diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2012-08-27 11:31:42 -0400 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2012-08-27 11:31:42 -0400 |
commit | c0dce4fc35c1782104265c09ca3dcdc80251f97d (patch) | |
tree | a7fffe60983373879c17c4e8bee861d714ab55fd | |
parent | 151e1b376afb088a31175947554e9c6822bb0257 (diff) | |
download | Nresonances-c0dce4fc35c1782104265c09ca3dcdc80251f97d.tar.gz Nresonances-c0dce4fc35c1782104265c09ca3dcdc80251f97d.zip |
revert deletion and merge of this file with wrong branch
-rw-r--r-- | xmds2/realistic_Rb/realistic_Rb.xmds | 642 |
1 files changed, 642 insertions, 0 deletions
diff --git a/xmds2/realistic_Rb/realistic_Rb.xmds b/xmds2/realistic_Rb/realistic_Rb.xmds new file mode 100644 index 0000000..598715f --- /dev/null +++ b/xmds2/realistic_Rb/realistic_Rb.xmds @@ -0,0 +1,642 @@ +<?xml version="1.0"?> +<simulation xmds-version="2"> + + <name>realistic_Rb</name> + + <author>Eugeniy Mikhailov</author> + <description> + License GPL. + + Solving simplified Rb atom model + with fields propagation along spatial axis Z + with Doppler broadening. + + + We assume four-wave mixing condition when w3-w4=w2-w1 i.e. fields E3 and E4 drive the same + resonance as fields E2 and E1. + + + * --------------- | F=1, 2P_3/2 > + * \ \ + * \ E3_r \ -------- | F=2, 2P_+1/2 > + * \ E4_r \ / \ + * \ \ / E2_l \ + * \ / \ E1_l + * | F=2, 2S_1/2 > -------------- \ + * \ \ + * \ \ + * ------------- | F=1, 2S_1/2 > + * + + + We are solving + dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i. + Note that E is actually a Rabi frequency of electromagnetic field not the EM field + in xmds terms it looks like + dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space + + VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to + normalize it to something else look drho/dt equation. + No need to renormalizes eta as long as its express through + the upper level decay rate in the same units as Rabi frequency. + </description> + + <features> + <globals> + <![CDATA[ + // Some numerical constants + const double pi = M_PI; + // proportional to splitting ratios sqrt(6) , sqrt(3), sqrt(2) + const double rt6 = 2.449489742783178; + const double rt3 = 1.7320508075688772; + const double rt2 = 1.4142135623730951; + + + const double c=3.e8; + const double k_boltzmann= 1.3806505e-23; // Boltzmann knostant in [J/K] + const double lambda=794.7e-9; //wavelength in m + // Fields k-vector + const double Kvec = 2*M_PI/lambda; + // Simplified k-vectors + const double Kvec1 = Kvec, Kvec2=Kvec, Kvec3=Kvec; + + const double Gamma_super=6*(2*M_PI*1e6); // characteristic decay rate of upper level used for eta calculations expressed in [1/s] + // eta will be calculated in the <arguments> section + double eta = 0; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] + double eta1=0, eta2=0, eta3=0; + + // --------- Atom and cell properties ------------------------- + // range of Maxwell distribution atomic velocities + const double mass = (86.909180527 * 1.660538921e-27); // atom mass in [kg] + // above mass expression is written as (expression is