diff options
author | Simon Rochester <simon.rochester@gmail.com> | 2012-06-28 17:00:01 -0700 |
---|---|---|
committer | Simon Rochester <simon.rochester@gmail.com> | 2012-06-28 17:00:01 -0700 |
commit | 50d5f2103debfdee0b29aa3622e13697c0628534 (patch) | |
tree | 64dafc46d358c84e3d09a32c80568b79b1929166 | |
parent | 6b2ee460cea2f800becd85b4f254a96ee678da82 (diff) | |
download | Nresonances-50d5f2103debfdee0b29aa3622e13697c0628534.tar.gz Nresonances-50d5f2103debfdee0b29aa3622e13697c0628534.zip |
Added RbXMDSSetup with code for Rb-87
-rwxr-xr-x | mathemathica_fwm/RbData.txt | 6 | ||||
-rwxr-xr-x | mathemathica_fwm/RbXMDSSetup.nb | 6993 |
2 files changed, 6999 insertions, 0 deletions
diff --git a/mathemathica_fwm/RbData.txt b/mathemathica_fwm/RbData.txt new file mode 100755 index 0000000..ded50f4 --- /dev/null +++ b/mathemathica_fwm/RbData.txt @@ -0,0 +1,6 @@ +ha1 = 2.1471788680034824e10;
+ha2 = 2.558764384495815e9;
+g2 = 3.612847284945266e7;
+ha3 = 5.323020344462938e8;
+hb3 = 7.85178251911697e7;
+g3 = 3.8117309832741246e7;
diff --git a/mathemathica_fwm/RbXMDSSetup.nb b/mathemathica_fwm/RbXMDSSetup.nb new file mode 100755 index 0000000..7f7559b --- /dev/null +++ b/mathemathica_fwm/RbXMDSSetup.nb @@ -0,0 +1,6993 @@ +(* Content-type: application/mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 7.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 145, 7]
+NotebookDataLength[ 253046, 6984]
+NotebookOptionsPosition[ 248754, 6836]
+NotebookOutlinePosition[ 249273, 6858]
+CellTagsIndexPosition[ 249186, 6853]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+Cell[BoxData[
+ RowBox[{"Quit", "[", "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->2058623809],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"TimeDependence", "\[Rule]", "True"}], ",",
+ RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
+ RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
+ RowBox[{"Label", "\[Rule]", "None"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
+ RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell["Define the atomic system.", "Text",
+ CellID->429217524],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"system", "=",
+ RowBox[{"Sublevels", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"AtomicData", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\"\<Rb\>\"", ",", "87", ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Kr\>\"", ",",
+ RowBox[{"{",
+ RowBox[{"5", ",", "\"\<s\>\""}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "\"\<S\>\"", ",",
+ FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "Energy", ",", "J", ",", "L", ",", "S", ",", "NuclearSpin", ",",
+ "NaturalWidth", ",", "Parity"}], "}"}]}], "]"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"AtomicData", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\"\<Rb\>\"", ",", "87", ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Kr\>\"", ",",
+ RowBox[{"{",
+ RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "\"\<P\>\"", ",",
+ FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "J", ",", "L", ",", "S", ",", "NuclearSpin", ",", "Parity"}],
+ "}"}]}], "]"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}]}],
+ "]"}]}], "]"}], ",", "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"AtomicData", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\"\<Rb\>\"", ",", "87", ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Kr\>\"", ",",
+ RowBox[{"{",
+ RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "\"\<P\>\"", ",",
+ FractionBox["3", "2"]}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "J", ",", "L", ",", "S", ",", "NuclearSpin", ",", "Parity"}],
+ "}"}]}], "]"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}]}],
+ "]"}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}]}], ";"}]], "Input",
+ CellID->433132487],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"system", "=",
+ RowBox[{"DeleteStates", "[",
+ RowBox[{"system", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Label", "\[Equal]", "3"}], "&&",
+ RowBox[{"F", "\[NotEqual]", "1"}]}], "||",
+ RowBox[{
+ RowBox[{"Label", "\[Equal]", "2"}], "&&",
+ RowBox[{"F", "\[Equal]", "1"}]}]}]}], "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "2"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "1"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "1"}]}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "2"}]}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "1"}], ",",
+ RowBox[{"M", "\[Rule]", "1"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "1"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"F", "\[Rule]", "1"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "1"}]}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "2"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "1"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "1"}]}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "2"}]}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "1"}], ",",
+ RowBox[{"M", "\[Rule]", "1"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "1"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}], ",",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{"NuclearSpin", "\[Rule]",
+ FractionBox["3", "2"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"F", "\[Rule]", "1"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "1"}]}]}], "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ "Define the optical field with three frequencies, ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ ", and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ "."
+}], "Text",
+ CellID->133602844],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SetOptions", "[",
+ RowBox[{"OpticalField", ",",
+ RowBox[{"PolarizationVector", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",",
+ RowBox[{"CartesianCoordinates", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"PolarizationVector", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",",
+ RowBox[{"PropagationVector", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",",
+ RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",",
+ RowBox[{"CartesianCoordinates", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"field", "=",
+ RowBox[{
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["k", "1"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "1"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "1"]}], "}"}]}], "]"}], "+",
+ "\[IndentingNewLine]",
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "2"], ",",
+ SubscriptBox["k", "2"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "2"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "2"]}], "}"}]}], "]"}], "+",
+ "\[IndentingNewLine]",
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "3"], ",",
+ SubscriptBox["k", "3"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "3"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "3"]}], "}"}]}], "]"}], "+",
+ "\[IndentingNewLine]",
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "4"], ",",
+ SubscriptBox["k", "4"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "4"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "4"]}], "}"}]}], "]"}]}]}]], "Input",
+ CellID->534530029],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]]}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+The Hamiltonian for the system subject to the optical field. Each field is \
+assumed to interact with only one transition\[LongDash]the other terms are \
+set to zero.\
+\>", "Text",
+ CellID->462076121],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"H", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Cos", "[", "_", "]"}], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"_", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input",
+ CellID->494599775],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "0", "0", "0", "0",
+ "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ SqrtBox["6"]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ SqrtBox["6"]]}], "0", "0", "0", "0", "0", "0", "0"},
+ {"0",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "0", "0", "0", "0",
+ "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "0", "0"},
+ {"0", "0",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "0", "0", "0", "0",
+ "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"2", " ",
+ SqrtBox["15"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"2", " ",
+ SqrtBox["15"]}]]}], "0"},
+ {"0", "0", "0",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "0", "0", "0", "0",
+ "0", "0", "0",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}]},
+ {"0", "0", "0", "0",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "0", "0", "0", "0",
+ "0", "0", "0",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ SqrtBox["6"]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ SqrtBox["6"]]}], "0", "0", "0"},
+ {"0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "4"]}], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}], "-",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]}], "0", "0"},
+ {"0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ SqrtBox["6"]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ SqrtBox["6"]]}], "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]}]},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ SqrtBox["6"]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ SqrtBox["6"]]}], "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ SqrtBox["6"]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ SqrtBox["6"]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], "0", "0", "0", "0",
+ "0"},
+ {"0", "0", "0",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], "0", "0", "0", "0"},
+ {"0", "0", "0", "0",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ SqrtBox["6"]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ SqrtBox["6"]]}], "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], "0", "0", "0"},
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "4"]}], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}], "-",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]}], "0", "0", "0", "0", "0",
+ "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"]}], "0", "0"},
