summaryrefslogtreecommitdiff
path: root/xmds2/realistic_Rb/realistic_Rb.xmds
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2012-08-27 11:31:42 -0400
committerEugeniy Mikhailov <evgmik@gmail.com>2012-08-27 11:31:42 -0400
commitc0dce4fc35c1782104265c09ca3dcdc80251f97d (patch)
treea7fffe60983373879c17c4e8bee861d714ab55fd /xmds2/realistic_Rb/realistic_Rb.xmds
parent151e1b376afb088a31175947554e9c6822bb0257 (diff)
downloadNresonances-c0dce4fc35c1782104265c09ca3dcdc80251f97d.tar.gz
Nresonances-c0dce4fc35c1782104265c09ca3dcdc80251f97d.zip
revert deletion and merge of this file with wrong branch
Diffstat (limited to 'xmds2/realistic_Rb/realistic_Rb.xmds')
-rw-r--r--xmds2/realistic_Rb/realistic_Rb.xmds642
1 files changed, 642 insertions, 0 deletions
diff --git a/xmds2/realistic_Rb/realistic_Rb.xmds b/xmds2/realistic_Rb/realistic_Rb.xmds
new file mode 100644
index 0000000..598715f
--- /dev/null
+++ b/xmds2/realistic_Rb/realistic_Rb.xmds
@@ -0,0 +1,642 @@
+<?xml version="1.0"?>
+<simulation xmds-version="2">
+
+ <name>realistic_Rb</name>
+
+ <author>Eugeniy Mikhailov</author>
+ <description>
+ License GPL.
+
+ Solving simplified Rb atom model
+ with fields propagation along spatial axis Z
+ with Doppler broadening.
+
+
+ We assume four-wave mixing condition when w3-w4=w2-w1 i.e. fields E3 and E4 drive the same
+ resonance as fields E2 and E1.
+
+
+ * --------------- | F=1, 2P_3/2 >
+ * \ \
+ * \ E3_r \ -------- | F=2, 2P_+1/2 >
+ * \ E4_r \ / \
+ * \ \ / E2_l \
+ * \ / \ E1_l
+ * | F=2, 2S_1/2 > -------------- \
+ * \ \
+ * \ \
+ * ------------- | F=1, 2S_1/2 >
+ *
+
+
+ We are solving
+ dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i.
+ Note that E is actually a Rabi frequency of electromagnetic field not the EM field
+ in xmds terms it looks like
+ dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space
+
+ VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to
+ normalize it to something else look drho/dt equation.
+ No need to renormalizes eta as long as its express through
+ the upper level decay rate in the same units as Rabi frequency.
+ </description>
+
+ <features>
+ <globals>
+ <![CDATA[
+ // Some numerical constants
+ const double pi = M_PI;
+ // proportional to splitting ratios sqrt(6) , sqrt(3), sqrt(2)
+ const double rt6 = 2.449489742783178;
+ const double rt3 = 1.7320508075688772;
+ const double rt2 = 1.4142135623730951;
+
+
+ const double c=3.e8;
+ const double k_boltzmann= 1.3806505e-23; // Boltzmann knostant in [J/K]
+ const double lambda=794.7e-9; //wavelength in m
+ // Fields k-vector
+ const double Kvec = 2*M_PI/lambda;
+ // Simplified k-vectors
+ const double Kvec1 = Kvec, Kvec2=Kvec, Kvec3=Kvec;
+
+ const double Gamma_super=6*(2*M_PI*1e6); // characteristic decay rate of upper level used for eta calculations expressed in [1/s]
+ // eta will be calculated in the <arguments> section
+ double eta = 0; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)]
+ double eta1=0, eta2=0, eta3=0;
+
+ // --------- Atom and cell properties -------------------------
+ // range of Maxwell distribution atomic velocities
+ const double mass = (86.909180527 * 1.660538921e-27); // atom mass in [kg]
+ // above mass expression is written as (expression is isotopic_mass * atomic_mass_unit)
+
+ // Average sqrt(v^2) in Maxwell distribution for one dimension
+ // Maxwell related parameters will be calculated in <arguments> section
+ double v_thermal_averaged=0;
+ // Maxwell distribution velocities range to take in account in [m/s]
+ double V_maxwell_min = 0, V_maxwell_max = 0;
