summaryrefslogtreecommitdiff
path: root/mathemathica_fwm/fwm_degenerate.nb
diff options
context:
space:
mode:
Diffstat (limited to 'mathemathica_fwm/fwm_degenerate.nb')
-rwxr-xr-xmathemathica_fwm/fwm_degenerate.nb844
1 files changed, 341 insertions, 503 deletions
diff --git a/mathemathica_fwm/fwm_degenerate.nb b/mathemathica_fwm/fwm_degenerate.nb
index 9a95bfe..7ebc66b 100755
--- a/mathemathica_fwm/fwm_degenerate.nb
+++ b/mathemathica_fwm/fwm_degenerate.nb
@@ -10,24 +10,31 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
-NotebookDataLength[ 102785, 2526]
-NotebookOptionsPosition[ 99915, 2423]
-NotebookOutlinePosition[ 100292, 2440]
-CellTagsIndexPosition[ 100249, 2437]
+NotebookDataLength[ 92078, 2364]
+NotebookOptionsPosition[ 86891, 2219]
+NotebookOutlinePosition[ 87268, 2236]
+CellTagsIndexPosition[ 87225, 2233]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
-Cell["General setup", "Section"],
+Cell["General setup", "Section",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751259*^9}],
Cell["This loads the package.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751485*^9},
CellID->836781195],
Cell[BoxData[
RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
- CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}},
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
+ CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9},
+ 3.522586258751662*^9},
CellID->2058623809],
Cell[TextData[{
@@ -87,11 +94,14 @@ frequencies ",
RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition)"
}], "Text",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, {
- 3.522540911043191*^9, 3.522540911147507*^9}},
+ 3.522540911043191*^9, 3.522540911147507*^9}, 3.522586258751843*^9},
CellID->525777075],
Cell["Define the atomic system.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751924*^9},
CellID->429217524],
Cell[BoxData[
@@ -122,7 +132,10 @@ Cell[BoxData[
SubscriptBox["\[CapitalGamma]", "4"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
"}"}]}], ";"}]], "Input",
- CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9}},
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
+ CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9},
+ 3.522586258752063*^9},
CellID->433132487],
Cell[TextData[{
@@ -148,12 +161,11 @@ Cell[TextData[{
SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
"."
}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, {
- 3.522541679413973*^9, 3.522541681294852*^9}},
+ 3.522541679413973*^9, 3.522541681294852*^9}, 3.522586258752202*^9},
CellID->133602844],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"field", "=",
RowBox[{
@@ -197,8 +209,10 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
"\[Phi]4"}], "}"}]}], "]"}]}]}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellChangeTimes->{{3.522534194542496*^9, 3.522534219533982*^9}, {
- 3.522540920436486*^9, 3.522540924714358*^9}},
+ 3.522540920436486*^9, 3.522540924714358*^9}, 3.522586258752342*^9},
CellID->534530029],
Cell[BoxData[
@@ -254,22 +268,25 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
",", "0"}], "}"}]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522533257349164*^9, 3.52253422045873*^9,
3.522536315439293*^9, 3.522540739248025*^9, 3.522540970145529*^9,
3.522541564921328*^9, 3.522542172549766*^9, 3.522542936599973*^9,
3.522544786198204*^9, 3.522544854264734*^9, 3.52254522556669*^9,
- 3.522545943915771*^9}]
-}, Open ]],
+ 3.522545943915771*^9, 3.522584861123836*^9, 3.52258489956991*^9,
+ 3.522585441088746*^9, 3.522585934446675*^9, 3.522586258752527*^9,
+ 3.522586548931577*^9, 3.522586755563141*^9, 3.522586844896367*^9,
+ 3.522587049215995*^9}],
Cell["\<\
The Hamiltonian for the system subject to the optical field. Each field is \
assumed to interact with only one transition\[LongDash]the other terms are \
set to zero.\
\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258752645*^9},
CellID->462076121],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"H", "=",
@@ -286,6 +303,9 @@ Cell[BoxData[
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
"0"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
+ CellChangeTimes->{3.522586258752779*^9},
CellID->494599775],
Cell[BoxData[
@@ -351,18 +371,21 @@ Cell[BoxData[
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522533260351258*^9, 3.522534225599567*^9,
3.522536320272253*^9, 3.522540741905562*^9, 3.522540981472922*^9,
3.522541568259588*^9, 3.522542173099244*^9, 3.522542936745729*^9,
3.522544786457194*^9, 3.522544854514756*^9, 3.522545225737479*^9,
- 3.522545944334553*^9}]
-}, Open ]],
+ 3.522545944334553*^9, 3.522584861207573*^9, 3.522584899727804*^9,
+ 3.522585441212954*^9, 3.522585934533973*^9, 3.522586258752965*^9,
+ 3.522586549023181*^9, 3.522586755625842*^9, 3.522586845008577*^9,
+ 3.522587049324617*^9}],
Cell["The level diagram for the system.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258753087*^9},
CellID->358620443],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"LevelDiagram", "[",
RowBox[{"system", ",",
@@ -378,6 +401,9 @@ Cell[BoxData[
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
"]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
+ CellChangeTimes->{3.52258625875322*^9},
CellID->167259034],
Cell[BoxData[
@@ -394,19 +420,22 @@ Cell[BoxData[
{PointSize[0.0225]}},
ImagePadding->{{2., 2}, {2., 2.}},
ImageSize->94.]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522533274929177*^9, 3.522534231598043*^9,
3.522536287987677*^9, 3.522536326037291*^9, 3.522540747140555*^9,
3.522540990177467*^9, 3.522541571244472*^9, 3.522542173445689*^9,
3.522542937562187*^9, 3.522544786610477*^9, 3.522544854751983*^9,
- 3.522545225868822*^9, 3.522545945164071*^9}]
-}, Open ]],
+ 3.522545225868822*^9, 3.522545945164071*^9, 3.522584861296652*^9,
+ 3.522584899840075*^9, 3.52258544137274*^9, 3.522585934681071*^9,
+ 3.522586258753401*^9, 3.522586549112028*^9, 3.522586755707498*^9,
+ 3.522586845139807*^9, 3.522587049475197*^9}],
Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
"MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258753521*^9},
CellID->577766068],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{
RowBox[{
@@ -455,6 +484,8 @@ Cell[BoxData[
RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-",
"\[Delta]1"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}], " ", "//",
"Simplify"}], " ", "\[IndentingNewLine]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellChangeTimes->{{3.522537910365833*^9, 3.522537961926054*^9},
3.522538015680879*^9, {3.522538077788326*^9, 3.522538108632129*^9}, {
3.522538220981776*^9, 3.522538294286786*^9}, {3.522538364562097*^9,
@@ -464,7 +495,8 @@ Cell[BoxData[
3.522539877916903*^9, 3.522539880715579*^9}, {3.522540013440722*^9,
3.52254005705363*^9}, {3.522540998041653*^9, 3.522541007397957*^9}, {
3.522541371243734*^9, 3.522541473321752*^9}, {3.522541586733216*^9,
- 3.52254160084184*^9}, {3.522542443165734*^9, 3.522542553763046*^9}}],
+ 3.52254160084184*^9}, {3.522542443165734*^9, 3.522542553763046*^9},
+ 3.522586258753677*^9}],
Cell[BoxData[
TagBox[
@@ -552,12 +584,15 @@ Cell[BoxData[
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522541474095441*^9, 3.522541485568013*^9}, {
3.522541574936735*^9, 3.522541601520124*^9}, 3.522542174052798*^9, {
3.522542462309133*^9, 3.522542468302471*^9}, {3.522542523892669*^9,
3.522542555317527*^9}, 3.522542937866057*^9, 3.522544786796598*^9,
- 3.522544855009029*^9, 3.522545226303203*^9, 3.522545945473287*^9}]
-}, Open ]],
+ 3.522544855009029*^9, 3.522545226303203*^9, 3.522545945473287*^9,
+ 3.522584861453722*^9, 3.522584899962574*^9, 3.522585441500248*^9,
+ 3.522585934766088*^9, 3.522586258753858*^9, 3.522586549221648*^9,
+ 3.522586755768654*^9, 3.522586845270285*^9, 3.522587049556203*^9}],
Cell[TextData[{
StyleBox["Assume that it is degenerate four-wave mixing ",
@@ -585,17 +620,19 @@ Cell[TextData[{
SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
"."
}], "Text",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{{3.522541626868227*^9, 3.522541723219086*^9}, {
- 3.522541835758232*^9, 3.52254185271491*^9}}],
-
-Cell[CellGroupData[{
+ 3.522541835758232*^9, 3.52254185271491*^9}, 3.522586258754015*^9}],
Cell[BoxData[
RowBox[{"Hrwa", "=",
RowBox[{"Hrwa", "/.", " ",
RowBox[{"\[Delta]4", "\[Rule]",
RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}]}]], "Input",
- CellChangeTimes->{{3.522541725461055*^9, 3.522541787947193*^9}}],
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
+ CellChangeTimes->{{3.522541725461055*^9, 3.522541787947193*^9},
+ 3.522586258754178*^9}],
Cell[BoxData[
RowBox[{"{",
@@ -661,10 +698,13 @@ Cell[BoxData[
RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}],
",", "0", ",",
RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}], "}"}]}], "}"}]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.522541788900106*^9, 3.522542174067565*^9,
3.52254256103613*^9, 3.522542937980884*^9, 3.522544786810239*^9,
- 3.522544855387083*^9, 3.522545226372991*^9, 3.522545945925881*^9}]
-}, Open ]],
+ 3.522544855387083*^9, 3.522545226372991*^9, 3.522545945925881*^9,
+ 3.522584861531525*^9, 3.522584900087137*^9, 3.522585441578541*^9,
+ 3.522585934836975*^9, 3.522586258754354*^9, 3.522586549260442*^9,
+ 3.522586755823712*^9, 3.522586845342286*^9, 3.522587049636806*^9}],
Cell[TextData[{
Cell[BoxData[
@@ -678,10 +718,10 @@ Cell[TextData[{
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
" supply the relaxation matrices."
