diff options
Diffstat (limited to 'faraday/propagation_problem.m')
-rw-r--r-- | faraday/propagation_problem.m | 79 |
1 files changed, 0 insertions, 79 deletions
diff --git a/faraday/propagation_problem.m b/faraday/propagation_problem.m deleted file mode 100644 index 74b4471..0000000 --- a/faraday/propagation_problem.m +++ /dev/null @@ -1,79 +0,0 @@ -function [xi_linear, xi_left, xi_right]=propagation_problem(detuning_freq, Ep, psi_el, B_field, theta, phi) -% calculates transmission if light polarizations vs B field in the cell -% for given laser probe and B fields array -% Probe field defined by field strength (Ep) and ellipticity angle (pse_el) -% Magnetic field defined by magnitude (B_field) and angles theta and phi. -% -% Note: it is expensive to recalculate atom property for each given B_field strength -% so run as many calculation for constant magnetic field as possible - -t0 = clock (); % we will use this latter to calculate elapsed time - - -% load useful functions; -useful_functions; - -% some physical constants -useful_constants; - -basis_transformation; % load subroutines - - -% load atom energy levels and decay description -rb87_D1_line; - -% calculate E_field independent properties of the atom -% to be used as sub matrix templates for Liouville operator matrix -[L0m, polarizability_m]=L0_and_polarization_submatrices( ... -Nlevels, ... -H0, g_decay, g_dephasing, dipole_elements ... -); - -global atom_properties; -atom_properties.L0m=L0m; -atom_properties.polarizability_m=polarizability_m; -atom_properties.dipole_elements=dipole_elements; - -%light_positive_freq = [wp]; -E_field_drive = [0 ]; -E_field_probe = [Ep ]; -E_field_zero = [0 ]; -E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; - -% we define light as linearly polarized -% where phi is angle between light polarization and axis x -% only sign of modulation frequency is important now -% we define actual frequency later on -[E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); -% we add required ellipticity -E_field_lab_pos_freq.x*=exp(I*psi_el); -E_field_lab_pos_freq.y*=exp(-I*psi_el); -E_field_lab_pos_freq.z=E_field_zero; - -E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); - - -wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1 -wp=wp0+detuning_freq; -light_positive_freq=[ wp]; -% we calculate dc and negative frequencies as well as amplitudes -[modulation_freq, E_field] = ... - light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... - light_positive_freq, E_field_pos_freq); -freq_index=freq2index(wp,modulation_freq); - -atom_field_problem.E_field = E_field; -atom_field_problem.modulation_freq = modulation_freq; -atom_field_problem.freq_index = freq_index; - -problems_cell_array=atom_field_problem; - -[xi_linear, xi_left, xi_right]=susceptibility_steady_state_at_freq( problems_cell_array); - - -elapsed_time = etime (clock (), t0) -return - -endfunction - -% vim: ts=2:sw=2:fdm=indent |