+
+ // repopulation rate (atoms flying in/out the laser beam) in [1/s]
+ const double gt=0.01 *(2*M_PI*1e6);
+
+ // Natural linewidth of j's level in [1/s]
+ const double g1 = 3.612847284945266e7;
+ const double g2 = 3.8117309832741246e7;
+
+ // levels energy
+ const double ha0 = 2.1471788680034824e10;
+ const double ha1 = 2.558764384495815e9;
+ const double ha2 = 5.323020344462938e8;
+ const double hb2 = 7.85178251911697e7;
+
+ // Larmor frequency
+ double WL=0;
+
+
+
+ complex E1ac, E2ac, E3ac, E4ac; // Complex conjugated Rabi frequencies
+
+ // density matrix elements which calculated via Hermitian property r_ij=conj(r_ji)
+ complex
+ r1301,
+ r1402,
+ r0903,
+ r1503,
+ r1004,
+ r1604,
+ r1105,
+ r0206,
+ r1406,
+ r0307,
+ r0907,
+ r1507,
+ r0408,
+ r1008,
+ r1608,
+ r1509,
+ r1610;
+
+
+ // inner use variables
+ double probability_v; // will be used as p(v) in Maxwell distribution
+
+ ]]>
+ </globals>
+ <validation kind="run-time"/> <!--allows to put ranges as variables-->
+ <benchmark />
+ <arguments>
+ <!-- Rabi frequency divided by 2 in [1/s] -->
+ <argument name="E1o" type="real" default_value="2*1.5*(2*M_PI*1e6)" />
+ <argument name="E2o" type="real" default_value="0.05*(2*M_PI*1e6)" />
+ <argument name="E3o" type="real" default_value="2*3.0*(2*M_PI*1e6)" />
+ <argument name="E4o" type="real" default_value=".01*(2*M_PI*1e6)" />
+ <!-- Fields detuning in [1/s] -->
+ <argument name="delta1" type="real" default_value="0.0" />
+ <argument name="delta2" type="real" default_value="0.0" />
+ <argument name="delta3" type="real" default_value="0.0" />
+ <!--Pulse duration/width [s] -->
+ <argument name="Pwidth" type="real" default_value="0.1e-6" />
+ <!-- Atom and cell properties -->
+ <!--Cell length [m] -->
+ <argument name="Lcell" type="real" default_value="1.5e-2" />
+ <!--Density of atoms [1/m^3] -->
+ <argument name="Ndens" type="real" default_value="1e15" />
+ <!--Atoms temperature [K] -->
+ <!--TODO: looks like Temperature > 10 K knocks solver,
+ I am guessing detunings are too large and thus it became a stiff equation-->
+ <!--! make sure it is not equal to zero!-->
+ <argument name="Temperature" type="real" default_value="5" />
+ <!-- This will be executed after arguments/parameters are parsed -->
+ <!-- Read the code Luke: took me a while of reading the xmds2 sources to find it -->
+ <![CDATA[
+ // Average sqrt(v^2) in Maxwell distribution for one dimension
+ if (Temperature == 0)
+ _LOG(_ERROR_LOG_LEVEL, "ERROR: Temperature should be >0 to provide range for Maxwell velocity distribution\n");
+ v_thermal_averaged=sqrt(k_boltzmann*Temperature/mass);
+ // Maxwell distribution velocities range to take in account in [m/s]
+ // there is almost zero probability for higher velocity p(4*v_av) = 3.3e-04 * p(0)
+ V_maxwell_min = -4*v_thermal_averaged; V_maxwell_max = -V_maxwell_min;
+
+ // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)]
+ eta = 3*lambda*lambda*Ndens*Gamma_super/8.0/M_PI;
+ // !FIXME over simplification: we should use relevant levels linewidths
+ eta1 = eta;
+ eta2 = eta;
+ eta3 = eta;
+ ]]>
+ </arguments>
+ <bing />
+ <diagnostics />
+ <fftw plan="patient" threads="1" />
+ <!-- I don't see any speed up on 6 core CPU even if use threads="6" -->
+ <openmp />
+ <auto_vectorise />
+ <halt_non_finite />
+ </features>
+
+ <!-- 'z', 't', and 'v' to have dimensions [m], [s], and [m/s] -->
+ <geometry>
+ <propagation_dimension> z </propagation_dimension>
+ <transverse_dimensions>
+ <!-- IMPORTANT: looks like having a lot of points in time helps with convergence.