isotopic_mass * atomic_mass_unit) + + // Average sqrt(v^2) in Maxwell distribution for one dimension + // Maxwell related parameters will be calculated in <arguments> section + double v_thermal_averaged=0; + // Maxwell distribution velocities range to take in account in [m/s] + double V_maxwell_min = 0, V_maxwell_max = 0; + + // repopulation rate (atoms flying in/out the laser beam) in [1/s] + const double gt=0.01 *(2*M_PI*1e6); + + // Natural linewidth of j's level in [1/s] + const double g1 = 3.612847284945266e7; + const double g2 = 3.8117309832741246e7; + + // levels energy + const double ha0 = 2.1471788680034824e10; + const double ha1 = 2.558764384495815e9; + const double ha2 = 5.323020344462938e8; + const double hb2 = 7.85178251911697e7; + + // Larmor frequency + double WL=0; + + + + complex E1ac, E2ac, E3ac, E4ac; // Complex conjugated Rabi frequencies + + // density matrix elements which calculated via Hermitian property r_ij=conj(r_ji) + complex + r1301, + r1402, + r0903, + r1503, + r1004, + r1604, + r1105, + r0206, + r1406, + r0307, + r0907, + r1507, + r0408, + r1008, + r1608, + r1509, + r1610; + + + // inner use variables + double probability_v; // will be used as p(v) in Maxwell distribution + + ]]> + </globals> + <validation kind="run-time"/> <!--allows to put ranges as variables--> + <benchmark /> + <arguments> + <!-- Rabi frequency divided by 2 in [1/s] --> + <argument name="E1o" type="real" default_value="2*1.5*(2*M_PI*1e6)" /> + <argument name="E2o" type="real" default_value="0.05*(2*M_PI*1e6)" /> + <argument name="E3o" type="real" default_value="2*3.0*(2*M_PI*1e6)" /> + <argument name="E4o" type="real" default_value=".01*(2*M_PI*1e6)" /> + <!-- Fields detuning in [1/s] --> + <argument name="delta1" type="real" default_value="0.0" /> + <argument name="delta2" type="real" default_value="0.0" /> + <argument name="delta3" type="real" default_value="0.0" /> + <!--Pulse duration/width [s] --> + <argument name="Pwidth" type="real" default_value="0.1e-6" /> + <!-- Atom and cell properties --> + <!--Cell length [m] --> + <argument name="Lcell" type="real" default_value="1.5e-2" /> + <!--Density of atoms [1/m^3] --> + <argument name="Ndens" type="real" default_value="1e15" /> + <!--Atoms temperature [K] --> + <!--TODO: looks like Temperature > 10 K knocks solver, + I am guessing detunings are too large and thus it became a stiff equation--> + <!--! make sure it is not equal to zero!--> + <argument name="Temperature" type="real" default_value="5" /> + <!-- This will be executed after arguments/parameters are parsed --> + <!-- Read the code Luke: took me a while of reading the xmds2 sources to find it --> + <![CDATA[ + // Average sqrt(v^2) in Maxwell distribution for one dimension + if (Temperature == 0) + _LOG(_ERROR_LOG_LEVEL, "ERROR: Temperature should be >0 to provide range for Maxwell velocity distribution\n"); + v_thermal_averaged=sqrt(k_boltzmann*Temperature/mass); + // Maxwell distribution velocities range to take in account in [m/s] + // there is almost zero probability for higher velocity p(4*v_av) = 3.3e-04 * p(0) + V_maxwell_min = -4*v_thermal_averaged; V_maxwell_max = -V_maxwell_min; + + // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] + eta = 3*lambda*lambda*Ndens*Gamma_super/8.0/M_PI; + // !FIXME over simplification: we should use relevant levels linewidths + eta1 = eta; + eta2 = eta; + eta3 = eta; + ]]> + </arguments> + <bing /> + <diagnostics /> + <fftw plan="patient" threads="1" /> + <!