+ {"0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"2", " ",
+ SqrtBox["15"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"2", " ",
+ SqrtBox["15"]}]]}], "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"]}], "0"},
+ {"0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"4", " ",
+ SqrtBox["5"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]}], "0", "0", "0", "0", "0",
+ "0", "0",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["The level diagram for the system.", "Text",
+ CellID->358620443],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LevelDiagram", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "2"}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "\[Rule]", "4"}], ",",
+ RowBox[{
+ RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",",
+ RowBox[{
+ RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}]}], "}"}]}],
+ ",",
+ RowBox[{"ParityOffset", "\[Rule]", "False"}]}], "]"}]], "Input",
+ CellID->167259034],
+
+Cell[BoxData[
+ GraphicsBox[{{{{},
+ LineBox[{{1.6, 0.15000000000000002`}, {2.4,
+ 0.15000000000000002`}}]}, {{},
+ LineBox[{{0.6, 0.15000000000000002`}, {1.4,
+ 0.15000000000000002`}}]}, {{},
+ LineBox[{{-0.4, 0.15000000000000002`}, {0.4,
+ 0.15000000000000002`}}]}, {{},
+ LineBox[{{-1.4, 0.15000000000000002`}, {-0.6,
+ 0.15000000000000002`}}]}, {{},
+ LineBox[{{-2.4, 0.15000000000000002`}, {-1.6,
+ 0.15000000000000002`}}]}, {{},
+ LineBox[{{0.6, -0.25}, {1.4, -0.25}}]}, {{},
+ LineBox[{{-0.4, -0.25}, {0.4, -0.25}}]}, {{},
+ LineBox[{{-1.4, -0.25}, {-0.6, -0.25}}]}, {{},
+ LineBox[{{1.6, 2.15}, {2.4, 2.15}}]}, {{},
+ LineBox[{{0.6, 2.15}, {1.4, 2.15}}]}, {{},
+ LineBox[{{-0.4, 2.15}, {0.4, 2.15}}]}, {{},
+ LineBox[{{-1.4, 2.15}, {-0.6, 2.15}}]}, {{},
+ LineBox[{{-2.4, 2.15}, {-1.6, 2.15}}]}, {{},
+ LineBox[{{0.6, 3.475}, {1.4, 3.475}}]}, {{},
+ LineBox[{{-0.4, 3.475}, {0.4, 3.475}}]}, {{},
+ LineBox[{{-1.4, 3.475}, {-0.6, 3.475}}]}}, {{}, {}, {}},
+ {Arrowheads[{-0.029508196721311476`, 0.029508196721311476`}],
+ ArrowBox[{{2., 0.15000000000000002`}, {2., 2.15}}],
+ ArrowBox[{{1., 0.15000000000000002`}, {1., 2.15}}],
+ ArrowBox[{{1., 0.15000000000000002`}, {1., 3.475}}],
+ ArrowBox[{{0., 0.15000000000000002`}, {0., 3.475}}],
+ ArrowBox[{{-1., 0.15000000000000002`}, {-1., 2.15}}],
+ ArrowBox[{{-1., 0.15000000000000002`}, {-1., 3.475}}],
+ ArrowBox[{{-2., 0.15000000000000002`}, {-2., 2.15}}],
+ ArrowBox[{{1., -0.25}, {1., 2.15}}], ArrowBox[{{1., -0.25}, {1., 3.475}}],
+ ArrowBox[{{0., -0.25}, {0., 2.15}}],
+ ArrowBox[{{-1., -0.25}, {-1., 2.15}}],
+ ArrowBox[{{-1., -0.25}, {-1., 3.475}}]},
+ {PointSize[0.0225]}},
+ ImagePadding->{{2., 2}, {2., 2.}},
+ ImageSize->244.]], "Output"]
+}, Open ]],
+
+Cell["Apply the rotating-wave approximation to the Hamiltonian.", "Text",
+ CellID->577766068],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"shifts", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Label", "[", "#", "]"}], ",",
+ RowBox[{"F", "[", "#", "]"}]}], "}"}], "&"}], "/@", "system"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1"}], "}"}], "\[Rule]", "0"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "_"}], "}"}], "\[Rule]",
+ SubscriptBox["\[Omega]", "1"]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2"}], "}"}], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "_"}], "}"}], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"], "+",
+ SubscriptBox["\[Omega]", "3"]}]}]}], "}"}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"]}], ",", "0", ",", "0", ",", "0", ",",
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "1"], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"], "+",
+ SubscriptBox["\[Omega]", "3"]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"], "+",
+ SubscriptBox["\[Omega]", "3"]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"], "+",
+ SubscriptBox["\[Omega]", "3"]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"??", "HyperfineShift"}]], "Input"],
+
+Cell[BoxData[
+ StyleBox["\<\"\"\>", "MSG"]], "Print", "PrintUsage",
+ CellTags->"Info3549888455-1032052"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Tr", "[",
+ RowBox[{
+ RowBox[{"Hamiltonian", "[", "system", "]"}], ",", "List"}], "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], ",",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], ",",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], ",",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], ",",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], ",",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}], ",",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}], ",",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"],
+ RowBox[{"IdentityMatrix", "[",
+ RowBox[{"Length", "[", "system", "]"}], "]"}]}]], "Input"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"Hrwa", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"],
+ RowBox[{"IdentityMatrix", "[",
+ RowBox[{"Length", "[", "system", "]"}], "]"}]}], "+",
+ RowBox[{"RotatingWaveApproximation", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Omega]", "4"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "-",
+ SubscriptBox["\[Omega]", "2"], "+",
+ SubscriptBox["\[Omega]", "3"], "-", "\[Delta]\[Omega]"}]}], ",",
+ RowBox[{
+ SubscriptBox["k", "4"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["k", "1"], "-",
+ SubscriptBox["k", "2"], "+",
+ SubscriptBox["k", "3"], "-", "\[Delta]k"}]}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "2"], ",",
+ SubscriptBox["\[Omega]", "3"]}], "}"}], ",",
+ RowBox[{"TransformMatrix", "\[Rule]",
+ RowBox[{"MatrixExp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
+ RowBox[{"DiagonalMatrix", "[", "shifts", "]"}]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "z", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"shifts", "/.",
+ RowBox[{"\[Omega]", "\[Rule]", "k"}]}], "]"}]}]}], "]"}]}]}],
+ "]"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[Phi]_", "-",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ",
+ SubscriptBox["\[Omega]", "1"]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[Phi]_", "+",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ",
+ SubscriptBox["\[Omega]", "1"]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}]], "\[Rule]", "0"}]}], "}"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"5", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "+",
+ SubscriptBox["\[Delta]", "1"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "2"], "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "2", "]"}]}], "4"], "-",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "+",
+ SubscriptBox["\[Delta]", "2"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "3"], "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "3", "]"}], "-",
+ FractionBox[
+ RowBox[{"11", " ",
+ RowBox[{"HyperfineA", "[", "3", "]"}]}], "4"], "+",
+ FractionBox[
+ RowBox[{"HyperfineB", "[", "3", "]"}], "4"], "-",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"HyperfineA", "[", "1", "]"}]}], "4"], "+",
+ SubscriptBox["\[Delta]", "3"]}]}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0", "0", "0", "0", "0"},
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"8", " ",
+ SqrtBox["5"]}]]}], "0", "0"},
+ {"0", "0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"4", " ",
+ SqrtBox["15"]}]]}], "0"},
+ {"0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], "0", "0", "0", "0", "0", "0", "0",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"8", " ",
+ SqrtBox["5"]}]]}]},
+ {"0", "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"]}], "0", "0", "0", "0", "0", "0", "0",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "8"]}], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "z", " ", "\[Delta]k"}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]\[Omega]"}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}], "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "z", " ", "\[Delta]k"}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]\[Omega]"}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]},
+ {
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "0", "0", "0", "0", "0", "0", "0"},
+ {"0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0",
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "0", "0", "0", "0", "0"},
+ {"0", "0", "0",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"4", " ",
+ SqrtBox["6"]}]], "0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"4", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0",
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "0", "0", "0", "0"},
+ {"0", "0", "0", "0",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "0", "0", "0"},
+ {"0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"8", " ",
+ SqrtBox["5"]}]]}], "0", "0", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "8"]}], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "z", " ", "\[Delta]k"}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]\[Omega]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}], "0", "0", "0", "0", "0", "0",
+ "0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], "0", "0"},
+ {"0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"4", " ",
+ SqrtBox["15"]}]]}], "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}], "0"},
+ {"0", "0", "0",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"8", " ",
+ SqrtBox["5"]}]]}], "0", "0", "0",
+ RowBox[{
+ FractionBox["1", "8"], " ",
+ SqrtBox[
+ FractionBox["5", "3"]], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "z", " ", "\[Delta]k"}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]\[Omega]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "4"]}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}], "0", "0", "0", "0", "0", "0",
+ "0",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Delta]", "1"]}], "+",
+ SubscriptBox["\[Delta]", "2"], "-",
+ SubscriptBox["\[Delta]", "3"]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixPlot", "[", "Hrwa", "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[RasterBox[CompressedData["
+1:eJztk9EJgDAMBQMu4ApO0h0cQfC7KzuCI4jUTz/b4MkFyutXOC7JstV1nyJi
+ft79b3WWPnmUeC1K/9HZi5/uQc85/Sme5fwHP/1eKJ6dY07SPehZfvM7c3RP
