1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
"""
Created by Eugeniy E. Mikhailov 2021/11/29
"""
from qolab.hardware.basic import BasicInstrument
from ._basic import ScopeSCPI, calcSparsingAndNumPoints
from qolab.hardware.scpi import response2numStr
from qolab.data.trace import Trace
import numpy as np
import scipy.signal
from pyvisa.constants import InterfaceType
class SDS1104X(ScopeSCPI):
"""Siglent SDS1104x scope"""
# SDS1104x has actually 8 divisions but its behave like it has 10,
# the grabbed trace has more points outside what is visible on the screen
vertDivOnScreen = 10
horizDivOnScreen = 14
def __init__(self, resource, *args, **kwds):
super().__init__(resource, *args, **kwds)
self.config["Device model"] = "SDS1104X"
self.resource.read_termination = "\n"
self.numberOfChannels = 4
self.maxRequiredPoints = 1000
# desired number of points per channel, can return twice more
def mean(self, chNum):
# get mean on a specific channel calculated by scope
# PAVA stands for PArameter VAlue
qstr = f"C{chNum}:PAVA? MEAN"
rstr = self.query(qstr)
# reply is in the form 'C1:PAVA MEAN,3.00E-02V'
prefix, numberString, unit = response2numStr(rstr, firstSeparator=",", unit="V")
return float(numberString)
def getAvailableNumberOfPoints(self, chNum):
if chNum != 1 and chNum != 3:
# for whatever reason 'SAMPLE_NUM' fails for channel 2 and 4
chNum = 1
qstr = f"SAMPLE_NUM? C{chNum}"
rstr = self.query(qstr)
# reply is in the form 'SANU 7.00E+01pts'
prefix, numberString, unit = response2numStr(
rstr, firstSeparator=" ", unit="pts"
)
return int(float(numberString))
@BasicInstrument.tsdb_append
def getSampleRate(self):
rstr = self.query("SAMPLE_RATE?")
# expected reply is like 'SARA 1.00E+09Sa/s'
prefix, numberString, unit = response2numStr(
rstr, firstSeparator=" ", unit="Sa/s"
)
return int(float(numberString))
def setSampleRate(self, val):
print("Cannot set SampleRate directly for SDS1104X")
# it is not possible to do with this model directly
pass
def getRawWaveform(
self, chNum, availableNpnts=None, maxRequiredPoints=None, decimate=True
):
"""
Get raw channel waveform in binary format.
Parameters
----------
chNum : int
Scope channel to use: 1, 2, 3, or 4
availableNpnts : int or None (default)
Available number of points. Do not set it if you want it auto detected.
maxRequiredPoints : int
Maximum number of required points, if we ask less than available
we well get sparse set which proportionally fills all available time range.
decimate : False or True (default)
Decimate should be read as apply the low pass filter or not, technically
for both setting we get decimation (i.e. smaller than available
at the scope number of points). The name came from
``scipy.signal.decimate`` filtering function.
If ``decimate=True`` is used, we get all available points
and then low-pass filter them to get ``maxRequiredPoints``
The result is less noisy then, but transfer time from the instrument
is longer.
If ``decimate=False``, then it we are skipping points to get needed number
but we might see aliasing, if there is a high frequency noise
and sparing > 1. Unless you know what you doing, it is recommended
to use ``decimate=True``.
"""
rawChanCfg = {}
if availableNpnts is None:
# using channel 1 to get availableNpnts
availableNpnts = self.getAvailableNumberOfPoints(1)
rawChanCfg["availableNpnts"] = availableNpnts
if maxRequiredPoints is None:
maxRequiredPoints = self.maxRequiredPoints
(
sparsing,
Npnts,
availableNpnts,
maxRequiredPoints,
) = calcSparsingAndNumPoints(availableNpnts, maxRequiredPoints)
rawChanCfg["Npnts"] = Npnts
rawChanCfg["sparsing"] = sparsing
if decimate:
Npnts = availableNpnts # get all of them and decimate later
if (sparsing == 1 and Npnts == availableNpnts) or decimate:
# We are getting all points of the trace
# Apparently sparsing has no effect with this command
# and effectively uses SP=1 for any sparsing
# but I want to make sure and force it
cstr = "WAVEFORM_SETUP NP,0,FP,0,SP,1"
# technically when we know Npnts and sparsing
# we can use command from the follow up 'else' clause
else:
# we just ask every point with 'sparsing' interval
# fast to grab but we could do better with more advance decimate
# method, which allow better precision for the price
# of longer acquisition time
cstr = f"WAVEFORM_SETUP SP,{sparsing},NP,{Npnts},FP,0"