}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.52258625875446*^9},
CellID->610306692],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"relax", "=",
@@ -689,6 +729,9 @@ Cell[BoxData[
RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
RowBox[{"TransitRelaxation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
+ CellChangeTimes->{3.522586258754587*^9},
CellID->645617687],
Cell[BoxData[
@@ -715,30 +758,35 @@ Cell[BoxData[
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellChangeTimes->{3.52253328148618*^9, 3.522541927263808*^9,
3.522542174082849*^9, 3.522542571871882*^9, 3.522542938071843*^9,
3.522544786827352*^9, 3.522544855406043*^9, 3.522545226441606*^9,
- 3.522545945953746*^9}]
-}, Open ]],
-
-Cell[BoxData[""], "Input",
- CellChangeTimes->{{3.522542008327447*^9, 3.522542028419855*^9}}]
+ 3.522545945953746*^9, 3.522584861609105*^9, 3.52258490014123*^9,
+ 3.522585441657155*^9, 3.522585934921292*^9, 3.522586258754757*^9,
+ 3.522586549325578*^9, 3.522586755871215*^9, 3.522586845394825*^9,
+ 3.52258704970431*^9}]
}, Open ]],
Cell[CellGroupData[{
-Cell["Version using complex DM variables", "Section"],
+Cell["Version using complex DM variables", "Section",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211803464*^9}],
Cell["Remove explict time dependence from the density matrix.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211803683*^9},
CellID->690131918],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"SetOptions", "[",
RowBox[{"DensityMatrix", ",",
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
+ CellChangeTimes->{3.522586211803855*^9},
CellID->718931880],
Cell[BoxData[
@@ -750,13 +798,16 @@ Cell[BoxData[
RowBox[{"Label", "\[Rule]", "None"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellChangeTimes->{3.522542122980978*^9, 3.522542174200228*^9,
3.52254257611812*^9, 3.522542938179186*^9, 3.522544788879686*^9,
- 3.522544855426596*^9, 3.522545229935206*^9, 3.522545945983281*^9},
+ 3.522544855426596*^9, 3.522545229935206*^9, 3.522545945983281*^9,
+ 3.522584861927801*^9, 3.522584900216284*^9, 3.522585441708725*^9,
+ 3.522585934930209*^9, 3.52258621180404*^9, 3.52258654936647*^9,
+ 3.522586755915425*^9, 3.522586845449116*^9, 3.522587049780522*^9},
ImageSize->{432, 33},
ImageMargins->{{0, 0}, {0, 0}},
- ImageRegion->{{0, 1}, {0, 1}}]
-}, Open ]],
+ ImageRegion->{{0, 1}, {0, 1}}],
Cell[TextData[{
Cell[BoxData[
@@ -770,10 +821,10 @@ Cell[TextData[{
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
" supply the repopulation matrices."
}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804159*^9},
CellID->854192725],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"repop", "=",
@@ -787,6 +838,9 @@ Cell[BoxData[
RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
SubscriptBox["R",
RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
+ CellChangeTimes->{3.522586211804293*^9},
CellID->465762594],
Cell[BoxData[
@@ -837,17 +891,20 @@ Cell[BoxData[
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellChangeTimes->{
3.522542126889324*^9, 3.522542174305952*^9, 3.522542579319489*^9,
3.522542938528408*^9, 3.522544791355964*^9, 3.522544855628949*^9, {
- 3.522545232720883*^9, 3.522545241737016*^9}, 3.522545946211666*^9}]
-}, Open ]],
+ 3.522545232720883*^9, 3.522545241737016*^9}, 3.522545946211666*^9,
+ 3.522584861995221*^9, 3.522584900279517*^9, 3.522585441778304*^9,
+ 3.522585935007421*^9, 3.522586211804465*^9, 3.522586549399367*^9,
+ 3.52258675594944*^9, 3.52258684551514*^9, 3.522587049848448*^9}],
Cell["Here are the evolution equations.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804554*^9},
CellID->314466782],
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"TableForm", "[",
RowBox[{
@@ -861,6 +918,9 @@ Cell[BoxData[
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
"]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
+ CellChangeTimes->{3.522586211804681*^9},
CellID->298399236],
Cell[BoxData[
@@ -1700,27 +1760,42 @@ Cell[BoxData[
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 3],
Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 4]},
None}]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellChangeTimes->{{3.522542134400776*^9, 3.522542138220477*^9},
3.522542174324492*^9, 3.522542207187112*^9, 3.522542582215765*^9,
3.522542938655801*^9, 3.522544793068121*^9, 3.522544855825677*^9,
- 3.522545244285186*^9, 3.522545946433595*^9}]
-}, Open ]],
-
-Cell["Make plots from paper.", "Text"],
+ 3.522545244285186*^9, 3.522545946433595*^9, 3.522584862180966*^9,
+ 3.522584900371434*^9, 3.522585442007762*^9, 3.522585935183143*^9,
+ 3.522586211804846*^9, 3.522586549471622*^9, 3.522586756036996*^9,
+ 3.522586845716574*^9, 3.522587049943919*^9}],
-Cell[BoxData[""], "Input",
- CellChangeTimes->{{3.522545604432086*^9, 3.52254560497677*^9},
- 3.522545837580253*^9}],
+Cell[TextData[StyleBox["Atomic and thus fixed parameters", "Section"]], \
+"Subsection",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{
+ 3.522586211805003*^9, 3.522586340969312*^9, {3.522587006893056*^9,
+ 3.522587018993963*^9}}],
Cell[BoxData[
RowBox[{
- RowBox[{"params", "=",
+ RowBox[{"phparams", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]3", "\[Rule]", "0"}], ",",
- RowBox[{"\[Phi]4", "\[Rule]", "0"}], " ", ",",
+ RowBox[{"\[Phi]4", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
+ CellChangeTimes->{{3.522545604432086*^9, 3.52254560497677*^9},
+ 3.522545837580253*^9, {3.522585042796413*^9, 3.5225850703701*^9},
+ 3.522585288984553*^9, 3.522585882598202*^9, 3.522586211805165*^9}],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"decayparams", "=",
+ RowBox[{"{",
+ RowBox[{
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
@@ -1737,7 +1812,61 @@ Cell[BoxData[
RowBox[{"4", ",", "2"}]], "\[Rule]", "0.5"}], ",",
RowBox[{
SubscriptBox["R",
- RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}]}], "}"}]}], ";"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
+ CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9},
+ 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9,
+ 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9,
+ 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9},
+ 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, {
+ 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9,
+ 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, {
+ 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, {
+ 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, {
+ 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9,
+ 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9,
+ 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, {
+ 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, {
+ 3.522585904925934*^9, 3.522586003626522*^9}, 3.522586211805393*^9}]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[StyleBox["From here tunable parameters", "Section"]], \
+"Subsection",
+ CellChangeTimes->{{3.522586286812037*^9, 3.522586297578427*^9}}],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"detunparams", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]3", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input",
+ InitializationCell->True,
+ CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9},
+ 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9,
+ 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9,
+ 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9},
+ 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, {
+ 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9,
+ 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, {
+ 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, {
+ 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, {
+ 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9,
+ 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9,
+ 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, {
+ 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, {
+ 3.522585904925934*^9, 3.522586064963177*^9}}],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"omegaparams", "=",
+ RowBox[{"{",
+ RowBox[{
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
@@ -1745,11 +1874,42 @@ Cell[BoxData[
RowBox[{"\[CapitalOmega]3", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "10."}]}], ",",
RowBox[{"\[CapitalOmega]4", "\[Rule]",
- RowBox[{"2", "\[Pi]", " ", "0.001"}]}], ",",
- RowBox[{"\[Delta]1", "\[Rule]",
- RowBox[{"2", " ", "d"}]}], ",",
- RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
- RowBox[{"\[Delta]3", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input",
+ RowBox[{"2", "\[Pi]", " ", "0.001"}]}]}], "}"}]}], ";"}]], "Input",
+ InitializationCell->True,
+ CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9},
+ 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9,
+ 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9,
+ 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9},
+ 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, {
+ 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9,
+ 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, {
+ 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, {
+ 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, {
+ 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9,
+ 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9,
+ 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, {
+ 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, {
+ 3.522585904925934*^9, 3.52258614545863*^9}}]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ StyleBox["Make plots from ", "Section"],
+ StyleBox["paper", "Section"],
+ StyleBox[".", "Section"]
+}], "Section",
+ CellChangeTimes->{{3.522586356714251*^9, 3.522586356717393*^9},
+ 3.522586398882609*^9}],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ "phparams", ",", " ", "decayparams", ",", " ", "detunparams", ",", " ",
+ "omegaparams"}], "]"}]}], ";"}]], "Input",
+ InitializationCell->True,
CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9},
3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9,
3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9,
@@ -1760,7 +1920,10 @@ Cell[BoxData[
3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, {
3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, {
3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9,
- 3.5225448127211*^9}, 3.522545891693146*^9}],
+ 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9,
+ 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, {
+ 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, {
+ 3.522585904925934*^9, 3.522586138720526*^9}}],
Cell[CellGroupData[{
@@ -1909,379 +2072,11 @@ SVKRMEcDuCnq2FSKH9q8suAgIZwIbOMn8sKLfihacbyubyUBqlOYpf6h/mih
3.522544499019484*^9, 3.522544519115584*^9}, 3.522544551529608*^9,
3.522544583202106*^9, 3.522544798152048*^9, 3.522544856018762*^9,
3.522545918022345*^9, 3.522545953245106*^9, {3.522545984075476*^9,
- 3.522546042552423*^9}, {3.522546198674039*^9, 3.522546306798113*^9}},
- ImageCache->GraphicsData["CompressedBitmap", "\<\
-eJztnQe4VdWVx5/wqCZmxpRJMkbNxMTJmEkyTkwmKkWwBTWKLYpdxN4QsRsT
-RUSNCnbABgiISG+CIiJNuvQqHenSRJpwZv/W2f/NuXjeue/exzeQmckXn957
-z9l77bXXXn2tfdZVd17f5Jar7ryh8VVHnnbHVbdff0PjZkeeetsd7qvKB5WU
-VDqspOSgWkeW8N9RSYn+RO7/8Z/D+cPXBX9xvP2rarRjx47o5ptvjho3bhzd
-eOON0eWXXx6tW7euUuLnW2+9Nbryyivtn9tuuy3auXNnffu5etSxY8eoQYMG
-gBU1adIkWrVqlU3kX6vEOyWV9Za9VMf+Vo7mzp0baUWV7W+V6JBDDinxYGqI
-krQxapcHuopNUa+iKywWtZVy96dFixZR8+bNA8wvvPBCdO6552qQxx57LLri
-iivCz8zRqlWrkz0GZsyYYZDv3r27JM8rJ/lXzjjjjOjhhx+OJk+e7BDD3yrR
-q6++Gh7X65X88/71nH3JA1VFpqhf+MrqVgiVOftRM/rxj38czZ49Ozy1evXq
-qFKlStGmTZvsM78PGzZMoH/wwQfRT37ykxzQZ82a5c9xFED3r4Vh/XvalBUr
-VkR169aN1q5d61+pEu3atSs8rtfTpq2dPcXJ+2CKIlZWt+L4PCjemd/7n9av
-X28U4c5VmHz79u323bx588Lva9as0WjuMNtXGzduDHypTZs2gWmU+r+c4Dyv