+ I suspect that time spacing should be small enough to catch
+ all pulse harmonics and more importantly 1/dt should be larger than
+ the largest detuning (including Doppler shifts).
+ Unfortunately calculation time is proportional to lattice size
+ so we cannot just blindly increase it.
+ Some rules of thumb:
+ * lattice="1000" domain="(-1e-6, 1e-6)"
+ was good enough detunings up to 155 MHz (980 rad/s) notice that 1/dt=500 MHz
+ * lattice="10000" domain="(-1e-6, 1e-6)"
+ works for Doppler averaging in up to 400K for Rb when lasers are zero detuned
+ -->
+ <dimension name="t" lattice="10000" domain="(-1e-6, 1e-6)" />
+ <dimension name="v" lattice="100" domain="(V_maxwell_min, V_maxwell_max)" />
+ </transverse_dimensions>
+ </geometry>
+
+ <!-- Rabi frequency -->
+ <vector name="E_field" type="complex" initial_space="t">
+ <components>E1 E2 E3 E4</components>
+ <initialisation>
+ <![CDATA[
+ // Initial (at starting 'z' position) electromagnetic field does not depend on detuning
+ // as well as time
+ E1=E1o;
+ E2=E2o*exp(-pow( ((t-0.0)/Pwidth),2) );
+ E3=E3o;
+ E4=E4o;
+ ]]>
+ </initialisation>
+ </vector>
+
+ <!--Maxwell distribution probability p(v)-->
+ <computed_vector name="Maxwell_distribution_probabilities" dimensions="v" type="real">
+ <components>probability_v</components>
+ <evaluation>
+ <![CDATA[
+ // TODO: move to the global space/function. This reevaluated many times since it called from dependency requests but it never changes during the script lifetime since 'v' is fixed.
+ probability_v=1.0/(v_thermal_averaged*sqrt(2*M_PI)) * exp( - mod2(v/v_thermal_averaged)/2.0 );
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+ <!--Maxwell distribution norm sum(p(v))
+ Needed since we sum over the grid instead of true integral,
+ we also have finite cut off velocities-->
+ <computed_vector name="Maxwell_distribution_probabilities_norm" dimensions="" type="real">
+ <components>probability_v_norm</components>
+ <evaluation>
+ <dependencies basis="v">Maxwell_distribution_probabilities</dependencies>
+ <![CDATA[
+ // TODO: move to the global space/function. This reevaluated many times since it called from dependency requests but it never changes during the script lifetime since 'v' is fixed.