+WuohJ91nFiedn8JJvxe6Z8oc6Z7d55zk8l9JNjUX
+ "], {{0, 0}, {16, 16}}, {0, 1}],
+ Frame->True,
+ FrameLabel->{None, None},
+ FrameTicks->{{{{15.5,
+ FormBox["1", TraditionalForm]}, {11.5,
+ FormBox["5", TraditionalForm]}, {6.5,
+ FormBox["10", TraditionalForm]}, {0.5,
+ FormBox["16", TraditionalForm]}}, {{15.5,
+ FormBox["1", TraditionalForm]}, {11.5,
+ FormBox["5", TraditionalForm]}, {6.5,
+ FormBox["10", TraditionalForm]}, {0.5,
+ FormBox["16", TraditionalForm]}}}, {{{0.5,
+ FormBox["1", TraditionalForm]}, {4.5,
+ FormBox["5", TraditionalForm]}, {9.5,
+ FormBox["10", TraditionalForm]}, {15.5,
+ FormBox["16", TraditionalForm]}}, {{0.5,
+ FormBox["1", TraditionalForm]}, {4.5,
+ FormBox["5", TraditionalForm]}, {9.5,
+ FormBox["10", TraditionalForm]}, {15.5,
+ FormBox["16", TraditionalForm]}}}}]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["IntrinsicRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
+ " supply the relaxation matrices."
+}], "Text",
+ CellID->610306692],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"relax", "=",
+ RowBox[{
+ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRelaxation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellID->645617687],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Gamma]t", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "\[Gamma]t", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "\[Gamma]t", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "0", "\[Gamma]t", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "0", "0", "\[Gamma]t", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "\[Gamma]t", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "\[Gamma]t", "0", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "\[Gamma]t", "0", "0", "0", "0", "0",
+ "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], "0", "0", "0", "0", "0",
+ "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "2", "]"}]}], "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "3", "]"}]}], "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "3", "]"}]}], "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0",
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"NaturalWidth", "[", "3", "]"}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "Text",
+ CellID->854192725],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellID->465762594],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "10"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["2"]}]]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["6"]}]]}],
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "3"]}], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "0", "0", "0",
+ "0", "0", "0", "0", "0", "0", "0", "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["2"]}]]}],
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"20", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "6"]}], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0",
+ "0", "0", "0", "0", "0", "0", "0", "0", "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["6"]}]]}],
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"20", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "60"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "15"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "60"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"20", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["6"]}]]}], "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0"},
+ {
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"20", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["2"]}]]}], "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0"},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "3"]}], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "6"]}], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["6"]}]]}],
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"10", " ",
+ SqrtBox["2"]}]]}],
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "10"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0",
+ "0", "0", "0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0",
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0",
+ "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["3"]}]], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}]}],
+ "0", "0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["6"]}]], "-",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["2"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}],
+ RowBox[{"4", " ",
+ SqrtBox["3"]}]], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}],
+ RowBox[{
+ FractionBox["\[Gamma]t", "8"], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "2", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"NaturalWidth", "[", "3", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}]}]}],
+ "0", "0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
+ "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["Here are the evolution equations.", "Text",
+ CellID->314466782],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"delpos", "=",
+ RowBox[{"Position", "[",
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], ",",
+ RowBox[{
+ RowBox[{"DMElementPattern", "[", "]"}], "/;",
+ RowBox[{"M1", "\[NotEqual]", "M2"}]}]}], "]"}]}], ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"delvars", "=",
+ RowBox[{"Extract", "[",
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], ",", "delpos"}], "]"}]}],
+ ";"}]], "Input"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"vars", "=",
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], ",", "delpos"}],
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{"eqs", "=",
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "/.",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"#", "\[Rule]", "0"}], ")"}], "&"}], "/@", "delvars"}],
+ ")"}]}], ",", "delpos"}], "]"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ InterpretationBox[
+ TagBox[
+ PanelBox[GridBox[{
+ {
+ StyleBox[
+ StyleBox[
+ DynamicBox[ToBoxes[
+ FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
+ StandardForm],
+ ImageSizeCache->{299., {3., 9.}}],
+ StripOnInput->False,
+ DynamicUpdating->True], "Panel",
+ StripOnInput->False,
+ Background->None]},
+ {
+ ItemBox[
+ TagBox[
+ TagBox[
+ TagBox[
+ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]],
+ Short[#, 5]& ],
+ Background->GrayLevel[1],
+ BaseStyle->{Deployed -> False},
+ Frame->True,
+ FrameStyle->GrayLevel[0, 0.2],
+ StripOnInput->False]},
+ {
+ RowBox[{
+ ButtonBox[
+ StyleBox[
+ StyleBox[
+ DynamicBox[ToBoxes[
+ FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
+ StandardForm],
+ ImageSizeCache->{54., {1., 9.}}],
+ StripOnInput->False,
+ DynamicUpdating->True], "Panel",
+ StripOnInput->False,
+ Background->None],
+ Appearance->Automatic,
+ ButtonFunction:>OutputSizeLimit`ButtonFunction[
+ Function[{OutputSizeLimit`Dump`x$},
+ TableForm[OutputSizeLimit`Dump`x$]], 158, 23264544157491569590, 5/
+ 2],
+ Enabled->True,
+ Evaluator->Automatic,
+ Method->"Queued"], "\[ThinSpace]",
+ ButtonBox[
+ StyleBox[
+ StyleBox[
+ DynamicBox[ToBoxes[
+ FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
+ StandardForm],
+ ImageSizeCache->{60., {1., 9.}}],
+ StripOnInput->False,
+ DynamicUpdating->True], "Panel",
+ StripOnInput->False,
+ Background->None],
+ Appearance->Automatic,
+ ButtonFunction:>OutputSizeLimit`ButtonFunction[
+ Function[{OutputSizeLimit`Dump`x$},
+ TableForm[OutputSizeLimit`Dump`x$]], 158, 23264544157491569590, 5
+ 2],
+ Enabled->True,
+ Evaluator->Automatic,
+ Method->"Queued"], "\[ThinSpace]",
+ ButtonBox[
+ StyleBox[
+ StyleBox[
+ DynamicBox[ToBoxes[
+ FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
+ StandardForm],
+ ImageSizeCache->{92., {3., 9.}}],
+ StripOnInput->False,
+ DynamicUpdating->True], "Panel",
+ StripOnInput->False,
+ Background->None],
+ Appearance->Automatic,
+ ButtonFunction:>OutputSizeLimit`ButtonFunction[
+ Function[{OutputSizeLimit`Dump`x$},
+ TableForm[OutputSizeLimit`Dump`x$]], 158, 23264544157491569590,
+ Infinity],
+ Enabled->True,
+ Evaluator->Automatic,
+ Method->"Queued"], "\[ThinSpace]",
+ ButtonBox[
+ StyleBox[
+ StyleBox[
+ DynamicBox[ToBoxes[
+ FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
+ StandardForm],
+ ImageSizeCache->{78., {1., 9.}}],
+ StripOnInput->False,
+ DynamicUpdating->True], "Panel",
+ StripOnInput->False,
+ Background->None],
+ Appearance->Automatic,
+ ButtonFunction:>FrontEndExecute[{
+ FrontEnd`SetOptions[
+ FrontEnd`$FrontEnd,
+ FrontEnd`PreferencesSettings -> {"Page" -> "Evaluation"}],
+ FrontEnd`FrontEndToken["PreferencesDialog"]}],
+ Evaluator->None,
+ Method->"Preemptive"]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxDividers->{
+ "Columns" -> {{False}}, "ColumnsIndexed" -> {}, "Rows" -> {{False}},
+ "RowsIndexed" -> {}},
+ GridBoxItemSize->{
+ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[1.2]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ DefaultBaseStyle->{},
+ FrameMargins->5],
+ Deploy,
+ DefaultBaseStyle->"Deploy"],
+ Out[158]]], "Output"]
+}, Open ]],
+
+Cell["Convert equations to C form", "Text"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Label", "[", "#", "]"}], ",",
+ RowBox[{"F", "[", "#", "]"}], ",",
+ RowBox[{"M", "[", "#", "]"}]}], "}"}], "&"}], "/@",
+ "system"}], "\[IndentingNewLine]",
+ RowBox[{"labelrep", "=",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"%", "[",
+ RowBox[{"[", "i", "]"}], "]"}], "\[Rule]",
+ RowBox[{"ToString", "@",
+ RowBox[{"PaddedForm", "[",
+ RowBox[{"i", ",", "2", ",",
+ RowBox[{"NumberPadding", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"\"\<0\>\"", ",", "\"\<\>\""}], "}"}]}], ",",
+ RowBox[{"NumberSigns", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}]}]}], "]"}]}]}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",",