-a6cWLlwYXXLJJcYnKu8FmXu1JO3dWuV87uQKzFHB5dXeN0j2W/Yr/1O1atUC
-MFX8XzeCbfz8+fPtt8WLF4eZJkyYYN8xC7Px34FlVuY/7Sv3aslxZU5RPUyx
-bdu2qGHDhtGWLVvssydfDZeYoaSwKSprisRJqAxOogsvvDBme+Wco1Y5nzul
-AnNIXlUQHSKRCm5czqk+OFqwYIH9dO2110bLli2Lli5dGp1wwglR/frGdPJC
-VdezskmTJon5BzZV3pXF7K0arDE65phjorFjx5Zr7vJu3qlFjr8v1lZ7H+F5
-r23bvHlzdNBBB0VTpkwx9alGjRrRiSeeGC1atMiG27Bhg73q2H0qu4rZaWnU
-smVL2P/etJjv9ZM93bVr1y467rjj9p4yiwnnG/q0woeu4GJq7yOc+i063v90
-7LHHBsFcpQxhPXTo0Oioo46q5xfAhjdq1CgaNWoUo1bOfusk/zPwLlmyJPzs
-eFNUpUqVshQE/3ad7J9PrtDgxS2obuGY20ub79KlS3TWWWdJsYqGDx8eXXfd
-dUkV1KmdYZDLLrssevzxx6VeuXVyHmMRk/2KcF+nTp3otNNOCxP27ds3Ovro
-o/NMWCf755MrNHgRq6lbIfT5PTjBc8u2bdtGl156aXTLLbdExx9/fDRgwIAg
-p7DJbr/99mCTNW3aFBqR4tW7d++v6bdlvKINgJdiSZxzzjnRDTfcENWrVw9q
-y/N2nfLAU+zgRa+mKNx57O8Ln8W++OLE+Av3vzmmDCa+dVQodPDPP6R8948V
-eO7/2rsHOnxV/3/r/3/rv/bTGSnfnfk/8FyBIB0TfxetmLoginbvtk+HV2D6
-H/nxNi5bs/ccFQH9Xj9sn5uei1ZMWWCfbk557ib/3Np5y6NBd7W3T/cXNtU9
-foj1i1dFbWs3jYa3eqvkloypJr4x2J5bPWtJcVOVRmOe7xO1rdU0eu20e6Kd
-W7dnLazHNU/ZoyyuwNnutr9Vol07voo6nPlA1PWiR22ouYMnpOLyRv/8ljUb
-bYFd/9TCnl81c3HJfXmmtl804fyhk+3FpWNnuUlbRP1uezFzwhm9R9nzq2ct
-jjqc9aCt9Z4waoakjSesGvW//cWoywWPRLt37Y4mdhgStatzR7Rpxbqbypyz
-ajSoeTtg41P0SeehWui9haH4LvtbLdq4fK2hbFKHITbi5hWfGxCOVkrSoLjB
-v7fjy23RK/WaO4Lobe85Yog6/vHBaGDzdiVFgVI5Gvty/6h93WbRF6s3BGPO
-bYBtBAf+xjLBqRwtHD7VELF80rzwbgI5OirlBam5H2LXV7uiTmf/OXr3nleC
-29ERoQ372SfzM0Ea9miX6I0z7ndbu2uP+yCBpSJBWjB8ik2/eNSMABLDciI/
-fKxrKkjX++ccKEamQx9+s6TUfzel6wcxlqYv8lRZMEhQ5Jvn/tVWqmEdLxKT
-EEZSQXIs0qb/9INPwrvC0uD7XysUpDv9ECLj8a8O8vbqnqnmDBqfCdLHL/Y1
-0t7+xdbwLstxICXptVCQJrz2roHkQAvDOrKO3rq4ZdTv1hcyQep2yWPRgDte
-jrmO/256jxG2nC1rNxYLUufz/mqkuOfxPULiy3WbNH3Ou9f55zYsWW3TOzDC
-uyumfGrfLfl4VqEgNfNDuMNvQ8zoObKkmv/OHepwuLNAmtJ1mD23eeXnASS3
-ibacyW8OLRYktxobFmkukBx2YjB7jcoECS2gx9V/s096F+n0/l86Jo9QoSB9
-0iU+tJBodf/dGw3ui0a17pmcPufda/1z2zZucXTYLBr/yqDwrjtpUbdLW5UL
-JPtFgHzQonPU+fyH7ZMG631Dm6h/05fyAuLOoS1izeyl4d2Jrw824HZu2xHP
-kU+QCpB3rvpbUKM02Ifu0Dq+lBcQJ8Oi10+/14SM3l04YloQHgVu0h1+CIQH
-fMTJtZIagUT3bFwWSLBUp0DlLMfpBfburL5jigXp84UrbYh5QyYGkJwgiVc6
-Y1EmSChhCA4+6d3X/3BfNPLpHkmmUihIUrnWffpZGHbjsrWeU49LBamJMOz0
-QzQGRzUlNf13fW953p26ZysC0rj2A6L2J90Z7dr5VQAJ0flKfbeZL/XLBClg
-+L2JAaRRbXqZLIS+igTJKSBR9yuesE8atvuVT5piktikVJAWfhTrRmvnLgvv
-zh4w1r5zmC4WpC4XPhIN/WunHJDe+3MH5FlekBw3tumdFhneXTNnqX3nFJws
-kL4Rf8jOJaka/fznP7e4vn87N3mlak7ySqE/10z9OSXtpWrKKpr61e7Yss3L
-pfdLDvbfxRpCs+irHTszsZfka8Kee8eOAgpPObCXmflR1UJybgHhZ/+4fk5m
-p1T8Z5+kIh3Z56jYpyoZGFw5fWGsCI+eETA4//1JgZlkYbDPjc+abccnveuO
-VzhOzfJjsIwkj6rZP+dJESnXz9UyM0iyUDazz+igIGnZ6+Yv9wr45EyUYYeP
-+Fv3HJSZ9L/g4Xwo0+P5EjZKy3yuavK5r2dcFPWzO7QCIpHOkYm/kc/0QFHI
-wYHTVEytd4c3FX/X+OdQu8Dz1G4fehrao7Bu27QlC3+xnaekC7cc/u5JG8kX
-pxZav/5c1eRzX89SKOjnRA6EgEikQGSiNSmyhZqkktwkA62BC4yZGd5dNn5O
-sBfKQZb7C381c37OyEYweKuwgts8KPgVRjzVPQdjTvtFJciLsTkDx3nRvya8
-u3X9ZvtuWvfh8Rw2W/VcPOULtpeW+VzuAfxa6kCen2vm/JyREpAmb2/3QAW7
-0hls3/Tf4cxEp8NvkYWxsW37R+3r3YlCH95989y/mLuFT3cULi18rLwsaZET
-Sq/Yz7mx+xoZKErauVrmrH5jgp6YhSIMyLcvi2W63jUbpvFT5UVRGaHsqtk/
-lysQnvfnMqLsWQSVNMG1YkIT8s1lYav75XtUDb07rt0AsxYhsnJgq4zQc9Xs
-n8sVuC7z59jdmB4Sz0JV0kmg5TqRZ6j6pPPQVFQ19s+Z3VUvtrsO8d85VSVo
-eRmoSjNeBFLSXaBhcTnqSF+TAdKmz7wd3v/j8K6FYIhQvDu+UJDE05Pugm/5
-7/re/FzU6/rWeUFaMmamP7qfBpDA3Ksn32WYKxKkpLtAIDkdMOhAWSA5UWLv
-OtES3u1x9R6sNy0OpKS74Ft7TbVlzcZMkJzExGNhn/Tu0IffxJKtCEhJd4GG
-JYBkKsjEuZkgEd/ode0zOSBN7vS+aZS4zosEKeku0LBO6Q+e1SyQcAq7E5vz
-7qKR04OrrkiQku4CDYv7+7VT7zEXUhpIV/vnCDYxPUEqH/BGfQknLh9I9sut
-Gixhef+jCPOapwjFJfGQCsiaucuCsSRAwjlz5/a2MFuGy1KArJq5OBiwAsRh
-iA3IC8i89ybGx2D+8vCu8bS749N1e2GbJJBm9//YhnUsLgw7/tVBhi/IMQsk
-XLd6Lrkcp8lXBCScs9AIzjMNO2/IhLD6LJAMm17w6N3k6SoSpAHNXg6HVsNq
-Mz8d9kkmSFDaAO8c17vyNa+Zs7RYkJLqqIbdvvlLG9atOBMksDvi6Xdy3t2w
-dHWIuBcI0i2ansiLG2LKW8NKvu2/I/j4Yau3ktPnvHuVf07a+rR3Pio5NHHO
-zAPrzlmRICkCSHxKIOEK6nPTc3lBUhAq+S4nTnrcbcWBJJfMF6vXh2GHtexC
-1DkvSMo+4LTqXTtxcXZAsSCNat0zSHgNy6mRtpsF0ujnegeTSu9O6vhefOK2
-7SgWJMSk26gckNxJCzIpCyTMEKdw57wrl7jj58WC1PGPf44+evLtnGHlS8P5
-nwUSoRSC28l3FU91vK1QkHyGSsKK/6jkO/47YulwZUIkaSBd6Z9zyov5jzld
-ejd54vKBZL8IkM8mzw/az3f9d6gVCh9dlQHI+kWxzjln4Ljw7jtX7Yl03Bxm
-yxCxAmR6Tx8jX7cpDJZUubIAkc7jjLrwbny6HrVPtxa3SSihHc58wD5pWNOp
-vWKaBZJszq0bvwjvTrKsoThiWiRIBKn73vJ8DkiOawf1PQuk4Y93wxuV824y
-4FQkSObg8jJJwypQyYZkgcRyel/fJufdPadrYqEgKZ9ty9qNwYP0PRGrN/sg
-1iyQyCEa9miXHJCCZdu2f7EgLR03J6QiCaRwkN2waSBd4Z+TeEY7+Cf/HRHF
-wffGVclpiYTlAEm22LaNW8KwsLv3HnwjiZFUkJI6lN7lxCmiWCRIkKjEqYY1
-oeCdpVkgBU3TmZt6N5w4p0EWCZIjz5AioWGJEr96yt2m6GaBNP6VQSZOv9q+
-I7wrXkUMv0iQSIBwIOSA5EzFOF60an0mSO8/1CHEgfSuU2jCcSkQJJ/CFixW
-Eh6+vxfJI1qyQEI1U8aU3kX7HP5EtySjyZZnAkTulZXTF4bByDCz9fUelQrI
-5f65YOM+06PkB/47B1jU85qn9yw2nzwTIEmnowAhdRQpTSZmFiBuE0PClgD5
-+KV+wemYDyNlgGQ2lt97DYt/U5boFRkguU1Uum14V869tfOWFwvSW41aRkPu
-fz0HJMtwuuSxvCBJpyZLT+9KeMDlCwRJyaBKQ3O6cMkP/XdjHfLNb+SQnwXS
-6Gd7eZ16dwCJTSelZFSbnsWCJINm6bjZAaRZ3v4nNpQFUlKntncrIXWLBEQ5
-UVs3fBEAUSYhYb0sQJKiRe86nBhuwFdaCnM5QIKhySuoYbf4lD9iZGkgXeaf
-U1ISAvif/XeKuTlKygJp/+e25LZ1kcM/rSNMWkBX6COldcgD8QEUCpAv0ugu
-z0CffM7kfuldaiTkdisH+vZfcktu4xYFRJONW9LiJMryNYeN90we5r8zf5GX
-Y1lokwaAiBLaQkThpX7lQdv+yGhRMnOyjUoWiiQxlo2fE1CEBOpywSN5UaR6
-AFRTveukcEBvWub8AZLBUprzc5s2beIckMpknAVYK2fgTYpDcu1JZSILb+S+
-dzgjtlj1rlOjUKfy4a3kwMxcqZHzcxlNQJSvnYpPEh3l2BZOFD/HGsvCJ/ap
-nFmHeQ7rtGR7t0v7UVG/vrOirVt3puaVHyCpKzkINKSlNeQwBFomyZ4c4hYO
-dW/koE1yFb00C2043Ia17JJ4t1q0YFzMDi6p9VRUp1bb6MwGb0QvvfhxtGLF
-ptjbdSDlseTOooO9V4eMNKJTMYHFzGvHMfPDA1YexMBNYirn3UuTssWb+zH2
-akYzpq+KLj6vU/RyrTuiznd3iqZNWxn99S/vR/VPah+dVKdddP99g93+rkuL
-zB0A6S2VPQL3amiRhUAlhi2bMDcgcEDTl4I7MAuB8mk6QetVwqqYdtHb3aYa
-wi65+K3ozYta4j+p5A/12rVbotdeHR+d80enPp3+ejR1yorUQMwBkAgjmk92
-qMjCpCVw144zF4VJ0qlwYOD7z8KkXER4FYTJnj2n2wF+8P4h0RdfbI8+eORN
-Inelfo/B5BWXvx2ddsqr0diPl6Q5sg+A/BgpM8kuE2nKjJDoOGHwJguJc9+N
-i2LWL16ViURiRBLKP/Tc8KYb+0TXXtMTsrS9ndrtw2BYCZMbN261Z06u1z76
-cNinaR7CDPtIkJOd6URgDuRJJT0Lcjwz8n3JnF29+ouobu22UdcunwSWLPsU
-Va+Khx7SuPXmvsad+veflebuyIA+WQFlkcmuH5Qc4b8zt6kzxse1H5AK/SV6
-bkf83JgX+gbLsPvbUw36zz7bFKAXv4VXV/XQO6Ee3dV8oD3bs8f0NCOyHNAH
