VV+OxX1vP/5kGwWsGfzOCUXlWM25uXrZMQq4nM1/m8eXYxYu
GyF21yjYvun97injcmxrdEh6l08UqJn1h2z9VIZtuXy4lalRcOXzsJQLpQwb
P7pXP5EfBTwbZi/zqZZg1msvxZSGo2C3Foe4Y20RDmJlCluaUKGRIgRbbxbh
ix+PpIWbU8H2yV6rhogiXKHk4FBgQYUcWd3MXXpFmM9rI8/oeSrw8yVxDY0U
4t6lcn0NVyqwDPMtneYpxHy8UmNhVCp8CNrRqO1agK+peS9OVFMh6ND+kR9G
BTiFM1LwUQ0VBGaAck+hAOunf/KhPqKC8QVb5Y2sBZhVS7+DD1OhRauwvP5G
Pu580Pd5SwsVavlkMlSa7uA/pXaycQNUSCpXcJLbmYdbHlINdTcSILc4p1i4
Pg/nsulJLXIQ0KZE4xCZzMUCFgJhmVwEbGrYVrKpMheLU+fvdfMQEN+/bmZK
NRdv0KTV7t5GwGaezHHz+zm4oSdmTUyegN+vX/423JmNB30YhRfNCFA1PJir
NpmFdWUHP+eeIiC4/y7IV2ZhB2/uOIYFAavf4qjcKAtn0uZWZa0IWBYx42yz
uIG79Oz0HzoQMBMwya+TnIF/JqwdEfInYFCGV/Y4JQ2HLihb8l8n4ES0+MBa
ayquiKyzephOQOXw4aTa66m4Se0zt3kmAZHpZ75JSafiqCOlXrHZBEhS7tZw
mqfgtKXOrc15BLgyFFBHyTVsLT0yXVRGQJes9myM3zUcOSOkwF9BAIo5mwtw
DSeK3lIMqyRAJIhlvUNZEu6y+n3+5H0C7PSuX5VmTcSMrOYdtY8ImFt4klNb
HocbU0085+oIqCsepOw+FocNpfUe735NQOo5NtsbvbE4/WlX0bkGAg436UkF
s8XiC99VfJ43ERCSNVQBltHYv1y61PQtAZyw4dXb9VT81l7k3hCTgA9Le3eh
7CisV2PS+6mLgDKaAVEhH4UpMdy3h7sJMOS7cTLlTCTu3Tg/xnxPQPq4NP1U
VTjOP+mhk/KBAM1t+Y0Nj4OwWMvuSMcRAqzaWCZ7JgLxnN3pbLlRAnzDbf76
IhCIlXe5np0nXTAqZrjZzx9fydWgXBojgLUst9f8gA8uYBTaHpskQOg85ZfT
BW9snWxq9Y30AR5rkcvXvPDERi3B7C8E2PiK2t6euYQzF3maRr8SEH5Zpbfd
zAXXFG76ZThDQMXgz+2L952xmyztwwjpAY2nNoK8TthZ/Z2f9yxZP1zKU9Zt
drjNqosZM0fAopLH75GrZ7GXiIV4wjwBxiwz0TLaFvja6LXnbAsEVLW68vhu
MMfn9TBnEOkPtcwTXL/1sbL8UWy5SIDauLSJesQufOnzZ7/FJQLkT/lHffbk
RBm29JvGy2Q9tHjHCZ2TR2G1Rp5lpFXqkaiL6nE0YGq/y2KFgLADwNX3WgdN
P7j35x7p4Y68YHFJI9S0ZTh6hbS4WoFzatkp1C+UfCPmOwGN/hJD2t8skV3D
C7G3pB0rCs1Z/rVCyj56Jlw/CKAupI6dfWaNzDZkyJ4kbZbEzFO0skFpQqsV
kaQlpfnP8VHskNLfXb2PSC83mgnO5dkj7Y3RtK+kM393JxZ9dkJxanOqWqsE
OGcJaEdFX0RNcc5/PEgrHz69/vweV+Qzrmp/nTQnPfOl8hs3BNDh/pB0v1vv
5a1uHkhXkyrcTbqb7apwYPQllOuEL34jjY1lfzic9kQ3B0bOcPwkoDD3Xbfp
Hi/kkm85s5100ozbA/VVL3TJP1ZsH+kAlc0p8m+8Uf1Qz6IKaeu4cg+Rmz4o
WbrcUYv0iff6elxuvujORd9AfdLykrN7V1X90HP/jD3GpAV9ktgnNvujbYuh
/v95Xd2+sa5Bf2Q/lG9jQPoLd0d9fWUAYul/u3KCNP3cpbyqiEC0U0sEjpIu
0Xk7bGEXhA6/W/olT5qqtHsni9ZlpFuq2SNC2kqKakPbE4y+en5oZyetwD90
x5grBB2/HzU2Q77v36wqI6szIch+E6dwJ+kvcxm78jtDkb0EcqsgXT+wYKvz
IAzdKZ79EEtaf0yKHqgTjqZ1Z52t/zvvj2bz756Fo6cdm/kOkpZiRvHulItA
53/u6F9Hmu9N1QG/2xFI/tYP/Ja8P0rdoHHr35HoXZLbi1TSU482eYtERiLV
WuMP5qR7K46kei1EIrm1MP6tpKtvZTCEuqPQo44tH/6rr5y0hgV3LSoqdpJ1
ViEdH7+wpf4RFe1TXOKZIuvRLtDA1CWbQCrs62qPkja6FOLzgusKEnemVI2Q
9Y0cS9K2hF5Bb+rEm6JIC5ht7HpqHY2sblkde0Tmg0333yVuejTi7FMo0SU9
p27Lb6cRg2yin8t8JPPUKv/CjEsyFqXKXwibJ/MWzOXfffZrHBp1OGk9840A
J9a7y5Vn41FFKL5hS9pslb51fVs82qIvNs0k8yw3IXeqrDIBqdbYDZeQeR+u
H+tZ801Ek9Kbf++dJufRE77vRuOJaE6Kf33EFAFPqtQFC08nIZ70RAkG2U9a
DQxkirZfQ8fVK6pdyH6Tr1riakBJRrfuvPzlNk72J6W64B+KyejQVde2ArJ/
XTvUm5DvmYyGQ0we93wm9yu9sWzlUzI6uNzat5/sd+b/2E7fbkhBig17/B8O
EcC+JOQ+F5eG9nZ43+HoJcBULMW980UaCotz0OEj+2ueHodH9WIaUqbX3RTu
Ie+/cMXDx+o6EniWrryD7M+up5ie3/eno3meaY91nQR0PL7qS+nNQEMTDFnx
ZgK2jbH5DW/KRHXrN2b8aCTzyxvsV6eeiUazfSvfkPOBxeWiP7U0E2V0b1m2
ryfg0DatQPbwGyg8brTPC5P5D6WE/C2VjebKXkfMkPNolOYf8u1MNlqbmZFN
qiZgf89MCP1aNupaG02RqSLPa9/H0LTVbNRh4RV7rpyAX0OPwwXbbiLU8lUx
s5jMq4Y3dYdvDlJMCtrpeZOsV7aF45nDuaj2YvDHmggCFDdf4VX7nYsirPJu
NYcRcE7wn8FxoTwUYGN7uyeE7A8yRwMUTPNQu4+m65dAMl9m8bTuxjxEzffS
GfEkwLJwFzd/6R3EoVQstusCAbknTN8n+xUgjk/W7iMqBLw2Hi9QSi1ALQFD
BeHKBEyeDfIcrihAq3tm1IUUyfnimcu5f7IAVQuWPlE/SObxxpRKx5m7yKfk
wBOnPQSMfaHmbYZCtM7H6BUHPwHSV2suxv9VjBBPpyRtkgpqbYROmVQxmuC1
Zhsdo4I5t7lMu0YxUtAoui40SoXI5OVp3uBidDzxVG8I+b3Ud13BM2uqGD1Z
/Zd7O4MKMTmP/e+9u4fehz6+8uIpFUYrnlObkkrQ6ikr09tx5PcevSGHla8C
pfbT5kVFqSAq07iiJleBMjJdF9uFqZBLNBqGnqhABspf3EIEqXBHsYnlR3AF
EmuQa+vgocLdnGaHmc8VyDiOcLdgI/dXY58xdaYSlfxVRl2YiAKrCKfzPbJV
SK9ertmsMgrc/nGfLe2sRj57JeL3KEaBfotjFljXoo/3pN//JRAJKVfsdI5X
P0ZJMZtFLkyFA9tOdmr8wjNUHuB8ac0xDG6JvMv/qPoSTWc/K/IuDIYv1Rns
ZSOv0IPU7+F/2INAMLr3wLfSesRot1DeoOAP34e3DU2dakCRhzyqQu/6wGzJ
wc7Y1Ub0vuiKubeyFzTXvIrOftmMQNhkq0qkBxhrGr2yc2pFn4sGUliUXABv
Pf3yzsG36Ffug6GuVQcA8wOskcvvUII6i6EqsgW/bZtbBLPbEb+lRqmrhDVo
JsvvTanqQN+Wq1reO1kCrceyyvtKJzpxWFeik2YGWV3ufRKn6OjYADSgMiPg
5ctJqLCkI8rDxl3at4wg1vgdUrKiI8Wg/lrrq0YQ0C6dr2tPR7QePdcKNyMw
b5lw8famo5qj/1TQ5cj1z23WXibR0XeTnXay9w0hrsB8x9lmOqrv9DE+GGMA
Qd7IIUWJgfqMmS8e/qULfx54Rw+qMBB+cuzezLwOUJeLi2XUGCj4a+RhhT4d
SAzc8rVRk4Gu71+3Y61YB/LCJjx+mjDQ9BZ2pzNaOtAcnxJo585AhtFsKWei
tWFrwVjC4XwGmmvXOyPOdxLuMxPv93Exke+7Pe7LVppgU0MTifubifj/qETM
amkCb3pjrBIfE227rDn7U14TLp36fT5TmIlkmsJp+qyaINfnxmW+l4nuvRsJ
7ys+DsWDuvadWkx0tGW2NXLlGNz6winQHMlEUXVPFtruaIDuG8lI/ytMxPB/
aiuaqAG/StSnJeOYqDJ6ZTwiUAMs3YLqiWQmks6fZwsx1ADBuUkPjVwmang2
7a/9Rx1Slpqb8XMm6iqlPf/XWh2ge/Sg+ysmSpr0yc7TVYe5Wsrt7Q1MxBVb
3CiipA4GAYq+wW+ZaPzNvo+6vOrA9bNITLmfidg2nJ/3awB41l+fMDnAREYe
7LtcqwFcng2uZH5iousWvEZetwFaQwTaViaZiKbmEFIVCBBodVCpaJqJrsq/
dvxCltfuowYF5t+YSDyeJnXIFOC9qAv3hiUmMl2Tup8IAP///4EeCOpRVuUA
/gfEdGtq
"]]},
{RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Vd3/B/AbMiUVKhmLokwpHtPDziffMo9xK1NCxWNK5jGzuOIehCQR
GTMWj4qtEqFC1zU1IZGZaJCi33nW+v111mudtf/YZ+/P+/NZZ4+jl8U5FgqF
IryBQvnvGU+JD65bYWK8qLYnqlUPgieoXv98Y2LJebblpfd64PlSyll8iYlH
VB5xB37XA2pWm3HCDBO35RZrNkvrg5Qi+x67D0ysQ1RSdGj68OxM7HO2Z0zs
6RvbLkM1gA3N0QKWKUxsZ5VygPHLEELCIiqX9jGxnK5yv0GCKSz6tj5wkGBi
xzCrrXWlpuDszt3aJcbEtaqLwxqdpmBkk/62bCcTSyt6Pnm50QxE1Es4nbiY
+D7b1EmGrhk0fu127J3txV3TDyojuszgt5v4zvv3erHdDZ2T+RPmEG6NL/tB
L36VIavXpmMJn0zWhHejXhy0PfCpLdUSDHU0Gzo1enF6DBvPBldLEJR7uCiu
3Isr9nyX8km2hHtrdWc7pcj1G/mU1ocsYTKvQkecpxeL3BS2q/OxghOfczg6
+hn4mu9oWX8NFfb7hqSIuDOw3v+yq92tT4Nuv8naUvZrPLdjxIDQPQN+Wec5
tzT04J7zrwo6PZ0gXeFXQW57N1Y7Rjc7lHIBbGdrvMvWXuHZa581p+rcYfPf
134J/P0S75DMfzeu6Q2bWQNY2jM6sYCz8IcK5AuytFEd9u52vHkv1cFtIAAy
kwxYru57jqN5erjkw0NgVmwk9FJMK74poclzx+wyOHivHxprbsFHN+QdcRyI
BAktYeecXU9xv+hzw+blaGDpeNwzYvoYb7rwvsdUNw4yXuxb5hBtwt7jNkLl
V69A6482NNz/AFOXfqfdzU0ExcKgPy/163G9z/CKVnMSqOkceGj4sxZPv78k
o5WWDHW6k7zz07XYptZe6Ul2Mhw2Knaiv6vFTaq2oXA7GeSs9m3ua67Fq/ev
N6vUJMPuC3sc7ONqsfbByNvLXcnARdvF7s1fi7ck+l67x5UCbxhcFhnyNThn
Ro//cGgKrD5j9j5pqcRX9ngVyMnQgTVzu2tScSXmSSz5fkqeDjyu1HUqrRLH
nDjFFa1IB9HNg/tnLSoxLXTWr0eFDtpWb8N2fKzAZ9xo+mY6dIgbH5V2o1Rg
Qzb2qI82dNjGvhAioFWOn4h5Rx+n0UFo8OC24d3lWIGSFbY/mQ4SZReLStnK
scmkIA8nQQdlk6Ue9LIMC3ruHWnOoAM149s+V5syPOdzSoPvNh1ypH53NwWV
4i2Gki7aDXTYr8u190J9Md4p7Xms4SMd2ihCsCOnGHs9n3wnOk4Hp4cy9q2R
xbjy4tLByM90yJU3ypI0Lsb3A1dZYZYO2wVSeEbGivDGnvGjd77RgWVU4Nup
bUUY6uzE/3AQ8C54d5uBeyH+VqE8uSxDQLDyobGf5oXYKXdEYYs8ATvngVKq
WogbPB8L7D9IgMVZJw0O1kKceMHkoYUSAR26RZUt1wuw6oyYBe1vAuoF5DI1
n9/Gla+GRq8YEpBSqeqiIJGPJ4r0WatcCVD4uqhWtDEfH+f4LVrgRkCXehmX
2FQe/pKqaJDuQcDmVpHyzdV5mDFIMDy8CaC93TA/q5WH45/4Ra8FEsC7Lesz
9V4uNi774ZocT4BxDnfC8eBcrC51efuJBAKSpMNkVCAXt8zlPBagEcCNHD22
d9/ESnJq21KSCWB3k1vunc7BJm/sws5cI2D92eN1M4kbOG3attTzNgFaZkp5
2lPZuN1SeJilkIDQt3dAsTobn/AY4Uy/Q8Dql8SYLSgbbznn/1dFCQHfxay4
u05fx8bxT98/rCRgPnBquyGRiVfXZp4dfUjAsByf/DFKOl71+jTxp4sAvfi9
H9Y607D8FXMe0R4CqkdVUuqvpWHGT4q/6msCojJsvkjLpuGyFIqAcy8BUpQ7
ddzUVDxpmeWWM0CAe68q6imn43ts7/kThgnokzdYuOJPx45pKih4hAB0xTYP
gI5vekUUuowSIBbMsvF8RQp2RBMSWmMEOBtfuyrLmoxrQ/cNPZsgYHH5YW59
ZSI2inyHTeYIeFoyTNn/v0RsOF3mwT9PQJodm9P1oQQ8pP+vWR9plefG0qFs
CTg36l6N2SIBYdkjVWAdj089jWDsWybAxHQj372FOGxgEbmDSXo3m4zv3tg4