+ RowBox[{"Length", "@", "%"}]}], "}"}]}], "]"}]}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}]}], "}"}]], "Output"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "2"}], "}"}], "\[Rule]", "\<\"01\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "1"}], "}"}], "\[Rule]", "\<\"02\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "0"}], "}"}], "\[Rule]", "\<\"03\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], "\[Rule]", "\<\"04\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], "\[Rule]", "\<\"05\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1"}], "}"}], "\[Rule]", "\<\"06\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0"}], "}"}], "\[Rule]", "\<\"07\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], "\[Rule]", "\<\"08\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "2"}], "}"}], "\[Rule]", "\<\"09\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], "\[Rule]", "\<\"10\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "0"}], "}"}], "\[Rule]", "\<\"11\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "1"}]}], "}"}], "\[Rule]", "\<\"12\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",",
+ RowBox[{"-", "2"}]}], "}"}], "\[Rule]", "\<\"13\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], "\[Rule]", "\<\"14\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "0"}], "}"}], "\[Rule]", "\<\"15\"\>"}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",",
+ RowBox[{"-", "1"}]}], "}"}], "\[Rule]", "\<\"16\"\>"}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"DeleteCases", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",",
+ RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",",
+ RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[RuleDelayed]",
+ RowBox[{"dr", "[",
+ RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[RuleDelayed]",
+ RowBox[{"r", "[",
+ RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "i_"], "\[Rule]",
+ RowBox[{"d", "[", "i", "]"}]}], ",",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"a_.", "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]", "a"],
+ RowBox[{
+ RowBox[{"W", "[", "i", "]"}], "/",
+ SubscriptBox["\[CapitalOmega]", "i"]}]}]}], ",",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"a_.", "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]", "a"],
+ RowBox[{
+ RowBox[{"Wc", "[", "i", "]"}], "/",
+ SubscriptBox["\[CapitalOmega]", "i"]}]}]}]}], "}"}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"a_", ",", "b_"}], "]"}], "\[Equal]", "_"}], "/;",
+ RowBox[{"!",
+ RowBox[{"OrderedQ", "[",
+ RowBox[{"{",
+ RowBox[{"a", ",", "b"}], "}"}], "]"}]}]}]}], "]"}], "/.",
+ "labelrep"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Delta]k", "\[Rule]", "dk"}], ",",
+ RowBox[{"\[Delta]\[Omega]", "\[Rule]", "dw"}]}], "}"}]}], "/.",
+ RowBox[{
+ RowBox[{"Power", "[",
+ RowBox[{"E", ",", "b_"}], "]"}], "\[Rule]",
+ RowBox[{"exp", "[", "b", "]"}]}]}], "/.",
+ RowBox[{
+ RowBox[{"Complex", "[",
+ RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
+ RowBox[{"a", " ", "i"}]}]}], "/.",
+ RowBox[{
+ RowBox[{"a", ":",
+ RowBox[{"Power", "[",
+ RowBox[{
+ RowBox[{"_", "?", "NumericQ"}], ",", "_"}], "]"}]}], "\[RuleDelayed]",
+ RowBox[{"N", "[", "a", "]"}]}]}], "\[IndentingNewLine]",
+ RowBox[{"StringReplace", "[",
+ RowBox[{
+ RowBox[{"StringJoin", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"ToString", "@",
+ RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@",
+ "%"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
+ RowBox[{
+ RowBox[{"Shortest", "[",
+ RowBox[{
+ "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
+ "~~", "\"\<\\\")\>\""}], "]"}], ":>",
+ RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
+ ",",
+ RowBox[{
+ RowBox[{"Shortest", "[",
+ RowBox[{
+ "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
+ "~~", "\"\<\\\")\>\""}], "]"}], ":>",
+ RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
+ RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
+ RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
+ RowBox[{"\"\<d\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"01\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"01\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"09\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "10"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"01\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"01\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"09\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"02\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"02\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"09\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"03\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"03\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "60"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "15"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "60"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "-",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"03\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"11\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"11\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"11\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"07\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"11\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}]}], "+",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"03\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"04\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"04\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"13\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "20"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.10206207261596577`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"05\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"05\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "6"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"13\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "10"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.20412414523193154`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"05\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"05\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"13\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"02\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"02\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"02\"\>"}], "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"06\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"06\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"09\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{"dw", " ", "i", " ", "t"}], "-",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "4", "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"03\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"03\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"03\"\>"}], "]"}]}], "+",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"15\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"03\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"07\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"07\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "3"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"11\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"07\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"11\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"11\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"11\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"07\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"15\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"15\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"15\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"03\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"04\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"04\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"04\"\>"}], "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"08\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "8"], "-",
+ RowBox[{"gt", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"08\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "12"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "4"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"g", "[", "2", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"13\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["5", "12"], " ",
+ RowBox[{"g", "[", "3", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{"dw", " ", "i", " ", "t"}], "-",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "4", "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"d", "[", "1", "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}]}], "+",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"09\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"09\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.20412414523193154`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"01\"\>", ",", "\<\"09\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"09\"\>", ",", "\<\"01\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"10\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.17677669529663687`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"10\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"10\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"11\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.20412414523193154`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"11\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "+",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"07\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"15\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"15\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"07\"\>", ",", "\<\"15\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "+",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"11\"\>", ",", "\<\"03\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"12\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.17677669529663687`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"12\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "1", "]"}]}], "-",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"d", "[", "1", "]"}]}], "+",
+ RowBox[{"d", "[", "2", "]"}], "-",
+ RowBox[{"d", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"0.17677669529663687`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "1", "]"}]}], "+",