-D9ikeSVHBpw+GRJrLs2AXvkLBJkEPVRzXZOe/q3E/nqzWtDv2LEr+vOD7xn0
-Q4bMSxPV5YDe2TbGOFA6Bb3lh/mkhyzoVbSyftHKVMoRE4N54OvDk1otAX3z
-Owca3Y8auShti8sBvTNqgzda0IckbqdaZ0GPW0LsMTjKEpQj6OWD+XzBCq+5
-xJRz/XW9jP85KZ02TTmgT6bgCPokNWVBb5lo17XOObVJyhH0Kt2a3nOETzaF
-52yLrrqiu8nATz9dd0lh0KsAQdFNh++SH+/1HT6ZNOgb+edgiTggCNimUY6q
-RaliFl8T9Dz3pwu6ROed+2a0bNnGRnmgt18Es7LVyOz4F/8dsSDlQKShotFe
-mJzZZ3QqvQhmqB0tEGqv6WF2cEZnn9UhanRR12jdui1/CoBl+JgFs8ORr1vf
-HWAeeGfbUI6YBfOCD+PidKom06hEMAcaX7jSq+Wl0by5a41CoBTH5y8qjkqw
-MOR6EvQUdJOhhaM1C/rx7QeGUKq860kqUQGv9UzwoY1veOgnT1pup/PG63tz
-Wv9UGPRKDA5BhZ4jS37iv5s3ZGLAVRb0g+5uH719+eP2SdAn6UVlpE6tCjQu
-6EeOXBTVq9vepJPjlBcWB33gz053EfTrFnxm381/f1Im9CQwOUrOgT5JOYJ+
-mJMVzhK0T9/00DtpZKvEdtm1a/cFxUFPJqiq6gR9Mic3DfqLU3iToN+0aZtB
-1fnNyaGKVPl1SLBDPPTsEapvyxbDgP784qDvdM5DIWvzKP8d6bbu5CbxnAq9
-ZABmkaCfPn2lQfXxmCV7ynITdP8tD33HDpPsucdaGvTnFQa9ck6drPNO3/El
-P9VOOw3XUUVe6JOuLUE/cMBsgwo/gCokoXtVFAn6N16faM893upDRMS5xUGv
-TgzkcAn6oHuv35wJfTJ8JujbvjQ2OvXkV8FngB66VxD7Hzz0r782waB/8onh
-QN+wOOgH37cnMibo5WYlypoFfbdLW4WEAUF/3z3vRldfFTv6Bb3iH3CGf/TQ
-v9J+vEH/1JMfAf05hUGv5EWyKKhCpxrqZzqNG78ImYdp0HvRYrlR8HtK9ySt
-Lm30FnwkB3oV3iOJD/XQt2s71qB/5K9Dnem36+zioKdvECM7uVlydIITys91
-cQb0q2YssncXjpgWcO8gMT7uKCPUdjnqCnQv6N/sNNl40913DUJa/bE46NHl
-yUQgHUnQU4WmThJZ0IdS1BWfB+gXLvzccDr0/fkBeqP7hg/Zp2976Pv2mWkW
-4C039Yk2b95+Vh7o7RfBjLtHRUlHJ9ahLLEsmNGMZHML5uHDFxjM8+etDTAn
-qf07HuZhH3xqtoc7GWhkDQJgGRqZ0gWp7UZ/cXpMyb9q932uDAlNWTBbZru3
-tgUzuw/+tm3bGWBO0vh3Pczjxy01nQbXltMo0xqrZVDJ1xJnx8wM0Nupdfo4
-nss06L365HuV3GFeS53QR1t8gD5un1RNBI07PmafBP3MGavM83bWGW9EEycu
-b1Ac9FbcUe9OS/b5uf+O6go5/9PUVEEvbdid8gC902fQsnKgxzJUw6Hveeid
-5DJNGNdin94z/lAc9Oy+s9zsk3QaKHHI4LnRl1/uCPb+1Ldjl5yjgswVkahI
-n5mkDYvO/vxzo3NWpEI40sfjhKAq0ZYtO6J7nWzgtLR+emT0ldPGTytsWd7f
-E9LuSA+Pl1WT4aILz+9sw0O0DzvGPHrUYmOJck05BTVrdRa29nkjSf2fIfv0
-mRkqqxBXpLOS4vJ9vzonqy3ywLNNb+8ffb7uS9/kvODVqQ0E7Eir+8BtGkM7
-ZTJq/cxII2w+n3VGh6hr58lWne/U57TVeWU+x7bQ3k2YsMyGmTJlRSjKoeDC
-qHHzl/650ujdQXMMqQ3P7hRNmrT8lOIWZl2sPC/Swm64vpdZqeg67hvbRqdz
-Bj9Z91tfQiJmLUxKNckVWlivnjNsYZ9//mVYmFgmmQU/9Nu2YMG66LJLuhk7
-7PDGRAOjfmGr82680L/EgRPOGhEWwOjxzjTvIakSbd/+lfmy7zijTZASaeai
-ludkd/COaXmcnzMbxP65ZDEVHp5Bzdv5DIAqnHHjl8Bw5x0DovXrt/prfgpe
-XuiK5shCy/vLn9+LzvjD68ZK5KKdPWt1dHad52UopK3sggTEVhHyWNfgjbyj
-aX/sPvukCislShFsOMxPM2hgTJEcBGe9nlTYopLJedgFJONrUStXbjYd6sUX
-xgSLnyhO61rNo243vZi6V1qRGA1SWSu64LzO2Bc5K0rSyo8SpIh2YLbgo8Pw
-gegKk0KXpTqX+UMnh2W55diy3PKCUxTe2LJBy+j52s2jTRu3ppn9Wpl5OX1b
-OFEhHB1o8Y2oSgceOqBZnFChleF7bd9unE2PF23sx0t0dUa20qb1jHj6ndBM
-UE4dSBvaczQYDNQRr8cZHq3u6l2StZiBiexfLQa6ZTFOZoTF4BCC8FBwj/CL
-4bkrLnvbmNMTrYYTUIl73efT5kJ+mONw+OvwxGpzHH+wyR2/CH5HaWTX1moV
-fTR8YZpX43wNueMrcy2Pfq53IDucIgy5dOmGsJ51n8bOmFn9xngHcFVjR6+0
-H2fK6R/P7EBYhVNxfGGUp8Wp7pWaRu0UohEW71h9cPbBqB7/wyN2OJwamub0
-0OI++2R+SAXU4qAmAIZdq4AG6SJN98d+s5YsXh81va2fIeKmG3qblv774lbm
-A25W5auVjRix0IZ20jmsjGyZV065J6pb62WcI1krE3nRBUsre/CBIdGVl8ed
-PbQyFAIyCvEl/IvfNkLPaHHwP87VM0+PiDZs2Pq7whanmBwWhvzjokkkMAoV
-etrBHp/yRT5yW+zNR8tJc/loheS5q7hOK3SrY5U5K1TRD9bHUX6FzrKzVaEB
-c9A7dZwEqRxX3Aqli382eX5Y4bnndIpaPPKBfdIKVeUx/MUBRmF/e/Kj1BX6
-7yyxVz4ErRAdhnfdsQrVHs7mDI0gf+pXiJf+gfsHGwmB6fffmwdF/2dxK6Tt
-InG7pN8eHHq10evmVWjTYW2Hn3t2tFHOwgWfl6Q5vrTCkFk4bWFYoWMqNq5j
-MmGFilyTT3y0XyFecSwensWa+fDDBazwPwpboWJQSgrG/6g9JGeF0d1RDCuk
-YhmrceWCVWb9YW9lrdC3dbL4gFaI6cC4c2avCSuEc6MtIN9iS7aancMRHy2M
-rr6y+96r1J1facvc/5m+pcmfuTdS93glrotUVC91N8gBJyeLaIl2Y0D/2O+6
-ZMkGvxtV43YZceq7Jcvw+/hxS9O8lecmEE2YjDCFklm7dP7EXkXXVK2TZY7X
-jmsFfp7YEDYANqMNQRbCxv49/4YcSI3x/KWRle1qs8rJ+yJTN0ahFFNCfa2B
-QgFof7AksHCIn67frS+YurbDaQDIZ0jYkW2aI1Ybo0p1zrg2Bt+5E+P2SRtD
-jwW8ssNadPY99auZGjB06HxTnozjXdA5eqf7NEt1TOu7fwBkJyuZ4+sXRVZO
-XhSZuRs4+NFdsZu0G7hdJeS1G+qGi+sE+gVF7jhl7QYRP988PuzGrbf0xf9g
-n1SKNeaFvubDIj7xi8QxGT16sWXTyJHQ9uWxFjH5edm7sb8TodNyKHNvh6ye
-ArzCFQSwUKRwpCrUcfGfukYPORtiz15UC/3UfbFYdPNNfUxZgPekefo9L7O2
-BdaP9o3BIb0V5+ljLYflbAi1cWwISUS/8sueOXOVpdfgieAfMuGc+Dy67L0o
-OTCTq3NnkYcxeUtjWmKhtojyaFBDV3MdF6f1GUpefWW8t6CrmpqNzGarZjmT
-DHPMWelZuzPJ369A3qF255T6r5iaxie5/Ag5wLwcEyv5tacI3LEvv/SxHROO
-C7wSYYZ/6aj8x+XA2AvNkrx0cU9vQfmbaG1OtAHi1yFxdpMt22mofgeqBScD
-Pl7ozWnS5pFZvfqLkrSAkudkVromP5W2gaxExu/Vc0YwyCXGyNI71r6rbpSA
-gdrkmh72PLbBffcONkNs585dPwqLOSBTvpUfmrhHMbWMSrEb+g5CsBuWrg47
-gY2geJN2ItwiEHe0NQ8W8eOWLYZl7oTSoem4rJ2YP3+djT9y5KKgC9PvBr0X
-/fg3fk5nNVic+ryGnex57NDnnxtNfpdyKguR5v9z/RDLvD8xLVNXkQGsPFgC
-OZGKMhN9hytt3/6Vj2lXC61OiKMwNI4VnsGKSAtTaieoN0SXxrmgnRj78RLD
-7OxZq/fYXeNmBwvot/5MoFeNGbMYIeZUvFfsHc4HeSXr1289LP9m7M/Oi2Vc
-qJi1GXZDRa34GiNtBp7oiy9K9j+qZlLWrrJ5fbANjceQAIZTkfwlUVXs6LBZ
-TEOqEkX1XoaQNm2i6OOX+oXLovr3mxXHFdZ9GVQuvIkQB+6Z//KbQsojOe2k
-g/E8RHDbrf3M0ecY5A/yb8r+SGDXz2Vcspi2KZIatGOjSJn4meLqmF733D3I
-Ph3qNwVeAvf3N3gZNwdBHw1f6ONl37SWymQIojqTw4Rr0224TcvGIxWIv+HF
-ICwBf/TB6TjvpnYcVdGmcVKRFOTFa9NocEU4gzuzTvCbRv4BWSkyHdEp8F4Q
-dHMW7ffK3rQ0r4UwQ8YBmgrXGolcObOcVadSeB9Y9dC7HA8VmOEZ1AwUSCfb
-4qjUoUbVCAYifjxOyir9BOjaBFsAAtx0OEFAYK9rn7GFchKgVHoZOBF8uocE
-b5A8dMLXE48PxzqzT4Ebvdzf8Mo1QbU8xHhXySUAR+AKnIE7p6dFc+eu+XZh
-+JJzXi03yCAWJcnfNHDA7OAzdEfVYtH40UPH6fFxPPOtrlNKdB0pBcXwVzyt
-eOocD8ennGazVfJEigrEbVyk4gAKwpUKPQwtXTseQtzvjg8lELhM3YlPIK7U
-FFSEJ6H43bt2xRGdGiaj4dDYazAHoCbL+Km/jTDzj+jPtwpD4Pl+RpImCDD0
-ur41EAuHo0YuCjEGdXii/wOEQX6ycIgH+vRTX4vWOD2utschJ1KZEOCc9zav
-+DyNIZT6VyiooJdDn5ueNTz1bPI0/bF0Eys7Yvr7th0BfVC7TDHR4qcffBIk
-Xhy5rInSbUWSQIoXmlXhycSWhR4J0bjTc3Ax6ItLW6EVWr4oXwUOwCzsinCH
-TsAhpG+kcMeuogOTQVbLixi0LAiI04NpQTVOmpFazT9PXzOcX76HgGHoJI0/
-baGNM779wFC5QtDmuWfj/Athsr/jOQQrmOtkjzW80nhLOZ2cWFEdeeKPPDw0
-GvzuXERTGmgZWJMP1awBB9m4dgNCngxRzPPOjXN65UNVriTRnEp7YXfSpOX+
-2ugqhl2wxbPkdFMFVDNl/up6fvOXtnN2/d9Fj1rmYh1/IGD8kF+nhg8RaxGS
-iHyJWQiZZJaw+STon+5fd0qUqd2kuDr9oRIvua9xHPAVuRHOPEzjJxl4O9cP
-TugOHgzMjqMJdRR73NG0fwJ1NexEEeR6+/LHLQEHIbHDvU7K4uWXdkNIeP2j
-CrqRoS1JRGnnoaZ/Htc6Y4M+RCqKqK6HnzNoXMibEJ4IXShV78gEM1EBWAM/
-Lm4mTAUcfYQ6nP1cEiOwioU8SJ8kV2PBAtPBsuKn8nrRKBswyVb+N/8dXKBN
-61H2ST5IxS0IdorSxo1bGrb8tx5EYMSRzLbjTaODwjdT5leECIZulObG7nVd
-a+u+eILfTRrVIjRoK+DGFbY+mfxZSLM5MrHxhMfoDeRE1Fl+dKQ+1jYIQ6M/
