summaryrefslogtreecommitdiff
path: root/opticstrain/opticstrain.m
blob: 6d9ef0e2c897d90659f8d2895a6f05135a3cdd18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
function opticstrain(filename)
% Models the paraxial propagation of TEM beams through an optics train specified in a text file
%-------------------------------------------------------------------------
% PROGRAM NAME: opticstrain
% AUTHOR: Andri M. Gretarsson
% UPDATES: AMG -- First complete version 1/8/2010
%
% SYNTAX: opticstrain(filename)
%
% DESCRIPTION:
%
% The Matlab program opticstrain.m plots the width of a Gaussian beam as a 
% function of propagation distance.  The location and type of optics 
% encountered are listed in a control file with four columns: Optic location (z), 
% Type of optic, Optic parameters, Program control commands. The locations z 
% of all optics are specified with respect to the same origin. All lengths 
% should be specified in the same units as the beam parameter 
% (complex curvature) q. For example, if q is specified in millimeters, 
% so must z, and all other length parameters.
%
% See the file "opticstrain help.pdf" for further details.
%
% INPUT VARIABLES:
% filename  =   name of the control file that specifies the optics chain.
%
% OUTPUT VARIABLES: none
% 
% EXAMPLE: opticstrain('demo_optics.xlsx');
%
%-------------------------------------------------------------------------
% SYNTAX: opticstrain(filename)
%-------------------------------------------------------------------------

% Parse the input file and if not .txt file then convert to a text file.
[pathstr, name, ext] = fileparts(filename);
if strcmp(ext,'.xls') || strcmp(ext,'.xlsx')
    disp('Converting MSExcel file to text format.');
    xls2txt(filename);  
else
	if ~strcmp(ext,'.txt')
        error('Filename extension must be ''.xls'', ''.xlsx'', or ''.txt''');
	end
end
controlfile=[filename(1:end-length(ext)),'.txt'];
cf=fopen(controlfile);


% Default values of optic parameters changeable via the control file
mode=[0,0];                             % Hermite-Gaussian, TEM_00
q=29.5262i;                             % Collimated beam (e.g. w=1 mm if lambda=1064 nm)
lambda=1.064e-3;                        % mm (1.064 microns expressed in millimeters)
zobj=0;                                 % location of optic
a=1;                                    % amplitude of beam
n_med=1;                                % index of propagation medium (usually air)
lensdiam=25.4;                          % default diameter of all optics in train


% Default values of program control parameters changeable via the control file
profiledisp=0;

% Values for internal program parameters
num_bounces=150;                        % # bounces in cavity used to calculate cav. behavior
npts=300;                               % # 
nxpts=500;
yoffset=0;                              % y-position of optic centers in the optics train figure
zoffset=0;                              % z-...
linespacing=1.25;                       % Spacing between optics train branches in units of lensdiam
ctemp=[0;0;Inf;Inf;0;0;0;0;1.46;n_med;n_med;0;0]; % defaults for cavity in case length(values)<12 when cavity is called

% Initialize variables
xdom=linspace(-lensdiam/4,lensdiam/4,nxpts);
linefeed=(max(xdom)-min(xdom))*linespacing;
try close(1); end
trainfig=figure(1);                     % open a new optics train figure
fignum=1;
controlkey={};                          % structure stores the control command strings
bd=0;                                   % branch depth
zstore=[]; qstore=[];                   % heap for storing the beam parameters
linenum=0; commandnum=0;                % used in parsing the command file and command strings

cline=fgetl(cf);                        % get the first control file line
while cline ~= -1
    linenum=linenum+1;
    cline=strtrim(cline);               % remove spaces
    if ~isempty(cline) && cline(1)~='%' % ignore empty lines and lines starting with '%'
        commandnum=commandnum+1;

        % PARSE THE CONTROL FILE INPUT LINE
        cline(cline==','|cline==';')=' ';                                   % Replace punctuation with spaces
        oldz=zobj;                                                          % oldz is the position of the last optic
        [zobj n ee nn]=sscanf(cline,'%f'); cline=cline(nn:end);             % zobj is the pos. of the current optic
        [object n ee nn]=sscanf(cline,'%s',1); cline=cline(nn:end);         % get type of optic
        [values n ee nn]=sscanf(cline,'%f'); cline=cline(nn:end);           % get optic parameters
        temp=' ';
        if oldz==zobj, k=length(controlkey); else k=0; controlkey={}; end   % all control keys at same z-location are used simultaneously
        while ~isempty(temp)                                                % Parse control commands into cell string array
            k=k+1;
            [temp n ee nn]=sscanf(cline,'%s',1); cline=cline(nn:end);       % read in next string (spaces are separators) and then remove it from the line
            if ~isempty(temp), controlkey(k,1)={temp}; end                  %#ok<AGROW> %Then store the control key in the control key structure
        end

