1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
function z=HermiteGaussianE(params,x,varargin)
% Returns the complex field amplitude of a single polarization Hermite-Gaussian mode.
%----------------------------------------------------------------------------------------------
% PROGRAM: HermiteGaussianE
% AUTHOR: Andri M. Gretarsson
% DATE: 6/26/03
%
% SYNTAX: z=HermiteGaussianE([l,m,q <,lambda,a>],x <,y>);
% <...> indicates optional arguments
%
% Returns the complex field amplitude of a single polarization Hermite-Gaussian mode.
% The domain of the function is specified in cartesian coordinates x,y.
% If the input argument a is not specified or is equal to 1, the area under the
% surface z(x,y) is equal to 1. If z=z(x), i.e. the one dimensional form is being used,
% then the area under the surface formed by rotating z(x) around the z axis equals 1.
% In short the functions are normalized and form an orthonormal basis wrt. the inner
% product formed by multiplying two HermiteE's together and integrating over area.
% The formula is taken from "Principles of Lasers" by Orazio Svelto, 4th ed. Section 5.5.1.3.
%
% Note that it is possible to specify the parameters l,m,q,a,lambda as column vectors. In that case,
% the matrix returned z, will be a stack of 2D matrixes (i.e. a 3D matrix), where successive 2D matrixes
% in the stack (i.e. successive layers of the 3D matrix) correpsond to successive rows of the
% l,m,q,a,lambda columns
%
% INPUT ARGUMENTS:
% ----------------
% l,m = Hermite Gaussian mode numbers (integers, positive or zero). Can be a scalar or a column vector.
% q = complex radius of curvature of the beam (1/q = 1/R + i*lambda/pi/w^2).
% Can be a scalar or a column vector.
% a = complex amplitude (includes phase, e.g. for a beam that
% has been propageted with an ABCD matrix a = 1/(A + [B/q1])^(1+l+m) ).
% See for example, O. Svelto, Principles of Lasers 4th ed. eqn. 4.7.30.
% Can be a scalar or a column vector.
% lambda = Wavelength of the light. Can be a scalar or a column vector. Default is 1064e-9;
% x = x position vector or a 2D matrix generated by meshgrid.
% y = y position vector or a 2D matrix generated by meshgrid.
% If y is not specified then the default y is used:
% if x is 1D, y=zeros(size(x)). If x is 2D, y=x.
%
% OUTPUT ARGUMENTS:
% -----------------
% z(i,j) = Complex field of the Hermite Gaussian mode with parameters l,m,... at
% ( x(i,j),y(i,j) ). May be a vector or a matrix depending on whether
% x and y are vectors or matrixes. If in addition, l,m,q,... are columns,
% then z(i,j,k) will correspond to the complex field amplitude of the
% Hermite Gaussian mode corresponding to the parameters l(k),m(k),...
%
% NOTES:
% ------
% If x and y are not vectors but matrixes generated by
% the matlab function meshgrid, then the output variable z
% is a matrix rather than a vector. The matrix form allows
% the function HermiteGaussianE to have a plane as it's domain
% rather than a curve.
%
% If the parameters l,m,q,p,lambda are equal length column vectors rather
% than scalars, z is a size(x)*length(lambda) matrix. E.g. if size(x) is n*n
% then each level z(:,:,k) is a 2D field of a Hermite Gaussian with
% the parameters given by [l(k),m(k),q(k),lambda(k),a(k)].
%
% EXAMPLE 1 (2D : two TEM modes):
% w=[0.001; 0.001];
% xseed=[-3*max(w):max(w)/30:3*max(w)]; yseed=xseed';
% [x,y]=meshgrid(xseed,yseed);
% lambda = [1.064e-6 ; 1.064e-6];
% R = [-30 ; -30];
% q = (1./R - i* lambda./pi./w.^2).^(-1); a=[1;1];
% l=[1;2]; m=[0;2];
% E=HermiteGaussianE([l,m,q,lambda,a],x,y);
% subplot(2,1,1); h1=pcolor(x,y,abs(E(:,:,1))); set(h1,'EdgeColor','none'); axis square;
% subplot(2,1,2); h2=pcolor(x,y,abs(E(:,:,2))); set(h2,'EdgeColor','none'); axis square; shg;
%
% EXAMPLE 2 (1D : four TEM modes):
% w=[1,2,3,4].'; x=[-10:0.001:10]; lambda=[1,1,1,1].'*656e-9; R=[1,1,1,1].'*1000;
% q = (1./R - i* lambda./pi./w.^2).^(-1); a=[1,1,1,1].'; l = [0,1,2,3].'; m=[0,0,0,0].';
% E=HermiteGaussianE([l,m,q,lambda,a],x); I=E.*conj(E); phi=angle(E);
% plot(x,I(:,1),x,I(:,2),x,I(:,3),x,I(:,4));
%
% Last updated: July 18, 2004 by AMG
%----------------------------------------------------------------------------------------------
%% SYNTAX: z=HermiteGaussianE([l,m,q <,lambda,a>],x <,y>);
%----------------------------------------------------------------------------------------------
defaultcoord2=0;
if nargin>=3, y=varargin{1}; else defaultcoord2=1; end
if min(size(x))==1
if size(x,1)<size(x,2), x=x'; end %make x and y columnar
if defaultcoord2
y=zeros(size(x));
else
if size(y,1)<size(y,2), y=y'; end
end
end
if min(size(x)) > 1
z=zeros(size(x,1),size(x,2),size(params,1)); % need this since zeros(size(y),10) gives a 2D matrix even if y is 2D! (Matlab feature.)
if defaultcoord2, y=transpose(x); end
else
z=zeros(length(x),size(params,1));
end
l=params(:,1);
m=params(:,2);
q=params(:,3);
if size(params,2)>=4
lambda=params(:,4);
else
lambda=1064e-9;
end
if size(params,2)>=5
a=params(:,5);
else
a=ones(size(q));
end
w=w_(q,lambda);
if min(size(x))>=2 % x is a matrix (2D array)
for u=1:size(params,1)
z(:,:,u) = a(u)...
.* sqrt((2/pi))/2^((l(u)+m(u))/2)/sqrt(factorial(l(u))*factorial(m(u)))/w(u)...
.* hermitepoly(l(u),sqrt(2).*x/w(u)).*hermitepoly(m(u),sqrt(2).*y/w(u))...
.* exp( -i*2*pi/lambda(u)*(x.^2+y.^2)/2/q(u) ) ;
end
else
for u=1:size(params,1) % x is a vector (1D array)
z(:,u) = a(u)...
.* sqrt((2/pi))/2^((l(u)+m(u))/2)/sqrt(factorial(l(u))*factorial(m(u)))/w(u)...
.* hermitepoly(l(u),sqrt(2).*x/w(u)).*hermitepoly(m(u),sqrt(2).*y/w(u))...
.* exp( -i*2*pi/lambda(u)*(x.^2+y.^2)/2/q(u) );
end
end
|