-95xOHmF5YuXychjDdOghIVboURJT714zgpcD7y9J48TU01j/bzxApLZT/sFy
-EZ34MQ9JQY+S8ZkfbRjm7v7bx5Et1glYNG8TwbznQ9TLl230EdtSU28QXhCj
-4wENw/oyKOMc/y4eA3RF7pNw6NXqpRRMduxFqycBQ7d27M28EUH/6YckERpm
-zLAz+4xOu233EI8o4hyIXBBFpiimhA/HWicrtGPycFW71LVLHNBwR9jH60qt
-yBgdxWnR0E+B+ehn+1HYMlQOsiLdf+viXNXYYrvIyQKLZW2k4VbaC7APh33q
-/V9VLCKjxmN0d3K2Uuo1w99KPm9huGb2POr4b7Xtf+5gDiZuoREyCEY6QWSf
-FExSYR1X9xWIiT8mDhntFliiUz5+4UcmrKz0qR947kp7LGiW8lTOBNyVw3j9
-tb3MubFhw9aSX/rV8SzDWqD48W72/KEpYCjVnRRYUdHsAWN/o6M6LD6q3MSn
-iC1HsLHPnv9JQn5x9ECm43oF5vl7D5DRJLORa+4DYdHtziRVtlXsY6huBgIz
-oaHJSoOFY684dv3vHijYKyoGOJv33sTvpMx8qEcXHR5gN6CLKhscq//hhyED
-HrTASb/asVNoIC3w7rti0/EoMdct26zggJSx9YtWFlgwcGYCmbrF2FHoL/2E
-uPed3WOfZCOqsgQC1OEgC4HD4bRpz15jiYDfGuzC+bFHv5sCwrf982Q/K6cD
-W5iGIb9K8D9MOs6vO7s6C+TJkIrAp5/6RzG5eRTHkZMgBZYgnJHAhwHvFjrm
-hb7ChzIH3u421ZsyNexRTEqogzbIUAZaJd4m/ICbNm3zGnMVu5cHrZdnyd/j
-TrM0A/q7/nmqGeD5MBjiVXDPX3gQwS/mE6TmtPJQnOVOp4odjg44WWuuAWjE
-PVpgYUMDPwobRIABnDjD18fxQ64BNVE/8qfFYGscw+ZvEscHasFWpx3+zC+P
-BJuxZmw1M72MO1a+nwLB9xIkRVoCJIV6iK/r3xI7hoBgLHcKFSWhR4IPGvpd
-KLWAF5QEOtbOXZavUmKvn/6QQAf7bkfmlUG/9hOi+DLhyhWbveFR3ciXySBr
-ChZBh8qUHNqO8sujVY5sIvgSHCHNJ6bsairUIHVODNnyKCFHJ9BBzrKvv5Oj
-XPl8Y8cu9QZJqYlohCJ8a83cZQXe7C57AFMDTwoTTuowxCezWCUcNhUh9iM8
-OtbMXmpWB8FEYudkQuIVww3pxLDS1Ej1o0EhI7LbGDv/nAJBjKKq1ggG+uSw
-YIKSAe0sfTFKbKfB975qwzkiktOJNBUwgq4tWmJmMILG5mipwBKP0/wojrQs
-9QgV2hl4x/oJn35qhOmvfDrSY4Qr2nFJsfPwwIXurKB0kZ3sNvJwv0Lon5/R
-EzhatCN2OkWaM1u5zvQ2IAfK9HI3A54q6VWYdXAX6Gda9+FyiUgjgnEd44ch
-TR6noxmz7QeYpVVg9cWpflYMJxaAReD4oc/rsgI5lbXGFFDNnFkUcgM8W9ev
-59SQuHVYYtfxSpnnz0FH24QtazcengKBXgGlXBUBD+AVhnaQHOEBRIaDXRRu
-p3rK20Ftm9sT+/QLMTAHoFgiHk2c3acXhpaTE7yQQhKGohk3Q0klQpTcf5/5
-6736U9WMM3gdDOPJ6ztG9R3PnzF9lQ4DzjpYKwvRGlfNXHxkCgSHe2xjptHR
-nnUDBc0NUHtQd1QZAOsk55MhUU5w3wbHRothWN326ZcelxQ/o+KDajd9vsoW
-+6W+n8usb6fZMBfWOjTn8xxN92z99Ej7pNRIXEpcVwnsrevdF9125nPRxg1b
-vyticgimBzeVA4AE8uDfKO3/kgLXkQkixM3JUWZopgD5BEi+56eGhXL/KCcJ
-2jZZvWOnbC1KX5xSaZ9+5VcHd0AewB3ki6gfcJBh153kB8ChiZoNehiI7CMZ
-E3BUfM9vdprsvetxPHTB8ClR50aP2TpeOPUBqzck/+UfPB9irUiVDx/rasyP
-5yAHhK5TItJi+iGf2ak8HCouZqoEUO47KAR7BTtKYVl4GFRl6HJrZysQXlxT
-JEsE341SUGVrcc4BK3ZltbDlnlzYUavrh8KXzqrMDeTOCKiXTerEtrEYJ8aD
-nxPMdX2if9TqxHtZWq2mbgz4JsEFmAV5uiTDx1Hrb9jzgEtiOVWPKJJowCwX
-jCL3YFPIe0fUP0sBVfIaSURXKWd/+amrmuikPJmz6gwfMyR27fwqnr2meaV5
-Dd8jj2Bj4KFmZmwK9tIdW6m0eDbavjTWPh3rEYTBbX4vb5pQ3lBggUxtPxSx
-WRw6DMW/uZzG55oHzXHChGWeicQZ3Fh7Deu9EL3bup9VFTp8VfZoB4WsH30A
-nsKNHKX+N1zw+GSQkIsdhbGtaUlbUsZpYEzXLbbCe/lKNA9sE7cXCjZOyNdO
-vSf8BgXSEx6PIDwHpVzKMK2YVNr0G78kzG1gIt6EXwunj9OW6haG0BP9aIZQ
-L9DR6Wf1HYOWI4/SMF8St2Txeq/OHGpAoV/h016+fKMdVSwRzgE1jrAfjhad
-t2DutFYGYH7jGfQEtzFpeaLxif2mKVfgAkZJuB9bkhOOgc6QMESYJseBGwuo
-4pPkV4Hz8OELPAOraoFIwAHXMCLGdPIpX33MXj/9PsH6YGvcaqPoIF3c3c7o
-vZCESzbbMV564c8lkADytmzZkVb9oasZxnsf6qxZq727uapdfAL9sgjUf+6C
-cgtPgzRjEb/ziwDF07p/FA4mi+AmD2xIj5foxefH4PVNbE0pVb5mEKJgOTyk
-FXpoEWoQgafzeL8IXBGkVKJVQ8GcFqfAF1gJc5xfhFM/zbThHLAI/EWEeNkJ
-fyCivzz0Pp57+ySXjEqB2rcbl1qqohVQrYi5QaL5iX5OPAJcI2CqEGrw9a1N
-8NEao8DKkGP9kJwIHH8IIuPoXBbllDe4my+UtDp8BSvEbIkhI5fdKfVUkr4M
-4p2KEdX2sln7LxWHzUAMINMdDfymsJXEEMXeC+wxzjsWOyOjGaGCkm2ATang
-7kUXdglJm1Lw0DSoIcKyd5SWhk8tijLn66+N71I4yS8K5zRmKjydqWmxBIUR
-I3ULLrAk4hi/KDRZuAyUpmg1i+L8w/FJo1SoHweech3lbtqrNddvMxbVpHEP
-klLtU30/PZ4B2PSwR7uEhAQEFzglE4MeZr8sbGWxbVbTtCf8psgQVoMKI5UC
-Xku+9NYNX/iyfosJK4Mw+BZXfxGdf+6bZm07BpdWOaTFoWU/2yYOIMl8Y3FE
-+Ul9cKQYKyWl5shFm8bodurevxW2vNioOdj0aJRINCtEr5aH/kLIHCpFOYFd
-eLeNdchSrcuxHkg8s+r0tX791rSzoRs+pCpjU8r7h5UDh8An7xi3dD5ICaGE
-XMQzBxQ/zbNQ++VHnpdy2PDF4eLGih4YF4tofDaRGDUhAkoGcaArgKXKG/Le
-FIahlwNeAsxDJ+PTKqS0ys8+2xSXJg2e613fcYgPEYUkxMqmtb90TMgVdkBI
-j8sfWK6CxPkMlH/yTNJnkdlSkP2oGAScnRKaMw+xBXQF4IAfOApT1gs9TQB7
-3botXp0qtfx8uA39Ojdv3n5sxqqnTV0RQujn+VWTjU7ZGwFTtEX6dcfQVAum
-FEIb+p47eILJPxxxPyyMomVRkddLYASqxRhm2yErelM6S7GyxwOkRb4SvJAj
-RCTOkZfKJchOIFcLsXbcXnhg9zdt2pbGKhV3gp9RdD937hpkOzQf8gbVQ4GK
-2Is8nQIwhg0tYND/2SEnbip7NKF5QKcUILOxSCDMWTp1FJjeVN2zTIQbKUmw
-TdDEQUdvJJkND4ebvUTTI/hQgvANYr7xPOoshfBX+lUly29+6xFGAwW4/TVX
-9yC1+tcp4CjwT2dJaunJZCDoQoC+ig/Q000b4fCC07WmTFlhe6IovJRIqncu
-88cAbZtOXmAJhHIMUOCdBepNlxpmuvhrE80YRkrAJFCX8A3u3tPzqmzMHmy/
-EOYEkxAcmhXMCm2cE44pCOY4gZoavY4Nhb0ieZEsYJT3oQOmVqtM3JHUK/Pp
-dx6rY8cutbTqxle9QzQwrbov3uTvWC1/m9ajQnYSUogh6dvQs8d02yCoGjW0
-Y4eJ9iy/Q+XKpqarF885rCsjlQTrs86I45bX+GNHVAySBInccIAJTmkeWSJu
-9fHiv2HsB0cvlikespFP9zAtHaOKAwD+iVJjSu5heif4ibkioSTOvvTorGkW
-NgQLOpEVKJ64QLCjcGjB/t3B1g2ltLxQ2e9/eYyO8w2GIDLH+MrWFKoZJugH
-CHYgbXr9UV1KTmcNjwqsv6Hvz7e8iT+c9po9S7UZVWcOixKj/Hz1ld0T8r+G
-uZhwYiwePcNQwqnE5UQ7KxgYLQer2sJTyfIEDyW9VfgVQYIHDvUBAw/5do+f
-nlrm57yq8XuPCCwX3BNkAC5atD7N/lReHWEesp1ZHGoq0Xqn/HzLQ0BSE4wO
-lCofE0uZs6scWZKS724eB1eb6+w6053gDRoyTivUK7oZJohh/9esFnR5TVpl
-xX0eA3A9da5Q7g4BIzRFKoYdt/tFyutaIpHHPr1n2FZSQUSEy0mabyd+BufJ
-ElQnmKWqJmO595fN6g7EitSMy26y0L1kSZy++96QeZ6Dl5qedukl3Qx/Dlne
-oMl5nRnRb3XucS4jvP8pgWfONpl4KLZ0EnQ8wLvec+LDD+TH8/4rMM0zdzpO
-YRkg5ZPJn/lMvdiaA1n4BZyAjk2TasnXc/rmDH53boiecSKQ87xKYh49Wnz/
-KlOkFFnOQOT+rg0tqHQ0i1zJhJWiKO8ufBVvrXqdovf8q1+9KSMOf3yvTktO
-nB3uX8V4QfrpVZKIlQbNb3zvJGF5ULu/6ggLKjPMQq1SfSmaquPxwzmVNwtW
-CdqP9jyFIWCjyf5cR/r3sGcxFzjjFElQeiaXlCqoFy78/H8XXq3Id05CKu/v
-EsdiKiBTSYP0YLf99qme32I4DwwN7o7yC9koaSJx4mw4epsp3cadPvNKWn/Z
-v42wHEs5XZOe4yLEwv9kpWLm3OlYJLO/+Z1xf0mFl2nzBfbABiKXe2iO8L/t
-1QDPxlTYiNwusKU6KHwTdfw8Sdd1ObC4P0sMM+dOxyLZbOrZdorHBvWY6Odg
-iswW2HgsPePeFqSxYx76Hokl/qyGVBs6xUrHX7J4vQIZkLec5+VA5P4sC8yc
-Oxfqe/3qICEQhg52WuLgku/L9xjGlBr/IEGOUveaNTUxKm6WM74yuubMXuOV
-9g60LFfJAjhu9diH+ZCa5qcR5MqZ79tnps//qWKNBtTohwoNZ8L7BMaqVpqu
-tmReucI4TbuUTxQhFRiqGTFioYxtAsOMQruDB4sDXmoFADbwNMpWUL6Ktqwa
-Yfr+Y0GrqwJbQ0XmxRfFGrUzU/C4pbFtRQ5N57yht+1mv76zFJ39fN2XAX1F
-LkIyfN7ctT57N17EoEFzTN7zG3UvvtwwHBGsDdgd1pkWOm3qirSuE4ocsnnc
-dsaae7wzTWF75RCOGbO42EVQx6FGpLE7+rvGLah9QE/E16nav+fajLIdwjOE
-AxMpxrMUJhB1JTRI6jrtSIDUMrIfHsri1AIxBwalaoM0+DXvvNV1ig/HhXzA
-+fPXFbs6Ot46KOxTQz8b9x6wRURhnXFX3ZdL4ZDBkY0G6ER1WjGSIm2smfa9
-PgFOCSs4zviKTPwi4QVbF10Y946O6/1qWAkVGCZH46PhCw3LVAHDzykdoZ9F