+ probability_v_norm=probability_v;
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+
+ <!-- Averaged across Maxwell distribution fields amplitudes -->
+ <computed_vector name="E_field_avgd" dimensions="t" type="complex">
+ <components>E1a E2a E3a E4a</components>
+ <evaluation>
+ <dependencies basis="v">E_field Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm</dependencies>
+ <![CDATA[
+ double prob_v_normalized=probability_v/probability_v_norm;
+ E1a=E1*prob_v_normalized;
+ E2a=E2*prob_v_normalized;
+ E3a=E3*prob_v_normalized;
+ E4a=E4*prob_v_normalized;
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+ <!-- Averaged across Maxwell distribution density matrix components -->
+ <computed_vector name="density_matrix_averaged" dimensions="t" type="complex">
+ <components>
+ r0101a
+ r0113a
+ r0202a
+ r0214a
+ r0303a
+ r0309a
+ r0315a
+ r0404a
+ r0410a
+ r0416a
+ r0505a
+ r0511a
+ r0602a
+ r0606a
+ r0614a
+ r0703a
+ r0707a
+ r0709a
+ r0715a
+ r0804a
+ r0808a
+ r0810a
+ r0816a
+ r0909a
+ r0915a
+ r1010a
+ r1016a
+ r1111a
+ r1313a
+ r1414a
+ r1515a
+ r1616a
+ </components>
+ <evaluation>
+ <dependencies basis="v">density_matrix Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm</dependencies>
+ <![CDATA[
+ double prob_v_normalized=probability_v/probability_v_norm;
+
+ r0101a = r0101*prob_v_normalized;
+ r0113a = r0113*prob_v_normalized;
+ r0202a = r0202*prob_v_normalized;
+ r0214a = r0214*prob_v_normalized;
+ r0303a = r0303*prob_v_normalized;
+ r0309a = r0309*prob_v_normalized;
+ r0315a = r0315*prob_v_normalized;
+ r0404a = r0404*prob_v_normalized;
+ r0410a = r0410*prob_v_normalized;
+ r0416a = r0416*prob_v_normalized;
+ r0505a = r0505*prob_v_normalized;
+ r0511a = r0511*prob_v_normalized;
+ r0602a = r0602*prob_v_normalized;
+ r0606a = r0606*prob_v_normalized;
+ r0614a = r0614*prob_v_normalized;
+ r0703a = r0703*prob_v_normalized;
+ r0707a = r0707*prob_v_normalized;
+ r0709a = r0709*prob_v_normalized;
+ r0715a = r0715*prob_v_normalized;
+ r0804a = r0804*prob_v_normalized;
+ r0808a = r0808*prob_v_normalized;
+ r0810a = r0810*prob_v_normalized;
+ r0816a = r0816*prob_v_normalized;
+ r0909a = r0909*prob_v_normalized;
+ r0915a = r0915*prob_v_normalized;
+ r1010a = r1010*prob_v_normalized;
+ r1016a = r1016*prob_v_normalized;
+ r1111a = r1111*prob_v_normalized;
+ r1313a = r1313*prob_v_normalized;
+ r1414a = r1414*prob_v_normalized;
+ r1515a = r1515*prob_v_normalized;
+ r1616a = r1616*prob_v_normalized;
+ ]]>
+ </evaluation>
+ </computed_vector>
+
+
+ <vector name="density_matrix" type="complex" initial_space="t">
+ <components>
+ r0101
+ r0113
+ r0202
+ r0214
+ r0303
+ r0309
+ r0315
+ r0404
+ r0410
+ r0416
+ r0505
+ r0511
+ r0602
+ r0606
+ r0614
+ r0703
+ r0707
+ r0709
+ r0715
+ r0804
+ r0808
+ r0810
+ r0816
+ r0909
+ r0915
+ r1010
+ r1016
+ r1111
+ r1313
+ r1414
+ r1515
+ r1616
+ </components>
+ <initialisation>
+ <!--This sets boundary condition at all times and left border of z (i.e. z=0)-->
+ <![CDATA[
+ // Note:
+ // convergence is really slow if all populations concentrated at the bottom level |1>
+ // this is because if r11=1, everything else is 0 and then every small increment
+ // seems to be huge and adaptive solver makes smaller and smaller steps.
