diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-11-15 22:26:55 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2020-09-21 16:29:52 -0400 |
commit | 2647d1be8b48f2200a6e958bc00fceda35ebfc86 (patch) | |
tree | 9fb0644a012857dfc140d2dde4ddd8045a647936 /faraday/psr_vs_power.m | |
parent | 4dc192f0e51c5b95c5f8f276e9b147a36bf82c54 (diff) | |
download | multi_mode_eit-2647d1be8b48f2200a6e958bc00fceda35ebfc86.tar.gz multi_mode_eit-2647d1be8b48f2200a6e958bc00fceda35ebfc86.zip |
copy psr to faraday
Diffstat (limited to 'faraday/psr_vs_power.m')
-rw-r--r-- | faraday/psr_vs_power.m | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/faraday/psr_vs_power.m b/faraday/psr_vs_power.m new file mode 100644 index 0000000..97b9fab --- /dev/null +++ b/faraday/psr_vs_power.m @@ -0,0 +1,147 @@ +1; +clear all; +t0 = clock (); % we will use this latter to calculate elapsed time + + +% load useful functions; +useful_functions; + +% some physical constants +useful_constants; + +basis_transformation; % load subroutines + +% load atom energy levels and decay description +rb87_D1_line; +%four_levels_with_polarization; +%four_levels; +%three_levels; +%two_levels; + +% load EM field description +field_description; + +%Nfreq=length(modulation_freq); + + + +%tune probe frequency +detuning_p=0; +N_detun_steps=100; +%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting +detuning_p_min=-200.0; +detuning_p_max=-detuning_p_min; +detuning_p_max=1000; +detuning_freq=zeros(1,N_detun_steps+1); +kappa_p =zeros(1,N_detun_steps+1); +kappa_m =zeros(1,N_detun_steps+1); +detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; + +fprintf (stderr, "calculating atom properties\n"); +fflush (stderr); +pfile='rb87_D1_line.m'; % the parent file from which L0_and_polarization_submatrices calculated +cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices writen +[s, err, msg] = stat (pfile); +if(err) + %file does not exist + disp('Big troubles are coming, no file to define Hamiltonian)'); + msg=cstrcat('File: ', pfile, ' is missing...exiting'); + disp(msg); + return; +else + pfile_mtime=s.mtime; +endif +[s, err, msg] = stat (cfile); +if(err) + %file does not exist + cfile_mtime=0; +else + cfile_mtime=s.mtime; +endif; +if ( cfile_mtime >= pfile_mtime) + % matrices already calculated and up to date, all we need to load them + load(cfile); + else + % calculate E_field independent properties of the atom + % to be used as sub matrix templates for Liouville operator matrix + [L0m, polarizability_m]=L0_and_polarization_submatrices( ... + Nlevels, ... + H0, g_decay, g_dephasing, dipole_elements ... + ); + save(cfile, 'L0m', 'polarizability_m'); + endif +elapsed_time = etime (clock (), t0); +fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); +fflush (stderr); + +global atom_properties; +atom_properties.L0m=L0m; +atom_properties.polarizability_m=polarizability_m; +atom_properties.dipole_elements=dipole_elements; + + +% phi is angle between linear polarization and axis x +phi=pi*2/8; +% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') +theta=0; +% psi_el is the ellipticity parameter (phase difference between left and right polarization) +psi_el=-5/180*pi; + + + +fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); +fflush (stderr); +wp=w_pf1-w_sf2 +80; %Fg=2 -> Fe=1 +80 MHz +Ep=logspace(-2,1,100); +for cntr=1:length(Ep); + + %light_positive_freq = [wp]; + E_field_drive = [0 ]; + E_field_probe = [Ep(cntr) ]; + E_field_zero = [0 ]; + E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; + + % we define light as linearly polarized + % where phi is angle between light polarization and axis x + % only sign of modulation frequency is important now + % we define actual frequency later on + [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); + % we add required ellipticity + E_field_lab_pos_freq.x*=exp(I*psi_el); + E_field_lab_pos_freq.y*=exp(-I*psi_el); + E_field_lab_pos_freq.z=E_field_zero; + + E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); + + + light_positive_freq=[ wp]; + % we calculate dc and negative frequiencies as well as amplitudes + [modulation_freq, E_field] = ... + light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... + light_positive_freq, E_field_pos_freq); + freq_index=freq2index(wp,modulation_freq); + + atom_field_problem.E_field = E_field; + atom_field_problem.modulation_freq = modulation_freq; + atom_field_problem.freq_index = freq_index; + + problems_cell_array{cntr}=atom_field_problem; + +endfor + +save '/tmp/problem_definition.mat' problems_cell_array atom_properties Ep ; +fprintf (stderr, "now really hard calculations begin\n"); +fflush (stderr); +% once we define all problems the main job is done here +[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); +%[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); + +%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning; +save '/tmp/xi_vs_power.mat' Ep xi_linear xi_left xi_right E_field_pos_freq wp; + +%output_psr_results_vs_detuning; +output_psr_results_vs_power; + +elapsed_time = etime (clock (), t0) + +% vim: ts=2:sw=2:fdm=indent |