summaryrefslogtreecommitdiff
path: root/compass.m
blob: 5562df79451717f38f2ea879c9601538d2943af7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
1;
clear all; 
t0 = clock (); % we will use this latter to calculate elapsed time


% load useful functions;
useful_functions;

% some physical constants
useful_constants;

% load atom energy levels and decay description
rb87_D1_line;
%four_levels_with_polarization;
%four_levels;
%three_levels;
%two_levels;

% load EM field description
field_description;

%Nfreq=length(modulation_freq);



%tune probe frequency
detuning_p=0;
N_detun_steps=100;
detuning_p_min=-B_field*gmg*4; % span  +/-4 Zeeman splitting
detuning_p_max=-detuning_p_min;
detuning_freq=zeros(1,N_detun_steps+1);
kappa_p      =zeros(1,N_detun_steps+1);
kappa_m      =zeros(1,N_detun_steps+1);
detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;

fprintf (stderr, "calculating atom properties\n");
fflush (stderr);
% calculate E_field independent properties of the atom
% to be used as sub matrix templates for Liouville operator matrix
[L0m, polarizability_m]=L0_and_polarization_submatrices( ...
		Nlevels, ...
		H0, g_decay, g_dephasing, dipole_elements ...
		);
elapsed_time = etime (clock (), t0);
fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
fflush (stderr);

global atom_properties;
atom_properties.L0m=L0m;
atom_properties.polarizability_m=polarizability_m;
atom_properties.dipole_elements=dipole_elements;

%modulation_freq=[0,  wp, wd, -wp, -wd,  wp-wd, wd-wp];
E_field_drive   =[0,  0 , Ed,  0  , Edc, 0,     0    ];
E_field_probe   =[0,  Ep, 0 ,  Epc, 0  , 0,     0    ];
E_field_zero    =[0,  0 , 0 ,  0  , 0  , 0,     0    ];
E_field_lab.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe  + (1.00000+0.00000i)*E_field_drive; 
E_field_lab.right  = E_field_zero + (0.00000+0.00000i)*E_field_probe  + (0.00000+0.00000i)*E_field_drive;
E_field_lab.left   = E_field_zero + (0.00000+0.00000i)*E_field_probe  + (0.00000+0.00000i)*E_field_drive;

% phi is angle between linear polarization and axis x
phi=pi*2/8;
% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z')
theta=pi/2;

% we define light as linearly polarized 
E_field_lab.x=cos(phi)*E_field_lab.linear;
E_field_lab.y=sin(phi)*E_field_lab.linear;
E_field_lab.z=E_field_zero;

basis_transformation; % load subroutines
coord_transf_m =  lin2circ * oldlin2newlin(theta);
E_field.right  = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z;
E_field.left   = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z;
E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z;


fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
fflush (stderr);

detuning_freq=[-.075, -.05, -.025, 0 , .025, .05 , .075, .1];

problem_cntr=1;
N_angle_steps=15;
min_angle=0; max_angle=pi/2; 
phis=min_angle:((max_angle-min_angle)/N_angle_steps):max_angle;
for phi=phis;
	for detuning_p_cntr=1:length(detuning_freq);
		% we define light as linearly polarized 
		% where phi is angle between light polarization and axis x
		E_field_lab.x=cos(phi)*E_field_lab.linear;
		E_field_lab.y=sin(phi)*E_field_lab.linear;
		E_field_lab.z=E_field_zero;
		% now we transfor x,y,z, to x',y', and z' with respect to magnetic field az z' axis
		coord_transf_m =  lin2circ * oldlin2newlin(theta);
		E_field.right  = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z;
		E_field.left   = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z;
		E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z;

			wp0=w_pf1;
			wd=w_pf1-w_hpf_ground;
			detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1);
			detuning_p=detuning_freq(detuning_p_cntr);
			wp=wp0+detuning_p;
			wm=wd-(wp-wd);
			%modulation_freq=[0,  wp, wd, wm,   -wp, -wd, -wm,  wp-wd, wd-wp];
			modulation_freq=[0,  wp, wd, -wp,   -wd,  wp-wd, wd-wp];
			freq_index=freq2index(wp,modulation_freq);

			atom_field_problem.E_field          = E_field;
			atom_field_problem.modulation_freq  = modulation_freq;
			atom_field_problem.freq_index       = freq_index;

			problems_cell_array{problem_cntr}=atom_field_problem;
			problem_cntr++;


			%kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem);
	endfor
endfor

save 'problem_definition.mat' problems_cell_array atom_properties  detuning_freq  theta;
fprintf (stderr, "now really hard calculations begin\n");
fflush (stderr);
% once we define all problems the main job is done here
%kappa_p=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
%kappa_p=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
%[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array);
total_absorption_vs_detuning=parcellfun(2, @total_field_absorption, problems_cell_array);

%save 'xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right  ;
problem_cntr--;
save '/tmp/total_absorption_vs_detuning_and_angle_phi.mat' detuning_freq total_absorption_vs_detuning phis problem_cntr;

compass_output_results;

elapsed_time = etime (clock (), t0)

% vim: ts=2:sw=2:fdm=indent