1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
% load useful functions;
useful_functions;
% some physical constants
hbar=1;
im_one=0+1i;
three_levels;
%two_levels;
Nfreq=length(modulation_freq);
% now we create Liouville indexes list
% we unwrap density matrix and assign all posible
% frequencies as well
% resulting vector should be Nlevels x Nlevels x length(modulation_freq)
N=length(modulation_freq)*Nlevels*Nlevels;
rhoLiouville=zeros(N,1);
rhoLiouville_w=rhoLiouville;
rhoLiouville_r=rhoLiouville;
rhoLiouville_c=rhoLiouville;
i=0;
for w=1:length(modulation_freq)
for r=1:Nlevels
for c=1:Nlevels
i+=1;
rhoLiouville(i)=0;
rhoLiouville_w(i)=w;
rhoLiouville_r(i)=r;
rhoLiouville_c(i)=c;
endfor
endfor
endfor
% Liouville operator matrix
L=zeros(N); % NxN matrix
Li=zeros(N); % NxN Liouville interactive
L0=zeros(N); % NxN Liouville from unperturbed hamiltonian
for p=1:N
for s=1:N
j=rhoLiouville_r(p);
k=rhoLiouville_c(p);
m=rhoLiouville_r(s);
n=rhoLiouville_c(s);
% we garanted to know frequency of final and initial rhoLiouville
w1i=rhoLiouville_w(p);
w2i=rhoLiouville_w(s);
w_jk=modulation_freq(w1i);
w_mn=modulation_freq(w2i);
% thus we know L matrix element frequency which we need to match
w_l=w_jk-w_mn;
% lets search this wrequency in the list of available frequencyes
% but since we not garanteed to find it lets assign temporary 0 to Liouville matrix element
L(p,s)=0;
decay_part=0;
Lt=0;
for w3i=1:Nfreq
w_iner=modulation_freq(w3i);
decay_part=0;
if ((w_iner == w_l))
%such frequency exist in the list of modulation frequencies
if ((w_iner == 0))
L0=H0(j,m)*kron_delta(k,n)-H0(n,k)*kron_delta(j,m);
decay_part=\
( decay_total(g_decay,k)/2 + decay_total(g_decay,j)/2 + g_dephasing(j,k) )* kron_delta(j,m)*kron_delta(k,n) \
- kron_delta(m,n)*kron_delta(j,k)*g_decay(m,j) ;
Lt=L0;
else
Li= ( dipole_elements(j,m)*kron_delta(k,n)-dipole_elements(n,k)*kron_delta(j,m) )*E_field(w3i);
Lt=Li;
endif
%Lt=-im_one/hbar*Lt*kron_delta(w_jk-w_iner,w_mn); % above if should be done only if kron_delta is not zero
% no need for above kron_delta since the same conditon checked in the outer if statement
Lt=-im_one/hbar*Lt - decay_part;
endif
endfor
if ((p == s))
Lt+=-im_one*w_jk;
endif
L(p,s)=Lt;
endfor
endfor
% now generally rhoL_dot=0=L*rhoL has infinite number of solutions
% since we always can resclale rho vector with arbitrary constant
% lets constrain our density matrix with some physical meaning
% sum(rho_ii)=1 (sum of all populations (with zero modulation frequency) scales to 1
% we will replace first row of Liouville operator with this condition
% thus rhoLiouville_dot(1)=1
for i=1:N
w2i=rhoLiouville_w(i);
m=rhoLiouville_r(i);
n=rhoLiouville_c(i);
w=modulation_freq(w2i);
if ((w==0) & (m==n))
L(1,i)=1;
else
L(1,i)=0;
endif
endfor
rhoLiouville_dot=rhoLiouville*0;
% sum(rho_ii)=1 (sum of all populations (with zero modulation frequency) scales to 1
% we will replace first row of Liouville operator with this condition
% thus rhoLiouville_dot(1)=1
rhoLiouville_dot(1)=1;
%solving for density matrix vector
rhoLiouville=L\rhoLiouville_dot;
rho_0=rhoOfFreq(rhoLiouville, 1, Nlevels, Nfreq)
rho_1=rhoOfFreq(rhoLiouville, 2, Nlevels, Nfreq)
rho_2=rhoOfFreq(rhoLiouville, 3, Nlevels, Nfreq)
%rho_l=rhoOfFreq(rhoLiouville, Nfreq, Nlevels, Nfreq)
%L*rhoLiouville
|