PFImSbv8lYBnHj5qHNWxuMuyka3rG3k+wE7mdgx2WFJV0l8h7+M3GUl0Ixo7
8rR/HSFdUWYaW6UYjX/dPDDu95MAM4Hr+qk2UfjtYKV55ioBGZ9lGSdrInBd
I7tVw28CXHLMlDuOR2CV345X1NcIuHR7Ws6v4TIWtdea+pf0A7+wOg3ecHwt
svvw3XUCjosUtLU+CMa5p3RGL1FSwb6LZWpgMggHH/dye0vaL8Jx0/TOIJzV
ux3BhlQo/LTHjNc/AG9iWjSysaRCY0bkpd13/HF2X9kFR9JMvdH0w0w/PJNK
sWkizVqRN0Q97IudJA/ucmNNBaEzlN8uZ33wrktdY02kD29zEAuhX8INPivf
NrOlgqOfuNOt+YtY1CRi8Q7piBDNoW4rN9wilPR33cZUqBr+Jfr1nitucys9
skT6g84jR0E+F9z/9UqiHHsqaPFozDp0OeMTMipfs0i7X/ypGCvnhL3Eh/he
kM5hNviVJp7Fa+8nA1ZJf1X3Wh+7aotL+SnbzTlSwYJlPl7O4DRWfjZqFEi6
ptN9mx87FYvUfOrMIb01bSa76akFToz6kYxJv6tn6vGsm+CxcK7r70lf12XY
3PTXw68Suad+kqYOdnsqLABWPTATzs+ZClKMbNbL3SrYNiTHWoa09mfZE0cj
JXG39tZQRFrxZED0uDc3ujygNmZK2r3DJ1HIThE1/81Ftye9VBzovOKmhYw4
/aL+Ia3ZgsTdtI4hS/+LD31IXz4MPG+eGaJQu0XVYNKjPfmhe6XM0azS9GoY
6ShOyeW3rpbIlNeS9TLpvdqFrmkVJ9HbW3vN/3vfFrBvxOCLNbLTOPEpkPSF
qiIqy1/2SKNroNGbdMxy2oRtowMKmS57c4G0VQozX83eEXU0tmrZ/Lc/2e12
AhRnlLhNYsKQ9Pc2K8HF/HPo5YmHveqknztm9L7QuYCcryaw7yOdtd6fXDzu
gj6dp4VvJu2avdMgOv4fVCbd+Pcy+f00VE5tPHPAHY3XCaJ+0tyMrMcaLzxQ
fkZubD3ptx5DITs8vNDTOUO+dNL9bFeFg+IvIoFw8U+epLGF/M/zp7yRZang
r+OkU+Y97h9dvYSOXQpdmSfPP1CTN1XxhQ/SnZ/8gEk7JFZ6ieX4ookn4dxJ
pBWlFmRWtfzRgPmMohhpQd8UzkneALSjo1xmjLx/G54enOgbDkAJjAKXO6QZ
dhfzayKD0F7zXbV7SJcbvhw97RyMnt2yqOwj73OM+n4JFt0QNFDE4RtHWnX7
yG0LnjAkqs9r94Gsh62smmOr82Eo/NH3iFjS04uZkgWvw5F++hWvA6RNJqQZ
QYYRqDdmuOICWV8a762WXjVGoFNHj65vIC3NjOaTUIhE/jUJQtfJeqU8Hbbo
3BqFdI9tamgi67n2ZmavUH80Mto2lTJC1n9ueuuyp24MqlIL0TtLmkZb5m9p
iEGXzYjuD2ReOAeZWrrdiEV8P0sMesh82WnF0ffIIR51DFmsJ5H5E8oT0G87
k4h00urvepB55sJ653u1LQ0dEw0OfETmndUqY8fGLhoa9cgXZCetMKlwsqI6
CZnQqgeIJQJGWyYG1vySUYQOv230AgEFWuXuphQCCb+se9M1SYCQ+tPQn2oE
eiL+WXT6MwF05aGkAm8CKTYrarKQDpXlqPjxkUAy3f2bDowTQN3lNHerNRWN
Ru5hMyfzn/ObkOdiYjpS6ll5zD1EgOWeVM/XzenojLR1EfsgAfnGXF61X9NR
34pR359+AjSKfnj52l9D+vKx26aZZL85yfReOZSB5C/ReXPJftXz4KofZSgT
ZcgUu8U8J0Bkgs1/dHMWstzqJmzVRoArX6j/06NZKOaDu4hkKwEsbv8ExNzN
Quc+1gv8+5QAZRHdIM6I62g4xG4RNxGQFU4J2yp9A5VE5Yyb3CPgU1lA2Beb
G0gwe/r71xoCDg3MhzHoN9Cl2BmnrGoCOg++D09fvYHsB+tPDFQQ8HvkQYRg
Vw66Vu568y+yHzvo+MTs9stFP51aLvnmECDAtnwsazQP3XDZzUuJJkCNN45P
ez0Pfe2rHFSIJMBOcNfwZ6F8xM/nWmB9mYAiuSOBqpb5iMKQ0ioNIUDVilbW
35aPznw4lSPhS4B1keSW7Xdvo/cvQkfinAnI07McJPwLUTC//DERHbK/WXwu
VE8rRO3Ch77PahMwZRvsPVpViH5LqrY/RAQc9s7jPjRViLLRaaaxBgEt12c1
e2zuIL+5+GrzQwRMTMfk80IRejG0K/O1GAGyV+v+oW0qQUtDexUf/SDn0a5Y
wwrpEiTsomaPyHmOuoUq161TgvL3/17AS3SIIr7P8YWWoNc/C3Qa5ujw5pqq
d/ZsCWqvWu+ijdHhSu6DgNJXpejscEfav110+FTVFPM8pRyl57B9kCkg50dG
ay6rQBWirodwvfgfHcTl2n5oK1Sh3S/+4vgMdMiLbTML16tC1vpMng1H6HBb
7TnLz9AqVFPaqXxQnQ53ctvPz49XofdGK0K+5HxNrTuXOWtTjVb2j9nkb6eD
faTLmQH5GiSm0SC/ryMFPHZ5Ltx9XYsGd5h5HlxNBpOOC9ngUI8WaA+MPm++
CqlxzobHah+g5Kvcmw130oBNgjOGttyIema4ZM14E+Cm2KuC91qPkcuUz1xL
WxxM12ZyVow9QSIaqW5a+TEgGD90+MvdFlSqczQ+wDIKVkZFRmZPtqI1V/k3
5kciYKFc6XXCahvK+RfnnM0Khfa6J/E3HrcjyXzxYK+8QLA4bv7E2aUT+a6+
9Wco+wHecerxbaWXqOhA0jD0ewNQD7NGfX+FMlwf7U155gH+Irwdgje6URZ2
8OAZd4HjhKJMak0P2tXsrmWr7wxlA9Y1PnGvUQpHr1JUhgNk93m+2XeSgdLH
OnrkVq2BTyA3qcqagWyCDBq8R60hweIVUrdnoPaTkzHt7dYQ2C1bYHSOgQYD
XCrLM62B2jHp5uPDQELUHy66KuT6Jse1xykMdHQqs/qV/2lILKTutm1nIA8J
YeVhtlMQ7IPOp6r3oj00hWanE1bw575P/LBmL+q8uXuXjrYVxHwvKZHT7kUs
H13MFeWtIDmIf6bteC/ybNMDZQ4ryL886fXrRC+aN35oO/rIEtppqUHOnr3o
1iHbkE5pS9hROJGkUtCLXGh/fEu4TsA9ZvK9NzxMVClbsEPoqxk41pWJJW5l
IjroKjh/NAO+jLYEdQEm0k46ktLUYwYXT66fyRJmolsLtzhzK8xA4Y0HD1WG
ieQU+oYEXMygZNjo3GtdJvrUrcNZ2GwKN6e5d7ZHMVHQAnM4474xGL2QigqI
Y6I192bbN+nG8Lv86JxUIhNZ81rJa/gZg7VHcEsswUTpB9ejTFSMQXBxyksn
j4mo4n387Q+MIPVbeztuYqJHtONBC62GAP2flDyfMNFkg93KQrEhLNZTbom2
MtHedd97mxINwTRQzS/0JRMJbB20TzcxBJ5fxXs03jKRaudw3cSgATS+bUma
+sBEX2Ti2poeGYBb4/CPrI9MNEeTMqnKNYDOsJ1dP6aY6Aq/UeSoswEE2Sup
F88xEcqj8kjoGcD+I6aF1C9MlLh27lWorAEMirttYf9Geub4/S+8BvD//2dQ
glJndcSSPvwfz2WTYA==
"]]},
{RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Vd/7B3CZyVAyJdGERL4aDbHzkKFkjKsiJIpMmYcQ7j1XKPNMPkSI
TBWVshtE5nLvjaQMyVSSMdGn+p3PWr+/znqtddb+Y5/9vJ9nn61O3pYu7Gxs
bMJr2Nj+e8awxYTW/WThqtO7L9jkaEHoOMX74hILF9QaFvbUa4FXp7yz7DwL
/0i5/fIcUwsoWS0msV9Z2EHAhP2NgDbIq3JvPTNI2jZquS1SG146EK84X7Jw
3tnebnNPBGueUkWtElnYzq79cayyDlwOj6yal2PhY+637F0O68Ksf/Mjx20s
7NJtLm5lqQvOHvzN3TIsfKH4rfQJF104bps2UC7BwqEFvig6XhekNcp4z/Gx
cMuGT9O33unCk8XXTsxpJo50Xe5YG6gH/7rLSty/x8Q3GmxRduMRiDiNrwQA
Ew+4mKgsRxnCZ9Pfm7YgJr7jEk40ZhqCsZ7Ww3ZNJm49e884rdIQJJUbZmX3
MzFfVY2BX78h3Ptdd7ZdnomjvneNLO8xgsmCSj1ZASbm7t/Dt33cCE5M5PG0
9TKwvvPlNVq2x2Cn/+VEaQ8G7hiLz9EINQHDXtPf8zk92Do5os5KwxICss7z
Cj98gwMzlJMe3aVAmsqvovzW19j3B0s/Kc0W7KZrfcp/d2GHTvXdV945guCh
9F+ihzpxrUzDV05DZxDkCGJvzWjHv8SOf+IdvABK8SN63K9b8Z01slGcuz0g
89ox9utyr3DrRF+urtElmJYZDvOlNWMxgQ5nowxfcPT5s2f0aRN+mO7zivtQ
AGzT3uSct/EFbrzjJ/GwIwjY2569GTZ7hkWDehgFN0Mho0NugWdzI4a2PWoT
HuHQvNyChnof4e5xfynFlSugWhzyt/NoPTYejH1kaxoF6nqKDcYrd/FF9YWH
bb7RsPqSxXzeVIVDSyU0hRKowJEp5nattApbmK0YiKVQQcCN8ocSX4X7NddU
bcygwmbBdzunLatwwtyDNKl8KuhYD4SLf6rETfe6sv6tpAJ9bETBna0SN1za
2nq4iwrrub9fFtWuwCgmR72OjwY7Dfl2XKgvxU8dejXnQmjQwiYF4nml2Pep
8TXecBqca9hl3xxVirfwVSltjqRB/u7jWdtNSrH9zf2miE4DMdFEgeHREiy8
Dv10SKEB+4jo0sn1JXjtJtoN2XIafAjd0nLMoxjrm5t7xvXRIHT/ntEVi2Is
X/RA/eh7GkjMANtttWJcwH5hN9dHGliePafJw1GMc0TuXPf/RIM2w5Kqpuwi
vLjRlGfPNxrUiypnar26iU1zYzpl2QlIrFJzVdlWiCOtt8t3KhKgsjirXsJV
iPV6ds05KhPQrVHOJzNVgAVO+qvPqxAg2CxdIVhTgCv43x7g309A/MCamWnt
AuywS/mFMCJAaH3WBOVePpb+X02vtwUBf14++2O+LRenOdmNhQQQoG2+r0Bn
Kgc/LVsMzQ0iIGzgFqjW5OBcsXKXRyEErM7F0YRRDhb/a3TwSzgBP2Ss+btP
ZeOcyeRSWToBM8FTYsbJmdiMc9vEu3QChpRFduuzpeHhTTxz4XcJMIrZMfi7
PRVvD1JbL3CfgJqRg4n16am47mfFaEYdAdEZtnMKSqmYFnwu7+ZDAuTZbtXx
U1KwoJ2eUQomwIOpht5UJGHv1NGxnjYC3u4+9v1qYBLO+ynG2NVBALpqVwCQ
hFf8ppwjOwmQCWXnOl+ZiCfqiy9vfU2As0n6dSWOBPyP17dTh1gEzC405NdX
xWGD1SM6XR8JeFE2xLbzSBw+GcTSmx0kIPUM57ns/ljcqrJlVHiYgIOvTBTC
OGPx/gST+SOfCAjPGa6G0zF4tYypQx8nwNSMS+TedzpWOrxhXcIEAVs4d/nv
IOhYNWwsIGWSgJeefuo8NQRuuW7HkfyFAH7gft7JRcMR5welXWYI+LC0azvK
pWKJNo8Mi+8EVJabEdWqVKzAySrSnCXAXDT7aIptNL6cvhDMPk9AxoQSw6Y2
Ei+Li3C6LRFgIF3U0vwoFFscNTyT/IsA+272qb7JEGyWt+yq9y8BAZFOa79I
hGBVJw35edLFn7eaCwUG4Q8Ooff1/xDAUVnQT9nrj0UzbTc2s9FByoHtX9ez
ftgB/yq3W0OHvesdZS4n+eLFWcvpWdJOAbLn/pm5hKn+huHCHHSIvKzV/9ra
HY80nmLs4KJD9dCvzYv33LBfV+NAIelBvcdOkiKu+LeVSuombjpoC2hOO3Y7
49wnnmu5eOjgcWlFlVA+h4cW33f4k85jPQy4HXcWp1sna4yQXtTw/jN63Q77
RslI1/DSwZJ9Jkb52ClcdCs7SYSPDrXtHusDuCk4urik1of0h3qWkcAfU8y9
89VPOX46ZBsybG8EGuEaXkLmMmnKu9deKt8Ba4QpznaS1plQOqEbtR1TpagZ
59fSQdUmiDrmw4+cSyYvVpH2aPOLkzqjiugx6V/mSWs1IVl3bX2kb63y1UeA
Dlf2gsD7l8ZIrfyN+x3SI28Kw3bIWyAtOYXMUdI7dIrdUittELXc5ZuhIB1a
guSGj82dRr7y/JIBpC9Ul1DYD9ijqYqB6XzStIXUcbsnjmivTYN7M2nrRFah
ur0TWs8dkzZJWl5J7IwomzMasNl+gVeIDj9arCVnC11QQqXP6A7Sr5wymB16
F1C3ojUfIp31pzehdMwV8dfWvjtB2i1H4hg15iKKnnK3OE9a8+BJLgdFD2R/
yM0vgDQ/I+uZZocnuv8mEUWRHvDsvyzu6Y0q0lvuxpLu5by+KSTmErqsvvQ6
gTS23L1y/qQPilHkzEgiXVLQ1Wul6Ivccz9wJpJOnPG8r7vqi4SortJxpIO1
hFJUO/zQ/cyUD/+t7xhX5S2T54/4ThjoB5I2emdqIuAZgA7NeVMukFaV/75r
VTsQXfPNE7YmLemfyDspFISYtOveh0mvefG/8bdDQUibciJQnvQX4TdNTTXB
yDpk0w5+0owzlwpro0KQq55oyBdy/yqMO0dOOYeiRgd365f/7bfGzm3shpeR
O9tbyCFtr0BzKlcMQ4iSiDxIq4kN37QUCEey//Qba5Jex6E1ujoTjj7KLbpx
