1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
1;
clear all;
t0 = clock (); % we will use this latter to calculate elapsed time
% load useful functions;
useful_functions;
% some physical constants
useful_constants;
% load atom energy levels and decay description
rb87_D1_line;
%four_levels_with_polarization;
%four_levels;
%three_levels;
%two_levels;
% load EM field description
field_description;
%Nfreq=length(modulation_freq);
%tune probe frequency
detuning_p=0;
N_detun_steps=100;
detuning_p_min=-1;
detuning_p_max=-detuning_p_min;
detuning_freq=zeros(1,N_detun_steps+1);
kappa_p =zeros(1,N_detun_steps+1);
kappa_m =zeros(1,N_detun_steps+1);
detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;
fprintf (stderr, "calculating atom properties\n");
fflush (stderr);
% calculate E_field independent properties of the atom
% to be used as sub matrix templates for Liouville operator matrix
[L0m, polarizability_m]=L0_and_polarization_submatrices( ...
Nlevels, ...
H0, g_decay, g_dephasing, dipole_elements ...
);
elapsed_time = etime (clock (), t0);
fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
fflush (stderr);
global atom_properties;
atom_properties.L0m=L0m;
atom_properties.polarizability_m=polarizability_m;
atom_properties.dipole_elements=dipole_elements;
%modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp];
E_field_drive =[0, 0 , Ed, 0 , Edc, 0, 0 ];
E_field_probe =[0, Ep, 0 , Epc, 0 , 0, 0 ];
E_field_zero =[0, 0 , 0 , 0 , 0 , 0, 0 ];
E_field.linear = E_field_zero + (0.00001+0.00001i)*E_field_probe + (0.00001+0.00001i)*E_field_drive;
E_field.right = E_field_zero + (1.00001+0.00001i)*E_field_probe + (1.00001+0.00001i)*E_field_drive;
E_field.left = E_field_zero + (0.00001+0.00001i)*E_field_probe + (0.00001+0.00001i)*E_field_drive;
fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
fflush (stderr);
for detuning_p_cntr=1:N_detun_steps+1;
wp0=w_pf1;
wd=w_pf1-w_hpf_ground;
detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1);
wp=wp0+detuning_p;
wm=wd-(wp-wd);
%modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp];
modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp];
freq_index=freq2index(wp,modulation_freq);
atom_field_problem.E_field = E_field;
atom_field_problem.modulation_freq = modulation_freq;
atom_field_problem.freq_index = freq_index;
problems_cell_array{detuning_p_cntr}=atom_field_problem;
%kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem);
detuning_freq(detuning_p_cntr)=detuning_p;
endfor
save 'problem_definition.mat' problems_cell_array atom_properties detuning_freq ;
fprintf (stderr, "now really hard calculations begin\n");
fflush (stderr);
% once we define all problems the main job is done here
%kappa_p=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
%kappa_p=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
save 'xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right ;
output_results;
elapsed_time = etime (clock (), t0)
% vim: ts=2:sw=2:fdm=indent
|