# Note: it is not enough to provide sparsing (SP),
# number of points (NP) needed to be calculated properly too!
# From the manual
# WAVEFORM_SETUP SP,<sparsing>,NP,<number>,FP,<point>
# SP Sparse point. It defines the interval between data points.
# For example:
# SP = 0 sends all data points.
# SP = 1 sends all data points.
# SP = 4 sends every 4th data point
# NP — Number of points. It indicates how many points should be transmitted.
# For example:
# NP = 0 sends all data points.
# NP = 50 sends a maximum of 50 data points.
# FP — First point. It specifies the address of the first data point
# to be sent.
# For example:
# FP = 0 corresponds to the first data point.
# FP = 1 corresponds to the second data point
self.write(cstr)
trRaw = Trace(f"Ch{chNum}")
qstr = f"C{chNum}:WAVEFORM? DAT2"
# expected full reply: 'C1:WF DAT2,#9000000140.........'
try:
wfRaw = self.query_binary_values(
qstr,
datatype="b",
header_fmt="ieee",
container=np.array,
chunk_size=(Npnts + 100),
)
if self.resource.interface_type == InterfaceType.usb:
# Somehow on windows (at least with USB interface)
# there is a lingering empty string which we need to flush out
r = self.read()
if r != "":
print(f"WARNING: We expected an empty string but got {r=}")
trRaw.values = wfRaw.reshape(wfRaw.size, 1)
if decimate and sparsing != 1:
numtaps = 3
# not sure it is the best case
trRaw.values = scipy.signal.decimate(
trRaw.values, sparsing, numtaps, axis=0
)
except ValueError as err:
# most likely we get crazy number of points
# self.read() # flushing the bogus output of previous command
print(f"Error {err=}: getting waveform failed for {qstr=}")
wfRaw = np.array([])
trRaw.config["unit"] = "Count"
trRaw.config["tags"]["Decimate"] = decimate
trRaw.config["tags"]["rawChanConfig"] = rawChanCfg
return trRaw
def getChanVoltsPerDiv(self, chNum):
qstr = f"C{chNum}:VDIV?"
rstr = self.query(qstr)
# expected reply to query: 'C1:VDIV 1.04E+00V'
prefix, numberString, unit = response2numStr(rstr, firstSeparator=" ", unit="V")
return float(numberString)
def setChanVoltsPerDiv(self, chNum, vPerDiv):
cstr = f"C{chNum}:VDIV {vPerDiv}"
self.write(cstr)
# if out of range, the VAB bit (bit 2) in the STB register to be set
def getChanVoltageOffset(self, chNum):
qstr = f"C{chNum}:OFST?"
rstr = self.query(qstr)
# expected reply to query: 'C1:OFST -1.27E+00V'
prefix, numberString, unit = response2numStr(rstr, firstSeparator=" ", unit="V")
return float(numberString)
def setChanVoltageOffset(self, chNum, val):
cstr = f"C{chNum}:OFST {val}"
self.write(cstr)
def getLED(self):
"""Returns binary mask of available LEDs"""
qstr = "LED?"
rstr = self.query(qstr)
prefix, numberString, unit = response2numStr(rstr, firstSeparator=" ", unit="")
return int(numberString, 16) # convert from hex string to integer
def toggleRun(self):
# SY_FP is undocumented, reverse engineered from the web interface
self.write("SY_FP 12,1")
@BasicInstrument.tsdb_append
def getRun(self):
ledStatus = self.getLED()
return bool(ledStatus & (1 << 17))
@BasicInstrument.tsdb_append
def setRun(self, val):
state = self.getRun()
if state != val:
self.toggleRun()
@BasicInstrument.tsdb_append
def getRoll(self):
ledStatus = self.getLED()
return bool(ledStatus & (1 << 10))
def toggleRoll(self):
# SY_FP is undocumented, reverse engineered from the web interface
self.write("SY_FP 49,1")
@BasicInstrument.tsdb_append
def setRoll(self, val):
rollState = self.getRoll()
if rollState != val:
self.toggleRoll()
@BasicInstrument.tsdb_append
def getTimePerDiv(self):
qstr = "TDIV?"