kv4ym7m9qCcCcetuyW4nv7fpuAIjxDgSufY9UDImrfnRer7rSSTq1K5I5CKt
wKKKbFOJQjc2PON6Qp4nthdDlu3ropG3u5viZtLTDwX9ZKKjkZtGQt8r8nz2
Vx9K9V2IRo5CS1lepO/eyGRK9VIR+8h9Sg153vPTmhe8DGnoBbXkhDHp+PiF
DU0PacgiaK3LJ7JenEPMrNxzCbRG2KOFk7SENc/bx44xiNvV/ZoUWY+cxw8s
CTNikFUV80AGWa+zuufEnPWuIu8Xej8ESberPrUWkI9FUvrZjXNkvYcJBPXa
fY1DVapj3nFkHrhy3PpRYxePIraaD4yT+WG9yhDn6o5HW/KzHQ+TVplUsams
uYay9xg2fCbzZqRpvO93QAKyFH96n43Mo+4G0Z8WEwnoOK1tRZvMr4ZaXcmS
k4kIb+uwDVoloN3MTLl0cxLSeXYiePAnAUXaFR5mbMlIw1tENoLMPymNF2Er
6sloSO6CTd4iAUn7+68V+SSjFW3BmvoFsp8p8VQuf0pGMoJCL4fmCKBsPPft
n+YUVBRiT+Ug85d3ScprNi4NcTF8WpLHCLDamuLV8zQNrf3VlEB8JqDQhM/7
7mIaElyY/x0wSoBmybK3v306Wlx/lXF8hOxPNiyfn3sy0Oj8jAPjAwFvHl0P
YOvPRJsmw2y0mQRIj3MGjghmoXUXE/GvHgLcRMICX+hmIYsZR1b9GwLY3S8G
0e5koZwNnMLbuwnYL20YwhuZjRQ52pjMVgKyItjC1ynkIoUXeRqZjQR8Lg8K
n7PNRaMlq8NbnhCwp28mnJGUix4GBOmWNpD79b+PEWmruYjShg+WPyDg3+FH
kZLdeejfdN2Vq7UEOOr50bYE5KMtaxwSyosJEOVc0M8aKUDijy84UK8SoC5E
F9H5U4CK+oczw8n+fkZy49CEVCGak3IT86cRUKJ8OFjNqhDdo/SOWkcSoGYd
X97bUoi0r978Ok3OD6dLtguL3bmJuOVX093OE1BgZPUuObAYKS/VzRTrkP3Q
cqJYI7UYGdBGRhXJ+WTKLtRnpLoY6XVq6VUcImCvTwH/nqlitD/Q3KDoIAFN
2dNab2xvofH1DXRXcv4Z/0IrFIISdGl9psZRCQKUrtddjF9bhk6KPOjz/EID
nW7CuFKhDC0XlOYmTdCAIkxRfq1XhgZjZDfWfKZBdPKPbyJhZUj4bITB2CAN
3qer+eRMlyFlAYG0nUwaXM1/FHS76zYK5ZHXF31Mg8/VjbRXiRXojGtsYNxV
cl5kNOdziFajE0dfGhyVooGscsuyjko1Cj7PPDomToMCosU8wqgayVjxdEds
oMFN9VfsK2HVaCC4z6FcgAa38lvPz4xVo3nev4zRP1Sg1LlkTtvWoL75LMOR
T1Swj3J16NtdizJ1I1fX3aaC50av73d67iLeL3aNWSpUMG27kAOO9eip2x0u
Yb5oSKE7G+vffYQy+uSMv72PBM5tvLT4hSeovrjzZ9ThK3BDpqvoo/YztPRU
YVNYSBh8uZvJWzn6HD3jUj5D6w8ByZj+vXN3mtC2XtrYMe4g+DkiPTxt04y+
ERrXS/394XvFvp7Y1RbkwLE/rpLfF1rrnsfkPmtFYjyP736V9wZLA4vnzq7t
qOOxnAHf6EXA4ief3dzXiZ4ekZrvrjgPQNnLEf2jC1mvm7bo+OEEgdJCbZK5
rxFhWNVb2u4ABsmqu1Jq36ANO6VW4n+egvK+07V+9B5EWA7uHjayhpy3Xu/l
bBjogciPh+9OWoCIaP616tMMlK/fpL35qAXEWnYhDXsGShAvXvLQsIDg10pF
x10YyJ3bYHq3lAVQ2ibd/fwYyNIjyv/AB3MQaXT6/SyRgfZHlHylOJlDXDFl
i10r+X7xZBj9mymE+qHzKRpMdGnfdGVohDH8ve8XM6TFRPEh0Ssi542B9qOs
TFmHidrN+yufmBhDQsiGry0GTOSRXq1yZLMxFF6Z9P51gole5T++ua3xGLTG
p4Q4ezHRPbWCSTG2YyBePH7tYBETMVKeLeakGME9VsK99wIslPT3banppD44
1ZXLxK1jISvOv1rFPfogktESqyHKQr5yatsEH+vDJZs/DlmbWGjOX75aMkEf
VN57ClB2sdD3t7OpYgf0oWzouEuPIQv1Omvl5tGPwI0v/BKt0Sw0Oub1PklN
D453yEcH0VnofdbX65rbyftyhe43+Thy/SvKu34I6cFpz9AmIpmFTNK/zt4c
1wXJ2SlvvQIWKkuooPZk6ELKUmsrbmShP2EuSiGrAND7eZ/Xcxaqv6FopDUB
MFvP9s/mZhZaapjPX8cCMAtWDwjrZCGP1Me3pysBBH6VbtUcYCFpt5YubyeA
JwNN16YGWego+lbWYAbg/mRoOesTC3VGiOmLawO0h0t0L0+xkCTrZM5fCYAQ
+30apd9YaPi7p851LoCdh82KKXMsNB4bHKW0oAPvZN2FuZdYqNLr54n3wzrw
//83UPA1r6rsbh34P3zpEhM=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 1.*^7},
Frame->True,
FrameLabel->{
FormBox["\"Time (\[Mu]s)\"", TraditionalForm],
FormBox[
"\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["case III", "Subsection"],
Cell[BoxData[
RowBox[{
RowBox[{"params", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3.0", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3.0", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",",
RowBox[{"c", "\[Rule]",
RowBox[{"3.", " ",
SuperscriptBox["10", "8"]}]}], ",",
RowBox[{"\[Eta]", "\[Rule]",
RowBox[{"2", " ", "3.", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"794.7", " ",
SuperscriptBox["10",
RowBox[{"-", "9"}]]}], ")"}], "2"],
SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ",
RowBox[{
SuperscriptBox["10", "6"], "/",
RowBox[{"(",
RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",",
RowBox[{"t0", "\[Rule]",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ",",
RowBox[{"tp", "\[Rule]",
RowBox[{"4.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
RowBox[{"3.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]",
RowBox[{"1.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "3"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]",
RowBox[{"6.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "6"]}]}], ",",
RowBox[{
SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]", " ",
RowBox[{"1.", " ", "2", "\[Pi]", " ",
SuperscriptBox["10", "3"]}]}], ",",
RowBox[{"h", "\[Rule]",
RowBox[{"1.5", " ",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"alleqs1", "=",
RowBox[{"Expand", "@",
RowBox[{"Evaluate", "[",
RowBox[{"alleqs", "/.", "params"}], "]"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{"alleqs1", ",", "allvars", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"15.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{"allcountereqs1", "=",
RowBox[{"Expand", "@",
RowBox[{"Evaluate", "[",
RowBox[{"allcountereqs", "/.", "params"}], "]"}]}]}], "]"}],
";"}], "\n",
RowBox[{
RowBox[{"countersol", "=",
RowBox[{"NDSolve", "[",
RowBox[{"allcountereqs1", ",", "allvars", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "15."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"15.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Join", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "2"]}],
"}"}], "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
SuperscriptBox[
RowBox[{
SubscriptBox["\[CapitalOmega]",
RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "2"]}],
"}"}], "/.",
RowBox[{"countersol", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{
RowBox[{"-", "5."}], " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], ",",
RowBox[{"5.", " ",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",", "Blue", ",", "Red", ",",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Dashed"}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Time (\[Mu]s)\>\"", ",",
"\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{GrayLevel[0], LineBox[CompressedData["
1:eJwt2Gk0Vl0bB3ChRDJlTqYMhaT0lHHnStSLkIdbShIqHvM8l/sQGcqQEBKR
MXOUaCNDyHwfSjwZKlFChmZ6z7vW++ms36e9197/67r2OlJ27mYXmJmYmLg3
MDH97xvFFBVU853EDLzEW+WvAUHTNPd/VklsukHf6VGiBrh1yzlILJF4H9m0
fbBEA2hp7SeiP5HYUeF257EJDZBT2SR19g2Jgzeq9f5loAmt564+Z20lMZPZ
dP0uaS3Y0BjObx5P4pBTPLE9U9oQHBpWtiRLYot6r4uCQzqw6NNWZytNYpvU
ocNm0zrg4MLR1itO4tajE4WZ33TA6EzyaLEQtT9eNpOzogBi6oWb7dlJ/DZn
9+INW4CGlT47xhwDF2eu19YvAPx2lhB6WM3AF4SWSkNFdOHyaXzFFxhYqiLi
jn2mHrwzXtsuiRh4+HfKQakKPTDU1XrcpcHAKRXa7p9b9EBY6cmixAEG7l4s
HK/8pAfVazXnu+QYuIB+OPuTpj7MZJfqSnAy8MvNlq27x/Xh7w+ZbJ3Dg/hr
4F6RVZXjsMsnOF7MZRAzaqW99VkM4diw8dpS+gBODPaWYss3Bd+0i5u5H/fj
tek9/W7F5pCs/Cs3q6MPZ82pyvBttgLruUrP4rUevPaaNDMKtIGtmrd+8Wt2
Y/tb8S5ux+xgK4s/c0dKFzYyF0sp9boAirGTupv6OvDtxq9m7ZpOkBpnwHxd
9jmOiGrZocPnCnPiEyFeEW1YcCA5NSPGA2w91/e9bWzBjn0eGwnSC6S1tztk
ijzDc0H+gTPsvsDc2dQ/YdKEjS+fqpzz94eUF7LLbDueYr630UPrw4HQ9q0d
jQ/X4b++PwpXXwsGlbzAP93/qcXJxMoRxf2XQU139xPDH1W4YWOxhuCWMKg5
NsM1/7EK+x3Mo3/jCoP9RgX2CWNVOGxErWOYLwyULGS3DjVW4dOPGo3iRcNA
8pKUrU1kFT5QvOfPh91hwB4rsslzWxUW2q7ldPB4GLweZDdL2VOJ24SGaBrh
YfCzlWQ0t5Th4p4/wn5LYcCSKuAUV1CG8y7tEalbDQNOJ9o6LbYM6/948vjH
9zDYsfXVrjmzMixJG+vz/hMGOhajoYJTpfiuYpqqIScdIt9PyjszleJPfvKh
V2XpwLtpIZhfuwT32oje2EGjg+irvbzjkiX4acvrOF4rOkgXe+QXsZbgNZ7p
n8zWdDhgvNSPuovxj5ZV8Tfn6UBLWZV1OlOMj1o3nPV1pUOm3O++p4FFONHG
zVUugg67jrHLXKotwPUr14quldOhnUkUBDML8MmkP90/K+lg/0TBpo1Oeep+