+ RowBox[{"0.10206207261596577`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"12\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"13\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "2", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"13\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"05\"\>", ",", "\<\"13\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "2", "]"}]}], "-",
+ RowBox[{"0.20412414523193154`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"13\"\>", ",", "\<\"05\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "2", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"14\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.05590169943749474`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"02\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{"dw", " ", "i", " ", "t"}], "-",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"06\"\>", ",", "\<\"14\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "4", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"02\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"14\"\>", ",", "\<\"06\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"15\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.06454972243679027`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"03\"\>", ",", "\<\"15\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "+",
+ RowBox[{"0.06454972243679027`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"15\"\>", ",", "\<\"03\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{"dr", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{"gt", "+",
+ RowBox[{"g", "[", "3", "]"}]}], ")"}]}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"16\"\>"}], "]"}]}], "-",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.05590169943749474`"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"04\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "3", "]"}]}], "+",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{"dw", " ", "i", " ", "t"}], "-",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"08\"\>", ",", "\<\"16\"\>"}], "]"}], " ",
+ RowBox[{"W", "[", "4", "]"}]}], "+",
+ RowBox[{"0.05590169943749474`", " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"04\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "3", "]"}]}], "-",
+ RowBox[{"0.1613743060919757`", " ",
+ RowBox[{"exp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "dw"}], " ", "i", " ", "t"}], "+",
+ RowBox[{"dk", " ", "i", " ", "z"}]}], "]"}], " ",
+ RowBox[{"r", "[",
+ RowBox[{"\<\"16\"\>", ",", "\<\"08\"\>"}], "]"}], " ",
+ RowBox[{"Wc", "[", "4", "]"}]}]}], ")"}]}]}]}]}], "}"}]], "Output"],
+
+Cell[BoxData["\<\"dr0101_dt = gt/8. - gt*r0101 + (g2*r0909)/3. + \
+(g2*r1010)/6. + (g3*r1414)/10. - i*(0.20412414523193154*r0109*E2 - \
+0.20412414523193154*r0901*Ec2);\\ndr0109_dt = (-(gt*r0109) - (gt + \
+g2)*r0109)/2. - i*(d1*r0109 + (-d1 + d2)*r0109 + \
+0.20412414523193154*r0101*Ec2 - 0.20412414523193154*r0909*Ec2);\\ndr0202_dt = \
+gt/8. - gt*r0202 + (g2*r0909)/6. + (g2*r1010)/12. + (g2*r1111)/4. + \
+(g3*r1414)/20. + (g3*r1515)/20. - i*(0.10206207261596577*r0210*E2 + \
+0.05590169943749474*r0214*E3 - 0.10206207261596577*r1002*Ec2 - \
+0.05590169943749474*r1402*Ec3);\\ndr0210_dt = (-(gt*r0210) - (gt + \
+g2)*r0210)/2. - i*(d1*r0210 + (-d1 + d2)*r0210 + \
+0.17677669529663687*r0206*Ec1 + 0.10206207261596577*r0202*Ec2 - \
+0.10206207261596577*r1010*Ec2 - 0.05590169943749474*r1410*Ec3);\\ndr0214_dt = \
+(-(gt*r0214) - (gt + g3)*r0214)/2. - i*((-d1 + d2)*r0214 - (-d1 + d2 - \
+d3)*r0214 - 0.10206207261596577*r1014*Ec2 + 0.05590169943749474*r0202*Ec3 - \
+0.05590169943749474*r1414*Ec3 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r0206*Ec4);\\ndr0303_dt = gt/8. - gt*r0303 + (g2*r1010)/4. + \
+(g2*r1212)/4. + (g3*r1414)/60. + (g3*r1515)/15. + (g3*r1616)/60. - \
+i*(0.06454972243679027*r0315*E3 - 0.06454972243679027*r1503*Ec3);\\ndr0311_dt \
+= (-(gt*r0311) - (gt + g2)*r0311)/2. - i*(d1*r0311 + (-d1 + d2)*r0311 + \
+0.20412414523193154*r0307*Ec1 - 0.06454972243679027*r1511*Ec3);\\ndr0315_dt = \
+(-(gt*r0315) - (gt + g3)*r0315)/2. - i*((-d1 + d2)*r0315 - (-d1 + d2 - \
+d3)*r0315 + 0.06454972243679027*r0303*Ec3 - \
+0.06454972243679027*r1515*Ec3);\\ndr0404_dt = gt/8. - gt*r0404 + \
+(g2*r1111)/4. + (g2*r1212)/12. + (g2*r1313)/6. + (g3*r1515)/20. + \
+(g3*r1616)/20. - i*(-0.10206207261596577*r0412*E2 + \
+0.05590169943749474*r0416*E3 + 0.10206207261596577*r1204*Ec2 - \
+0.05590169943749474*r1604*Ec3);\\ndr0412_dt = (-(gt*r0412) - (gt + \
+g2)*r0412)/2. - i*(d1*r0412 + (-d1 + d2)*r0412 + \
+0.17677669529663687*r0408*Ec1 - 0.10206207261596577*r0404*Ec2 + \
+0.10206207261596577*r1212*Ec2 - 0.05590169943749474*r1612*Ec3);\\ndr0416_dt = \
+(-(gt*r0416) - (gt + g3)*r0416)/2. - i*((-d1 + d2)*r0416 - (-d1 + d2 - \
+d3)*r0416 + 0.10206207261596577*r1216*Ec2 + 0.05590169943749474*r0404*Ec3 - \
+0.05590169943749474*r1616*Ec3 - 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r0408*Ec4);\\ndr0505_dt = gt/8. - gt*r0505 + (g2*r1212)/6. + \
+(g2*r1313)/3. + (g3*r1616)/10. - i*(-0.20412414523193154*r0513*E2 + \
+0.20412414523193154*r1305*Ec2);\\ndr0513_dt = (-(gt*r0513) - (gt + \
+g2)*r0513)/2. - i*(d1*r0513 + (-d1 + d2)*r0513 - \
+0.20412414523193154*r0505*Ec2 + 0.20412414523193154*r1313*Ec2);\\ndr0602_dt = \
+-(gt*r0602) - i*(-((-d1 + d2)*r0602) + 0.10206207261596577*r0610*E2 + \
+0.05590169943749474*r0614*E3 - 0.17677669529663687*r1002*Ec1 - \
+0.1613743060919757*exp(-(dw*i*t) + dk*i*z)*r1402*Ec4);\\ndr0606_dt = gt/8. - \
+gt*r0606 + (g2*r0909)/2. + (g2*r1010)/4. + (g2*r1111)/12. + (5*g3*r1414)/12. \
++ (5*g3*r1515)/12. - i*(0.17677669529663687*r0610*E1 + \
+0.1613743060919757*exp(dw*i*t - dk*i*z)*r0614*E4 - \
+0.17677669529663687*r1006*Ec1 - 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1406*Ec4);\\ndr0610_dt = (-(gt*r0610) - (gt + g2)*r0610)/2. - \
+i*(d1*r0610 + 0.17677669529663687*r0606*Ec1 - 0.17677669529663687*r1010*Ec1 + \
+0.10206207261596577*r0602*Ec2 - 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1410*Ec4);\\ndr0614_dt = (-(gt*r0614) - (gt + g3)*r0614)/2. - \
+i*(-((-d1 + d2 - d3)*r0614) - 0.17677669529663687*r1014*Ec1 + \
+0.05590169943749474*r0602*Ec3 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r0606*Ec4 - 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1414*Ec4);\\ndr0703_dt = -(gt*r0703) - i*(-((-d1 + d2)*r0703) + \
+0.06454972243679027*r0715*E3 - 0.20412414523193154*r1103*Ec1);\\ndr0707_dt = \
+gt/8. - gt*r0707 + (g2*r1010)/4. + (g2*r1111)/3. + (g2*r1212)/4. + \
+(5*g3*r1414)/12. + (5*g3*r1616)/12. - i*(0.20412414523193154*r0711*E1 - \
+0.20412414523193154*r1107*Ec1);\\ndr0711_dt = (-(gt*r0711) - (gt + \
+g2)*r0711)/2. - i*(d1*r0711 + 0.20412414523193154*r0707*Ec1 - \
+0.20412414523193154*r1111*Ec1);\\ndr0715_dt = (-(gt*r0715) - (gt + \
+g3)*r0715)/2. - i*(-((-d1 + d2 - d3)*r0715) - 0.20412414523193154*r1115*Ec1 + \
+0.06454972243679027*r0703*Ec3);\\ndr0804_dt = -(gt*r0804) - i*(-((-d1 + \
+d2)*r0804) - 0.10206207261596577*r0812*E2 + 0.05590169943749474*r0816*E3 - \
+0.17677669529663687*r1204*Ec1 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1604*Ec4);\\ndr0808_dt = gt/8. - gt*r0808 + (g2*r1111)/12. + \
+(g2*r1212)/4. + (g2*r1313)/2. + (5*g3*r1515)/12. + (5*g3*r1616)/12. - \
+i*(0.17677669529663687*r0812*E1 - 0.1613743060919757*exp(dw*i*t - \
+dk*i*z)*r0816*E4 - 0.17677669529663687*r1208*Ec1 + \
+0.1613743060919757*exp(-(dw*i*t) + dk*i*z)*r1608*Ec4);\\ndr0812_dt = \
+(-(gt*r0812) - (gt + g2)*r0812)/2. - i*(d1*r0812 + \
+0.17677669529663687*r0808*Ec1 - 0.17677669529663687*r1212*Ec1 - \
+0.10206207261596577*r0804*Ec2 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1612*Ec4);\\ndr0816_dt = (-(gt*r0816) - (gt + g3)*r0816)/2. - \
+i*(-((-d1 + d2 - d3)*r0816) - 0.17677669529663687*r1216*Ec1 + \
+0.05590169943749474*r0804*Ec3 - 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r0808*Ec4 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1616*Ec4);\\ndr0909_dt = -((gt + g2)*r0909) - \
+i*(-0.20412414523193154*r0109*E2 + \
+0.20412414523193154*r0901*Ec2);\\ndr1010_dt = -((gt + g2)*r1010) - \
+i*(-0.17677669529663687*r0610*E1 - 0.10206207261596577*r0210*E2 + \
+0.17677669529663687*r1006*Ec1 + 0.10206207261596577*r1002*Ec2);\\ndr1014_dt = \
+(-((gt + g2)*r1014) - (gt + g3)*r1014)/2. - i*(-(d1*r1014) - (-d1 + d2 - \
+d3)*r1014 - 0.17677669529663687*r0614*E1 - 0.10206207261596577*r0214*E2 + \
+0.05590169943749474*r1002*Ec3 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1006*Ec4);\\ndr1111_dt = -((gt + g2)*r1111) - \
+i*(-0.20412414523193154*r0711*E1 + \
+0.20412414523193154*r1107*Ec1);\\ndr1115_dt = (-((gt + g2)*r1115) - (gt + \
+g3)*r1115)/2. - i*(-(d1*r1115) - (-d1 + d2 - d3)*r1115 - \
+0.20412414523193154*r0715*E1 + 0.06454972243679027*r1103*Ec3);\\ndr1212_dt = \
+-((gt + g2)*r1212) - i*(-0.17677669529663687*r0812*E1 + \
+0.10206207261596577*r0412*E2 + 0.17677669529663687*r1208*Ec1 - \
+0.10206207261596577*r1204*Ec2);\\ndr1216_dt = (-((gt + g2)*r1216) - (gt + \
+g3)*r1216)/2. - i*(-(d1*r1216) - (-d1 + d2 - d3)*r1216 - \
+0.17677669529663687*r0816*E1 + 0.10206207261596577*r0416*E2 + \
+0.05590169943749474*r1204*Ec3 - 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1208*Ec4);\\ndr1313_dt = -((gt + g2)*r1313) - \
+i*(0.20412414523193154*r0513*E2 - 0.20412414523193154*r1305*Ec2);\\ndr1414_dt \
+= -((gt + g3)*r1414) - i*(-0.05590169943749474*r0214*E3 - \
+0.1613743060919757*exp(dw*i*t - dk*i*z)*r0614*E4 + \
+0.05590169943749474*r1402*Ec3 + 0.1613743060919757*exp(-(dw*i*t) + \
+dk*i*z)*r1406*Ec4);\\ndr1515_dt = -((gt + g3)*r1515) - \
+i*(-0.06454972243679027*r0315*E3 + \
+0.06454972243679027*r1503*Ec3);\\ndr1616_dt = -((gt + g3)*r1616) - \
+i*(-0.05590169943749474*r0416*E3 + 0.1613743060919757*exp(dw*i*t - \
+dk*i*z)*r0816*E4 + 0.05590169943749474*r1604*Ec3 - \
+0.1613743060919757*exp(-(dw*i*t) + dk*i*z)*r1608*Ec4);\\n\"\>"], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Export", "[",
+ RowBox[{
+ RowBox[{"ToFileName", "[",
+ RowBox[{
+ RowBox[{"NotebookDirectory", "[", "]"}], ",",
+ "\"\<RbEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]], "Input"],
+
+Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\\
+mathemathica_fwm\\\\RbEquations.txt\"\>"], "Output"]
+}, Open ]],
+