-- I don't see any speed up on 6 core CPU even if use threads="6" --> + <openmp /> + <auto_vectorise /> + <halt_non_finite /> + </features> + + <!-- 'z', 't', and 'v' to have dimensions [m], [s], and [m/s] --> + <geometry> + <propagation_dimension> z </propagation_dimension> + <transverse_dimensions> + <!-- IMPORTANT: looks like having a lot of points in time helps with convergence. + I suspect that time spacing should be small enough to catch + all pulse harmonics and more importantly 1/dt should be larger than + the largest detuning (including Doppler shifts). + Unfortunately calculation time is proportional to lattice size + so we cannot just blindly increase it. + Some rules of thumb: + * lattice="1000" domain="(-1e-6, 1e-6)" + was good enough detunings up to 155 MHz (980 rad/s) notice that 1/dt=500 MHz + * lattice="10000" domain="(-1e-6, 1e-6)" + works for Doppler averaging in up to 400K for Rb when lasers are zero detuned + --> + <dimension name="t" lattice="10000" domain="(-1e-6, 1e-6)" /> + <dimension name="v" lattice="100" domain="(V_maxwell_min, V_maxwell_max)" /> + </transverse_dimensions> + </geometry> + + <!-- Rabi frequency --> + <vector name="E_field" type="complex" initial_space="t"> + <components>E1 E2 E3 E4</components> + <initialisation> + <![CDATA[ + // Initial (at starting 'z' position) electromagnetic field does not depend on detuning + // as well as time + E1=E1o; + E2=E2o*exp(-pow( ((t-0.0)/Pwidth),2) ); + E3=E3o; + E4=E4o; + ]]> + </initialisation> + </vector> + + <!--Maxwell distribution probability p(v)--> + <computed_vector name="Maxwell_distribution_probabilities" dimensions="v" type="real"> + <components>probability_v</components> + <evaluation> + <![CDATA[ + // TODO: move to the global space/function. This reevaluated many times since it called from dependency requests but it never changes during the script lifetime since 'v' is fixed. + probability_v=1.0/(v_thermal_averaged*sqrt(2*M_PI)) * exp( - mod2(v/v_thermal_averaged)/2.0 ); + ]]> + </evaluation> + </computed_vector> + + <!--Maxwell distribution norm sum(p(v)) + Needed since we sum over the grid instead of true integral, + we also have finite cut off velocities--> + <computed_vector name="Maxwell_distribution_probabilities_norm" dimensions="" type="real"> + <components>probability_v_norm</components> + <evaluation> + <dependencies basis="v">Maxwell_distribution_probabilities</dependencies> + <![CDATA[ + // TODO: move to the global space/function. This reevaluated many times since it called from dependency requests but it never changes during the script lifetime since 'v' is fixed. + probability_v_norm=probability_v; + ]]> + </evaluation> + </computed_vector> + + + <!