+ // As quick and dirty fix I reshuffle initial population
+ // so some of the population sits at the second ground level |2>
+ // TODO: Fix above. Make the equation of motion for r11
+ // and express other level, let's say r44
+ // through population normalization
+ r0101 = 0.125;
+ r0113 = 0;
+ r0202 = 0.125;
+ r0214 = 0;
+ r0303 = 0.125;
+ r0309 = 0;
+ r0315 = 0;
+ r0404 = 0.125;
+ r0410 = 0;
+ r0416 = 0;
+ r0505 = 0.125;
+ r0511 = 0;
+ r0602 = 0;
+ r0606 = 0.125;
+ r0614 = 0;
+ r0703 = 0;
+ r0707 = 0.125;
+ r0709 = 0;
+ r0715 = 0;
+ r0804 = 0;
+ r0808 = 0.125;
+ r0810 = 0;
+ r0816 = 0;
+ r0909 = 0;
+ r0915 = 0;
+ r1010 = 0;
+ r1016 = 0;
+ r1111 = 0;
+ r1313 = 0;
+ r1414 = 0;
+ r1515 = 0;
+ r1616 = 0;
+ ]]>
+ </initialisation>
+ </vector>
+
+ <sequence>
+ <!--For this set of conditions ARK45 is faster than ARK89-->
+ <!--ARK45 is good for small detuning when all frequency like term are close to zero-->
+ <integrate algorithm="ARK45" tolerance="1e-5" interval="Lcell">
+ <!--<integrate algorithm="SI" steps="200" interval="Lcell"> -->
+ <!--RK4 is good for large detunings when frequency like term are big, it does not try to be too smart about adaptive step which ARK seems to make too small-->
+ <!--When ARK45 works it about 3 times faster then RK4 with 1000 steps-->
+ <!--<integrate algorithm="RK4" steps="100" interval="1.5e-2">-->
+ <!--SIC algorithm seems to be much slower and needs fine 'z' step tuning and much finer time grid-->
+ <!--For example I had to quadruple the time grid from 1000 to 4000 when increased z distance from 0.02 to 0.04-->
+
+ <!--<integrate algorithm="SIC" interval="4e-2" steps="200">-->
+
+ <samples>100</samples>
+ <!--<samples>100 100</samples>-->
+ <!--Use the next line for debuging to see velocity dependence. Uncomment/switch on output groups 3,4-->
+ <!--<samples>100 100 100 100</samples>-->
+ <operators>
+ <operator kind="cross_propagation" algorithm="SI" propagation_dimension="t">
+ <integration_vectors>density_matrix</integration_vectors>
+ <dependencies>E_field_avgd</dependencies>
+ <boundary_condition kind="left">
+ <!--This set boundary condition at all 'z' and left border of 't' (i.e. min(t))-->
+ <!--
+ <![CDATA[
+ r11 = 0; r22 = 1; r33 = 0; r44 = 0;
+ r12 = 0; r13 = 0; r14 = 0;
+ r23 = 0; r24 = 0;
+ r34 = 0;
+ printf("z= %g, t= %g\n", z, t);
+ ]]>
+ -->
+ </boundary_condition>
+ <![CDATA[
+ E1ac = conj(E1a);
+ E2ac = conj(E2a);
+ E3ac = conj(E3a);
+ E4ac = conj(E4a);
+
+ // Density matrix is Hermitian so we use r_ij=conj(r_ji)
+
+ r1301 = conj(r0113);
+ r1402 = conj(r0214);
+ r0903 = conj(r0309);
+ r1503 = conj(r0315);
+ r1004 = conj(r0410);
+ r1604 = conj(r0416);
+ r1105 = conj(r0511);
+ r0206 = conj(r0602);
+ r1406 = conj(r0614);
+ r0307 = conj(r0703);
+ r0907 = conj(r0709);
+ r1507 = conj(r0715);
+ r0408 = conj(r0804);
+ r1008 = conj(r0810);
+ r1608 = conj(r0816);
+ r1509 = conj(r0915);
+ r1610 = conj(r1016);
