1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
function [xi_linear, xi_left, xi_right, E_field_pos_freq, light_positive_freq]=susceptibility_problem(detuning_freq, Ep, psi_el, B_field, theta, phi)
% calculates transmission if light polarizations vs B field in the cell
% for given laser probe and B fields array
% Probe field defined by field strength (Ep) and ellipticity angle (pse_el)
% Magnetic field defined by magnitude (B_field) and angles theta and phi.
%
% Note: it is expensive to recalculate atom property for each given B_field strength
% so run as many calculation for constant magnetic field as possible
t0 = clock (); % we will use this latter to calculate elapsed time
% load useful functions;
useful_functions;
% some physical constants
useful_constants;
basis_transformation; % load subroutines
% load atom energy levels and decay description
rb87_D1_line;
B_str=num2str(B_field(1),"%g");
% the child file to which calculated matrices are written
cfile='L0m.cache/L0m_and_polarizability_calculated_for_B=';
cfile=strcat(cfile,B_str,'.mat');
need_update=true;
[s, err, msg] = stat (cfile);
if(err)
%file does not exist
need_update=true;
else
need_update=false;
endif;
if ( !need_update)
% matrices already calculated and up to date, all we need to load them
load(cfile);
else
% calculate E_field independent properties of the atom
% to be used as sub matrix templates for Liouville operator matrix
[L0m, polarizability_m]=L0_and_polarization_submatrices( ...
Nlevels, ...
H0, g_decay, g_dephasing, dipole_elements ...
);
save(cfile, 'L0m', 'polarizability_m');
endif
global atom_properties;
atom_properties.L0m=L0m;
atom_properties.polarizability_m=polarizability_m;
atom_properties.dipole_elements=dipole_elements;
%light_positive_freq = [wp];
E_field_drive = [0 ];
E_field_probe = [Ep ];
E_field_zero = [0 ];
E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive;
% we define light as linearly polarized
% where phi is angle between light polarization and axis x
% only sign of modulation frequency is important now
% we define actual frequency later on
[E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear);
% we add required ellipticity
E_field_lab_pos_freq.x*=exp(I*psi_el);
E_field_lab_pos_freq.y*=exp(-I*psi_el);
E_field_lab_pos_freq.z=E_field_zero;
E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq);
%wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1
wp0=w_pf1-w_hpf_exited+w_hpf_exited; %Fg=2 -> Fe=2
wp=wp0+detuning_freq;
light_positive_freq=[ wp];
% we calculate dc and negative frequencies as well as amplitudes
[modulation_freq, E_field] = ...
light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
light_positive_freq, E_field_pos_freq);
freq_index=freq2index(wp,modulation_freq);
atom_field_problem.E_field = E_field;
atom_field_problem.modulation_freq = modulation_freq;
atom_field_problem.freq_index = freq_index;
problems_cell_array=atom_field_problem;
[xi_linear, xi_left, xi_right]=susceptibility_steady_state_at_freq( problems_cell_array);
elapsed_time = etime (clock (), t0)
return
endfunction
% vim: ts=2:sw=2:fdm=indent
|