-- Averaged across Maxwell distribution fields amplitudes --> + <computed_vector name="E_field_avgd" dimensions="t" type="complex"> + <components>E1a E2a E3a E4a</components> + <evaluation> + <dependencies basis="v">E_field Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm</dependencies> + <![CDATA[ + double prob_v_normalized=probability_v/probability_v_norm; + E1a=E1*prob_v_normalized; + E2a=E2*prob_v_normalized; + E3a=E3*prob_v_normalized; + E4a=E4*prob_v_normalized; + ]]> + </evaluation> + </computed_vector> + + <!-- Averaged across Maxwell distribution density matrix components --> + <computed_vector name="density_matrix_averaged" dimensions="t" type="complex"> + <components> + r0101a + r0113a + r0202a + r0214a + r0303a + r0309a + r0315a + r0404a + r0410a + r0416a + r0505a + r0511a + r0602a + r0606a + r0614a + r0703a + r0707a + r0709a + r0715a + r0804a + r0808a + r0810a + r0816a + r0909a + r0915a + r1010a + r1016a + r1111a + r1313a + r1414a + r1515a + r1616a + </components> + <evaluation> + <dependencies basis="v">density_matrix Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm</dependencies> + <![CDATA[ + double prob_v_normalized=probability_v/probability_v_norm; + + r0101a = r0101*prob_v_normalized; + r0113a = r0113*prob_v_normalized; + r0202a = r0202*prob_v_normalized; + r0214a = r0214*prob_v_normalized; + r0303a = r0303*prob_v_normalized; + r0309a = r0309*prob_v_normalized; + r0315a = r0315*prob_v_normalized; + r0404a = r0404*prob_v_normalized; + r0410a = r0410*prob_v_normalized; + r0416a = r0416*prob_v_normalized; + r0505a = r0505*prob_v_normalized; + r0511a = r0511*prob_v_normalized; + r0602a = r0602*prob_v_normalized; + r0606a = r0606*prob_v_normalized; + r0614a = r0614*prob_v_normalized; + r0703a = r0703*prob_v_normalized; + r0707a = r0707*prob_v_normalized; + r0709a = r0709*prob_v_normalized; + r0715a = r0715*prob_v_normalized; + r0804a = r0804*prob_v_normalized; + r0808a = r0808*prob_v_normalized; + r0810a = r0810*prob_v_normalized; + r0816a = r0816*prob_v_normalized; + r0909a = r0909*prob_v_normalized; + r0915a = r0915*prob_v_normalized; + r1010a = r1010*prob_v_normalized; + r1016a = r1016*prob_v_normalized; + r1111a = r1111*prob_v_normalized; + r1313a = r1313*prob_v_normalized; + r1414a = r1414*prob_v_normalized; + r1515a = r1515*prob_v_normalized; + r1616a = r1616*prob_v_normalized; + ]]> + </evaluation> + </computed_vector> + + + <vector name="density_matrix" type="complex" initial_space="t"> + <components> + r0101 + r0113 + r0202 + r0214 + r0303 + r0309 + r0315 + r0404 + r0410 + r0416 + r0505 + r0511 + r0602 + r0606 + r0614 + r0703 + r0707 + r0709 + r0715 + r0804 + r0808 + r0810 + r0816 + r0909 + r0915 + r1010 + r1016 + r1111 + r1313 + r1414 + r1515 + r1616 + </components> + <initialisation> + <!