3D8P6ZC1xyht54kCvKFxevRIHR0E+OM5J97mY7FCsfThZ3RgnuRfPcWbj5mS
E+qjh+gwFiTZbuCShy+Ld84K/aBD0IF9b3+czMPcv/7c0/xFB6F5YCo6lIcL
eFRHrNfoYHbeXoONJQ+7+5OPUzcQ0Hksv6zldi4eKOFUXGAnoJZfKVXr+T3s
3yO/VUaUgPiyQ47K0jm4tPagx101ApRXFtXyN+bgpZsyomkaBPSqF7OLz2Zj
8VLlsutaBGxtEyvZWpGNC4/vTnDXISB2dMP8nHY2DhcZE+M6TgAXb9oHWnUW
NlOscaihEXAikyNaPygLS6t8Uwo5RUCcfKjCQcjCFZsWew6fJoAD2bkK9N3B
yr7tt56eJWCTs9Iy42MmjtPxkrjpQMB6a9O6qXQGlm69o3LfkwBtU9Vsndl0
fM36EJu6NwEho/dBpSIdn9ORKer0IeDnl5gIbpSOLRNbjCb9CfgqbsHRa3Ub
+2zT3vAxlID5gFkBw8RU/PTinyTbaALGlfj26DElYz/TDbJv7hBwPErmzVrX
TbwiK+PyNYuAismD8bW3buKHLe4vt2QTQKSc+SKveBPLizYJK98jQI7pfg0H
LQnrc0hpmOYT4MI4hPpLEvArlZk0jjIChvYYLFzzS8AVbUYLK5TRNetsgATM
LyxlP1ZOgHgQ88aLpfE4oJaec6+SAIcTt64rstzAywqybpw1BCwuP8mqLYvB
tXcPfDGvJ+BZ4TjTrqMxOOGrxiJPAwE3z7La3x6JxqXsOZu6KB98fkI+hDUa
V9RJBKhiAkLTJ8rhdBRWluJ3eNtEgLHJRr7qhUg8FKvDf62ZAElWBR+Zq5HY
s591ZPczAlpdvdXYKq7iGryW5dBC3Q9sau7eGIGjJny2PWojYGxVYSfKCMcK
AhLnjrYTUFpscrVcJRzrO7Q29FI25b/9n6QzBO7uxw9ePycg5YPioGVlGB51
7qX1dRLgmGl6oFM/DCuM+snrdRHgde+jku/jK5gw5mN6TLnON7RGg+syXlpQ
7Uh+QYC+WG57W10QvhTjX63QQ4BNL/Psy5lA/ORMzkIkZd8wuy0fhQJxsvGU
6QTlvHdSplx+/rgt+R4R00tAQwrdS/K+H36xWfLvUcrk8cnk/aQvThuvOL67
jwCW0uwR2n4fzLuLJ7eBsug5pt+O573x3tVJNuZ+Avbz2ooHJ3jhkdGexKOU
7Xwl7O/Oe+Dg0Q0CzZSD5K9crdzhgT9cM+P6RVm6+qlJ1G03XBrQq7R/gICw
YK2RPgtnHOZjO5JKuXz8146VaiesbxRxqZ3yG916O2E+R1y5Ni+6RJmrMKhA
y+Mi9uQuWhYdpPLOqTFn2+uAR8rqv+hQdvH4oXJVyR53lasIOFDOJB/7FsWc
x9VxfDYRlFM8F30yBs7hgIsu3TmUV9Td199et8Z2rAa2DZTNmOejlAyssCT5
SISkXNnlwuu7iYbzZ599n6HMc/NT+tNnZlj5T8DaT8pjteRxznVjLOk7I8/B
IOD2scEzd/yOY04zyQBByrRXfW7KC4CTj6jMS1CWG0xnudJ3EDve3hUjR1nn
g+LfR+g7sYKJqJECZRVL//D3nhzIg1nogCJll07vGNGzKqjwm8qR3ZSXCgIc
vjtrIwGRYD8ZylotSMJZWw/Vfd08IEb5yn7gfN1qiAza50/yUZ7szwmRkTuJ
5OzhBytlYvPO5VEnc6RrLPh8hdq/jE6e081SSyRdFl4/SbndX3bC4MtpVG+c
PfyC8qXyfBrzXzYoNCdcuJpyxPLNaesGW7T3qR49lbJFPJmjZmOH5s/+4Qmk
LKcocJafyQFtf9/53JLy13YL4cWcC+ikVeN9Vcpp68M3Ct47ovfWKS+nqPt0
ShcyCI/6B21SLVespaxx8NTGc7tdUGL4+YJIyqOuI8GCru5ITm2zoATlYdbr
2wOjPJAXhzr7BypP2GzPj4unPFGaaojMA8rx864Pj/z0QseC6xh7KAdocSWp
vPBG/+5ZvfSRyq9tTJm7eKYPgnPtMnmUVeQWFH5q+6HAgGphbsqDZz1yKumB
qIgn7/Mzql5KDLsnrRyCUGIyB8t5yhHqu6SZjwWjd3UPm391E3BIYOKeGWco
0hW6qylP2XhafjDQMAw1c8XJ06h61fjXYqmnIQzFneqMG6HqW54M55NWpqNT
Zd8yrSgzPRs36+IhUBsbd6NJBwFVd1IZosPhqACX8fBT/SIruW3Z7VgEciNW
GCFUf4mNXd7W8jgCXbHjPTrVSvXDQBNz54yr6JzmlHwu1Y+ELNiG6m2j0M4d
Mp9+U/0shNN/2PpTDKrf+6eOh+qPjiz3v1ZYx6LuDhndo0+o+/s5KLixNxbx
WI8E+9RR821G2bK0Ig5JjbaudT2i8tMy/XLN9wZSKywxNX1IQK52iYsJUyL6
cqv5TsMDqh+oPwv5oZaIXnnlnqovISDhwEhcrmci+iTc21VbTK2vyFb6bSoR
GR3leJlbSNWDiP3nu21JSDro/h1aHgGbV0XdFmOSEfNnl9MSGQSYSyW5DTQm
I3HFfYnrtwnIOcHuXrWSjKafw/LrNOo887+5+9jcQlky4pqxKVR9WJKe3/el
oBiD5unORAL66677Mo2koprJGqGmKCpvl5lCeeQz0NjU/ZM3qfn4rtg/9MuZ
DCR1Im1S2IOAfS/nQwcTMlB/ev2DDDcCuvb+ezn5Zwbqs6r/muZMwO+JujDh
3kwUa9Xn6HWByo+ud4Skbxaa/HZkIYea1/ysy3ppk9lolWCeWKPmvxpXJJ/O
ejaSV+lb26hJwFlhkfEPojlIUVOCdYs6AflKhwMOmeegw1VTvVv+ovJjEVs8
3J6DsuxMQmeUCDidv5Nb4ME9lKTVeYRbjIDs4+avEv3ykIyFaYPodzq0mn3I
U7+Zh8Ys2vY9W6XDrHWQ52R5HjpbR9ZcXKbDfs9sjn2zeWjlYeV8/jwdWm7P
afWfuY+kTHj1Wd/TYfpjRA4X5KMCpbF7qgN0ULxe80/slkI046K/6FpAB53e
q4al8oVoC89Lg/Y86n3HTVPq0y1EChct5rbfowOR+PUzX0ghSs8s42jMpMPr
W4c80+cK0ZWty1PvEulwLavOv6inCGU3i/tUBNPhXfnTiOfxJWglN6HJ7AT1
vhtsy2LhL0dV+ZVO0rNh4CritvBgoAoxss0TtgiGgXHnpXSwrUV+GXc8scxl
SIp0MNSrqkOGxk3v0vlDgFV6c0TscgOaT5CIbVoKhDviPbn/ajehaUKjLjHB
Hz5WpW4ufduMghJ3byPNfEE4amT/lwct6M7QslvQZy/4Pik2MWfZhkYG3Jz5
WzxgoUR1IPpnO0r5A3s9Al2ho6Y5KqOpA/HbJypOnnECM/2TzQ6OXWgAaiVk
By4AFjzVdE+1G33IV7skYGEHQNvPQnztQXbsQ/JxCTbgJ8bVKZzRhy6rLx0q
i7YC/UQVhaTKfpR6uHrMqsscil+ervSOHECoIXps629TSB9yey1rOYj6rN33
9aQZAh9/Vlz56UEkUsTB53DFEKLNepC6zSBaqhAO2HrREAL6FHONLgyiybii
h6mqhkDrnHH29h5E8Y42PNF9BsD31G6tKX4QpfdXWr7iMICYPJqkdccgUtX6
7bp44zgEeaOLSeoMlKr4b8G+F3rw56F31LgWAznt6+hPeKQHEV8LC5V0GEhN
5MuJ9Vw9uBG47VO7PgPB/h0KrKF6kHNlxv3X3wwkvetd+ZO9etARmxTo4MZA
S1WRL7tTj4Jg3nTcwVwGqu2KrDf30oVq8kb1a04S2XELPvIwAbCrKRaP4SGR
oOp3D0NtAL6U9mh1fhKVcj+f+EsRwMNy/VzadhLN8l6rV2cDUH7tyklTIFEe
O8Pkd6MOFI4bXRg4RiLt2oZ4hwM6cOcjh1AHQSIDDqsPa6YIjF7IEf6RJDJb
sx8PVkHwu+TIZ7kYErWqbX8vyIPgtGtQy9VEEhk/ce/L7dMG4cVZd91sEqXF
a4oKmWpD0mpHB35KomXasOffNC2A4Xeqbs0kKuremXP7kBYs1jLd3dFGoon2
j7W/hLXAJEDNN6SbRHf1Zg22jWkC568CKY1Raj0Bb/Yb9prQMNoSN/uGRAWu
Uucr9TTBuWH8W9oUiSZlRTgW5TWhK1So99ssieSuvdnYOKcBgTaq6gWfSYSP
Nqia9GnArsMmebQvJOqPYHH6WakBryScuTetkojub3KzKVkD/v9/A6ksH8nO
8deA/wL4ikvY
"]]},
{RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwt2Hk0VuvbB3CzkoiEJETUyRDlZDi5jysZyhDiMUuGSsqYecgsQ5HhefZG
MhOZq6PBHYlQVDwlGhAJKTIVRb/9rvX+tddn7T/uvfb+Xt91rb3D2cvcjY2F
hWUbKwvL/10TWBJCbv9k4rpOaz/kbgYh4zSvs4tMfElG5j+vEDPwfCbnKjnH
xJJNJUo1yWZAI9qNE78w8QL+/d662gzklLl2OHxg4jnEo2O9YAaPT8Q94XjM
xAKr3I78MebA+jBGyCKVid/TsyMKKo9DaHhk9ZwsEzMYqOKMPA1mL7TddZJm
4gvHQjgOHKKB6zmeth4JJs4W+/pQ2IYGRnaZbytEmPizVk6KYAINxDXK17ms
Z+KemEPvF0Zp8GDhuXPfdB8+YvTD06vACn57SIrcaujDMo6FfHR5G4iwxRf9
oQ8Libj84L9oD2Mmq9ukUB+2U7FMVCPtwVDnYGOXJnX/Cn+eb4M9iCrcm5VU
7cPRdUdCZSbsoWH19skuuT6sF132t4+5A0zkV+lI8vZhwe3JWu17HOH451zu
zte9OB4+nbo0dQJ2XwhNFT/Xiw03pP3RZJ4E/dcmq3PZLzF/blvbRpZT4E+c
Wsff+AIPy+pkS1t5QKbSr6K8jufYJd47yjPDG+yn63wqVrvxhUfkwAbVC7Dx
n6xfQv88w4rCrPNtOkGwkT2QrYPehed2VNf6RYaBfPKIDtfzDiz6qHJQpDMS
GClH2S7LPsFc71I3rtjFwLTEcJhvbBvW/n1/tmdjPDj5rKmMPmzFos+luc2k
E0Faa5tr7tZHWHBCIvymeAqwdTa/GD7WjCvf2pwVcUsF+lPZee7tTfhGdJ06
YXwV2n60o6HXdzH+9CNpW2s6KBcH/3l25A5GjWWRzTqZoK7z1z3D5Xpc3fgx
O+hKFtzWn+D7NlWP07fUt3VkZME+ozKXtHf1eM+yp6EwmQUKlrIbXz2sx1xu
AQ43irJA6vQOJ8f4euyzVdaipjEL1idv5fLZXI9PVVQfU/+YBYO9683pinWY
a9W0WGE/HVYeM/taWqvxmew9PJue0YGdscU9pawa9xf/Sr/8gg687rQ1WnI1
9rTcs8D9ig7bN77ZPW1ejaMdVdXm39NB2/JtuPDHKpw8sz2uaIYO8Z9Gdnmw
VGF1t3dn3QUZIMA1EyqkVYlDbpU+DbVkgNibvQJDUpWYvT/WIs2GAdIV3qU3
OCrxge+6fgUODFA1mXuBnlXg3vc6Z++6MYBGX5R1t6vAihICnM3+DMiV+/28
KfgGvhLzTk4uiwG79dfvPH2nDBM121gNXjKgnUUMhHPLsHyeyK+bTAa43Nvj
2BZVhvHRkMd8bxiQp2hEyBiX4bAwvocdHxiwRSiVd3i0FFc86JYTnmYA24jQ
orVAKb4eZxK1hYuAdyFS7UfPFeOUkisq19QICFFVGV02K8aDaconSU0CRL4B
yw21YqwhvqyarkWA+UkXTW72Yix2Y6o1WIeATv3S6layCIuOTdlJHSPgjpAC
4+CTQny9ysSuy42A1Gq1M0rSBXh3wNLspTQClBZm1Us5C7CKfLe8SQYBPRoV
6yUm8/G60mBdfjoBG9vEKzfW5uNYSX3+uBwCkt+yfpvWyserWam9qJQAPgHi
M60hD7PmvuqcvEeAcS5Pol5IHlY+HY3ONRGQsit8zwHIw5s/a4dMPSSABzmf
3/L8Gu7YsBMGHxPA5aEw3zeVi5k5AmPxPQSsPW5eM5XOwUFB+mjzCAFapvvz
tSezcZ/cTKDZKAFhb0tAuTYbt5haOCd/ImDle1IsP8rGoR2ZunOTBCxJWPL0
2JB4XKdDPmWOgG9Bk1sMrzKw/HbfGzNsJAwpCCrqsmTiB9cS1b2kSDBI2Plh
tSsDn62tF+OUJqF25EDqnawMfOTNA2mGDAnRdLvvu+QzsKXAm4IaORLkWEpu
89DSsVGz0NF6BRLO9amhF5Vp2Nn93a1VNRJeKR6duRSQhhXEs8otNUhAl+zz
AdKwmoVM4w1NEiRC2DhPVaViDlP73XpaJLgaZ12WZ7+CeYXvHDQ9RMLs/L28
O9VJeEK9sKHckIRH5UMsuw8n4RM5vRKPjEjIcOBwIQcSsdS7mtx+YxIOPDHe
FcaRiIMV9HqWjpEQnj1cA7YJeHJ5YpnTggSTY5yCDTPxeOdC5Jc/lKU49lzY
GRePDWoTvixakvD4vJ86d20c7sjsE3ptRQIPcLU844zF7Nxqa6fsSHi3uEcG
5cTgg7WbLMGehKqKY3E1yjGYe7PlHREHEkyFyCPpdtFY11qR3uhIAv2zfK9V
XSR+6H+vqeskCWdyTVU79SIxzyeGdZwzCb6FUwr+jRdx763o+X9cSLjrH35b
ky8ClzzV3X3NlQQ98aL2trsh+G+fbUl7T5Pg2MM22T8RjFk1uXc8oewf6bxh
SiQYv8qo/2B7hoTisR2mfAGB2ENzojvAnYQH9ChfqZIA3DRw+M8aZabBSOY+