+
+ // Equations of motions according to Simon's mathematica code
+ dr0101_dt = gt/8. - gt*r0101 + (g1*r0909)/2. + (g2*r1313)/6. - i*((r0113*E4a)/(4.*rt6) - (r1301*E4ac)/(4.*rt6));
+ dr0113_dt = (-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0113 + (r0101*E4ac)/(4.*rt6) - (r1313*E4ac)/(4.*rt6));
+ dr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + (g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4a)/8. - (r1402*E4ac)/8.);
+ dr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - i*((WL*r0214)/2. - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0214 - (r0206*E3ac)/(8.*rt3) + (r0202*E4ac)/8. - (r1414*E4ac)/8.);
+ dr0303_dt = gt/8. - gt*r0303 + (g1*r0909)/12. + (g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1515)/4. - i*((r0309*E1a)/(4.*rt6) + (r0315*E4a)/8. - (r0903*E1ac)/(4.*rt6) - (r1503*E4ac)/8.);
+ dr0309_dt = (-(gt*r0309) - (gt + g1)*r0309)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0309) + (r0303*E1ac)/(4.*rt6) - (r0909*E1ac)/(4.*rt6) - (r0307*E2ac)/(4.*rt6) - (r1509*E4ac)/8.);
+ dr0315_dt = (-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0315) - (r0915*E1ac)/(4.*rt6) - (r0307*E3ac)/8. + (r0303*E4ac)/8. - (r1515*E4ac)/8.);
+ dr0404_dt = gt/8. - gt*r0404 + (g1*r1010)/4. + (g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + (g2*r1616)/6. - i*((r0410*E1a)/(4.*rt2) + (r0416*E4a)/(4.*rt6) - (r1004*E1ac)/(4.*rt2) - (r1604*E4ac)/(4.*rt6));
+ dr0410_dt = (-(gt*r0410) - (gt + g1)*r0410)/2. - i*(-(WL*r0410)/2. + (delta1 + v*Kvec1)*r0410 + (r0404*E1ac)/(4.*rt2) - (r1010*E1ac)/(4.*rt2) - (r0408*E2ac)/(4.*rt6) - (r1610*E4ac)/(4.*rt6));
+ dr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - i*(-(WL*r0416)/2. - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0416 - (r1016*E1ac)/(4.*rt2) - (r0408*E3ac)/(4.*rt2) + (r0404*E4ac)/(4.*rt6) - (r1616*E4ac)/(4.*rt6));
+ dr0505_dt = gt/8. - gt*r0505 + (g1*r1111)/2. + (g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1a)/4. - (r1105*E1ac)/4.);
+ dr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - i*(-(WL*r0511) - (WL/6. - delta1 - v*Kvec1)*r0511 + (r0505*E1ac)/4. - (r1111*E1ac)/4.);
+ dr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0602 + (r0614*E4a)/8. + (r1402*E3ac)/(8.*rt3));
+ dr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + (g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3a)/(8.*rt3) + (r1406*E3ac)/(8.*rt3));
+ dr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - i*((-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0614 - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0614 - (r0606*E3ac)/(8.*rt3) + (r1414*E3ac)/(8.*rt3) + (r0602*E4ac)/8.);
+ dr0703_dt = -(gt*r0703) - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0703 + (r0709*E1a)/(4.*rt6) + (r0715*E4a)/8. + (r0903*E2ac)/(4.*rt6) + (r1503*E3ac)/8.);
+ dr0707_dt = gt/8. - gt*r0707 + (g1*r0909)/12. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1414)/3. + (g2*r1515)/4. - i*(-(r0709*E2a)/(4.*rt6) - (r0715*E3a)/8. + (r0907*E2ac)/(4.*rt6) + (r1507*E3ac)/8.);