+Cell["", "Text"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{"atomicdata", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"AtomicData", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\"\<Rb\>\"", ",", "87", ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Kr\>\"", ",",
+ RowBox[{"{",
+ RowBox[{"5", ",", "\"\<s\>\""}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "\"\<S\>\"", ",",
+ FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
+ RowBox[{"{", "HyperfineA", "}"}], ",",
+ RowBox[{"Label", "\[Rule]", "1"}]}], "]"}], ",",
+ RowBox[{"AtomicData", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\"\<Rb\>\"", ",", "87", ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Kr\>\"", ",",
+ RowBox[{"{",
+ RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "\"\<P\>\"", ",",
+ FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"HyperfineA", ",", "NaturalWidth"}], "}"}], ",",
+ RowBox[{"Label", "\[Rule]", "2"}]}], "]"}], ",",
+ RowBox[{"AtomicData", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\"\<Rb\>\"", ",", "87", ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Kr\>\"", ",",
+ RowBox[{"{",
+ RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "\"\<P\>\"", ",",
+ FractionBox["3", "2"]}], "}"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"HyperfineA", ",", "HyperfineB", ",", "NaturalWidth"}], "}"}],
+ ",",
+ RowBox[{"Label", "\[Rule]", "3"}]}], "]"}]}],
+ "]"}]}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"%", "/.",
+ RowBox[{"Mega", "\[Rule]",
+ SuperscriptBox["10", "6"]}]}], "/.",
+ RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
+ RowBox[{"Rule", "\[Rule]", "Equal"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",",
+ RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",",
+ RowBox[{"HyperfineB", "\[Rule]", "hb"}]}], "}"}]}], "\[IndentingNewLine]",
+ RowBox[{"StringReplace", "[",
+ RowBox[{
+ RowBox[{"StringJoin", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"ToString", "@",
+ RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@",
+ "%"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
+ RowBox[{
+ RowBox[{"Shortest", "[",
+ RowBox[{
+ "\"\<dr(\>\"", "~~", "a__", "~~", "\"\<,\>\"", "~~", "b__", "~~",
+ "\"\<)\>\""}], "]"}], ":>",
+ RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
+ ",",
+ RowBox[{
+ RowBox[{"Shortest", "[",
+ RowBox[{
+ "\"\<r(\>\"", "~~", "a__", "~~", "\"\<,\>\"", "~~", "b__", "~~",
+ "\"\<)\>\""}], "]"}], ":>",
+ RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
+ RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
+ RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
+ RowBox[{
+ RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
+ RowBox[{"\"\<d\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"HyperfineA", "[", "1", "]"}], "\[Rule]",
+ RowBox[{"21471.788680034824`", " ", "Hertz", " ", "Mega"}]}], ",",
+ RowBox[{
+ RowBox[{"HyperfineA", "[", "2", "]"}], "\[Rule]",
+ RowBox[{"2558.7643844958147`", " ", "Hertz", " ", "Mega"}]}], ",",
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "2", "]"}], "\[Rule]",
+ RowBox[{"36.128472849452656`", " ", "Hertz", " ", "Mega"}]}], ",",
+ RowBox[{
+ RowBox[{"HyperfineA", "[", "3", "]"}], "\[Rule]",
+ RowBox[{"532.3020344462938`", " ", "Hertz", " ", "Mega"}]}], ",",
+ RowBox[{
+ RowBox[{"HyperfineB", "[", "3", "]"}], "\[Rule]",
+ RowBox[{"78.51782519116969`", " ", "Hertz", " ", "Mega"}]}], ",",
+ RowBox[{
+ RowBox[{"NaturalWidth", "[", "3", "]"}], "\[Rule]",
+ RowBox[{"38.11730983274125`", " ", "Hertz", " ", "Mega"}]}]}],
+ "}"}]], "Output"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ha", "[", "1", "]"}], "\[Equal]", "2.1471788680034824`*^10"}],
+ ",",
+ RowBox[{
+ RowBox[{"ha", "[", "2", "]"}], "\[Equal]", "2.558764384495815`*^9"}], ",",
+ RowBox[{
+ RowBox[{"g", "[", "2", "]"}], "\[Equal]", "3.612847284945266`*^7"}], ",",
+ RowBox[{
+ RowBox[{"ha", "[", "3", "]"}], "\[Equal]", "5.323020344462938`*^8"}], ",",
+ RowBox[{
+ RowBox[{"hb", "[", "3", "]"}], "\[Equal]", "7.85178251911697`*^7"}], ",",
+ RowBox[{
+ RowBox[{"g", "[", "3", "]"}], "\[Equal]", "3.8117309832741246`*^7"}]}],
+ "}"}]], "Output"],
+
+Cell[BoxData["\<\"ha1 = 2.1471788680034824e10;\\nha2 = \
+2.558764384495815e9;\\ng2 = 3.612847284945266e7;\\nha3 = 5.323020344462938e8;\
+\\nhb3 = 7.85178251911697e7;\\ng3 = 3.8117309832741246e7;\\n\"\>"], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], "/.",
+ RowBox[{"Chop", "@",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]k", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], "\[Rule]", "d"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", ".1"}]}], "}"}]}], "/.",
+ "atomicdata"}], "/.",
+ RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
+ RowBox[{"Mega", "\[Rule]", "1"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]}],
+ "]"}], ",", "vars"}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "50"}], ",", "50"}], "}"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw113k0VtvfAHAZMhZJ5oTmkgyZ8z3b/ChjpIxNREoSEVcDiQaF1C2hlCEl
+pLiPQueQq8wSimR+nnOozFMew+/ctd73j7PO+qx91t5rn/0d1lY66r/Pi5uL
+i+sr/fz3djvSO7y0xCBeNP9wurWVCd2ybuPi8wwiR2nkwsxOJhxtaZvaOMsg
+GDf+VfPUZoKPRd383lEGwfLrBjMTJgTuYAo96GEQJ7+UK25yZ8KNP7Gb1MoZ
+hF5gwlrPBCa8TdD1OBzJIA60umt3cJggWRFXT/AyiFAHE2fOt2KwgPaLhybN
+iQvNt13le9+BjM0Mv/C0GVE94ScuuFQKW4IiSt/MmxLriV1xhA0OeUVZJvrD
+JgSpTZlsEi2H1htpT+vHjAmdE3Zd369VQOBfWi3QY0RseXT+guKBSrCJ1FbP
+/YIIl1o7SWHXKrirJ11n9xojwvkeZ8eEf4LQzD8d3ImGhJUw++7GtbWQphuV
+1HDfgHh9kyvpA1UPxrPsvLtZesRWabPtWpFN0Dx86YTkTR0iI9UyN9uvGTJE
+Kr4UJGoRrU8tLouEtMCxI/r9Amc1iZovMzJ+M22Q2nfD0sVFnWCXBn17UtoO
+mpKC+I16VYLXAB2vTuoEgVYfrW8J24gOPiPrHZxuONwnK+z8aBPhOn6ZV+d5
+L9x119tu76RMhHZ+qsm51A/hx8TG/zKVJ5yyL6en6LDgzqnQCfmN8kT8Li/l
+PEMWPDvXN1nGJ0+YMpz2l5qwoDmmcGapSo5wOcEqbLBlweaXBxeuWMoRVun5
+PjXe9PhkmkCsjSxx+3O6gOR9FmyNVl+XclCaaMw810qMswDiHioa6kkTXVIX
+Rw7MssDxAY9yl4w0sVt6VebQAgsuvmjdoPhdikhZ9Ma5BdnQ0hC6LcNdiogR
+rCueV2DDZakKrZdHJQm14z2LonvY0Ja9z6r0lAThLaMrFpzCBpc1ogJv90gQ
+GRr/hHY8YUNXRO2Hoi0SxPbBq366z9hAupga5A+sJrbX83zqKWDDrIj2tqdu
+qwmFJP41fVVskA2QEbhmJU6MBurEpI6wwUOv54ODihjxIqV/ea4BCX2ZKZfs
+hMSIOb7Kzh2IhPoNr4MfNokSVWK/BrNMSehqS/e6xRAlAjYoR0ZYk8BlEGMS
+qLuSGPq2/t5XDxLMeGyWQFqE0ADtqsVLJDQkfg9u+8pP/HvVastsCQl4guUG
+hwf8RMuuETFNnIRXcczPjQf5iawwPvXjFSQk3ExUqW5fTvyu51oo/ESC45W9
+fSXf+YggYbcVky0kdJwtsX7SzUOk68vFjP8kofbMVs7aNB5C7cYFMneYhNLT
+97MfHuYh6uJi5Y6MkZDqG8hzt5ebkNP+l8ybJuHw0e1vo/uXEYU6yYEkFwW1
+6dqW3xqW8MCN8pkfV1Pw8rF4xmfbJVzR+EHBwhoKbicPL9Y0LeKTQQcNt0tT
+YJeYVVjWvIDLlDThp+QpaIuUVExv4+DLepJHr22goPjieFjKAQ4ekFAaHLaJ
+gqSwhtZ73+bw0NeGB49tocDtbPTNax1/8NOOuLycCgV9R6an/bpmcIUjZgbK
+mhRUujfbex+awQnzs9sbdlGQ6Zz38nDPNF5yJ/FAgDYFPvbHjzr0TeFFbi77
+U/UoGEZt9brsCVz7r7TomxgFTbtfb9HwnsDXCN2fGkUUFOjevrKdGsfH1Iqv
+WhtTEKRmrqcwNIZLERcWfppSMIGdsuTvHMEtmo9xyiwpmLSO3zbTN4wfrZt+
+2LaHtmuhMDn4G78tRD1i76UdMl9fNfMTp5J6an5Z076qmP/P4hB+bPrOcJ8N
+BVOJpvFZfEO4SOUfvyZbCqbzY/dFr6Zwyyie8wn2tMteaQbLknhXYf+i5z4K
+ZmpbJI4rsXEP9nj7TgcKZkn5r2Y7B/BGy/6rOY60p1CxlnY/XrLjnoPbfgr+
+8HglbTTsw7uvSfnzOlEwty7XlW9vD+4ozLmuf4Be3/Vp6FB6F37Vtzz6E+3p
+kCGDmoJOPPG9cp31QXq9RI3F53gHHmPO5VxDezY/jLhe/w1fM2WtAs70/LUV
+kSe+t+GVQeJmz2nPkUJmloMt+C5V76fCLhRweBz4t84043lW5028aM+vS64W
+4PuMp1REbf6H9lxIldTnjQ14knWX9eJ/4/lOKfFGNfiasMEiQ1cKFkm2op17
+Ff4oa+2hINpL60IyRUMr8DfL+Syf0uZ+tdLx0dYy/Frm7sCPtPkUd7qvPVKE
+3/MO+tFPe5Xi4zpd9Rw8X8Q/Zoa2GhdR5ofu46rq3AHcbhTwLs0GH4y+hHXY
+SD7kpd2OPZqvi0jHjpVlcS/S3w/mq57zvl6Ahb8ufzFMm4WtPEXZv8X+Nrp2
+p432GBlcsOsWgam7qr4roj2Sz1Y5F1CJ3aidU4ql/TvEKbto/yfsop5FjTPt
+n1jV+mm9Osx7w+U3CrSneJJt5USbMLJ3Q1cHvf9Jct8tg2XN2Lbkj3tu056o
+Fap1nfiCTViumNOlPZ5fIRDOasW4inJ/ddD/eywxzDzl61fM8FTg+iDaoyEa
+UaXV7VhlpcFjXtrD2NOl+dwf2F6fZyeE6fP7vd7FcG1aNzYheOxdxH/nzXO9
+TKG6B/MYtnccoeNjmkQcKOnDWp989HlFx890u7ysbWE/NiY+z+KhPVU7q3so
+dwC7Nf++wIaOt8n8V8GXHrOxD+VSBjV0fE4+ib0X94DEcjJGOHN0/E4k+hQ+
+TqCwgYX2Vetpj4cojuNXhjC/sV2mznS8j2Lxflw+w5hIteqcO50v5yU/v9UI
+HsGimnzL1el8ujwtcEXDeBRrcGn04TAoEKy3bPS0G8N6k908z5hTIBtW6119
+agILl+Dx7aXz14P181bfxATm/crmlied3+l2IoWcsEnsnF1nzg9DClQ2W3Op
+Xp/CTnyRHyrQp8CwpeHBncwZbNZaqrOPrieR2Mj7HJVZTELhpaWkBgVVL0RZ
+lW9mscQ/r79gahTYRNipz5T/wZ7VnLU9R9ejw6rN1a5dHIy87nzSl65nRpW+
+F+4Ic6Gz38VzI8QpGPgTJrbOlgtNejF0ZcQoiN55Mz3nDheKnC/TfLaCgpqH
+OdWVMsvQLP/xxCwBCvYF/Fozs5kbZYzqP9VcJMFT4XSeqykvmpFqzoolSVju
+eNGIiuFFXdwctdsDJGRfv90SVMuLSg+9uxvdS8Kvyby5W/v40HiY0HK37ySc
+qx0xJw4vR7ot/oceNpAQfT6ge8MFAcTlo5t58g0J6HrsbtVSAXRlMMpF7hUJ
+c0nPknQ4AihBueHKh5cknC754bAnVBBN/I60XsgkwWnR8pP/OSHkO+VwUeoB
+CRujlAve+YmgPemCV36F0f3w4wmjLTvF0O+cw+VWdH/E7GZGXtqIIRsP/Slp
+HRJSvkU9Uj8thixG997s0qDnG3zM0c8VQz2k8+L+bSTUCLUVWW9fhXZw5/ZP
+S5Pw2tp4W+BmceQ/W9LNP8WGyC+yq9+vk0A/1K7ff5LNhjOzjvykkQTimQ/y
+wtLp/rw2jiPqKYEqfge/bEtlg743z8CRbAkkQ15qHrvDhom5n4V86mtQz4ml
+4u/hbPBULnOyNpZEugbNjTG2bDALOPSw01Mayaj4l8aPskBANEOJ81we2bWe
+chxYzwJ7q+O+m6OVkYHu5vfOJ/sh2Th7YK3/JuQRr2QSUdYLgrUXJFJfbkOc
+1Y11K1jdMMm7jEU9UUUBYddMbUo6YWp8kCfNSB2JeGidtu9uh0iVtaNxbpro
+aVGUrLX4V2iAZyrHHbTQEe5nmg7vW0BFlvPhcpAO8ipmV7650gyMhsyciAA9
+dAaShXPzm2Bw//nd1zwNkH5cnq+VdgOkZEls+RJhiA4sE7swqlkLK5v4PXn/
+wlDylXBspPQTMI4cXdjdiNALpdNj6z2rwKrSMXXuuxEqtBVV+exRCfmJZ71y
+2oyRZXX51XWFFZBsMeVykW2C/hm9LCYlWw5s7/TzpgOm6MeChKFZLA6TASzf
+FT/MkGy9xYNInTK4eTj2xuyQOdIdyDmoNPkOIko8mtvYFmjV1h31tqJvQbqq
+KdjgpwVaHVL4ZA//W3jVZCyXNmKBEvbMKlguFUMXa5PniVkLNOK0T9h+pBh2
+i41McQQZCI2TZ2Ibi2HW85KM0g4GaovvSsuPL4bTK9MOnwxkoBRHW6+kNcWw
+XEacrymEgTo/abjyrSyG1PVRz3eFM1DBHdu3QcuLoU7XZ3whioH++hWe5T7D
+hG3H1KLi/2agwZSBlQfbmcBiEs+K3jLQC685v9+pTAiv0LCSfc9A1HQYd9zf
+TJCozxi9WMFAuDi7RzOOCcZ91/QYtQwkl7c6KOYyE9JE7Gs7OhnIfL82sf8Y
+E3SlPvhjvQykUHbqzCo3JjQqaUlksBgoL63TtcmRCYvaMu5+wwz0S2nzjwPm
+TPjb6Oay5nEG4u0+5q+IMWGH1UKm9gwDxbg+0vqlw4RKJ/89yRwGmk4WUi1R
+Y8L/3a/Q/9+v/geqCtre
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ PlotRange->{{-50, 50}, {0., 0.000011615488633854644`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{
+ Scaled[0.02],
+ Scaled[0.02]}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2", ",", "1"}], "}"}]}]], "[", "t", "]"}], "/.",
+ RowBox[{"Chop", "@",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]k", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "2"], "\[Rule]", "d"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", ".1"}]}], "}"}]}], "/.",
+ "atomicdata"}], "/.",
+ RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
+ RowBox[{"Mega", "\[Rule]", "1"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]}],