        % PARSE CONTROL KEY TO GET PROGRAM ACTIONS REQUESTED
        if sum(strcmp(controlkey,'profile')),profiledisp=1;                 % look for the word "profile" in the control key list
        else profiledisp=0; end
        if sum(strcmp(controlkey,'pref')), a=1; end                         % "pref"
        yoffset=yoffset-sum(strcmp(controlkey,'down'))*linefeed;            % "down"
        yoffset=yoffset+sum(strcmp(controlkey,'up'))*linefeed;              % "up"
        if sum(strcmp(controlkey,'pop'))                                    % "pop" ("push" is handled at the end of this loop)
            q=qstore(:,bd);
            oldz=zstore(:,bd);
            bd=bd-1;
            qstore=qstore(:,1:bd);
            zstore=zstore(:,1:bd);
        end
        
        % PERFORM ACTIONS APPROPRIATE TO THE OPTIC SPECIFIED

        % lambda
        if strcmp(object,'lambda'), lambda=values;

        % mode
        elseif strcmp(object,'mode'), mode=values;
        
        %lens diameter set
        elseif strcmp(object,'opticdiam'), lensdiam=values;
        
        % q set
        elseif strcmp(object,'q'), q=values(1)+i*values(2);

        % index set
        elseif strcmp(object,'index')||strcmp(object,'nmedium') , n_med=values;

        % lens
        elseif strcmp(object,'lens'),
            if length(values)>1, lensdiam=values(2); end
            figure(trainfig); hold on;
            if ~isempty(oldz)                                               % when a previous optic was present in figure
                zdom=linspace(0,abs(zobj-oldz),npts);                       % domain over which to plot beam
                beamplot(q,zdom,oldz,yoffset,0,n_med,lambda);               % oldz is the zoffset (z-origin) for the beam plotting.
                plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
                [q,a]=prop(q,free(zobj-oldz),mode,a);                       % update the beam parameters to reach the new optic
            end
            lensplot([lensdiam values(1)/2],5,zobj,yoffset);                % draw the new optic
            xlabel('z'); ylabel('r');
            [q,a]=prop(q,lens(values(1)),mode,a);                           % uptdate the beam param's to propagate through the new optic


        % mirror
        elseif strcmp(object,'mirr'),   [q,a]=prop(q,mirr(values)*free(zobj-oldz),mode,a);
            if length(values)>1, lensdiam=values(2); end
            figure(trainfig); hold on;
            if ~isempty(oldz)
                zdom=linspace(0,abs(zobj-oldz),npts);
                beamplot(q,zdom,oldz,yoffset,0,n_med,lambda);
                plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
                plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
                [q,a]=prop(q,free(zobj-oldz),mode,a);
            end
            lensplot(lensdiam,0,zobj,yoffset);
            xlabel('z'); ylabel('r');
            [q,a]=prop(q,lens(values(1)),mode,a);


        % window
        elseif strcmp(object,'window')
            zdomwin=linspace(0,values(2),npts);
            if ~isempty(oldz)
                zdom=linspace(0,abs(zobj-oldz),npts);
                beamplot(q,zdom,oldz,yoffset,0,n_med,lambda);
                plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
                [q,a]=prop(q,free(zobj-oldz),mode,a);
            end
            [q,a]=prop(q,fdie(n_med,values(1)),mode,a);
            beamplot(q,zdomwin,zobj,yoffset,0,values(1),lambda);
            [q,a]=prop(q,fdie(values(1),n_med)*free(values(2)),mode,a);
            plot([zdomwin(1),zdomwin(end)]+zobj,[0,0]+yoffset,'k:');
            xlabel('z'); ylabel('r');
            plot([zobj zobj],[-lensdiam/2 lensdiam/2]+yoffset,'k-');
            plot([zobj+values(2) zobj+values(2)],[-lensdiam/2 lensdiam/2]+yoffset,'k-');
            plot([zobj zobj+values(2)],[lensdiam/2 lensdiam/2]+yoffset,'k-');
            plot([zobj zobj+values(2)],[-lensdiam/2 -lensdiam/2]+yoffset,'k-');
            zobj=zobj+values(2);