+ dr0709_dt = (-(gt*r0709) - (gt + g1)*r0709)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0709) + (-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0709 + (r0703*E1ac)/(4.*rt6) - (r0707*E2ac)/(4.*rt6) + (r0909*E2ac)/(4.*rt6) + (r1509*E3ac)/8.);
+ dr0715_dt = (-(gt*r0715) - (gt + g2)*r0715)/2. - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0715 - ((-2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0715 + (r0915*E2ac)/(4.*rt6) - (r0707*E3ac)/8. + (r1515*E3ac)/8. + (r0703*E4ac)/8.);
+ dr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0804 + (r0810*E1a)/(4.*rt2) + (r0816*E4a)/(4.*rt6) + (r1004*E2ac)/(4.*rt6) + (r1604*E3ac)/(4.*rt2));
+ dr0808_dt = gt/8. - gt*r0808 + (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + (g2*r1616)/2. - i*(-(r0810*E2a)/(4.*rt6) - (r0816*E3a)/(4.*rt2) + (r1008*E2ac)/(4.*rt6) + (r1608*E3ac)/(4.*rt2));
+ dr0810_dt = (-(gt*r0810) - (gt + g1)*r0810)/2. - i*((delta1 + v*Kvec1)*r0810 + (WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0810 + (r0804*E1ac)/(4.*rt2) - (r0808*E2ac)/(4.*rt6) + (r1010*E2ac)/(4.*rt6) + (r1610*E3ac)/(4.*rt2));
+ dr0816_dt = (-(gt*r0816) - (gt + g2)*r0816)/2. - i*((WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0816 - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0816 + (r1016*E2ac)/(4.*rt6) - (r0808*E3ac)/(4.*rt2) + (r1616*E3ac)/(4.*rt2) + (r0804*E4ac)/(4.*rt6));
+ dr0909_dt = -((gt + g1)*r0909) - i*(-(r0309*E1a)/(4.*rt6) + (r0709*E2a)/(4.*rt6) + (r0903*E1ac)/(4.*rt6) - (r0907*E2ac)/(4.*rt6));
+ dr0915_dt = (-((gt + g1)*r0915) - (gt + g2)*r0915)/2. - i*((-WL/6. - delta1 - v*Kvec1)*r0915 - ((-2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0915 - (r0315*E1a)/(4.*rt6) + (r0715*E2a)/(4.*rt6) - (r0907*E3ac)/8. + (r0903*E4ac)/8.);
+ dr1010_dt = -((gt + g1)*r1010) - i*(-(r0410*E1a)/(4.*rt2) + (r0810*E2a)/(4.*rt6) + (r1004*E1ac)/(4.*rt2) - (r1008*E2ac)/(4.*rt6));
+ dr1016_dt = (-((gt + g1)*r1016) - (gt + g2)*r1016)/2. - i*(-((delta1 + v*Kvec1)*r1016) - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r1016 - (r0416*E1a)/(4.*rt2) + (r0816*E2a)/(4.*rt6) - (r1008*E3ac)/(4.*rt2) + (r1004*E4ac)/(4.*rt6));
+ dr1111_dt = -((gt + g1)*r1111) - i*(-(r0511*E1a)/4. + (r1105*E1ac)/4.);
+ dr1313_dt = -((gt + g2)*r1313) - i*(-(r0113*E4a)/(4.*rt6) + (r1301*E4ac)/(4.*rt6));
+ dr1414_dt = -((gt + g2)*r1414) - i*((r0614*E3a)/(8.*rt3) - (r0214*E4a)/8. - (r1406*E3ac)/(8.*rt3) + (r1402*E4ac)/8.);
+ dr1515_dt = -((gt + g2)*r1515) - i*((r0715*E3a)/8. - (r0315*E4a)/8. - (r1507*E3ac)/8. + (r1503*E4ac)/8.);
+ dr1616_dt = -((gt + g2)*r1616) - i*((r0816*E3a)/(4.*rt2) - (r0416*E4a)/(4.*rt6) - (r1608*E3ac)/(4.*rt2) + (r1604*E4ac)/(4.*rt6));
+ ]]>
+ </operator>
+ <!--
+ According to xmds2 docs operator kind="ip" should be faster
+ but our codes runs about 5% to 10% slower with it.