+ "]"}], ",", "vars"}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "50"}], ",", "50"}], "}"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw113k0Ff//B3DZi1AJiUKhVEKE1GveRK5QUinJkiQVIkmUXbJUlFbKvWXt
+g+x90mImpCz33iEpKXEtt5Cda/edzzm/3x9z5jzOLK9z5v18vea8lV3P257i
+5+Pj+0od/52Pn+gYWFigEfkqWfKvR1Phl/zxkeWzNCJoo5H3gdlUcG1qHled
+pBHYD58t/YJ08DCvn7UcohFOXtnjm2To4Lfl3yUP26nr8PlnkwEd4qZuqGm9
+pxHDJg13mSF0KLtt4OQSQSOMrVbHFgszQKYigUkI0ogT6FQ5mcwAc2gJcR7b
+QxixZ89Z8Z7Cqn08EbEJMyJ5By/uumsabLgY/rZ41pTwFAy9YT2YDi9KM3fv
+GNhN8EX0pIs0ZsKXOMYz5rAJkSoz4CrPzAa/K3pN0G5MtD2wtZXZkQP7IrZr
+531GxBX+kN6MwTy4ayhXb1OEEcHnxCs+uBdAYMbUd/6kXUTcSqWUrE1FwDCI
+esR6YET8fWTzem5pCZhM9ry4m2lI8C4rCneovYTGgdAzMvH6xBeXg9/58FeQ
+Ll7xuTBJj0jWfuGZFfYGTp7Y0Sl6YRvhvdXHu6WrHJ5w4iyOHdMm1l3pOqt2
+6D1sk1mMxzE1Ca016/X0zStB9IuH3rfbGsR1/4i44nsfwIUjL2afqkbsSXod
+XtX2Ee46Gm46YKdCFIoVZ6u71cLVk1IjV0wViLT7Kt9s3tfDHc/AUQVVBaLX
+pvh+bk09ZPlzxt4JKRA1whFtAo310Hi9hLdQvZq4rvqzJZ1TD+q5R+ciLVYT
+AWduauYLMKFxjCF6Y5880fGV8+q7KRM2RmuvfXxUjjgjZtykX8kESEhW2mUo
+R2x4J6b5t5YJhx4KqLStkiMGNRbFPW5kQsg/X9YrtcoSX4eGZf50MKGJFaiR
+7ihLmNQEaRjwsSBMtkIv11WGWFc36JZmxILmbFurt57ShMNq309H8lhwbKWk
+aNleaSL71D31mhIWtIXXVZZukCZyO7NztN+ygHvM1Ci/awWxLJzTxa1lwaT4
+do1nx1cQdsdWeHG5LJD3XSUaY7WccNF1D1JVYoOTYXvlwc1ShPu+gde6sWzg
+ZDwOtVkiRWQ1Pg/ySmADc33RpWRSkrj7UDwq5R4b2prTTt2kSRJnlF8ZfX3K
+Bj6j67v9DCSI8oCasroyNpgJ7FsAOXFijuPJ/4TLBlZS66XmryLEy+dfUkwU
+ScBvW6w/+FCEqPLbbxqyloSChH8b2EdFCNU2yVslyiTcjk/aXNMiTDxa9HpE
+So2EQ5GWnDetQsSe+0phMZokfL/wxvrpLwGCYdZX7Q0k1PlsnFFkCBAPupd6
+2CIS3no/yE52ESCiBCzctExIeHLWT+BuBz8RIvvbsdWMBBfXTWXRnYsIlcy9
+3H4r6vm07RbfWAu4RpCvwIw9Cbn05ekN+xdwP3fH2AgHEm6lDMzXkvP4hPyU
+pqAjCTZJmSXvGufwVyvn68adSWiOkFFKa57B2TqrR2+fIuFVyEjQ4yMzuEGc
+hEKvOwmPglhf7n2bxpWCPS13epBw/EJ0fMz3Kdy6uLCQdZYEzomJCa82Hh5+
+S8M65zwJVY6NB0478/B0py77zz4kZNi/yHVpn8CDE7l2474keBxwdz3IGcdV
+J1/Iql8kYQA1Mw16RvGWC24+xpdJIHcWbdA5PYonTGq9MQgkodDgVuSm3yO4
++XqPzo1BJFzU2mO4pncYX1OYXjl1hYRRzNNC5McgXr1SO35/KAlj1okaPM4A
+jhe9KVkWRtmhRIz75y8+1tP9h/mfA2aZ1bw+nOFa7qMbQfmaUv7L+V5c1tIZ
+b6M8nmSamCnUi4sqXlsRGUnCRP4N2+gVv3FLpcbqsijK7wq2XZLn4p19tuus
+rpHAq2uSdlfuwbM6xcK+UZ7kKnw129qFh27z0PsVTXkcvdLb3omnCDHj7a+T
+MCVw6pHqLg4uIvT3J5Py9No8ByHLdtzRyNc3PYaq7/AssDetDY9IXCgQjqXq
+BfQa1Rb+wCPsn/x2pcxL0pl/jn/HueFhsmWUJ/ODiFjmN5yl0r9zcRz1/rqK
+iDOtzTjvmtbRg5SnuUvMLP404Vs1cjweUJ4ROCiykdeIM6qrvb5Qnl2bUiMq
+1IAvWM+4L42n7g+olm1QZeGRw8yDGOXZfLvHica1uP+6hm3nKM9ze5RsHKvx
+m4/ShW9TXlgbkCEZWIEL7h+vK6DMXyBxKHXjOzw8OjiylrKQ0lZHxROl+J46
+wS1tlJcp0esNtHPwzBHnT32UtfiId17oAd6m4Ht4lLLgwuSlo9GhWGmpetMY
+5RYsdbY+PA3jXgwzHaL8J1/T/3RsIbbO6VpmN+VuTMLz94EyrIuwnm6iPMy9
+VKh7k8CG9eexcsqD+T2b/X2rMK/sTwFPKf8NsMsuPfwJW2zc/zSEch9WvW7C
+sB67fLm0/DDlcYGU/aslSaxVLISlRnmMa3vTaFEjxp7NbRimvtdo3ZI6h9HP
+mGXCy08vKY/kV4he7f6C8ZsrlPhTHk4K2vP461esrMvzribloQCdqLc1Ldih
+k6ZnO6j1GsCeLczm/cTmpg2ndCn/XXdslyLjF7ZSvLH4C7X+EwKx79bUtGP0
+7i53n//MRTPwhoMFZS2UJVF5mWhRkN9f0ol9Kut1UKA8Xjdp4JzXhRm3yUyn
+Unkbyy+4FErvwc48jtl6h8rj2NMb9xIecrGB/lU1/JRHkzxK6Ld/Y7sLI096
+UXkeCVAawSN7se0cYYYWlfchLNGLz2MAe2GZ43Se6pfLMg1lOpcGMefihxl0
+qr/CJkQjdUyGsMYl9L5PISQsZlqw3WyGsaQ4erBwMAnyQXWnazxHsZPRnVNb
+qP516u67yRkdxfgdEgPVqP5OsxEvmQkawz6UeonJBZCwWd2aTzN2HHNWveXT
+Q82DXU2sh3cyeJhfQ1+CFjU/IrDB8pzNk9hGZY2hYW8Sqv+R7K4qnsTWhE4F
+5nqRsC/cRpv3fgq7QzeUXXqOmo+ajTUObTOYs9qx5qvUPDOuOht8R4wPbb7e
+d2MVNR+7poKk1u7nQ7amxZvOHyEhemt8Ws4dPtTcILG1/DAJtck5NVWrFiEf
+ZbeLNFsSbH37V/LU+RHRsXBBwpIEtzXeLxxMBVG3YJ6RmxEJwodCjH9fF0TG
+Bnk7bQ1JyI691XSxThA5PnXtN9QnoX/sxfRNWyEUluPoOaFDgn/d4B7CRRh9
+MI0LW69B1b/s+2t9sCjaEWpfbC9LAoq9sVPzrSiSPr3MWnIl1Y+Psh7pz4gi
+ubVGRfhyErzf/Dy4N3AxaifmhqUkSLCbt/h03n8JOjzPYvkLkqAapVL42ksc
+1VT2PU9up/6HH88Yb9gqhWJ7HcvyY9iA2fAGc/dJoWd/ivw6Itjw+FtUqra3
+FPLVurliSTAb7P7QZ3bkSSH1aFlt5MuG2iXNpdablqHJuY8qxvZsKLI20fBT
+X45ep/LP0tXZEPFZfkX5WmmksMZeb305C3wmD4lwjaXR/ZWshtKXLHBSTJiR
+dJNGZX1Xr0A+C3acFug6kS2NFuXp6OkxWDA63VcipL0S6dkJTpeFs8BN5Z2d
+tYkM8irtT9bczQIzX+fkH25yKPhAefQ2ggmikunKM88V0DunCp56Zj0csHI/
+qx6tgnYd216xi1YLKSbZXYrn1VACvTU5cfojLK4Lln6Sq4EqUa75/egPMCa4
+qPv3U02U1Lp8SsKpEsZH/ggwjLVRfn913Ntz7yFis+JQwvFtqPLoczvbxTiw
+IGuz+0E9FD6p6q/b8QY2y89Uhl3UR2mSw9Hkj1dAY2XkhPsaogpJI0Wa20v4
+c/jyzhg3IxS+kbOMZlICjzOlN3wO34VoXSEu/EZFIEGKuAlewdDHnj7BNXcK
+gHbCdW4nG6G+Kt3ujpk8sKo69GS61RhZb5JoO2eaA/lJF07lNJugFfcF5XVF
+nkOK+fixkJ7d6IBKTM7L9kzoOZ122bTLFKWQ+x0S5TJgzLf77NKfZuiI8RVR
+t5g0iHe5ETfZuweVsrfsERN8BuFvnBqbe8yR2be4Aj2cAXLV5CWjPnN0f2+a
+ZXMZAwpIk9WMQXM0dNXheGAJA9q61dzOTJqjBN1FLdXPGbBTanB8ZjENXY8r
+lA29y4BJt9BVyltoiPNK78LJswzwlmC4nPOjoWivbNERWQYIr1ouRAbQUOgA
+75+25Qx4si7que5VGlKotH/AXMqAegOPkbkoGtJnrLEoEmCAxkmtqMT7NHQ5
+vvbbll906P6XyCoto6Grw/3rHybQ4WqFjpV8OQ3pJNVeKrtGB2lm+lBIBQ35
+yXZv+3WFDiacGENaHQ3tb23o1vegA0P8QN33HzT0K/4vR9GYDgayleexDhoS
+U1xi4apPB7aynnR6Nw0hp0ThnC10mN++ytFrgIZKrSVDLOTpcN84flHjCA35
+/Ku2jS5Fhy1WcxnbeTR0c1+33pQwHarszu9NmaEhqYttkUfmUuH/9lfo//dX
+/wP7xsvK
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ PlotRange->{{-50, 50}, {0., 3.945041785231018*^-6}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{
+ Scaled[0.02],
+ Scaled[0.02]}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], "/.",
+ RowBox[{"Chop", "@",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]k", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "3"], "\[Rule]", "d"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", ".1"}]}], "}"}]}], "/.",
+ "atomicdata"}], "/.",
+ RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
+ RowBox[{"Mega", "\[Rule]", "1"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]}],
+ "]"}], ",", "vars"}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "50"}], ",", "50"}], "}"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw113s0VN37AHDlXt6opIiIlFtCCeE5exRGSUool1IR9VZCIYnMSHKLpAhF
+KLfMnOKVwjlJIveJQUpRKJU74xbf01q/3x9nnfVZe+3zrL338zxn7fXHPQ+4
+Lebj42ujnr9vp2PdgwsLdNLnj8T3bzYM+CzjNLpijk4Wr4zePXCIAcdbuBPK
+U3Ry0uxaxogzAzzM6+b2DNPJkLYqIyEPBvhsLl6S+IVOeq0t3mQeyICI6aiN
+Wq/opPaqEy9UshhQEqd/xIVBJyOjd9Z4TTFAquJmPSlAJ1XbYlRss5hgDh1B
+R8fNyIq9oY1ehtdA2oonvHTSlLT+jrMrusNA5UJI6bO5XaTCbVr34JNwKCh6
+tHPH4E5yr+1ZLe2PEdAakfawfsSEbFx3aur5hmjwuazbAl9o5GeH1MLR3zfB
+irFd+8l7RMpr0V/dYsbBbYM1ddZPMVL94IHzVsrxcClr+sPieGMydVuf+saN
+CZCmH5rUcNeQVFqTH77C9C6YTPUV3H5kQHZqdHv7pSYBZzD4lFSkHhmcVqMV
+EJQCmWIV7/F4XbLjSWpXddgDOHFsx1cR761kX9u8/o6UdEjtibBwcNAme+fj
+IgYfZsBWKVEiol6TTBjxuFVRlAUirR667XFq5NreF79PrM8Glx6ZpYfvbyTz
+K1nPrwblwm1nA/X9doqkUaKpqqjEEwg8ITF6eZcsqVSS0WjpyYJbZy6NySrL
+klu7LRTT/Fjw+GLPeJmgLPmvFiQMBrOAc72Qt1C1lrQv2swKjGXBpvxDf5gW
+a0lTM3N/J5waH08TibKSIZP+xYMVRlmgGqYtn3JoDSlG6IcU6bEBbt5TMDZY
+Q3IHFQ3DDNlwMJFfsUt6DSkq1dpog7EhKLd1g0LnajKni+Pda8aGloZLapnO
+q0lnJzm+Hls2XF1doZt/XIq0tSumGfqwgZt9wLL0jCQp3f1r0CyPDQ6rxEVK
+dkuSWPKJsuECNnSF1L4uUpEkJb/cErzzlA39DrsMWd9WkroKKv2cEjZMiW1X
+e+i0khzqOKOxqpoNMl7SIuGWK8jDOiPFRV/ZcMTgy2sbDQlSdyH6sd5qHHqy
+UoKtl0iQUVPsoJ0yONRveOp7r0mcLL5QM20hh0MXN8Mtmi5O7jzWXGGmhAOf
+4fWdPvrLyGLtZ6PzmjiY8lstwBox0rMm3N/VFIeG+E5fbpsweTfG7HTnWRyI
+OIsNNonCZPo7/k6R8ziwbxY3Nx4SJjf+NOHT9sYhLjJeo6ZDiFz74629ly8O
+B5l7el52CpJvfJxq8CAcPni/3Jv+mZ+82hRurhmDQ+151Vm5NH6yGX4rCcbi
+UHrubvY9F36yaWDAlxuHQ+ppH/7b3YtJt/Jgb48EHFyOq5eEfV1E7rvNPWKR
+Qs3P2G7R3rBAcA3dlOaycch/sCKzed8CISGs1uKfi0NM8uD8u6Z5gjCyfjuU
+h4N1/KPCMs4fIkhV/lRdAQ5chpRCBneWUCkq3oMKcXgeNBqQYj9L2CzVJGOK
+cEgKaGhNaJ8hoOqjS9t/ODh5h0WGf5gmRIXTZO1LqP0+Njl5totH8Ks56EuU
+41DpzNnvfpRHtCb2VG8hcMg6XJDv8mWSuPSC5m1B4uCx/+Rxm54J4lR9ntC/
+FTgMIm69ft8Y0VZWP3OyCocmo6cqOu5jxPg6Byn7tzjg+jFM9e+jRPjMjh20
+ahwuaJkZrBsYIVoXJ8bzv8NhDDtjIfxxiJgOzHVE9TiM741V4/UMElvHNzfP
+/bVj4dL+H7+JUQnPK88aKPvN1VfxfhK0ZakXxJsoX1Ng/Tc/QAg5fi4tpDwR
+vyv2keAAsV8nYvvBZhwmWVEHwlZ+J5TlUUkIh3IZe6uvTD+xrXKGEH+PA6+2
+RfLk+j7ik9yVsbuUp/pl20y3fCPUWws/3mmhPIGe627/SjTcuxD7TysO0/xu
+ScrGPQRzSOJsEOUZ+SeOgnu+EAr/eaVacan4jg8vDWR0ESL8KUNPKE/6DRi+
+wz8SnSnn3IXbqHjxOvM5xAeCpmwg4Eh5ihVA3qhvJ8RIuzfZlKdrKxinOrnE
+iVWaucOUZ/qXmFr8aCEcbbWf6rTjMMtvI6zK4xDRO7o+nqM8J59cIyLYTKSL
+latmUZ7xq1rdrNxABD10S2z9O86yS4mlvSP8XS+q8HXgMN/fp2DtXEWstErq
+2EB5Qd4vS/xSBXF/KDxvJ+XF7GUH76uWEe88he87URZU2OIsd6yICI/6yvak
+vFzhQZ2+dh6xOYX3NZCyFh9ZdhbdJTbEqOqFUhZYmPI9FBaMnf95Ovca5Q7s
+/lxdSAY2yH1uHEL5B0vzovsNHDv5j+yIL+VebNmZ7/tLMMfe7MqTlEf6ffFt
+0SRWZRX83JryEKtP46JXJabEeVe3jfJvP7vsIttqTCS2YtFKyj+xKqVJgzqs
+Ccux/0mtd4I/ed9a8SbMXbO+oYzyeP+BaMNFHKzcKNw9gvJY7ZJax7H32Oou
+THE/5VFWhUhgbysmJeW2sJzySHyAWUpbGxboe2Ghjtr/YT+d0NKaDkxcblKR
+QXkQe7gw9+QTttE5l/uBOt/fSg7GcmmfMdWWjR5Bf8+b/0bZupovGMM0R172
+r/vRLLzswQZMOPxmVL5MdsjK7Cv8ihXGrNPhUPk1UTulf/TJN0zfsvTGIcrj
+LLZv8IM+jO9Y0XMbKh/H06MSbib2Y8z25beqqfwdi/cofBD3Hfsx9SpRj/Ko
+n8IowRzAytxTdASofB/GYs/yeQxi96w3v7Cn6sVfqrlEx3cIs706tDaGqqer
+kyJMHZNh7Oc5V1ZZHQ6i9RaNrtYjmG0jz1ukFgeZgFr3mjNjWE6UdJYlVb9H
+en9G94yNYWu0HOosqfrOsBYrnA0Yx54tmdc1e4ODxqa9fJo3JrDi6f6ODa9x
+MG5pSLyVxcNedHJz4qh+wsCGyvM0prDh44dVncpwqMoV7618NoWtYz1bkC/F
+wSrEWpv3ahprWWRSGk/1IxdNTo1j1yxWO6L9Vp3qZ7TK01duLeVDfUnJfQpU
+f/w2HSAhv48P0YN/7WI8wiFsS2RG3i0+9Oxu8+ZPmTi8u5dXUym9CMWraxQE
+p+NwwOvXKt6mxSiXaHvvdw8H13XnChx3CaCs8vCt+pE4CB0Mon2/LoDW06RX
+bruBQ/aNmJYLtQLIzM2rXPU6Dr/GC2aiDwgiU9nAiMVMHC7WDpmRLkJIaxXL
+/3QAFd/f6/OGKyKINq3XsdoDB3QjykizVAS5+sc0drpR9Zj0OElvVgRt6a9O
+v3cCh3MvP9nsviSK1EU5AyJHcbCbt6j2vLgE8aLMrmfb4qAcqoi/OCuGfCoU
+X/NoVH9+e4qmskUCuUBv2KQUDpg1byjfSgKd6aouXCeJQ0p76H3tcxJov6yb
+jcly6ns/HszueCKBSoKFeJeXUvuxhFu0V3056uM0nCxZYMPTvSZqPptWIL3W
+JeeP9bOB8V5mZbm8JIrak2AT+YwN56cOCvfTJFHbigydryzq/yx3c1bcVRK5
+hoQHb89nww53/m/HsiVR97hxcGMmG8ZmfhYKaq9CQpmdn2oT2OCqWGa310QK
+FfCLHB33ZYOp19F7H13XoA52vo7edjaIiGeun82RRUH1LnZGB1mw3/Lk6U1h
+ikhN08G+cSwfkk2yv8l5bkSS8R8CRJNzQbT2imRqvhrysZ29krk8G8YFFvV+
+T9dEJ9p7t/XVZ8HE6A/+NJo2OhzsKKdemgEMDbnhm05bEaOUtJ9hpUMDPNY4
+aaOL+N7U9foOPwANmdnXVy/ooVjjzytPP0gBekNWXoiXAVLLF3nT1Z0EP2z9
+jcJdDVEyNJAvgu9CyiNJlfchxuiw68Wpy3oJsKxJ2FXgMoZCf5nPhdrFA/3Y
+8T9GjQg5fwpLj46IA8vKg6kznTQUoqu9uHb6JrDivd3yuCboQ1QNxLtHQ7L5
+hENQ3060U8rFUfl3BPS5Z/jv+rYL+QcpLH7+KRzGvXpP//PJFI15cZeX/HMd
+Il2iIqYGzJBYJfHKfPc1CHl5hMPtM0ebH3/5XdPIhDVVTb6GP82RlcZAyrUa
+JrCbTNamDZkjo0uza3e9ZkJX70bXU1PmiI6+M2v+Y4KRxNDErCgdeSoJN06k
+MmHKNVh6/WY6uml+Y5JzhgnnlqW5/OtDRykjXz/fFmOCkPQKwSY/OtItt054
+LMSEVKXQnG2BdKQ8ZDxQyseEOn2P0T+hdBTWWn1maJwBaie0QmPv0FH8PoV8
+n08M6C0mHxeV0FFWVjuHV8CAwAodS5lyOrJvf/V+aw4DJOszh4Mq6IgWY+Ps
+ncEAk55wA3otHUUe+CDAu8uANLH9tR8+0tFys8igdSEM0F/92hPrpiPNoOrU
+c5cZ0LheVzKzl45yOIk7Xl1kwPx2aeezg3RU1eDff/Y0A+7QIhdxRqn5WfXj
+b10ZsNnyT9Z2Hh3NTmEBG44yoNLOc3fyLB1tirrgyzzMgP+7X6H/v1/9D8xr
+0YQ=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 1.5*^-7},