pj9WrOG0ijlLAntV/gBt3wWcZeQcHOlBgtgJlt9nTvphXq9+nWXK+wScJELT
fHFCmIuq5zkSnP0lXa5/88a2/4UlGJ0nITL04MBzSw8s5bthYdCThJqhX9sX
GtwxX0riV1UvEj7o3HcWFTyDJWSqeZMpa/FqTjv1uGKTf1vvy3tTefFeVo5T
cMG6KoWGAZRzmY3+N5JOYpYQDtYmygsaXmujl+0xmarxDvmQYM72LUHhqA2+
3s3KFkK5ruucgD8XDTccVjeuo7wp40t20yNzHP9hoGmM8rs7TAPeNROs5jZ2
XMiXBFK/1+5agAHWiqHxa1OmvXnuqTQD2Ld17+xpynK92ewXnx/Ai2neS8mU
tT/LHz8UJYPV1cSkb1JWtgqM+eTDg6ZGlPw6KJ/r9EsSc1BGi7l1k8OU58qC
XH96aKFQi9K4RcoHW5Gkh5Yu6mQK6HP5kXBxH/AOPjZE5l3Lipspj7woCNsp
Z4YqW1w1xSlHr5OZf+tugYJ22Z7bQXmndrF7RpUVCjD42CpNuT1Qdvjod1t0
xowLpCifrimlsf3tiASOvRjdSjl2PmPc/oETUlYyvMlP2TKVWaDu6IxC70dn
s1KWk9/iIMTiitKKYqpnqOdbarcUnS1wQz987SYGKD9xpvc91TmNNtJFDZop
E2uvr5R9OoP4bbq6Cym7Z4scjUk4i9ZNRAZHUdY8YM154q9z6ImJsaE9ZZ5e
olnz6Xn0KQh09lN+e34gVPi8F6pQ8T7JRfk1x+VtwQneSGzn15JX1PfB5orL
p6x90Mjgs00FlFO/nb91aMUX2UpssFWgHHSQL135qR+KkmCoT1N5cEqq9pLI
vYDedA5rlVNWlpvZs6IVgPiLBZqEKIteSF03wReIig8pqrVReWN9tHf81VAg
avPweuNDudfBu6AuKhh9fj2Q9pDKa6XhsxEb1xCk5GB63ppyrMZuaTb9UOS3
W6d1msq32pbhQnPecHRP5dA7bsqb2A+OrnwLR/+1F12/Qs3D1CxDpuhlBEo1
UXi/ibLJ+K7eYMNIlKJ49gk3NT+a7y3nuh9EosbYiAth1LztYsYISitFoQc9
gbnT1DyyPBoy79oUjXSixxweUvNbf43RJ/Y6BmlNBt1UOkVCXmbbvKd+LBIe
jzhw0Y2E5OT5za2NscioRVLrKdUPrsHHLDxy4tCYfya2pPpDxJL71X2nBPRx
m3mKqhMJYbyBr+2/JCEdzpCerTZU/7CXLNXaJ6Mblx9qSFtT+VjpFebsSUbs
F2t2yVF9pzShZFVVm4L0atmuSFF9ONI63r/qfwXNp45lDZmSUKRVee4Yy1Vk
OfNhR4I+1Rcaj8KW1a8iga6X7AZ6JKSpDqQU+VxFcUvtvhy61Pny3FU/Pl5F
L74FrHhRfU7b6vL1els6mi1zfSxA9f26RTHP2aRMVDT+YyRShQSLHemeLx9m
ojXRvVu3KJNQYLzeq34hE3WHBYeUKFHvs/SH1wXHLLS0CTfdk6fmz4rp81OF
jkzkfa3/kyXhxd3L/iwDDFTAe/vcsigJ4uMcASMbCSQh2ZJmKkLlVzAs4NEh
AqW2iE8WbSGBzeNsYOxNAnFXeGn8K0iCqrh+8LpIEoXs8vQw2EDlP4IlfNOu
HLRDd6y65DcBYxWB4d/tcpDR5Ff35hUCVPq/hfem5SCzfnvX/p8EdO19H5G5
koO0nI3FVhYI+D18N1K0Jxe55b3NE/xKgJOOX6yUfx6StDWUvvqOACGOeV1i
JB9dM/wZ1dNIgDpfvKD2Wj6aVNF4qX2HAAfRrUOfxQpQlXnQeHUDAaUK/wap
WRSg98d53SOqCVCzTK543V6AGjQvLk8VEWBbKsO/5WYhItutC39dJiDfwOLN
1YBi5Ml5fxvXCQIem38u1sgoRlUnR1UW7AiYtA/xGakpRvP8tdofrAnY55PP
ozJZjMICOkxKzQloJacPvrArQX8flrXj0iNgfCq2gA9KkUPWZDm3AgHyl2+f
Td5QjmA9+4TYIgO0e+IMq3aVo8ON/Us536n9kZ+m8FynHH0I4DPe+o0B0VeX
vgqGlaM9xav96z4zYDBLzSd7uhyd9I4vvE/th5fy7gbe6L6B+GVdR3zuM2Cs
pin2SWolsug++2FvBLU/9rblsQvVoBzZacezy3SQVGj/oa1Ugw67/D5is0iH
/Lh20wiDGrSbXdtb9zsdCtWfsC2H1SD3wxn+WybpUJLXcerbpxqktqc/K/MN
HWi33RjTdrUox0ipZdN/dHCMOnOiX7EOKXGwpm3wpcP5rZ4zN1/Wo9IXc1M2
w1lg0nk6G5zuILcMzsv/xmVCeryroW79XXS+ajttVDoDOKTXxSbPP0AiwUk7
UxquwjWJ7qL3Ws2oNXhSflwkDabqGeuqRluQlsCgPNvuyyCaMLDv+81WJJ0U
EtMzkQg/R8SHp63akPFsZ6TAz3iYqdz/MnGlHWntfKorqhYLHbdbEnKaO9DP
XaJPQ9yjwFzPrMX1TBd6qpr/58lqOGBh6+bC/c+Q4cV+skUzGIC2jz16qRsN
nBh9LM3nDwHifJ2iOc/R6TT9PoNcH9C7qrwnve4F2uzpw5J96xxU9NvW+cW/
RAzT4vT84NOQ/cpzUNaqFw3N8YceEnEBQaG8lBrbXhRGfzXWyukCiebdSMOx
F7XuV18yW3CGoOfyRUZuvSha7tRKxktnoHVOePj59aJ/na3mqlOcQbDJebWZ
WpVbjMpm/uF0hqRimpR9Ry9ysvYjU/44QYgfOpWu0YdiShJbyb2O8OeWX8LQ
wT4U1lIYlCjkCLFL5eUK2n1Iy5H9WcqyA1wJ3vylXa8PfY8y+Kun1QEKLk54
/Treh0zu/+rVtHGAjuT0YFfPPuTTmPi4IcEehIvHUw4U9aF+ZRb7j3O20MC8
0jDIy0S2Izu+/MViDc63KySSNjGRTNzoie2frUCQ3p6oIcREbyMvn5TrsQJv
q7UTxDYmUjuR1B+UawVKg+d5aXuYqE01U1pC0wrKh4zcXuoz0cG1I58cg2lw
bYpHpCOaiRTXtXif4LYEo6dy0YHxTPTFvSTry6wF/K489FUuiYlup0ZXJw9a
gO35kNa4q0wUESuUxF1tAaKzk146+Ux0z2AxadrSAtIXOzpwExONIImnTjeO
A7we2+/ZwkQ2aWGmcpnHYfYOy/XtbUzkokLtexHH4ViQun/YMyYqPvy2ZNLi
OPD+Ktuh+ZaJ9NaG6wpZj8ODt60pkx+Y6Jr79u0sX83B48HQD+IjE/2Y/mjo
/cYcusJFen5MMpGya1jLpRpzCHbcr1H2lYl8loRnlHPMYfe/x4pp35lI/N2T
qi/x5vBG0oOfa5GJEjz+zDb6msP//59B3Mr7bxKO5vA/Nt6KRg==
"]]},
{RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwt2Hk0Vd/7B/AbypBS5sqUTEWS+oSweSjKUIgrs5BIyJwpQ4ZQZu45SESI
jM2qHYmQqXvvR6SSkuIjEalo+J3vWr+/znqtdc7aZ+3zPO9nr7PZzd/qOAeN
Rlu/gkb73zWZlhxx6wcb69MrPmlKWkDEBN3/5Dc2Lk5JrbDabgF+PQoe0l/Z
2N17cipc1wLoRId5yn9sPCB2RHnOyQIU1FZtdnrDxofdg1POXbaAJy6JT7me
sHFUdCnWk7eEFY/OCVtnsPFg/WZxW20riIyOrfsqz8bdUvwtPLnWMBvcfs9V
lo2/uq7XD71mDR6n+Nr7pNi4zjXfeBFbg5lD7ki1GBvHdeRKqU5Zg4RWFY87
LxvvERwyPgs28GCh3401zcLo4s+Qmnkb+OUjLXbzBgt7hmqOZ3nawll7HBMC
LBy6ePTvwnl7GD/0e5MMYuEZbZOsklJ7MDXUudu9l4XvPox479xsD+IqzbPS
u1l41+fieaFpe7jx+9axbgUWJo7R5lwtHOBTSa2hND8LXywWeJMh4QhHPhZx
dw0ysdOte1tC2pxAKTgyQ+IUE580krxwq8IVGlrVJ194MbFZSsVn3VuuoCUw
ZZBznInVX1rEDbS5gkn10UVeFyYefJO2T3jMFU69/cfpuyUTX+m6WisicQwa
zGa3MTWYOPDl4ABn7jHQlD/ekczJxB7ZM0/q09zAePDQ768Fz3F0V+R520IP
CCE8eQTuDuBTfFYnrjd4Q67qcllxZz/eWV6Qug/5g+N0Y0D1715s9Ouj2Z8N
QbBGO29ZWLsHx6E4uVLOMFjDGcbRmd+NA2etWyckIkE5bcxwVX8nVis1P/6K
KxYYF0w4Lso/xQdzBz0+JsfDtNTbqMCEdpydFzCippIIrgF/dr5/1IZHzxfE
cP9zHmR1N3kUbXiMA2QOFgkrpQFHV8vA28Mt2NjPtwZ80yH/mfw8t+RD/GZz
1okWZia0f+9Ao4P3cFX5rM64aTaolYf/7Tl4G/fpVfiFsHJA03Brs+nPJqzF
evIsWDEPlp6wWa1tdTiE2/LL6sB84GSIeF+orMPrNn6zfByaD/ze9D/0tDqs
Lh51NyQyHyTXDClNW9Vhr1LP86yEfNC3GYkWfVeLDdaqLJ5k5EPShzFFH1ot
DhwhpLgf5MP6VV8ihXVr8A7Fta4fOBigZMwrd+J2JQ7Xf/S1JYkBHbSNIFpU
iSWS9jt5pDLAvXmbc3tcJdaR0r3Dlc6A4u1mxBbzSnzuQLO6Th4DRIQz+N++
r8A3mcXiSWUM4BgT/nZ0fQWO6Ks2TnjEgFcRMh0mp8ox74ncfTLfGBCxe+f7
n5blWP++fJPzDwaIzQDtmkY5zppLeUsuM8DqmPtebs5y3Jt5MGIVBwFdxhV1
bWQZlo/Xjry7loDbwioMnadXcHFdTNxZRQIy6jS8VGVLcQin1q4UOgGqC7Oa
FStLsca2VZOkHQF9WtW8UpMluLhPrbDCkYA17RI1axpK8P0nvz7fcCMgbWTF
zLRuCXZe2iVd7EfA2vXER/qNYhxish3qEwn486Tlj4VsIQ4zA+17DQToWuwq
0Z8swK2no2yNbhAQNXIV1BoK8KDUZd3+WwQszaUmCKACzFes585uJmBRyoav
z47EXq27vtU8IWDmzKSIaRYDT3wnIeMFAaMqgtv303IxxxY1WeklAg4ky735
3Z2Dxx+WHVrxi4CGsT0Zt/Ny8MCiWdPobwLi8x3mFJVzsPKCqETWChIUaFdv
8dGz8btVDPcOHhJOsTTQQE0m3nMvUiRClIR/t5t8OR+aiXcOqB2VFicBnXcs
AcjESwZD7S0bSJCK4FjpWZuBq1VXS/+QIMHDPO+iMmc63tGddlNzCwmz883F
t+tSscG4zDPaDhIeV43SlPal4lzVA55eaiTkOHG5k8MpuKzwp0zPThL2PDVX
jOJKwR9U9b4m7yYhuuBtPdgn4zdBHnMDWiTwwarWnpUJOMA7qLfSkIRX37Zt
QYXncEy5wPrn+0iorT6cWK92DjserPVe3E+ChTB5MNshHrsUe9v+c4CE/I/K
TNvGWPxAJF4owYwEI4myjvZ7ETiAY3evuzUJzn0cky8+hWOl8Uq7gzYkhMS6
rZ4SC8eB5LiwMp2E8vHNFmtDw3Ci43PR97YkcNaWDNPVgzGapxvIO5Cw0YX2
y+tYEL7DP4WmKauvd5WKzAzEPgfSveodSXALkXa/PHMar+hDBtucSYiN1Bnu
t/HB283HeL+6klA/uiy5cMMb21wmvAuOkfDG8L6buKAXnvr5dgG5kaDLv3fa
tc8DX0EhF6PcSVjQ8v/z/qIj1vwq8LjrOAlWHDPJKiZ2WNS5NvyIJwmN3afW
h6yiYzv7HIdhyq9usw/w/zmEDQ5dvTR8ggT9j8pHDOK24PXj3GLXvUlQsw07
9yGAD7VH8UmKnaTqoSsodaOTGhoa3md2lrJOG5L20d2Pwrgm5cGHhBh14H/5
xBSx1m0YKKI8NlAaJadgiUxd1pQtUJbTL/fOqbVFBuyhx8QpEjrC5N+azNmj
lTujBT5QPlFfQef4xxkF68QmbPclIWE+Z8LxgSva+qh7cyBlmwx2qaazG+py
NfrYRFlBWcRJmOaBuKpes79QXuywEZ8tPY4KlyKnlPxIIP4Mpld+8ELuN2Mu
ZlD2LhAzOZd8El0yaNn4kPLePUdXumw9hay24f4JynxMomXvM180qeJ9nd+f
hBHf4UhRX3/0c6qxQZXyINfFTeHJp5HFeMorM8rYavtPz6MB6GvY+x0nKFeU
9A5abw1EW8cbq6MpZ8z43jRYCkTRRpNmmZTP6KzNVnsWhJ4WnhW9TNk1tc5f
qigYbWs5wV1N+cDQIXN+3xAk7V8o3UhZTeHLtiXdUHTGcL3LTcriwRk8n9aG
Ic87re03KK94vGPi39EwFC1XcaSe8pTAQFtbwxnU3HaXp5Iy0+l0aWNcOEqr
XRgvoFxj2jNm5xGB5GQfuqRQTtBSkuUwjkSHHX2PBFF2Vkxwq94ahbTzOFqO
UtYQeXvFij8a1WpHXtWivI5T5/3STDRavTDIKfq/9WYZW8qen0UehOjIZ2r/
2t7Mu5vejEE+mjrKrZQPTSgyw01jUd4G04X/7f/e1zZfex/EIv47xnvsKSuy
zwnKqsahh60ac9KUhZ81qodejkNeMrLyY9T3pD0etepeF49KvqxlXqI8fXdN
kFR8PBqI4/5hQ3m4XjsncD6eqi9RBi/lpksM1sbBc4hHuVLfnaqn4tz2eT/j
BFSmsc+Ul3Ja2rxQ290EdKhne381VY8e4YetfQoTUV9gsN5bqp4tT0cHP+JP
