summaryrefslogtreecommitdiff
path: root/faraday/propagation_problem.m
diff options
context:
space:
mode:
Diffstat (limited to 'faraday/propagation_problem.m')
-rw-r--r--faraday/propagation_problem.m79
1 files changed, 0 insertions, 79 deletions
diff --git a/faraday/propagation_problem.m b/faraday/propagation_problem.m
deleted file mode 100644
index 74b4471..0000000
--- a/faraday/propagation_problem.m
+++ /dev/null
@@ -1,79 +0,0 @@
-function [xi_linear, xi_left, xi_right]=propagation_problem(detuning_freq, Ep, psi_el, B_field, theta, phi)
-% calculates transmission if light polarizations vs B field in the cell
-% for given laser probe and B fields array
-% Probe field defined by field strength (Ep) and ellipticity angle (pse_el)
-% Magnetic field defined by magnitude (B_field) and angles theta and phi.
-%
-% Note: it is expensive to recalculate atom property for each given B_field strength
-% so run as many calculation for constant magnetic field as possible
-
-t0 = clock (); % we will use this latter to calculate elapsed time
-
-
-% load useful functions;
-useful_functions;
-
-% some physical constants
-useful_constants;
-
-basis_transformation; % load subroutines
-
-
-% load atom energy levels and decay description
-rb87_D1_line;
-
-% calculate E_field independent properties of the atom
-% to be used as sub matrix templates for Liouville operator matrix
-[L0m, polarizability_m]=L0_and_polarization_submatrices( ...
-Nlevels, ...
-H0, g_decay, g_dephasing, dipole_elements ...
-);
-
-global atom_properties;
-atom_properties.L0m=L0m;
-atom_properties.polarizability_m=polarizability_m;
-atom_properties.dipole_elements=dipole_elements;
-
-%light_positive_freq = [wp];
-E_field_drive = [0 ];
-E_field_probe = [Ep ];
-E_field_zero = [0 ];
-E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive;
-
-% we define light as linearly polarized
-% where phi is angle between light polarization and axis x
-% only sign of modulation frequency is important now
-% we define actual frequency later on
-[E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear);
-% we add required ellipticity
-E_field_lab_pos_freq.x*=exp(I*psi_el);
-E_field_lab_pos_freq.y*=exp(-I*psi_el);
-E_field_lab_pos_freq.z=E_field_zero;
-
-E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq);
-
-
-wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1
-wp=wp0+detuning_freq;
-light_positive_freq=[ wp];
-% we calculate dc and negative frequencies as well as amplitudes
-[modulation_freq, E_field] = ...
- light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
- light_positive_freq, E_field_pos_freq);
-freq_index=freq2index(wp,modulation_freq);
-
-atom_field_problem.E_field = E_field;
-atom_field_problem.modulation_freq = modulation_freq;
-atom_field_problem.freq_index = freq_index;
-
-problems_cell_array=atom_field_problem;
-
-[xi_linear, xi_left, xi_right]=susceptibility_steady_state_at_freq( problems_cell_array);
-
-
-elapsed_time = etime (clock (), t0)
-return
-
-endfunction
-
-% vim: ts=2:sw=2:fdm=indent