--This sets boundary condition at all times and left border of z (i.e. z=0)--> + <![CDATA[ + // Note: + // convergence is really slow if all populations concentrated at the bottom level |1> + // this is because if r11=1, everything else is 0 and then every small increment + // seems to be huge and adaptive solver makes smaller and smaller steps. + // As quick and dirty fix I reshuffle initial population + // so some of the population sits at the second ground level |2> + // TODO: Fix above. Make the equation of motion for r11 + // and express other level, let's say r44 + // through population normalization + r0101 = 0.125; + r0113 = 0; + r0202 = 0.125; + r0214 = 0; + r0303 = 0.125; + r0309 = 0; + r0315 = 0; + r0404 = 0.125; + r0410 = 0; + r0416 = 0; + r0505 = 0.125; + r0511 = 0; + r0602 = 0; + r0606 = 0.125; + r0614 = 0; + r0703 = 0; + r0707 = 0.125; + r0709 = 0; + r0715 = 0; + r0804 = 0; + r0808 = 0.125; + r0810 = 0; + r0816 = 0; + r0909 = 0; + r0915 = 0; + r1010 = 0; + r1016 = 0; + r1111 = 0; + r1313 = 0; + r1414 = 0; + r1515 = 0; + r1616 = 0; + ]]> + </initialisation> + </vector> + + <sequence> + <!--For this set of conditions ARK45 is faster than ARK89--> + <!--ARK45 is good for small detuning when all frequency like term are close to zero--> + <integrate algorithm="ARK45" tolerance="1e-5" interval="Lcell"> + <!--<integrate algorithm="SI" steps="200" interval="Lcell"> --> + <!--RK4 is good for large detunings when frequency like term are big, it does not try to be too smart about adaptive step which ARK seems to make too small--> + <!--When ARK45 works it about 3 times faster then RK4 with 1000 steps--> + <!--<integrate algorithm="RK4" steps="100" interval="1.5e-2">--> + <!--SIC algorithm seems to be much slower and needs fine 'z' step tuning and much finer time grid--> + <!--For example I had to quadruple the time grid from 1000 to 4000 when increased z distance from 0.02 to 0.04--> + + <!--<integrate algorithm="SIC" interval="4e-2" steps="200">--> + + <samples>100</samples> + <!--<samples>100 100</samples>--> + <!--Use the next line for debuging to see velocity dependence. Uncomment/switch on output groups 3,4--> + <!--<samples>100 100 100 100</samples>--> + <operators> + <operator kind="cross_propagation" algorithm="SI" propagation_dimension="t"> + <integration_vectors>density_matrix</integration_vectors> + <dependencies>E_field_avgd</dependencies> + <boundary_condition kind="left"> + <!--This set boundary condition at all 'z' and left border of 't' (i.e. min(t))--> + <!-- + <![CDATA[ + r11 = 0; r22 = 1; r33 = 0; r44 = 0; + r12 = 0; r13 = 0; r14 = 0; + r23 = 0; r24 = 0; + r34 = 0; + printf("z= %g, t= %g\n", z, t); + ]]> + --> + </boundary_condition> + <![CDATA[ + E1ac = conj(E1a); + E2ac = conj(E2a); + E3ac = conj(E3a); + E4ac = conj(E4a); + + // Density matrix is Hermitian so we use r_ij=conj(r_ji) + + r1301 = conj(r0113); + r1402 = conj(r0214); + r0903 = conj(r0309); + r1503 = conj(r0315); + r1004 = conj(r0410); + r1604 = conj(r0416); + r1105 = conj(r0511); + r0206 = conj(r0602); + r1406 = conj(r0614); + r0307 = conj(r0703); + r0907 = conj(r0709); + r1507 = conj(r0715); + r0408 = conj(r0804); + r1008 = conj(r0810); + r1608 = conj(r0816); + r1509 = conj(r0915); + r1610 = conj(r1016); + + // Equations of motions according to Simon's mathematica code + dr0101_dt = gt/8. - gt*r0101 + (g1*r0909)/2. + (g2*r1313)/6. - i*((r0113*E4a)/(4.*rt6) - (r1301*E4ac)/(4.