-WiXmrxLQqsdqxw6TlJhEcwS3fPtUJLQUjLu9tk9pdyv/OgGBbA+Hr+MSi3Xn
-pCIQcMwc5ZQJwX8kIGA6KMwxAWXzUdyqbLB8ENgvmhengLNGy5xX0S9MADrG
-wnwcL1OeBezLbYl9uj8MnhHIkW8OZqas97RL6xWP0n1McG5niCvhlQPZru3Y
-YjAuCNR/g7h5GgSKDVGUSMzPB26Vk60waM+e00v+XBwE9JJgCCdOUyFQVGbV
-qs0mvok+rlyxWXlBc+asiYOUHy0sFgLFwtwMqRAozEGePeuna67bEaUejPSF
-zgQQi4QAkaJc7jQIFBLAK81zNG5yclQ5HKH79Lovi4XAaS8hLyINAjFxx89t
-qjdenxhSSMjfRYFAshc5PYdKOcpp00tCwvg49GQ0KaeR7Fgx2SKnxyJRrkHZ
-05eaV0b3ojlqUKUbjkIxziIhQFNXQkAaBMd7CNas2WKnAPntzqTyYMnrFOMs
-EIK7/RCqwMFHfWvKc/Jb0zgMxkPzAbfjylEGJS96FlokBEpXo+tTGgRKKFMa
-PZAqk1SctPvbU0seyjO9/aJJVaJLrWzapFLx6Y8GkbvlhzYRYp5Oc4z5bz6+
-r0nVt5J7ssqetNT2hJ0m8OLsP1VWiGU6tTvvYsuAgBACB4mAdRoEMhfj3W5v
-xKXpxS9JZityetK1nNVin9Kml9kvdoNar8zdJLMscnpuZnTKYZ7pS800uufu
-QUbcS5duUOlTklkWCQFORhUepEFQ10OAgCVREiPVaT2qRYNfOkZUEQgwV1o/
-M7JMCNQDgggnW9DtrSmhVNb4pQ+uFjj9XX4IuiMxLIn0t6U857OizU2H2oOX
-VhnxMEu1oChy+sWL19v0xCTKnr7UbCIidNhADv9H+tfFLCns/0txEKhMHN9N
-GgRyLdN12zhb92mhkh23hdohFDm9MlLBa9r0ihiQWyj8H+G/U6sweGaR0+se
-NzysZU8fyzvyQui1Euq19vTFgoEWCQF+Wney7FMaBMrNFK+GUjQ9kSt4AuGB
-jOklMomZJf4nCOAsqr0uG4KYC+HywPHkCE+tamg0Lx5gEjcpfZQhQFooQwIt
-9h3ME5HHXUzN/EAkmKhvVhocisuRDwjjpfOFgMARpuByXkwcbCKDX0lAwU+i
-pjCIGFgcqiRKLuEuD4qxP7dZZYKn+KtTn2w8/DcqqV6T6ETx13x0ckjyJ7tt
-Ai8ItjmnX7ky6D6gHscCXhO3Ozf62dThxRF3ye1lQhpfK81mkhjhXg89wEfv
-sYTyApv7UxxtqWmGIoyF3qFkY6lNFh5CDGYcJY6l6V5t9blyX6cCrFRedc4g
-IitoVX9KWn+B0Fb30CLc6JWNBg8+mAKIicrRQRpCdQqKbg50nDKuahm/LAPa
-+LzQaQBLcePGreo9QR6O/BMFAnywB5iRsQJRS/Cm4TcAImQp/UhxIbotuNLP
-qMCuEzapAPs6T0s6IKr4lDtIyYsBnZmXD9r9nyRTdGP32MlVw5yh2NC0b1K/
-W9gVkh/h51heuBWDdluqJUnDqHJeuLNKlw2oCzJnA4LldD6cH6MHUh5MgZ3Z
-D/WYxRELNyB8pMapsDFIFyUeJ7ESYXH0OjK2T1mY3bBhq5E7QT9hVpe30qSi
-HJj9e2utHhpi7dptXlu80IpqhI7AHy20qK+Sf/Huq+V6GjqVGycDh7YB6iRF
-qpf8URno3N/5L8X1Ro/5WzVTJpBSokuUbE4trWuVpI7/XsHlspFYai51fLAY
-VW6T1PsNDU/pq+XA44HRNLu8DcxjDWdPO14CGOjp4BLzDPXEKc/Kn0YBUL+Z
-NFT63hQhCIbBLTyipjiN5+8Lj9nNxw/z2EMTgxMqxIV8wLGFKuYwq15GKmUh
-rNw0BQNK9cVKAdPE6tU3lA1CnHFn5UMBgAMkm6a4huHqIrF82UYzKHBIQjQw
-RRga/S1EUKqPQXXMQt1s31SfOkShTnmcqKePFC5XDtAm3z/x2EM6k6SBqsrK
-IRJueKPAWNKWMgjl66VhTwSKBs3p57Y93b6mgmXsoXJg7++kK/fP/Cs4i2Hw
-rJpTS/h32tQVsljUt56EvCzEEVViCMJ3Qhxd1JHrNLgsB+L+Tjpn6wYpFDju
-odeVrngW0F6I3sjnoZZ88LE07J2dwJT6zfv2fHbZjLwaGdhLM7N8ArHZ0XBl
-bCDAIOBGqBwQ5RbD2j/91PgK5iwQ4fAslbiwQORSSC4rKAJE3WcDV8c4IZ/G
-QLyyux1mQJTnlJCBE8Vlgqhu/NL3SEzS7arskryuLQoD8ZeeNvYGkXIrd0Lq
-+hnIsFMiWNnQxdkcVLWgVLj/1qXEygd3/y4UwF8nAMSRRy88hsLgW7wnU42v
-lVSVBuDeBZyU4go6hzb7jtsyC4TuWA8d5iI+DiK+mJK4rJwpqqwpZZq90n58
-yR0pw0jxIjaII4KjpOuq4dbn+/hBgdCp9QX0QXUXkEHeNEfb04MghNKogMiC
-jug5q2j78tgA3dUJd2CB0KnHLcq90upQrUj5UQRZYon06TTQ1OGZIAtcmOek
-JqGH8R1l5Y8WBtrvPOJw4eAFw98E8sjc2rZtp9JouHlXvL9s6EoN/+AdJ6Yj
-BV9CGEqm6WWaD0D75fceYwQUMH/YDNieszNDS6ZkpnIaTOok7ia1yTt1nKSa
-RutbznfckPdImDUjRHmCB4gewoQdAQh3Nw5j5buQCOLsjTIBkv1GmgLuUvxf
-1T3iOFaENKEyxwAK3MUTPXSMglcDvQl04TJVY7ykn6dZmdCVWsogVifmjYNE
-dy9jlPI6gd6WhUGn4g14I2uEvrDDEArKVyGgKmafBp2ucVDYBwHgxbk1amZM
-+nM9VhhodTxoeLVxBKtuhCx2JbLobgyCKmmgybdBSAhllT7KpR6Z1rr2ul5m
-zjtWVyB0J/lREPr4VBHQTvVVggmJiuTzgceyASs1bz/sGnE1edJymdLKF+BQ
-tioMMBUGcK5JToMwaMkKJMr+IG9YtzCkQRfXfle3YAInB1BQkuDRgth9frww
-yJRsj37zkK/PpLs5ATVlhcDjFJxJgyy+BK2asVXsNvx6qm5hg7mcr0Cw1HQP
-NouzFoSheJBYrVwNcsksaazH9JI7U8a4JMFjcUsCktNInygMErXV4K4uAsaU
-QbptVO6G9BfCr2lAyOPMpSNkGvCpQFwo3EOaCLdPAoXTEZVG0d2n6nIE0yBY
-Vdhsin4QVEHmgnlH+cqawLJ09GCfipnNflGHVhR0DC7Af/21CcqLoHe1Ow1l
-zrEiDJQhgNTKH46CDsAcaDrEWtW+G+oCm+RsNq846nQ7E8MSd2JKCr5JjjnS
-Tyk/xqCBc/bFlGd5TGJpIcQQlY7MjvCzKacQw2ofzKb+5NwAw7B+NoWzFcpD
-xu+D2c5On00hY1LDG/m7s/bBbOekz6aLhJAFToHaV7M13Gs2bDxHJgqK4omG
-XTk1UmH+isymWzvI6odKkNzuHChGmNQ298Fs0rxVNOkUrBCOVAQY59Q+mEoq
-K1fAMixev+8nvsMlw4HfZ1PFUWEqtn3ajmJXSGKnxNunfTCblEu4F20T2LWB
-A2bLlQ4Q8j7cXcRs9suFfg7E9p3NBigbXRcFKUzOZelpc5SLC0ul2ivzXJ5Z
-NA6sWjhkMetIVZG+1h5M/hp6UGCUYaXeU/HZLvazUXKFmo4dt2zZRn/ZRqgN
-ps/4PpitkZ+NlofqnOVMD3kq8COgmmBx31vx2aQ7YdiDRUJiTiOQbY8XTRVG
-+2C2S/1sdEZBYaQ8ym3WN/xsaMbYkJzkfTDbZX62qVNW2Now/Fat2ixTl2QW
-9Ru7r7DZ9n8WRW4vkdhyqRJ17NgxatCggQVomjRpYkHVtIDM5R4z1OGhxIN0
-p7z7Ii2z34n7U8lUJGb2XzZEbtsPBcJmzJhhWNm9e7fM4xzwr/AYIUOLBDJ6
-TDgCkZFPzgm2P72Q03qilAMj+yOLQQG6WbNmRQItbfVXevohTxQjEO5N1gKp
-NLLYcX8QQIEdTJu2skAs7O/kg9Kcn9u0aVPVZx01btw4wJpWDHuV/T3YmD+9
-zOD0EAj2LwKV9C5sJfxW/MbVemklveXAzf4KhNfI+Xnbtm1Rw4YNoy1bthgp
-iXbsKFgsOkZJdVs6mfFQBChRUBJH25IlG9IqzJaHQaofgGu39U6aNClq3rz5
-19e+11KaeLpCfcJpjxbs9JGHitv7AyOgr7PSsmVL2InWn7b8tKs40i4s2dfP
-HQAx/MoeS1BOo0aNCKAe4FjaH7F6UeySJUui+vXrl3mO0u6sS7u6rbzP/V97
-90CH7wDIfpAa1Lt370w16H8Lyv+fFDNJ0WxFI4Rko6qYefHn8PJ+UXLQfwMR
-m8xc\
-\>"]]
+ 3.522546042552423*^9}, {3.522546198674039*^9, 3.522546306798113*^9}, {
+ 3.522584868771111*^9, 3.522584920864765*^9}, 3.52258517176374*^9,
+ 3.522585219976531*^9, 3.522585467542461*^9, 3.522585647642462*^9,
+ 3.522585983049748*^9, 3.522586856686763*^9, {3.522586888101558*^9,
+ 3.522586913683322*^9}, 3.522587052105068*^9}]
}, Open ]],
Cell[CellGroupData[{
@@ -2417,11 +2212,12 @@ Ihleu4tW6rPWB2wzUJvqyh3B//s9+P/3/wBZ5dLn
3.522543384500983*^9, 3.522543455525264*^9, 3.522543514229852*^9,
3.522543626701997*^9, 3.522543667475726*^9, 3.522543726018032*^9,
3.522544871173848*^9, 3.522545966092067*^9, 3.522546271481462*^9,
- 3.522546301931841*^9}]
+ 3.522546301931841*^9, {3.522584878870503*^9, 3.522584903692422*^9},
+ 3.522585659249561*^9, 3.522586902215405*^9, 3.522587056439242*^9}]
}, Open ]]
}, Open ]]
},
-WindowSize->{960, 1029},
+WindowSize->{984, 1031},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
ShowSelection->True,
Magnification->1.5,
@@ -2440,92 +2236,134 @@ CellTagsIndex->{}
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
-Cell[567, 22, 32, 0, 109, "Section"],
-Cell[602, 24, 66, 1, 63, "MathCaption",
+Cell[567, 22, 127, 2, 110, "Section",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[697, 26, 161, 3, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->836781195],
-Cell[671, 27, 151, 3, 43, "Input",
+Cell[861, 31, 257, 6, 43, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellID->2058623809],
