summaryrefslogtreecommitdiff
path: root/liouville.m
blob: 9200c93ecccc9ebb2c15af3de41f60bbbd4e3bdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
1;
clear all; 
t0 = clock (); % we will use this latter to calculate elapsed time


% load useful functions;
useful_functions;

% some physical constants
useful_constants;

% load atom energy levels and decay description
rb87_D1_line;
%four_levels_with_polarization;
%four_levels;
%three_levels;
%two_levels;

% load EM field description
field_description;

%Nfreq=length(modulation_freq);



%tune probe frequency
detuning_p=0;
N_detun_steps=100;
detuning_p_min=-1;
detuning_p_max=-detuning_p_min;
detuning_freq=zeros(1,N_detun_steps+1);
kappa_p      =zeros(1,N_detun_steps+1);
kappa_m      =zeros(1,N_detun_steps+1);
detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;

fprintf (stderr, "calculating atom properties\n");
fflush (stderr);
% calculate E_field independent properties of the atom
% to be used as sub matrix templates for Liouville operator matrix
[L0m, polarizability_m]=L0_and_polarization_submatrices( ...
		Nlevels, ...
		H0, g_decay, g_dephasing, dipole_elements ...
		);
elapsed_time = etime (clock (), t0);
fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
fflush (stderr);

global atom_properties;
atom_properties.L0m=L0m;
atom_properties.polarizability_m=polarizability_m;
atom_properties.dipole_elements=dipole_elements;

fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
fflush (stderr);
for detuning_p_cntr=1:N_detun_steps+1;
	wp0=w_pf1;
	wd=w_pf1-w_hpf_ground;
	detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1);
	wp=wp0+detuning_p;
	wm=wd-(wp-wd);
	%modulation_freq=[0,  wp, wd, wm,   -wp, -wd, -wm,  wp-wd, wd-wp];
	%E_field        =[0,  Ep, Ed, Em,   Epc, Edc, Emc,  0,     0    ];
	modulation_freq=[0,  wp, wd, -wp, -wd,  wp-wd, wd-wp];
	E_field.linear =[0,  0 , 0 ,  0  , 0  , 0,     0    ];
	E_field.right  =[0,  0 , Ed,  0  , Edc, 0,     0    ];
	E_field.left   =[0,  Ep, 0 ,  Epc, 0  , 0,     0    ];
	freq_index=freq2index(wp,modulation_freq);

	atom_field_problem.E_field          = E_field;
	atom_field_problem.modulation_freq  = modulation_freq;
	atom_field_problem.freq_index       = freq_index;

	problems_cell_array{detuning_p_cntr}=atom_field_problem;


	%kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem);
	detuning_freq(detuning_p_cntr)=detuning_p;
endfor

save 'problem_definition.mat' problems_cell_array atom_properties  detuning_freq ;
fprintf (stderr, "now really hard calculations begin\n");
fflush (stderr);
% once we define all problems the main job is done here
%kappa_p=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
%kappa_p=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);


figure(1); plot(detuning_freq, real(xi_left)); title("probe dispersion");
figure(2); plot(detuning_freq, imag(xi_left)); title("probe absorption");
%figure(3); plot(detuning_freq, real(kappa_m)); title("off resonant sideband dispersion");
%figure(4); plot(detuning_freq, imag(kappa_m)); title("off resonant absorption");

elapsed_time = etime (clock (), t0)

% vim: ts=2:sw=2:fdm=indent