*rt6)); + dr0113_dt = (-(gt*r0113) - (gt + g2)*r0113)/2. - i*(WL*r0113 - ((2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0113 + (r0101*E4ac)/(4.*rt6) - (r1313*E4ac)/(4.*rt6)); + dr0202_dt = gt/8. - gt*r0202 + (g1*r0909)/4. + (g1*r1010)/4. + (g2*r1313)/12. + (g2*r1414)/4. - i*((r0214*E4a)/8. - (r1402*E4ac)/8.); + dr0214_dt = (-(gt*r0214) - (gt + g2)*r0214)/2. - i*((WL*r0214)/2. - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0214 - (r0206*E3ac)/(8.*rt3) + (r0202*E4ac)/8. - (r1414*E4ac)/8.); + dr0303_dt = gt/8. - gt*r0303 + (g1*r0909)/12. + (g1*r1010)/3. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1515)/4. - i*((r0309*E1a)/(4.*rt6) + (r0315*E4a)/8. - (r0903*E1ac)/(4.*rt6) - (r1503*E4ac)/8.); + dr0309_dt = (-(gt*r0309) - (gt + g1)*r0309)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0309) + (r0303*E1ac)/(4.*rt6) - (r0909*E1ac)/(4.*rt6) - (r0307*E2ac)/(4.*rt6) - (r1509*E4ac)/8.); + dr0315_dt = (-(gt*r0315) - (gt + g2)*r0315)/2. - i*(-(((-2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0315) - (r0915*E1ac)/(4.*rt6) - (r0307*E3ac)/8. + (r0303*E4ac)/8. - (r1515*E4ac)/8.); + dr0404_dt = gt/8. - gt*r0404 + (g1*r1010)/4. + (g1*r1111)/4. + (g2*r1414)/4. + (g2*r1515)/12. + (g2*r1616)/6. - i*((r0410*E1a)/(4.*rt2) + (r0416*E4a)/(4.*rt6) - (r1004*E1ac)/(4.*rt2) - (r1604*E4ac)/(4.*rt6)); + dr0410_dt = (-(gt*r0410) - (gt + g1)*r0410)/2. - i*(-(WL*r0410)/2. + (delta1 + v*Kvec1)*r0410 + (r0404*E1ac)/(4.*rt2) - (r1010*E1ac)/(4.*rt2) - (r0408*E2ac)/(4.*rt6) - (r1610*E4ac)/(4.*rt6)); + dr0416_dt = (-(gt*r0416) - (gt + g2)*r0416)/2. - i*(-(WL*r0416)/2. - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0416 - (r1016*E1ac)/(4.*rt2) - (r0408*E3ac)/(4.*rt2) + (r0404*E4ac)/(4.*rt6) - (r1616*E4ac)/(4.*rt6)); + dr0505_dt = gt/8. - gt*r0505 + (g1*r1111)/2. + (g2*r1515)/6. + (g2*r1616)/3. - i*((r0511*E1a)/4. - (r1105*E1ac)/4.); + dr0511_dt = (-(gt*r0511) - (gt + g1)*r0511)/2. - i*(-(WL*r0511) - (WL/6. - delta1 - v*Kvec1)*r0511 + (r0505*E1ac)/4. - (r1111*E1ac)/4.); + dr0602_dt = -(gt*r0602) - i*(-(WL*r0602)/2. + (-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0602 + (r0614*E4a)/8. + (r1402*E3ac)/(8.*rt3)); + dr0606_dt = gt/8. - gt*r0606 + (g1*r0909)/12. + (g1*r1010)/12. + (g2*r1313)/4. + (g2*r1414)/12. - i*(-(r0614*E3a)/(8.*rt3) + (r1406*E3ac)/(8.*rt3)); + dr0614_dt = (-(gt*r0614) - (gt + g2)*r0614)/2. - i*((-WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0614 - (-delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0614 - (r0606*E3ac)/(8.*rt3) + (r1414*E3ac)/(8.*rt3) + (r0602*E4ac)/8.); + dr0703_dt = -(gt*r0703) - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0703 + (r0709*E1a)/(4.*rt6) + (r0715*E4a)/8. + (r0903*E2ac)/(4.*rt6) + (r1503*E3ac)/8.); + dr0707_dt = gt/8. - gt*r0707 + (g1*r0909)/12. + (g1*r1111)/12. + (g2*r1313)/4. + (g2*r1414)/3. + (g2*r1515)/4. - i*(-(r0709*E2a)/(4.*rt6) - (r0715*E3a)/8. + (r0907*E2ac)/(4.*rt6) + (r1507*E3ac)/8.); + dr0709_dt = (-(gt*r0709) - (gt + g1)*r0709)/2. - i*(-((-WL/6. - delta1 - v*Kvec1)*r0709) + (-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0709 + (r0703*E1ac)/(4.