rstr = self.query(qstr)
# expected reply to query: 'TDIV 2.00E-08S'
prefix, numberString, unit = response2numStr(rstr, firstSeparator=" ", unit="S")
return float(numberString)
@BasicInstrument.tsdb_append
def setTimePerDiv(self, timePerDiv):
cstr = f"TDIV {timePerDiv}"
self.write(cstr)
# if out of range, the VAB bit (bit 2) in the STB register to be set
@BasicInstrument.tsdb_append
def getTrigDelay(self):
qstr = "TRIG_DELAY?"
rstr = self.query(qstr)
# expected reply to query: 'TRDL -0.00E+00S'
prefix, numberString, unit = response2numStr(rstr, firstSeparator=" ", unit="S")
return float(numberString)
@BasicInstrument.tsdb_append
def setTrigDelay(self, value):
cstr = f"TRIG_DELAY {value}"
self.write(cstr)
def getWaveform(
self, chNum, availableNpnts=None, maxRequiredPoints=None, decimate=True
):
"""
For decimate use see ``getRawWaveform``.
In short decimate=True is slower but more precise.
"""
trRaw = self.getRawWaveform(
chNum,
availableNpnts=availableNpnts,
maxRequiredPoints=maxRequiredPoints,
decimate=decimate,
)
VoltageOffset = self.getChanVoltageOffset(chNum)
VoltsPerDiv = self.getChanVoltsPerDiv(chNum)
tr = trRaw
tr.values = (
trRaw.values * VoltsPerDiv * self.vertDivOnScreen / 250 - VoltageOffset
)
tr.config["unit"] = "Volt"
tr.config["tags"]["VoltageOffset"] = VoltageOffset
tr.config["tags"]["VoltsPerDiv"] = VoltsPerDiv
return tr
def getTimeTrace(self, rawChanCfg):
availableNpnts = rawChanCfg["availableNpnts"]
sparsing = rawChanCfg["sparsing"]
Npnts = rawChanCfg["Npnts"]
sampleRate = self.getSampleRate()
timePerDiv = self.getTimePerDiv()
trigDelay = self.getTrigDelay()
if Npnts is None and sparsing is None:
# using channel 1 as reference
Npnts = self.getAvailableNumberOfPoints(1)
tval = np.arange(Npnts) / sampleRate * sparsing
tval = tval - timePerDiv * self.horizDivOnScreen / 2 - trigDelay
t = Trace("time")
t.values = tval.reshape(tval.size, 1)
t.config["unit"] = "S"
t.config["tags"]["TimePerDiv"] = timePerDiv
t.config["tags"]["TrigDelay"] = trigDelay
t.config["tags"]["SampleRate"] = sampleRate
t.config["tags"]["AvailableNPnts"] = availableNpnts
t.config["tags"]["Npnts"] = availableNpnts
t.config["tags"]["Sparsing"] = sparsing
return t
def getTriggerMode(self):
# we expect NORM, AUTO, SINGLE, STOP
res = self.query("TRIG_MODE?")
# res is in the form 'TRMD AUTO'
return res[5:]
def setTriggerMode(self, val):
# we expect NORM, AUTO, SINGLE, STOP
self.write(f"TRIG_MODE {val}")
if __name__ == "__main__":
import pyvisa
print("testing")
rm = pyvisa.ResourceManager()
print(rm.list_resources())
instr = rm.open_resource("TCPIP::192.168.0.62::INSTR")
scope = SDS1104X(instr)
print(f"ID: {scope.idn}")
# print(f'Ch1 mean: {scope.mean(1)}')
print(f"Ch1 available points: {scope.getAvailableNumberOfPoints(1)}")
print(f"Sample Rate: {scope.getSampleRate()}")
print(f"Time per Div: {scope.getTimePerDiv()}")
print(f"Ch1 Volts per Div: {scope.getChanVoltsPerDiv(1)}")
print(f"Ch1 Voltage Offset: {scope.getChanVoltageOffset(1)}")
print("------ Header start -------------")
print(str.join("\n", scope.getHeader()))
print("------ Header ends -------------")
ch1 = scope.getTrace(1)
traces = scope.getAllTraces()
|