        % beamstop
        elseif strcmp(object,'beamstop')
            zdom=linspace(0,abs(zobj-oldz),npts);
            if ~isempty(oldz)
                beamplot(q,zdom,oldz,yoffset,0,n_med,lambda);
                plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
                [q,a]=prop(q,free(zobj-oldz),mode,a);
            end
            xlabel('z'); ylabel('r');
            plot([zobj zobj],[-lensdiam/2 lensdiam/2]+yoffset,'k-');

        % cavity
        elseif strcmp(object(1:end-1),'cavity')||strcmp(object,'cavity')
            if ~isempty(values)                                             % if no values submitted, use zcav, qrefl, qinside and qtrans from last cavity call
                zcav=zobj;
                cvals=[values;ctemp(length(values)+1:end)];                 % use default values for cavity parameters not specified
                L=round(cvals(1)/lambda)*lambda+cvals(2);                   % round cavity length to an integer number of wavelengths and add dL
                figure(trainfig); hold on;
                if ~isempty(oldz)
                    zdom=linspace(0,abs(zcav-oldz),npts);
                    beamplot(q,zdom,oldz,yoffset,0,n_med,lambda);
                    plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
                end
                lensplot(lensdiam,0,zcav,yoffset);
                lensplot(lensdiam,0,zcav+L,yoffset);
                plot([zcav, zcav+L],[0,0]+yoffset,'k:');
                xlabel('z'); ylabel('r');
                if ~isempty(oldz)
                    [q,a]=prop(q,free(zcav-oldz),mode,a);
                end
                [qrefl,qtrans,qinside,arefl,atrans,ainside]=...
                    cav(q,mode(1),mode(2),lambda,L,cvals(3),cvals(4),...
                    cvals(5),cvals(6),cvals(7),cvals(8),num_bounces,...
                    [cvals(9),cvals(10),cvals(11)],[cvals(12),cvals(13)],a);
                zin=HermiteGaussianE([mode(1),mode(2),...                   % field profile of input beam to the cavity
                    q,lambda,a],xdom);      
                pin=trapz(xdom,abs(zin).^2);
                uno=ones(size(qrefl));
            else
                zobj=zcav;                                                  % if no cavity parameters revert to the z of the last cavity results (qref, qtrans, etc. still in memory)
            end

            % cavityI
            if strcmp(object,'cavityI')
                qinputbeam=prop(q,sdie(cvals(3),cvals(9),cvals(10))*...
                    free(cvals(12))*fdie(cvals(11),cvals(9)),mode,a);
                q=sum(qinside.*ainside)./sum(ainside);
                a=sum(ainside);
                aa=ainside; qq=qinside;                                     % contains params for _each_ traversal in cavity. Used during plotting.
                zobjnew=zcav+cvals(12);
                
            % cavityR
            elseif strcmp(object,'cavityR')
                qinputbeam=q;
                a=sum(arefl);
                aa=arefl; qq=qrefl; zobjnew=zcav;
             
            % cavityI
            else q=sum(qtrans.*atrans)./sum(atrans);
               qinputbeam=prop(q,sdie(cvals(4),cvals(10),cvals(9))*...      % end mirror
                   free(cvals(13))*fdie(cvals(9),cvals(11))*...
                   free(L)*...                                              % cavity traversal
                   sdie(cvals(3),cvals(9),cvals(10))*free(cvals(12))*...    % input mirror
                   fdie(cvals(11),cvals(9)),mode,a);
                a=sum(atrans);
                aa=atrans; qq=qtrans; zobjnew=zcav+L+cvals(12)+cvals(13);
            end
                       