*rt6) - (r0707*E2ac)/(4.*rt6) + (r0909*E2ac)/(4.*rt6) + (r1509*E3ac)/8.); + dr0715_dt = (-(gt*r0715) - (gt + g2)*r0715)/2. - i*((-delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0715 - ((-2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0715 + (r0915*E2ac)/(4.*rt6) - (r0707*E3ac)/8. + (r1515*E3ac)/8. + (r0703*E4ac)/8.); + dr0804_dt = -(gt*r0804) - i*((WL*r0804)/2. + (WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0804 + (r0810*E1a)/(4.*rt2) + (r0816*E4a)/(4.*rt6) + (r1004*E2ac)/(4.*rt6) + (r1604*E3ac)/(4.*rt2)); + dr0808_dt = gt/8. - gt*r0808 + (g1*r1010)/12. + (g1*r1111)/12. + (g2*r1414)/12. + (g2*r1515)/4. + (g2*r1616)/2. - i*(-(r0810*E2a)/(4.*rt6) - (r0816*E3a)/(4.*rt2) + (r1008*E2ac)/(4.*rt6) + (r1608*E3ac)/(4.*rt2)); + dr0810_dt = (-(gt*r0810) - (gt + g1)*r0810)/2. - i*((delta1 + v*Kvec1)*r0810 + (WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0810 + (r0804*E1ac)/(4.*rt2) - (r0808*E2ac)/(4.*rt6) + (r1010*E2ac)/(4.*rt6) + (r1610*E3ac)/(4.*rt2)); + dr0816_dt = (-(gt*r0816) - (gt + g2)*r0816)/2. - i*((WL/2. - delta1 + delta2 - v*Kvec1 + v*Kvec2)*r0816 - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0816 + (r1016*E2ac)/(4.*rt6) - (r0808*E3ac)/(4.*rt2) + (r1616*E3ac)/(4.*rt2) + (r0804*E4ac)/(4.*rt6)); + dr0909_dt = -((gt + g1)*r0909) - i*(-(r0309*E1a)/(4.*rt6) + (r0709*E2a)/(4.*rt6) + (r0903*E1ac)/(4.*rt6) - (r0907*E2ac)/(4.*rt6)); + dr0915_dt = (-((gt + g1)*r0915) - (gt + g2)*r0915)/2. - i*((-WL/6. - delta1 - v*Kvec1)*r0915 - ((-2*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r0915 - (r0315*E1a)/(4.*rt6) + (r0715*E2a)/(4.*rt6) - (r0907*E3ac)/8. + (r0903*E4ac)/8.); + dr1010_dt = -((gt + g1)*r1010) - i*(-(r0410*E1a)/(4.*rt2) + (r0810*E2a)/(4.*rt6) + (r1004*E1ac)/(4.*rt2) - (r1008*E2ac)/(4.*rt6)); + dr1016_dt = (-((gt + g1)*r1016) - (gt + g2)*r1016)/2. - i*(-((delta1 + v*Kvec1)*r1016) - ((-4*WL)/3. - delta1 + delta2 - delta3 - v*Kvec1 + v*Kvec2 - v*Kvec3)*r1016 - (r0416*E1a)/(4.*rt2) + (r0816*E2a)/(4.*rt6) - (r1008*E3ac)/(4.*rt2) + (r1004*E4ac)/(4.*rt6)); + dr1111_dt = -((gt + g1)*r1111) - i*(-(r0511*E1a)/4. + (r1105*E1ac)/4.); + dr1313_dt = -((gt + g2)*r1313) - i*(-(r0113*E4a)/(4.*rt6) + (r1301*E4ac)/(4.*rt6)); + dr1414_dt = -((gt + g2)*r1414) - i*((r0614*E3a)/(8.*rt3) - (r0214*E4a)/8. - (r1406*E3ac)/(8.*rt3) + (r1402*E4ac)/8.); + dr1515_dt = -((gt + g2)*r1515) - i*((r0715*E3a)/8. - (r0315*E4a)/8. - (r1507*E3ac)/8. + (r1503*E4ac)/8.); + dr1616_dt = -((gt + g2)*r1616) - i*((r0816*E3a)/(4.*rt2) - (r0416*E4a)/(4.*rt6) - (r1608*E3ac)/(4.*rt2) + (r1604*E4ac)/(4.*rt6)); + ]]> + </operator> + <!-- + According to xmds2 docs operator kind="ip" should be faster + but our codes runs about 5% to 10% slower with it. + Maybe because we very close to the stiff condition so I use "ex" kind + <operator kind="ip" constant="yes"> + --> + <operator kind="ex" constant="yes" type="imaginary"> + <operator_names>Lt</operator_names> + <![CDATA[ + Lt = -i/c*kt; + ]]> + </operator> + <integration_vectors>E_field</integration_vectors> + <dependencies>density_matrix</dependencies> + <![CDATA[ + dE1_dz = 0.16666666666666666*eta1*(2.449489742783178*r0309 + 4.242640687119286*r0410 + 6.