+ PlotRange->{{-50, 50}, {1.3655209232970803`*^-7, 1.0639247790950001`*^-6}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{
+ Scaled[0.02],
+ Scaled[0.02]}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "1", ",", "1"}], "}"}]}]], "[", "t", "]"}], "/.",
+ RowBox[{"Chop", "@",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]k", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "1"], "\[Rule]", "d"}], ",",
+ RowBox[{
+ SubscriptBox["\[Delta]", "_"], "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", ".1"}]}], "}"}]}], "/.",
+ "atomicdata"}], "/.",
+ RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
+ RowBox[{"Mega", "\[Rule]", "1"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]}],
+ "]"}], ",", "vars"}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "50"}], ",", "50"}], "}"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw113k0Fe0fAHARbgjpWlP2CCWSrN95yHKVpZA3W5YUKUlE9ixvJUqiUigl
+4S1JV/VKmkl+SpaQpaK6d8IVRdm5lt90zu/3x5w5n/PMPM+Zeb7LeZT8QpwO
+8PLw8HRT15+7py97ZGmJQSQ3SfcYizHhq5znmMQ8g7jgqeISSmeCX0fXpNoM
+g+hzu91ZKsuEQJum+Z2/GMS+8OlJRVUmhG18KpTDYhC6+YJv1I2YcG42ff3m
+lwyCjzGclbOfCVWZhvt8khjEtHfG3MpnTJCqzWgmljOImeIrkcnBlWADH+O9
+J6yJltgbGrMST0DWYVpQeMqKuI18G9Y1PAWN8MTnzHlLYlH/YIn/3Sp48Pju
+duOR7YTPJhnJzd+rofNcwe3m3xYE3WiH26z1CwiL2doBLHMCVzG7159NgEOS
+gW7Ze0QcuzSJknRqIdtIpmnXI4x4buprRHx9BVFFs594s8yIqeWmqqJj/4EC
+w5RrLVdNiG/zkhuFVd6AxczAg+y7RkRB95qT3y+8hfaRhENSadsIgYAgkzVn
+muGOSO37iqytBOur88tY51bY72v8jXZ8C1GYYaJJN26HfPKcrbu7LhEbFzei
+4NgBW6RW4OeaNxF7JYY5bSFdQOsM3PohU5PIK+IGXx/6AD6knLDbjfWExh2z
+laF7eiDby0hrt6sykaFWI1kx8Rli94uPxVjKE930qchaHRZcOhI1Lq8mT4Qn
+NEUvbWFB8QlyooZfnjBcOc01MmRB+5nK6aX6NURsV55fMWKB+v29C8m2a4iU
+qA3K+3dT4xMFtHQHOcJbQPOo23EWbDitq5C3V4YYyi/Rkn3EAsi4rmhmJEOc
++WQ8NPeYBS45fMpfZGWI13Vrjn2sYkH8P52qij3SxFlG77P0lyzoaInSvOMl
+TWReW7jX2MqCU9K1W+/7SRHuL5/NF42woKvEye75ETpRdsU+7446G9wlxWhV
+O+iEYtqg8j4tNnxJbHz1WINO8AS1Ca3WYQPH3dKkvG81ITN5hDxqwIYZEQPN
+256riWjzrh8/LdkgFypLO2snQYy8qffi82XDPiPWK2dtcYK2pGjueZkNZFFe
+wi4hcYKgpZaH57ChWfVRxPVWMeLrM/uSM7nUel2FB84zxIgmj/8o5N9iA4/J
+me1hhqLEsmypk3+XscGKz2EJZESIi/GzEdZ1bGjJ6ono6hYkXo+btPr8ZAOe
+aavqnCNIrLpRMHdllA0PM562vdsrSARhGbWvf7MhMy1Lu+GjAFHaFisnO8UG
+l+SdZHUPP1Hxquhk9CIbPh2vtr/1lY8Y61WK1RclofHYBu7aAj5C5Lz0LQlx
+Ep4fvVpy3YeP2MmOVhteRUJ+UBhfNpuXELa2hzRJEnz8tKpOf1tGVJy74XBG
+nnq/0MD2Q8sSjrdyFw9vIOH+TYk7bY5LeP/zoJQRTRIu5I4svm1dxJuiv+sf
+1iZhV9bdypr2Bdy1/Yiwsw4JXUlSioVdXPwyvw3Wq0/Cv/Fj0Xl/cfHX74qa
+dQxIuBbd0nn5wxz+uKH3WNw2EjyPn047+2kWV9ufOixgTALpOzUV/GUaj1Fz
+ONIOJNR5te8O8J7GRXMzPaYwEorcHtz3YU3hHYmYHd2chMDdB/2cyUn8B21B
+A7aTMIK6mg0HxqnfGp1ta0NCq+kjDb2AcbxIxdTZjEFCheGFZK3BMbwgppdX
+y5aE8M3WRuuGfuPH7J02TuwgYRw7YivYO4rzdrPjzBxImLC/qDlNjuA50SFN
+83/sUSnM+f4TT6SpmzxxpBw531w/PYy//yc5THo35b8Vy58sDuGiT2ONccqT
+WZYX7/IP4TWlNvK+TiRMlac7nV49iH/bHqmV5Uy55uGWCDkOLmN2zlXFhYTp
+xg76QaUBfFNj49UyyjMc+W4rnT58v1vl3od7KE+if7cafMMD//Xv0nAlYZbv
+wDU1MxIPC3c9mEt5TqHMg38nC2cVX6g6+he1vsftqKHCL7i2qnHMO8pTkUMm
+byt68VViv3dq7qXWy9JbLMU/4U0PeLUSKM+URxOpzR9wdluDdAvl2cbapEM9
+Xbhj2/1V0m7U/BwhK9vvHbhy9loZd8pcPmfBDdPt+HTmNc2rlOcVchto/G34
+qc5SRsuf5yPrpdvUWvBXi2To0p/xcte8i+ZvcXWr/iJNdxIWOQOKu7zqcSzK
+s8+R8pJCZJFYVC3uJsCzMYQy70NRlxsbanD1iUsJZynzK+p4rfV9jEdwvvXk
+Ul6leLPJUPceflyl2byU8mYeoiYYXcXROf2Kh5SXL81E7D2dgP2dL6z5iPJH
+7MZ8U2IhVhrveL+M8vfyTScCUiuw/hGaYSHlfkz0yODuKkzO0a75EuXfnIgK
+/fMEFnfT6Egs5dHyAe0ToXVYXfw83Yfyz0jXksd73mBXNjS9NqM8jNWrTBk1
+Yd5RwymSlCf5ch3XiLViAt9K7DjU909wnM6bLGvHwk/sU2BSHm8UavQYf4+x
+ukMXTlIeK6+lxfZ3YmwbF44h5d9Z0dZ53d2Y8dWkz2PUfvyK1Et53vARq9rw
+N+su5RHs9tJ82WfMIsRPbIHa358q7mZrC75i4f+cMb35Z7/5UmvWNbAwDz2p
+KJM/5iAuVJNY+M8kFT8qXqY+yss5Vn7Dep8LZv2g4muyccbQu6wP81yxXTKU
+8kT5w4iEmwMY8irZE0jF48St9MsZORwsPbtDsoeK3/GswMqbmYNY+s3qHzaU
+xyIVx/DkIayy0eSbGBXvv7CLwTyBI5j7OiFJNypfTkq1VelFjGIb9owHpVP5
+dGqKlqxn8QsLKF7o/teehBXNtu/8d/3GZqSEl+Z3kiAX3RjQcGQcMy2Oq9Kj
+8ndf//B5cnwcu3omkkeHyu/CXSKV3OgJrCvILkTVmgRtdXueTamTWJojf8sc
+VQ/MOlpyLhVNY+9Lj3buoepHEjb64p72DFYSk1mwhqov9f+I9dcxZ7A+QfGS
+T6YkOCTu0p1+OYvtK4+KtKTqkc+m9gaPL1xMfdnNoNdUPTOvC4q7JMyDPAX1
+D57XIKFvNlpcwZEH8dY5HhpcT8JpnbTCe5d4kHRgUa+pGglvr99rqJNdhj6k
+9Sq3K5HgFPpDclqdFwXOR+c8kCPBf93RBx6WyxGTk3ZPT5gEAZd488Ezy5EB
+z/W09StIKEm90BHeuBw1a1ivpQuS8GPiwdx5J35k/fxcQC8vCScaR60JHwFk
+kUbKKM+x4fTJ0K+qcTRkuVdw3WkOG1Bquumm5zR04WWarHk/G+auFV/bxqUh
+hcQDn6ZINhyt/uy8I2oFeuq0qsbpCxtcF23fhJwQQoW0lvimDjaopShXPAsW
+QVaDEm2NBNUPXx8y19ARRwX1CqvlqP6I7Zoeve8gjoJP/RVncIkNeR9Sbuge
+FUcamLuFQwY13/ebXOMycbRTSPZ3SCob3gp1PbbXWoWulEqExsax4ZG9hWaY
+ugQq6Yw8+8KfDUnv5Va/UKCjwzE7wkQ2s+HYjIsgx5yOBk2fFbtoU/15bQZX
+zJ+OHnZ46eZosME4gK/Pt4SO1h9o91mlxIbxueFKfl1JJLLZcrZpFRv8lWtc
+7S2k0JN1m/1CxlhgFep9vddfBuHP3PWyH7KAJnZHiVsqj5RTo9W5SizYbXcw
+SP20MorwDZfgdH+GXIuSvrUh69Fxtnd7zvEeWNEYR8+/r4lqHKd+xnz6ABPL
+l/UP3tqEjsc0L2ae7YLJse98Bea66GmwHb/QoQ5I0l77K8NzC6oVGCX2O7RD
+CxRrH3Teilw85K/3p7aCthz31anwbchN1StXrLQZGC1F9xJDjdD74WNbTnW+
+he97Tpqe9TdB+VfKggq830DeXbrG+0QzxFlM2jXLVw+irYL+y2Mw9P7pM4ES
+iTpg+PotmL5DaKX+4epqg1qwq3PJn+sxRz8H59sFcwkozzp+4F6XBeqzJ3rM
+0l9Ars2ke/zAdqSUXMWtnauGgYDCk5Z9lqjyWI/kWHcVTIT2B638bIWstlms
+rZp6Cmk+6edmhqxRWMkykX3KTyCxel9714ANStf2Dsu+Vgky9a0RJsM2yF/C
+03F1ViU8bLVYUzBqg8qbX9Mvp1fCl/71/odmbFDxjcN7biVUgqn46CR3BQPN
+9Oef6j1QCTP+CbJKGxnoq2S3dK9eJRwVLfA5HMZA3a+kGZMtTBCQleBvjWQg
+47vrsZY3TMhXSSnVj2Wg3J7Mn6W1TGgyDBxbSGGgFUOxQYeeMEFz/+aUi1cY
+6OXXD89oN5jQ/5QoflzFQDmYV9DrYCbE1urZyb1goJMh69QaA5hAb77zK76W
+gazMSxLafJlgQZ41YjQyUHnSbtGBPUwoENnd+KmXgXrN3h3aBEwwlH4VgrEZ
+qH2qcM7akAnvlLbS7/Qz0BuvVgU/PSYsGsh6BY8wkD55VqlgPROumKctax9j
+oL7s7dxaRSZstFsoMphmIC1V5v5BOSbUuYbsyOUykBE91E1ckgn/O1+h/5+v
+/gs708HS
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 1.*^-6},
+ PlotRange->{{-50, 50}, {1.1360342394545041`*^-6, 8.752003226543715*^-6}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{
+ Scaled[0.02],
+ Scaled[0.02]}]], "Output"]
+}, Open ]]
+},
+WindowSize->{1609, 896},
+WindowMargins->{{1, Automatic}, {Automatic, 1}},
+ShowSelection->True,
+FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
+StyleDefinitions->"Default.nb"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{
+ "Info3549888455-1032052"->{
+ Cell[49227, 1456, 104, 2, 40, "Print",
+ CellTags->"Info3549888455-1032052"]}
+ }
+*)
+(*CellTagsIndex
+CellTagsIndex->{
+ {"Info3549888455-1032052", 249081, 6847}
+ }
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[545, 20, 52, 1, 31, "Input"],
+Cell[600, 23, 138, 3, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->2058623809],
+Cell[CellGroupData[{
+Cell[763, 30, 144, 3, 31, "Input"],
+Cell[910, 35, 382, 8, 30, "Output"]
+}, Open ]],
+Cell[1307, 46, 61, 1, 29, "Text",
+ CellID->429217524],
+Cell[1371, 49, 2636, 68, 173, "Input",
+ CellID->433132487],
+Cell[CellGroupData[{
+Cell[4032, 121, 349, 10, 31, "Input"],
+Cell[4384, 133, 8889, 232, 299, "Output"]
+}, Open ]],
+Cell[13288, 368, 567, 23, 29, "Text",
+ CellID->133602844],
+Cell[CellGroupData[{
+Cell[13880, 395, 325, 8, 31, "Input"],
+Cell[14208, 405, 478, 12, 30, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[14723, 422, 2133, 66, 92, "Input",
+ CellID->534530029],
+Cell[16859, 490, 2306, 68, 53, "Output"]
+}, Open ]],
+Cell[19180, 561, 210, 5, 29, "Text",
+ CellID->462076121],
+Cell[CellGroupData[{
+Cell[19415, 570, 528, 16, 31, "Input",
+ CellID->494599775],
+Cell[19946, 588, 24353, 721, 594, "Output"]
+}, Open ]],
+Cell[44314, 1312, 69, 1, 29, "Text",
+ CellID->358620443],
+Cell[CellGroupData[{
+Cell[44408, 1317, 643, 18, 31, "Input",
+ CellID->167259034],
+Cell[45054, 1337, 1830, 37, 207, "Output"]
+}, Open ]],
+Cell[46899, 1377, 93, 1, 29, "Text",
+ CellID->577766068],
+Cell[CellGroupData[{
+Cell[47017, 1382, 935, 30, 31, "Input"],
+Cell[47955, 1414, 1174, 34, 30, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[49166, 1453, 58, 1, 31, "Input"],
+Cell[49227, 1456, 104, 2, 40, "Print",
+ CellTags->"Info3549888455-1032052"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[49368, 1463, 125, 3, 31, "Input"],
+Cell[49496, 1468, 2389, 75, 119, "Output"]
+}, Open ]],
+Cell[51900, 1546, 208, 6, 47, "Input"],
+Cell[CellGroupData[{
+Cell[52133, 1556, 3701, 97, 157, "Input"],
+Cell[55837, 1655, 11201, 314, 654, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[67075, 1974, 66, 1, 31, "Input"],
+Cell[67144, 1977, 1087, 24, 378, "Output"]
+}, Open ]],
+Cell[68246, 2004, 377, 12, 29, "Text",
+ CellID->610306692],
+Cell[CellGroupData[{
+Cell[68648, 2020, 272, 7, 31, "Input",
+ CellID->645617687],
+Cell[68923, 2029, 2716, 58, 266, "Output"]
+}, Open ]],
+Cell[71654, 2090, 383, 12, 29, "Text",
+ CellID->854192725],
+Cell[CellGroupData[{
+Cell[72062, 2106, 274, 7, 31, "Input",
+ CellID->465762594],
+Cell[72339, 2115, 49674, 1436, 426, "Output"]
+}, Open ]],
+Cell[122028, 3554, 69, 1, 29, "Text",
+ CellID->314466782],
+Cell[122100, 3557, 287, 8, 31, "Input"],
+Cell[122390, 3567, 187, 6, 31, "Input"],
+Cell[CellGroupData[{
+Cell[122602, 3577, 163, 5, 31, "Input"],
+Cell[122768, 3584, 13557, 434, 112, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[136362, 4023, 451, 13, 31, "Input"],
+Cell[136816, 4038, 4468, 129, 126, "Output"]
+}, Open ]],
+Cell[141299, 4170, 43, 0, 29, "Text"],
+Cell[CellGroupData[{
+Cell[141367, 4174, 884, 26, 52, "Input"],
+Cell[142254, 4202, 1283, 40, 30, "Output"],
+Cell[143540, 4244, 1948, 57, 50, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[145525, 4306, 4708, 124, 108, "Input"],
+Cell[150236, 4432, 58282, 1556, 1203, "Output"],
+Cell[208521, 5990, 7054, 104, 943, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[215612, 6099, 215, 6, 31, "Input"],
+Cell[215830, 6107, 120, 1, 30, "Output"]
+}, Open ]],
+Cell[215965, 6111, 16, 0, 29, "Text"],
+Cell[CellGroupData[{
+Cell[216006, 6115, 3861, 105, 144, "Input"],
+Cell[219870, 6222, 891, 21, 30, "Output"],
+Cell[220764, 6245, 612, 16, 33, "Output"],
+Cell[221379, 6263, 213, 2, 145, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[221629, 6270, 1856, 49, 33, "Input"],
+Cell[223488, 6321, 4889, 86, 248, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[228414, 6412, 1856, 49, 33, "Input"],
+Cell[230273, 6463, 4874, 86, 254, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[235184, 6554, 1856, 49, 33, "Input"],
+Cell[237043, 6605, 4899, 86, 245, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[241979, 6696, 1856, 49, 33, "Input"],
+Cell[243838, 6747, 4900, 86, 252, "Output"]
+}, Open ]]
+}
+]
+*)
+
+(* End of internal cache information *)
|