            if profiledisp                                                  % cavity profile display must be handled separately due to use of qq, etc.
                fignum=fignum+1;
                figure(fignum);
                z=sum(nan2zero(HermiteGaussianE([mode(1)*uno,mode(2)*uno,...
                    qq,lambda*uno,aa],xdom)),2);                           
                p=trapz(xdom,abs(z).^2);
                trunclogic=abs(xdom)<2.5*w_(qq(1),lambda); xdomtrunc=xdom(trunclogic);
                ztrunc=z(trunclogic); zintrunc=zin(trunclogic);
                ang=(unwrap(angle([zintrunc,ztrunc])));ang=ang-ang(round(size(ang,1)/2),1);
                ang(:,2)=ang(:,2)-floor(ang(round(size(ang,1)/2),2)/2/pi)*2*pi;                
                [hax,h1,h2]=plotyy(xdom,abs([z,zin]).^2,xdomtrunc,ang);  
                set(hax(2),'xaxislocation','top');  fighandle=get(hax(1),'parent');
                set(h1,'linewidth',2);  set(h2,'linestyle',':');
                axchil=get(hax(1),'children'); 
                set(hax(1),'children',axchil(end:-1:1),'color','none','box','off');
                set(hax(2),'color','w');
                figchil=get(fighandle,'children'); set(fighandle,'children',figchil(end:-1:1));
                xlabel('Radial position'); ylabel('Intensity (power/area)');
                hleg1=legend(hax(1),'Input Intens.','Intensity',2);
                hleg2=legend(hax(2),'Input Phase','Phase',1);
                origfont=get(hax(2),'fontname');
                set(get(hax(2),'Ylabel'),'String','Phase (radians)') 
                ypiticks(hax(2),-250:1:250);
                set(hleg1,'color','w'); set(hleg2,'color','w','fontname',origfont);                
                if length(num2str(zobj,'%0.2f'))>=9,
                    figtext(0.5,1.5,['z = ',num2str(zobjnew,'%0.2e')]);
                else
                    figtext(0.5,1.5,['z = ',num2str(zobjnew,'%0.2f')]);
                end
                figtext(0.5,1,['P/P_{in} = ',num2str(p/pin,'%0.2g')]);
                hold off;
            end
            figure(trainfig); hold on;
            zdom=linspace(0,abs(L),npts);
            h=beamplot(qinside(2:end),zdom,zcav,yoffset,0,n_med,lambda); hold on;
            cc=colormap; set(h,'color',cc(1,:));
            lensplot(lensdiam,0,zcav,yoffset);
            if ~isempty(oldz)
                plot([zdom(1),zdom(end)]+oldz,[0,0]+yoffset,'k:');
            end

            
            zobj=zobjnew;
            
        % optic not recognized    
        else error(['Optic in line ',num2str(linenum),...
            ' of the control file ''',controlfile,...
            ''' was not recognized. Check syntax.']);
        end
        
        % DISPLAY BEAM PROFILE (for all optics other than "cavity")
        if  profiledisp && ~(strcmp(object(1:end-1),'cavity')||strcmp(object,'cavity'))
            fignum=fignum+1; figure(fignum);
            z=nan2zero(HermiteGaussianE([mode(1),mode(2),q,lambda,a],xdom));
            p=trapz(xdom,abs(z).^2);
            trunclogic=abs(xdom)<2.5*w_(q(1),lambda); xdomtrunc=xdom(trunclogic);
            ztrunc=z(trunclogic);
            ang=(unwrap(angle(ztrunc)));    ang=ang-ang(round(size(ang,1)/2),1);
            ang=ang-floor(ang(round(size(ang,1)/2))/2/pi)*2*pi;
            [hax,h1,h2]=plotyy(xdom,abs(z).^2,xdomtrunc,ang);
            set(hax(2),'xaxislocation','top');  fighandle=get(hax(1),'parent');
            set(h1,'linewidth',2); set(h2,'linestyle',':');
            axchil=get(hax(1),'children');
            set(hax(1),'color','none','box','off');
            set(hax(2),'color','w');
            figchil=get(fighandle,'children'); set(fighandle,'children',figchil(end:-1:1));
            xlabel('Radial position'); ylabel('Intensity (power/area)');
            hleg1=legend(hax(1),'Intensity',2);
            hleg2=legend(hax(2),'Phase',1);
            origfont=get(hax(2),'fontname');
            set(get(hax(2),'Ylabel'),'String','Phase (radians)')
            ypiticks(hax(2),-250:1:250);
            set(hleg1,'color','w'); set(hleg2,'color','w','fontname',origfont);
            if length(num2str(zobj,'%0.2f'))>=9, 
                figtext(0.5,1.5,['z = ',num2str(zobj,'%0.2e')]);
            else
                figtext(0.5,1.5,['z = ',num2str(zobj,'%0.2f')]);
            end
            hold off;
        end
        
       % PARSE CONTROL KEY for program actions to be performed after beam propagation calculation.
       % Store (push) onto the stack the z-location in the beam.
       if sum(strcmp(controlkey,'push'))
           bd=bd+1;
           qstore(:,bd)=q;
           zstore(:,bd)=zobj;
       end
       
    end
    cline=fgetl(cf);
end

% Clean up
try fclose(cf); end
figure(trainfig);  hold off;