QhF8v5WCKaMTNblCZ5OQYI9QCidlMRvuf++7JiNs4lcnTPUHl9k/3wSYyWjZ
JDQ434vKNwN3EQ/D84i2nNskRLlb7ZENv0IKerfzOkGj+iuKP2zQ8b9U1Pz0
kli5BwlenFcXGxzTkGBZ3bUVlG2WmKIr+9JQ/ZLMHXuqn1U/qdrWNlxA58wn
9v+l+n+sbeLF75B05NXsoCfoQkJfs/APy4/pqMF86K4plR/NjQbiFUczUFSn
eWOsE7X+4cMqlZKZqKd/5ebXVP6U6dacOkzLQv9tl+R1PUrlk9bjqJ+aWai1
/llyCJVfmbuHL5QFZCG7WnpKEpVvUcrctd/fZaEMLz6xQioP6RvcP19uz0Yb
JI77pFuQwPNto99sai7y4a30LzYmwXpztt/zR7mIqZUzF2tEQqk5r3/TQi4S
P2OU7ULl796K7/7Bznlo9PKHneupvD5lyw74sTMfxd0+/X0/ImHg3sUQ2jAD
hcfM8i7uIkFigit0bA2Bzi12NxWoU/0rGBX62IBAOu9c47Wp+cDhczIs4TqB
lhdfMgJUSdgtYRzOE0uiNNVf1fVKVP+fpUWvUyxEUazT00HUPBqvDouecyhE
I8UiBiMbSdj5YiaamVmIJjJNniJqfnXveH02d6kQ9cTedVsSIeHX23ux4n1F
qExOasZQgOpXw6AEmZBixFTUd9xMzUthrvn9xFgJcmu95CrwjgDNtUmC+n9K
UEpBOJ05SoCT+IbRjxtL0RW6wXLmawIqVPTOaFiXIlPLX/QVwwRo2KRVD3aU
ogrnn1F1/QTYV2wRELl+BWksNNzSfkBAyQHroazQcvSoRahcOZuAJ1Yfy7Vy
ytH7/doKJzIImHSMCBirL0cuDuYJxRcIUA8o4ds5WY6yVgu9pCUT0EZO6ww4
XEVJL5JEciMJmJhKKF0LFei5iN7GRXcClC/eOpm2ugrZBMr+btpJgH5fommt
YhVaE1S/J0qVALoAXaXfsArx9BpTN1PnhazFz4JRVUh0PHqkRY6Al3kaAQXT
VUg5xpnMEiPgfPG9sGu915DcJdWG6F8MGK9/mPA0owbtYUraprdR5z1mezGn
cD3awPnoD6cxA6RVOr7rq9ajn+IHNqkaMqAkscPi7IF6ZKbYbmmjx4Armk85
fkbVI2+vKKFCDQZcLe70nPlQj85vktjIpcQA+q3jjGmHBvS4bNsdcx4GOMd5
ubzY3og2FSzrdXXkg+8Gvy/XnzchsmlterV2PhzqOlEArreRvr/ck5bpXMhO
8jDd33QPvRhh6a3MyQEuWZ6EtPkHKC7QZVfQ1my4JNVb9lq3BeklLzfLZGXC
VBODp/Z9K/pT+LowfVM6iCcPq89db0N/zZQ8Tw+lwo8xibfTtu1ots2y6P5o
Mnyp2fU8ZakD7ZO8h0uFEqHzVmtyYUsn0vxeclVKIx6sjCxbPby6kWGiaT89
PAaw6NGWK7t60PzCSlX1rAgAujpn/GIv4pa6LbqEQiFUYm2XeGE/OugrW6Zf
HQhGWWrbshsH0NVJMw5I9oPqF/aNQUnPUUalG3FxtTcU/Ov3Ut6WieZLp3VD
/TxAULj4Qr09EwVqN1txOXpAilUv0nJmovtd/mGXD3rAmX7lMrPjTMSWOv3q
l5wH0Ls++QQFMVHOhbLkI6/cQfCh2++WDCYS/Hdo0cfcHVLL6TKOnUy0bVqj
QEbLDSKCkGe2Fgvxj1yYs/7HFf7eDEoe1WGhOSGa9wpFV0hYrKpS0WchvyTJ
VXfFXSE9XOi/DiMWevGsBCX/cIHSmE/+y0dY6DC3hGZVsgt0pmWHe/ixUNLf
o73XrzmDaPnEhT1lLGSrMvQ+8pcj3GCn33jJz0ZBeUHrREbswO1WtVTqOjYy
Vn3kG9xiB4L5HSlawmzU9traaOqqHZy2/eNCbGKjon7ang0BdqD60pefvo2N
3jkGVcXz2EHVqNnx58Zs5Czod/2M9lG4NMUn1hnPRtMNUp5EIx3MninEhyWx
kRNfcUIdSYdfNQafFVLZyEXqYMpwHB3sfSPaErPYKNHwkJCfFR3EZyf9DUuo
5z98781YsIHsb52d+CEb/f1e0VKtYwMwOL7Lr5WNPBeS1HgVbGD2Nu2yZDvl
gzM1kQI2cPiMZkhUDxv1FHHmFb2zBv7lys17R9iod/fTNz0p1vBgpO3C5Bs2
OiFtatcdZA0+D0a/E+/YaKRuVcyIkzV0R4v1fZ9kI8OpPUWa6tYQ7rxLq/Iz
G910eBCZIGENSnqHy+lzbJTxt2Dw/SprGJL2EVj1jXrf6Xcl9Lkj8P//P5C1
VWXfq5Ej8H8uDy9L
"]]},
{RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Ff//B/AbQlKWiCSJLCGhskTveqWQily5ZN9ahCRb1xZZQ1ni3hnk
Q4TIWrTpXQpJIu6kRSUtlGSNdn3nd87vrzmPP+bMnJnX8zmvM6s8A5gH+BgM
huw8BuP/jkmMpPCGHxRW6GzW+GNgA+FDrIAjMxTegNfx8e20gaOdqt4rpyi8
a5kp31JHG2ARbXtOf6FwzlxWweFIG1DVEVzl8obCzpYLDW8020CLW8IDgRYK
n1x3iS1mzYR5d+Kk9qVTOMn5ldbjYFuIiIqpnlKhcF3eQxQ3ZgcTwa033JUo
/KfEWl9uPgu8/URauxQoTOG1IS3LWbDbKbu/QobC78i1P5g7WSBvVC7stYDC
Gbm3XPdfZEHTt25P3igP/9fAFljqYQ9/fFfKXL3Cw8pa+xnnhx0g2hGfDAEe
FiWv1gevd4YPVn+XKyIe1ql6scljjzPsMjW53rGJh8snoqQ9DjmDrNbNiZUb
ePiNlupwbp4zXPnb4NGhysO+Pz3mvgu4wKfCKtOVojw8eTN0iXu/C9gO5ws9
7OvFgbG/29dw3UA9OCJd3q8Xd71ljXmVeoB5n9XfqdwenKzSZGj58ACEEAeF
xa4/wfV/c73zpX0hW/t3cUF7N97R1HhY0v8YOI/WBVb8fYytrvmbmgsFwyLj
nN9Sxp04V7RFXkH8BCziD+Nr53TgVOHdBJhFgmbqoKlgdzsOK2SJepXHADfN
ku+MygNcu5DhOmMQB6MKbyOPx7fi28MvEhqGEsA9cE73/Z37OPjLQoFVP5JB
afNy7/xl97BhvEnL9Hgq8D28++St9V1sKP43dL1+OnAeqUwLrbiNAwM/7HHf
mAmt39vQQN8N3G4aaZBQkQU6Jex/nTsbsXJTyeO1mtlgaLrm5q6f9Tj5qOGK
naE58KuF4jXfr8Z3lLb2XLnKAX6utE9aWTXOsFpTsfEGB0R9WHOs1Gp8pMDJ
++ptDqxY9Fx9lFmNG2d3B5W3cWCrXX/U0ndV+N5Xq5tHnnMg8eOgmi+jCg9L
un20+80BCcHxCKnNlVhNQze5EXFB7vk6iQHFSqzcIS/2ZBsXlCqOlV4SqMS3
buWsHTLjwgarqSeoswLHBkmpC1tzgcWZUfFxqsAGGSeeKrlxIV/1T/dt9iW8
Fn0KqY/mgrr5gtWHGsuwXLYyqX2LC20MOViaX4YbU1erkZgLXjc1XFtjy/D1
kzVnGPe4ULB2N6G8pwznzmi8aW3ngrRUuujb96U4f/VOD40+LvANSs04SJTi
QANbzv4JLrwKV2yz9CvByZ0+wmZKBIRv0H3/06YEV/sIVVuoECAzBoxLBiU4
TMznt7k6AUwPr01C/CVYak18kok2AQ/NS6vvk8W47lyq8V8jAhqltLgmDy7g
nbdY7f17CUivNjisrVSEbaz+5QtEEqD9bcKwdH4RntYqM+qJJqDLqGKBwudC
HPDvfBMZS8CiVvnKRbWF+K1ZZYBCEgGp/fPGRjcXYg3R1x6zmQQsliCGWVcK
sO68ZP2BUgL25IucNgsvwLHHF6X5XCIgTS1KQx8KsAVTvm68kgAR5Okv3X0e
L1hk7j1eS4Cgr9Y0byQfH6+Xt2i6ScBcy925vUp5OO5gIC/lMQGb964v3Po5
F+f49Ub2dBMQ2X8RdGpzsUT+9MCSXgJ+TabEi6FcfClfrSu1j4BZBTuRrv0k
rnt9SMVigICxE5+ld2Vy8ZewLXmT4wQMaEmu3cHIxsak7a25RSRYJK1+87fj
HPYVp57li5FQO6if3phzDt8sQDIGEiSc4jhNqmmew4nRMvzuUiSoMi42iLCy
sNKZk9lxciT48QzQk8oM/GXAWFpClYSnay3Hk0MzsKSfHzNQjQSU7FwIkIFP
vppX9VidBIVwvvkHq9Jx/uWF18M1SfDek3NGk/8s3t9UIF2qQ8LE9M2CxuoU
bHaqKxA2kXCvfIChvj0FB+p3gZcxCedcBLzIF6dxeoKTaqwJCfoP9qhFCpzG
PhnCmnWIhKjctzXgmIQj9LZJvdtGgpX1fMkr44k4eScK/2BKgqKARvDqhETs
11g/8W47CS3+QYZCtQnYR33hIsqMBBEQbO6cH4+novtnEi1JeDWjoYzy4rDf
n289PrtIqKqwTqjRicOTFZU3LXaTsFeK3JnldAp/c5eq/bWHBM6wZq99XQx+
+4mhsM6GhMP5ezc8NIvBC0CTOUX7+IURrZDrJ7GfNjO9jknCjZCohk2Lo/Gx
qT6l1ftIMJMvbmu9EY7TRq9deMEiwbWL7/OzT2z86/jwENuehJAYz4UjMmxc
2WfpsNSBhJIPq/YuDg3D9VPKzab7SWjixB5XvBiKPbSfXaNoUxaD2XpUCPa2
Mnrp4UgCf1XhC5ZeMA5sOFt4zIkEOTfGn8MeQXiHe5vpFG09CXeFiIzj2Ofa
RoljziR4hqz0+m/sGG6u2rPG3YWEmAiTF912vthhKmu7pBsJNQO/V3y74oNF
19WvC6H9xvSWp6zkYcyW276Nor1ZdNOoe5c3jjjW/CrRnZ6XYz91ErS8cFBx
gfdL2vnU9ZBLKR64yT5ziYYHCd+MAuben3HG/p1NQ7dpM/nGkrQs9+OAU79E
+DxJqOvwkwgRZOH+EnvWNtri577k3r7HxHcHnrdH037VSFmIzlnhrDtxntdo
k+a9TudDLbBinavyKG3W8+6j2uOAY+cFLlzhRc9zby7/yW59LPzmnpwl7a3D
mrbbYpWx7j4XmyDaOvZhcR8DRRBpY1lD0PZ7GJQi56KDhouzN9ykPVV2wvuH
72b06If54DPaJvfRSt/NO1D/62MNk7RP6oHoy5ZdiLgrXyfkTcLgk6LI1ao2
iDW2n1pG+5Sw8nS/zz6knW2wUp326q0lPueq7NEEbs3Uo90WpvLWctIRSTtJ
axnRPlRTyuLb6IqqNxiOGdOOnz435Nzkjhy+b32+ibZdOlVk6OqJ1mmbjmyk
raop7SLF8EbY1Hb1WtqzbXayE0UH0OfYxERF2g88ObxHpofQiMS0uDhtYq7v
bNnHw8j4T8393/T9++TKWMYlHUFn1Z8WvKe9Sd9hvtsaP3TVJeLCA9oivcTd
TY/8UR40dZXR7vd/EbHUPwDp7q9XjqfdJ3BmOTvpGPISZhc508bMtT8POgQi
4SwtC13a6WP+V7f9Oo4253aLd9Pv54TJ4iydR0Eo9cdvPYK2e0p1gEJ+MLo8
cTbahbaO6rjGr82hSP+fb9Yrej5kg9OFPy0OQ/4jPx05tOfdWzf0dCAMjcuG
7tlNu9flWFFdLBuZneiovUzPW+WuzsH93uEo5sKWemva8UbqSnzmEUi4ME9n
jJ5XA+m3F5iiUUjtPa9kBW1xfpP3v8ai0DvxZXnVriSMTHCVi3ui0c/BpWLG
tK2G1HrZu2KQY/DyQDM6H5te2009bopBb65nu7XS+VGj4iSVtGORYFll5xba
jHsDzA7xU6jzeomyGp23+vNcnlxfHBpwLX10h85zQXbr9FHzeGRjMNwgRzs1
dXrJ/evx6ALzoWIgnX9vtvU+37wENPzmNFuc7gcZO6Gnt9yTUKbyF7TMlgSB
3RtnxHqTUFySvP5eul8mtnlJe5smoyuuW2pP0f3ToXPHTlT1NHLXI7RfWpMQ
KRrW5/wlBelSGc62dJ8d5r84W+uciiT6twQfpPvO7lfv0vldqejpyvkSIXQf
an/Stq+qTUP49aVn8Rb0PN8fevY35CxqlCi6fJTu0+LNlX7WjEzUlSkr50f3
tZzRvcifhplIdFHHXQO6zzM2vEgrDsxEDsmNs3OG9PU1haq+v8tElpoeS2L0
6Xwu8/r6X2sWMrm1SnWPLgnCM3JHJ1Kykc4r7YNL6O/LvlVZR3vuZKO93BtP
61aTULRnQUD9t2yUu4U8vluZfv6l3wOCXXOQo7e8QaginVd7KvCHLgelN7XM
5dHfqyc3zoQwXnBRc8Z3Nd3FJMgPCYQOLiIQ605Zc5YoPe+SkaH3thEo6bZS
9oQICXy+R8LiLxOo5WPQUKEQCRvkzdnCMSRisdPsKAadl2hGlLhaHlrgQwgn
TRHwoSIsatIpD7XELEq5PEGA7rOxqN6MPFTwj7u3a4yAjnWvo7N/5SGJk/K1
gl8I+PP2RoxsVz5yF3LutnxPgLtpULxiSAFayhbbsYpHgJTA9A5isBC1ny9v
FKX3BcPFiZJb5wrRvHrZ6pQqAlxklw0MyxUhGceBgwL0flGqteWEwb4iFDdt
p/TlIgEGdqkVfW1FqODhwZGEPAIcS5XFpC9fQLHdOxZPJRBQaLHveWZoCXJk
G9jU2BPQwhwuMTpXgta8kfEo30fAZ+fwwMGaEiRRYOt13oYAvcBCEd3PJYhX
abIjYhcB98lRkydOF9E9+ZJKwS0EDI3EFy2GUpTG1fNzofc1zTMNR1IXlqOx
I45qS8e5sLUrYVeVWjnKcnRXKvpC75tiLK1u03IkdHP4kPonLpzKnP0qGVmO