-Cell[825, 32, 1762, 59, 121, "Text",
+Cell[1121, 39, 1838, 60, 125, "Text",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->525777075],
-Cell[2590, 93, 68, 1, 63, "MathCaption",
+Cell[2962, 101, 163, 3, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->429217524],
-Cell[2661, 96, 1155, 29, 179, "Input",
+Cell[3128, 106, 1261, 32, 179, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellID->433132487],
-Cell[3819, 127, 689, 25, 63, "MathCaption",
+Cell[4392, 140, 765, 26, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->133602844],
-Cell[CellGroupData[{
-Cell[4533, 156, 1586, 45, 125, "Input",
+Cell[5160, 168, 1689, 47, 125, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellID->534530029],
-Cell[6122, 203, 2005, 57, 124, "Output"]
-}, Open ]],
-Cell[8142, 263, 217, 5, 86, "MathCaption",
+Cell[6852, 217, 2264, 61, 126, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[9119, 280, 312, 7, 86, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->462076121],
-Cell[CellGroupData[{
-Cell[8384, 272, 528, 16, 98, "Input",
+Cell[9434, 289, 650, 19, 98, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellID->494599775],
-Cell[8915, 290, 2450, 67, 124, "Output"]
-}, Open ]],
-Cell[11380, 360, 76, 1, 63, "MathCaption",
+Cell[10087, 310, 2710, 71, 128, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[12800, 383, 171, 3, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->358620443],
-Cell[CellGroupData[{
-Cell[11481, 365, 464, 15, 71, "Input",
+Cell[12974, 388, 585, 18, 43, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellID->167259034],
-Cell[11948, 382, 1077, 18, 177, "Output"]
-}, Open ]],
-Cell[13040, 403, 102, 2, 63, "MathCaption",
+Cell[13562, 408, 1336, 22, 177, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[14901, 432, 197, 4, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->577766068],
-Cell[CellGroupData[{
-Cell[13167, 409, 2629, 57, 233, "Input"],
-Cell[15799, 468, 3242, 90, 172, "Output"]
-}, Open ]],
-Cell[19056, 561, 724, 27, 42, "Text"],
-Cell[CellGroupData[{
-Cell[19805, 592, 247, 5, 43, "Input"],
-Cell[20055, 599, 2272, 66, 106, "Output"]
-}, Open ]],
-Cell[22342, 668, 384, 12, 64, "MathCaption",
+Cell[15101, 438, 2735, 60, 233, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True],
+Cell[17839, 500, 3505, 94, 172, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[21347, 596, 800, 28, 43, "Text",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[22150, 626, 353, 8, 43, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True],
+Cell[22506, 636, 2532, 70, 106, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[25041, 708, 478, 14, 64, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
CellID->610306692],
-Cell[CellGroupData[{
-Cell[22751, 684, 272, 7, 71, "Input",
+Cell[25522, 724, 394, 10, 71, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ InitializationCell->True,
CellID->645617687],
-Cell[23026, 693, 1053, 27, 120, "Output"]
-}, Open ]],
-Cell[24094, 723, 92, 1, 43, "Input"]
+Cell[25919, 736, 1311, 31, 120, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}, Open ]],
Cell[CellGroupData[{
-Cell[24223, 729, 53, 0, 109, "Section"],
-Cell[24279, 731, 98, 1, 63, "MathCaption",
+Cell[27267, 772, 148, 2, 110, "Section",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[27418, 776, 193, 3, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->690131918],
-Cell[CellGroupData[{
-Cell[24402, 736, 230, 5, 71, "Input",
+Cell[27614, 781, 352, 8, 71, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
CellID->718931880],
-Cell[24635, 743, 672, 14, 71, "Output"]
-}, Open ]],
-Cell[25322, 760, 390, 12, 64, "MathCaption",
+Cell[27969, 791, 930, 18, 71, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[28902, 811, 485, 14, 64, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->854192725],
-Cell[CellGroupData[{
-Cell[25737, 776, 459, 13, 98, "Input",
+Cell[29390, 827, 581, 16, 98, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
CellID->465762594],
-Cell[26199, 791, 1836, 51, 146, "Output"]
-}, Open ]],
-Cell[28050, 845, 76, 1, 63, "MathCaption",
+Cell[29974, 845, 2097, 55, 146, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[32074, 902, 171, 3, 63, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
CellID->314466782],
-Cell[CellGroupData[{
-Cell[28151, 850, 424, 13, 71, "Input",
+Cell[32248, 907, 546, 16, 71, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True,
CellID->298399236],
-Cell[28578, 865, 32297, 840, 580, "Output"]
+Cell[32797, 925, 32560, 844, 580, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[65360, 1771, 257, 5, 70, "Subsection",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[65620, 1778, 580, 13, 43, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True],
+Cell[66203, 1793, 1825, 37, 71, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ InitializationCell->True]
}, Open ]],
-Cell[60890, 1708, 38, 0, 42, "Text"],
-Cell[60931, 1710, 117, 2, 43, "Input"],
-Cell[61051, 1714, 2257, 48, 98, "Input"],
Cell[CellGroupData[{
-Cell[63333, 1766, 1777, 45, 125, "Input"],
-Cell[65113, 1813, 28311, 470, 339, 4676, 83, "CachedBoxData", "BoxData", \
-"Output"]
+Cell[68065, 1835, 149, 2, 70, "Subsection"],
+Cell[68217, 1839, 1288, 23, 43, "Input",
+ InitializationCell->True],
+Cell[69508, 1864, 1493, 27, 43, "Input",
+ InitializationCell->True]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[71038, 1896, 221, 6, 110, "Section"],
+Cell[71262, 1904, 1217, 21, 43, "Input",
+ InitializationCell->True],
+Cell[CellGroupData[{
+Cell[72504, 1929, 1777, 45, 125, "Input"],
+Cell[74284, 1976, 6000, 102, 339, "Output"]
}, Open ]],
Cell[CellGroupData[{
-Cell[93461, 2288, 1347, 39, 125, "Input"],
-Cell[94811, 2329, 5076, 90, 336, "Output"]
+Cell[80321, 2083, 1347, 39, 125, "Input"],
+Cell[81671, 2124, 5192, 91, 336, "Output"]
}, Open ]]
}, Open ]]
}