*r0511) - Lt[E1]; + dE2_dz = -0.8164965809277261*eta1*(r0709 + r0810) - Lt[E2]; + dE3_dz = -1.*eta2*(1.7320508075688772*r0614 + 3.*r0715 + 4.242640687119286*r0816) - Lt[E3]; + dE4_dz = (4*eta2*(2.449489742783178*r0113 + 3*r0214 + 3*r0315 + 2.449489742783178*r0416))/3. - Lt[E4]; + ]]> + </operators> + </integrate> + </sequence> + + + + <!-- The output to generate --> + <output format="binary" filename="realistic_Rb.xsil"> + <group> + <sampling basis="t(1000) " initial_sample="yes"> + <dependencies>E_field_avgd</dependencies> + <moments>I1_out I2_out I3_out I4_out</moments> + <![CDATA[ + I1_out = mod2(E1a); + I2_out = mod2(E2a); + I3_out = mod2(E3a); + I4_out = mod2(E4a); + ]]> + </sampling> + </group> + + <!-- + <group> + <sampling basis="t(100) v(10)" initial_sample="yes"> + <dependencies>density_matrix_averaged</dependencies> + <moments> + r11_out r22_out r33_out r44_out + r12_re_out r12_im_out r13_re_out r13_im_out r14_re_out r14_im_out + r23_re_out r23_im_out r24_re_out r24_im_out + r34_re_out r34_im_out + </moments> + <![CDATA[ + // populations output + r11_out = r11a.Re(); + r22_out = r22a.Re(); + r33_out = r33a.Re(); + r44_out = r44a.Re(); + // coherences output + r12_re_out = r12a.Re(); + r12_im_out = r12a.Im(); + r13_re_out = r13a.Re(); + r13_im_out = r13a.Im(); + r14_re_out = r14a.Re(); + r14_im_out = r14a.Im(); + r23_re_out = r23a.Re(); + r23_im_out = r23a.Im(); + r24_re_out = r24a.Re(); + r24_im_out = r24a.Im(); + r34_re_out = r34a.Re(); + r34_im_out = r34a.Im(); + ]]> + </sampling> + </group> + --> + + <!-- use the following two groups only for debuging + otherwise they are quite useless and have to much information + in 3D space (z,t,v) --> + <!-- + <group> + <sampling basis="t(100) v(10)" initial_sample="yes"> + <dependencies>E_field</dependencies> + <moments>I1_out_v I2_out_v I3_out_v I4_out_v</moments> + <![CDATA[ + // light field intensity distribution in velocity subgroups + I1_out_v = mod2(E1); + I2_out_v = mod2(E2); + I3_out_v = mod2(E3); + I4_out_v = mod2(E4); + ]]> + </sampling> + </group> + + <group> + <sampling basis="t(100) v(10)" initial_sample="yes"> + <dependencies>density_matrix</dependencies> + <moments> + r11_out_v r22_out_v r33_out_v r44_out_v + r12_re_out_v r12_im_out_v r13_re_out_v r13_im_out_v r14_re_out_v r14_im_out_v + r23_re_out_v r23_im_out_v r24_re_out_v r24_im_out_v + r34_re_out_v r34_im_out_v + </moments> + <![CDATA[ + // density matrix distribution in velocity subgroups + // populations output + r11_out_v = r11.Re(); + r22_out_v = r22.Re(); + r33_out_v = r33.Re(); + r44_out_v = r44.Re(); + // coherences output + r12_re_out_v = r12.Re(); + r12_im_out_v = r12.Im(); + r13_re_out_v = r13.Re(); + r13_im_out_v = r13.Im(); + r14_re_out_v = r14.Re(); + r14_im_out_v = r14.Im(); + r23_re_out_v = r23.Re(); + r23_im_out_v = r23.Im(); + r24_re_out_v = r24.Re(); + r24_im_out_v = r24.Im(); + r34_re_out_v = r34.Re(); + r34_im_out_v = r34.Im(); + ]]> + </sampling> + </group> + --> + + </output> + +</simulation> + +<!-- +vim: ts=2 sw=2 foldmethod=indent: +--> |