+ Maybe because we very close to the stiff condition so I use "ex" kind
+ <operator kind="ip" constant="yes">
+ -->
+ <operator kind="ex" constant="yes" type="imaginary">
+ <operator_names>Lt</operator_names>
+ <![CDATA[
+ Lt = -i/c*kt;
+ ]]>
+ </operator>
+ <integration_vectors>E_field</integration_vectors>
+ <dependencies>density_matrix</dependencies>
+ <![CDATA[
+ dE1_dz = 0.16666666666666666*eta1*(2.449489742783178*r0309 + 4.242640687119286*r0410 + 6.*r0511) - Lt[E1];
+ dE2_dz = -0.8164965809277261*eta1*(r0709 + r0810) - Lt[E2];
+ dE3_dz = -1.*eta2*(1.7320508075688772*r0614 + 3.*r0715 + 4.242640687119286*r0816) - Lt[E3];
+ dE4_dz = (4*eta2*(2.449489742783178*r0113 + 3*r0214 + 3*r0315 + 2.449489742783178*r0416))/3. - Lt[E4];
+ ]]>
+ </operators>
+ </integrate>
+ </sequence>
+
+
+
+ <!-- The output to generate -->
+ <output format="binary" filename="realistic_Rb.xsil">
+ <group>
+ <sampling basis="t(1000) " initial_sample="yes">
+ <dependencies>E_field_avgd</dependencies>
+ <moments>I1_out I2_out I3_out I4_out</moments>
+ <![CDATA[
+ I1_out = mod2(E1a);
+ I2_out = mod2(E2a);
+ I3_out = mod2(E3a);
+ I4_out = mod2(E4a);
+ ]]>
+ </sampling>
+ </group>
+
+ <!--
+ <group>
+ <sampling basis="t(100) v(10)" initial_sample="yes">
+ <dependencies>density_matrix_averaged</dependencies>
+ <moments>
+ r11_out r22_out r33_out r44_out
+ r12_re_out r12_im_out r13_re_out r13_im_out r14_re_out r14_im_out
+ r23_re_out r23_im_out r24_re_out r24_im_out
+ r34_re_out r34_im_out
+ </moments>
+ <![CDATA[
+ // populations output
+ r11_out = r11a.Re();
+ r22_out = r22a.Re();
+ r33_out = r33a.Re();
+ r44_out = r44a.Re();
+ // coherences output
+ r12_re_out = r12a.Re();
+ r12_im_out = r12a.Im();
+ r13_re_out = r13a.Re();
+ r13_im_out = r13a.Im();
+ r14_re_out = r14a.Re();
+ r14_im_out = r14a.Im();
+ r23_re_out = r23a.Re();
+ r23_im_out = r23a.Im();
+ r24_re_out = r24a.Re();
+ r24_im_out = r24a.Im();
+ r34_re_out = r34a.Re();
+ r34_im_out = r34a.Im();
+ ]]>
+ </sampling>
+ </group>
+ -->
+
+ <!-- use the following two groups only for debuging
+ otherwise they are quite useless and have to much information
+ in 3D space (z,t,v) -->
+ <!--
+ <group>
+ <sampling basis="t(100) v(10)" initial_sample="yes">
+ <dependencies>E_field</dependencies>
+ <moments>I1_out_v I2_out_v I3_out_v I4_out_v</moments>
+ <![CDATA[
+ // light field intensity distribution in velocity subgroups
+ I1_out_v = mod2(E1);
+ I2_out_v = mod2(E2);
+ I3_out_v = mod2(E3);
+ I4_out_v = mod2(E4);
+ ]]>
+ </sampling>
+ </group>
+
+ <group>
+ <sampling basis="t(100) v(10)" initial_sample="yes">
+ <dependencies>density_matrix</dependencies>
+ <moments>
+ r11_out_v r22_out_v r33_out_v r44_out_v
+ r12_re_out_v r12_im_out_v r13_re_out_v r13_im_out_v r14_re_out_v r14_im_out_v
+ r23_re_out_v r23_im_out_v r24_re_out_v r24_im_out_v
+ r34_re_out_v r34_im_out_v
+ </moments>
+ <![CDATA[
+ // density matrix distribution in velocity subgroups
+ // populations output
+ r11_out_v = r11.Re();
+ r22_out_v = r22.Re();
+ r33_out_v = r33.Re();
+ r44_out_v = r44.Re();
+ // coherences output
+ r12_re_out_v = r12.Re();
+ r12_im_out_v = r12.Im();
+ r13_re_out_v = r13.Re();
+ r13_im_out_v = r13.Im();
+ r14_re_out_v = r14.Re();
+ r14_im_out_v = r14.Im();
+ r23_re_out_v = r23.Re();
+ r23_im_out_v = r23.Im();
+ r24_re_out_v = r24.Re();
+ r24_im_out_v = r24.Im();
+ r34_re_out_v = r34.Re();
+ r34_im_out_v = r34.Im();
+ ]]>
+ </sampling>
+ </group>
+ -->
+
+ </output>
+
+</simulation>
+
+<!--
+vim: ts=2 sw=2 foldmethod=indent:
+-->