6gzFXmoOcuFljkFg7mg52mgwmy7I40JywY2wS48voXkBf76KNnLhQ83t+Afp
lUhDN3f6CJveN3tbC/ilapBsfpjayxkOrNRq+75VuwblFVRc6pnkQGFC295o
ixokVuzp1vaVAxcMH/D9jKxBJrP/fMs+cuBiQfvBsY816OB2MLR4ygFWwwHu
qFMt8uTMCAjS+7pr7GG3Z2vrEL+1p/XJAA74Lzs6frmnHumr3djR+yYHrB4e
ygX3RrRp2TuLVYnZkJXovWtH/Q1UNNCzPk/lHAgoCcenTjehml3yq6uvZcJ5
hcfFrzffRe0GI3UWKzJgpJ4rXPW+GQlMfRu8u+EMyCa90Ju8fB8Fmh9yG5g9
DT8G5d+O2rei93Zk4X3BJBivXN9z+lcbinBYbzvPLB7aG5qT8u62o3T875bS
iVhgmtk0ex/uQGnbVQU/LosGvNTh7oX1ncj2nNwrHTs2AEuP/9TsY/TzY55E
oWoIhMovfiib142u2v1+faI+EMwydTSy6p6g/smimNP9flDxzLEuKLEHvW5d
Q4zkHYLcp0dfqtj3oueKZYetN3qBpFRBWo1jL5rv8kryjrIXnGY+Rkauvcjh
orGfsaQXnOjWLN59oBf1tH6TdBz3BNbDT75BQb3IwqQvVrvCEyRve/69m96L
AuZvDNVW8oSUEpaic3svOucrlOa23APCg9DBLCMe8lERHfP2dIV/V4OSBkx4
6JdM8rC2uSvEz5aXa23lodF9ERdFtVzhLHvJlzYzHkotkrPgn3WBopOfAn7b
8pCAxuiyVyku0J6axfY+ykM5V4vj1l93hqUlQ2n6xTxk52IUpL/KCa5QZ6+8
FKXQKelLlWEaDuDZUKGQIk4hq0lkYSHhAJKcttNGUhS6Mvo+RvuHPRyzn3Mj
llPI/z+Z88Zt9qD90l+UpUGhRy++utl72UP5wO4DPeYUUnXbykgrYsH5ERGZ
9lMUMjCw/FC41g52P1I9FZZIIeZjzidxGTv4U7ntq2oKhQK3/DTOYdiBo3/4
/YRMCqn8FSl9ydsHshOfA0wLKZRfGuZhH7EPsmba2/FtCqkpZroxumwB+j6s
P9pMIamxSePL121hopHx34pW+vz1YXq+xbZgfcIwJLKTQq5PNhopsW1B9HfZ
qk39FLJe0Ls5SMUWmvrvp31+Q6EaRXZEo7gt+DYNfCfeUch8S8gR0T9M6IiS
6fr+mUJfH0SoT/Qyge263qjsK4Wmvc6/jsJMUN9iXcKapND1Q9vEFSqY8Hyl
r5jgDIUKfydceZLDhP//34JCok/fzIllwv8ALs5cQQ==
"]]},
{RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2HdcTv/7B/BbhSQNWkiliIZENKg3l4yU0bpvaS+k0t6DtIe0u88JaZf2
UJ+i3kWaknTfIqEiEalIScj3/B6P31/n8fznjPf1vl7XOWezravhOQ4ajca7
jEb7v2MULSqgdoGNcW+zPuGvDwHjDFfHOTbe/eBpBy1WH1x6ZO0lv7OxrnrO
St8MfWAQ7SdjvrDx571pnPH39UFWecVmi7dsTFuVMGS1pA+PrCI6uB6xcQFt
7FpRpAEsaw4TMk5g47s16tkcOYYQGBxS/n0rG+8ctNnxeDkdZrzaGqyl2dj/
2ejEzY10sHfmaeuVYOOVT/95Xd1FhxNmqUPFomx8ec5ua5gFHcQ1irjtVrHx
lrZ2Fcc6OjT+eGrLmmThUsSn+cyJAX+cJEXv1rDwisEXq+kfzsBlU3zFG1hY
rVnocKewGYyd+rtRCrFwQVGz/qiSGehpa9Z372PhMoMk/TU6ZiCmeG9Gcg8L
F8rI6mcGmEHN31qbblkWnrGeNs8fMYNPWWXakrwsXHl7q7R+pTkYfby5smug
HztWGSiZW1rCdq/ABHHnfhzI6fG69Lc1HBs49fd7xjN8gud2iSbtHHgT57n5
6/twaFj3t+7tjpCq9Ds3s/MpFimvvDLX5Qrmk1XuxX+f4JqiMWkBJ09Ysz/t
t9D+HtyScqeDbu0Lazh9OTrTu/H3gdL9AeGBoBA3qr3iaScO/zovcBWFAPOa
Lkf81g5s0hhx67/2UJiUGAnyCG/DK1enqhW5RoC1+9Ku982tuPGBwXh/UDRI
a220v7n+IeZ48+b2kkcccHS19I2cbsHPTrrJnL93HdIfb51duakJq6/qt635
lQhtP9vR8EADVr9+VyPEIxmU8/z/9Ryvw4LD0Y1jCymgri13T+9XNZYxPMf7
RzcNFh+xWQ9ay/Hfks/p2cnpwMkUvnitsByfPBr8XpeZDrwXGUuMuHLcNP1i
+7cb6bBpzcvtk4bluHYVI3VPfjocpA8Fi7wrw80kWZL+XzpEfhjd5kQrwzGR
Zm1tQ+kguGI6UEirBB+Xu7eyeTMTth9bteVCXSH227vEKsxlQjttA4jcLMTW
69ft0ixkgt09ecu2q4X4n7Cj75NiJmTuOEHInCzEgcE2DeNVTBAWSuAdeV+A
61u2fphtZgLHqNCciWABbk7k8fQdYsLrAKl2Xec8rC3eoyEmQEDAnl3vfxnk
4TedublH1xEgOgW0O2p5WLD/Qau7CAGGNnb7VnLm4ePRKVJYnICuYwXlrWQu
Xgj5K7VTjoA6IUWmZkcO9ujZ+84NCEgoV3NQks7Gx5OEBR1dCVD6MaNesDwb
KwlUzl7wIKBXo3iVxEQWlude+djGm4A1beIlayqzsKV1vcHxQALihpZNTWpl
YbvcvykfIwngEyQ+MmoycWUETrO6RcDSo5Ylfekb2OJFJq9KBwFa+ipZBycy
cPt7UaK0i4CgoXxQrszAXc8iPm3uIWDxW2w4P8rA8rNR/f/6CJiXoPP0niUx
LdAwN/oVAVN+E8J6SUxcdrzuT88kAcOKa3ccoaXiJReezyJ8JOhEbXn7tzsF
B3k+LvjAT0LlqGpCXVoKblA9HV8pSEJoutm3bQop2PFX/NA+YRJkafm1PIxk
3KchELJZnARnlhrqK0nEF8La9VTlSHi+Q3c62icRR/T+i+uQJwFFm2cBJGLu
FM5pY0USJAI4lp8vS8CqeY0b7HeSYH8yLV6B8zrWr7efN9pLwszsvcy68lhs
FvpV0f8gCQ+LhmnbD8fiLKkDej1AQooFlx05GIM/la8K3ahNgmrHyW1BXDH4
uVKqavkREoIzRirANArnFwUU5+mSwAMrHvQsD8eew2bqz41IeD0nL4NuhOHU
3UbpE8YklBWfjqhQDsNrY+ici3QS9IXI48lmobgJDnDzm5CQ/lGh/0xVCLYr
2Vu+ypyEo+K57W0NAXiTidT3g3YkWPZyTLz45I+/O1i8ErQnwTvEdvVnUX/s
qlIz85Zy3thmfT4fX1w98Sj/0nkSOMuyBhm7vfCyXV5bLC6SsMGK9sfBxhMH
eNm78TuSsFvQWiIw0QNPhdwfb6Js6y1pd3vKDZeqPdfndyYhJFBz8CndCXv9
vsgX7kJCxfDvTT9qLuJlF7WyRV1JeKt931ZsrQPmDvhjWkhZi3ffpHWvPdYy
OHLovhtVL7dfyhGKdvgG35jrAXcSbrLrve/E2uDiWYFHzZR/aLguvY83xzlG
LcN3PUgw5JiKUtQ9i9UTNhTKeZJQ1e0s6L2Cgbs8q1MzKL+uY+vwLp3CDEvj
d25eJBz8qGB06KoMNnqTfWTamwTlM75hH9x50C2bLVpHfKjrd3nGbrBQRtRq
mDIpa7YiSSetI0juttwKZV8SruwG3leP9NCjTTGpPpRH+7KDtsgaoPGpaJ0G
ylsO5l1MKTuDMppObFbxI6Hdd+uI7jdTtBDBddSR8oWKAgbHXkvkoHo48Rbl
8NmUcfNGa5Q2tpL2hDI9gZ2tbmmL9kaeSFugLKsgbCFEs0fC3/j1pfxJmG+n
i81kn0MLr/SVD1PusE1nPda+gMoH+VTtKRNLA9cLPzigeVtdmxDKFzNEdcOi
HFFUD1c1QXmfqslyKzlntPzEwe1llHn6iZZ9jy+hv/P/WpsoD10aDBS55Ipe
PzwW0U15gCt+o3+UG5oKF3dmUcaGO36dN3FHp76H+b2kXJD1ZMBYzgPN3Q4v
HqScMHXp7qFFD8TkkOV4QdlPky9Z+bEnqnVxu9JH2Tq23FXiphdKErsk3U5Z
5+Wpk7yXvJGMkOyX/ygry07LL2r5ICF6wWA+ZTGvBO5PfL4Il//6mkB52cOd
48+HfdFmtuJ2H8qf+ftaWyv90NszJ6NNKPdbuGVXXfVHu0sv8qlRLtHrGT1r
H4Aklcxs+SiHa2yX5jgWiPiklymNUutruS3ctlguCDn7uLtXUFYTHskx5A1G
cLpV0Z+yAKfm+8WpYLR+Bb81ovx5himT++wyEpR3Wf2Pqvep8W39/nohaNsy
VrcH5X1v6N+fNIag5jeCw1spb2OHrZVWuorMAwac2NR+oj0cNuwWCEXVSW7T
MpQn69d4SoSGoqqR6PFH1H4crNif4jEbivYQpQwbytW3mKwNA2FoZPednGvU
/s1MbZt1ORaOuFJ7L2+kHBc3u661PhxdP0uw86n9bu9/2tjpRgQaoDd/LaX6
w8At2KuZNxLJ1XhUyVFGF0pS112ORAsPfKazqX4Spa98ft86CrVEyQ+FU/3H
dWLvHH9/FOrl3RczTfXnzCE7YXvtaOQ9fLaaTrlbuZnOKxuDGk4xfYSo/g7i
9R0w/xKL6ld87DFzIsGBM3++0jwOKamfOptD5QN9sV9keW8cyt/FYztG5YnS
J6UzZZXXUMlznnFTB6p/Wsdf/PW+jspE73QKniOh957QgsHH6yh2eqfWHiqf
7lUdEiswSUADsoxdhlSedZ8+rVi4KRElIpEbITYk5GqVOJ+mJSHTW02RhRZU
Xmk8DPqlnoSW7ifwFFB5mLhn8FquexLSeqy7LsuMul+FlWU/3yUhsXrVusiz
JDDW23293ZaMap9q0yWofOWe2+AyE5uKfH9Mp/vqkWC8OdnlWXMqOnVn5uVh
Kq+zT65yrf6Rig79+KzFd5yqd8FPVy/LNJQ5dsAz7SiVH2fY7gu70tHe9kc3
val50NcQ700bZCJzviG/YFUSxMe5fEbXEOgSb/feNdQ8ubg2yOfhIQKtfjcm
SaqQwOHk6BteSiBvps7lfGUS9ogf8+cOIVH9yWyfRGpeEZdpwQLbbqBM523T
FZtIGCv2Df5mdgPlzCb0cVDzbteLqeD+xBvo+EXlzwYbqPXa+eZy6uINpBP3
q3NMhIQ/Iw0hYr03UbHmks4bap5aa3uGS3lnopx4zoX1y0gQ4po9QoxmoSP9
XlwdIwSo80WuPbiUhTTuHtjv9ZYAC7H1wx83ZCP9LdybN70moEDxgJ+acTbq
/7n+n80LAtToccUD7dnIxmivYv0TAkwLZPiFS3OQVPmxCGYDAVk6xi+TfPLQ
4kTLAcXrBDwy/JinkZKHVHT9RA3jCJgwD3AfrchDUu7mPZ7RBOx2z+LZNZFH
1a+aVRxKQCs5qdlnlo8cfnGEffQhYPxzeDYfFCCace69m5YEKMTXOsatLkL+
vBq2yxQIONgboVe2rQiFyXEl1W4jgMHPUHyqXYTmvu6ZPbeFgNCk+a9rg4pQ
kTbv2fubCHiVpuaeMVmEFNg336hT72fRmQ2+d57cQeJj8/YhP5gwVtEU3pFQ
gqwu9Jw/dY96/+tvy+QUqkA7o3er6O9ngqRi+8+DShVoT9IjVQc1JmRFtOtf
1qlA7+8+pgerMCFHvYPjV1AFMrDNmcxUYEJ+Zuf5qQ8VSCvHsrh5IxMYteeY
k2aVyDSlYsDvdzpYXnWwerGjCv25GJk3UJ8Ol9a7TJc+q0YNxYpxhQrpcKrr
QgZY1yETG5UsqcFUSI601ztS3YDKuZ0XEoNSgEuaOzxuthEx5OXP9wskwy2J
J7lvtFoQ03nTpW8+ifC5msld9v4ByrDYEtnzIR7EogZ3fyttRfPpqlWMnFhY
GBUfmTzThmokajniiqNgukTlWcxiO1LT+HTVZCQcOmsfRN1o6USJE6IBWStC
wfCowQN7h25U3ORz6j+JK4BFTFpyVHrQkGuTcA0KAGDs5gydf4Iqwr50yc15
g484X5fYjadoqm2joLmDBxxNUpZPrupDera16zYIuUDxC9Mqz8hnyMRjlerz
QgfIeO7yauuZfpRy+H6J1Hp7WCuUea3CtB99T/h67ssKe4gxfII0LPsRussS
av1hB35PFXJPnOtHQjxnVck+O2B0fXLy9OxHwRsEh4aj7WBtk+3floR+9Cut
5ciz37YQm8eQMu/sR2sdG+vXf7GBAE90PlmDhR6HKf9+M2QF/+56Rg1rslCP
SLNEWrMVhM8XFSkeZKHkxsUE61wruO6/7kv7URZykP+ze4+TFWRf+eT624iF
mlqOWj/5bQmdccn+9i4sdGtMLAZLWYJI3vg11VwW8jqhLsnwN4ca9vWaV7xs
tMDSmN5ldxZsa4slYgXY6KekiM6szllYm94eoyHERr3f58e7lc6C25klK2Ij
G8Vb+fc2LpqA0qtLvAx5Nro2xZYrTjGBouET554dY6OQ5u17crrOwK3PPKKd
oWyk3XFCoeUIA048lg31jWQjg443iapK1PdvyaGvsrFsJLbOd+6BCANMLwW0
RiSx0eg7w2TRT3QQm5lw1c5iI9YdjYXGODokz3V24iY2+ijzuuL5gDHAwJiK
ywM2ijlmrJ3cYgwzdbTbm9rYyNRgTaJtsTGc9lP3DuphI363Yhl02Rh4fxdu
3jdEPa++/uCwrDE0DrVem3jLRotXPV6rCxqDU+PwT+IdG1UXC6jm/zaC7mDR
3p8TbFSpVnr/vz4j8LdU0Sj8ykb0CLmnFveNYPuB03mMb9T5bklzixYYwUtJ
J/4Vc2xUV2dj+j7RCP7/fwXilqxteBhoBP8DVxMbSQ==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
FrameLabel->{
FormBox["\"Time (\[Mu]s)\"", TraditionalForm],
FormBox[
"\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]]
}, Open ]]
}, Open ]]
},
AutoGeneratedPackage->None,
WindowSize->{848, 925},
WindowMargins->{{13, Automatic}, {Automatic, 4}},
ShowSelection->True,
FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[567, 22, 25, 0, 71, "Section"],
Cell[CellGroupData[{
Cell[617, 26, 161, 3, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->836781195],
Cell[781, 31, 230, 5, 31, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->2058623809],
Cell[1014, 38, 1838, 60, 65, "Text",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->525777075],
Cell[2855, 100, 171, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->145610755]
}, Open ]],
Cell[3041, 107, 180, 5, 31, "Input"],
Cell[CellGroupData[{
Cell[3246, 116, 163, 3, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->429217524],
Cell[3412, 121, 1234, 31, 132, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->433132487],
Cell[4649, 154, 765, 26, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->133602844]
}, Open ]],
Cell[CellGroupData[{
Cell[5451, 185, 207, 5, 31, "Input"],
Cell[5661, 192, 478, 12, 50, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[6176, 209, 2132, 65, 92, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->534530029],
Cell[8311, 276, 2360, 69, 96, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[10674, 347, 312, 7, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->462076121],
Cell[10989, 356, 623, 18, 52, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->494599775],
Cell[11615, 376, 3487, 103, 86, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[15105, 481, 171, 3, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->358620443],
Cell[15279, 486, 558, 17, 31, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->167259034],
Cell[15840, 505, 803, 14, 118, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[16646, 521, 197, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->577766068],
Cell[16846, 527, 3515, 92, 172, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[20364, 621, 3937, 109, 126, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[24304, 732, 858, 33, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->525228576],
Cell[25165, 767, 1675, 47, 69, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[26843, 816, 4081, 115, 126, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[30927, 933, 478, 14, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->610306692],
Cell[31408, 949, 367, 9, 31, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->645617687],
Cell[31778, 960, 880, 24, 86, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}, Open ]],
Cell[CellGroupData[{
Cell[32695, 989, 485, 14, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->854192725],
Cell[33183, 1005, 554, 15, 52, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->465762594],
Cell[33740, 1022, 1853, 53, 104, "Output",
CellGroupingRules->{GroupTogetherGrouping, 10000.}],
Cell[35596, 1077, 144, 2, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->314466782]
}, Open ]],
Cell[CellGroupData[{
Cell[35777, 1084, 901, 27, 54, "Input"],
Cell[36681, 1113, 2805, 74, 69, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[39523, 1192, 131, 2, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->398692331],
Cell[39657, 1196, 1095, 31, 77, "Input",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->298399236]
}, Open ]],
Cell[40767, 1230, 47483, 1326, 406, "Output"],
Cell[88253, 2558, 132, 2, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->8183146],
Cell[CellGroupData[{
Cell[88410, 2564, 493, 14, 33, "Input"],
Cell[88906, 2580, 2579, 84, 92, "Output"]
}, Open ]],
Cell[91500, 2667, 324, 8, 59, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->142706944],
Cell[CellGroupData[{
Cell[91849, 2679, 7071, 207, 192, "Input"],
Cell[98923, 2888, 7369, 226, 299, "Output"]
}, Open ]],
Cell[106307, 3117, 275, 6, 59, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->97303873],
Cell[CellGroupData[{
Cell[106607, 3127, 7078, 207, 192, "Input"],
Cell[113688, 3336, 7077, 214, 299, "Output"]
}, Open ]],
Cell[120780, 3553, 160, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->138519002],
Cell[CellGroupData[{
Cell[120965, 3561, 1847, 55, 55, "Input"],
Cell[122815, 3618, 1775, 54, 98, "Output"]
}, Open ]],
Cell[124605, 3675, 254, 5, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->3468672],
Cell[CellGroupData[{
Cell[124884, 3684, 1909, 59, 55, "Input"],
Cell[126796, 3745, 1762, 54, 98, "Output"]
}, Open ]],
Cell[128573, 3802, 213, 5, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->102411945],
Cell[CellGroupData[{
Cell[128811, 3811, 1920, 59, 55, "Input"],
Cell[130734, 3872, 1767, 54, 98, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[132550, 3932, 26, 0, 71, "Section"],
Cell[132579, 3934, 136, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->573833124],
Cell[132718, 3940, 69, 2, 31, "Input"],
Cell[132790, 3944, 148, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->289922153],
Cell[132941, 3950, 231, 7, 31, "Input"],
Cell[133175, 3959, 157, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->605757010],
Cell[133335, 3965, 1108, 32, 72, "Input"],
Cell[134446, 3999, 162, 4, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->546154363],
Cell[134611, 4005, 1149, 33, 112, "Input"],
Cell[135763, 4040, 124, 2, 43, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->53519095],
Cell[135890, 4044, 206, 5, 31, "Input"],
Cell[136099, 4051, 810, 21, 75, "MathCaption",
CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->434761194],
Cell[CellGroupData[{
Cell[136934, 4076, 28, 0, 36, "Subsection"],
Cell[136965, 4078, 2724, 75, 108, "Input"],
Cell[139692, 4155, 572, 18, 54, "Input"],
Cell[140267, 4175, 643, 20, 54, "Input"],
Cell[CellGroupData[{
Cell[140935, 4199, 2127, 61, 98, "Input"],
Cell[143065, 4262, 29134, 490, 238, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[172248, 4758, 29, 0, 36, "Subsection"],
Cell[172280, 4760, 2725, 75, 108, "Input"],
Cell[175008, 4837, 572, 18, 54, "Input"],
Cell[175583, 4857, 643, 20, 54, "Input"],
Cell[CellGroupData[{
Cell[176251, 4881, 2127, 61, 98, "Input"],
Cell[178381, 4944, 29472, 496, 237, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[207902, 5446, 30, 0, 36, "Subsection"],
Cell[207935, 5448, 2719, 75, 108, "Input"],
Cell[210657, 5525, 572, 18, 54, "Input"],
Cell[211232, 5545, 643, 20, 54, "Input"],
Cell[CellGroupData[{
Cell[211900, 5569, 2127, 61, 98, "Input"],
Cell[214030, 5632, 29467, 495, 237, "Output"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)
|