diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-11-16 16:33:49 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2020-09-21 16:29:52 -0400 |
commit | f25ef4ac36b03b1c4e26ef0aa14905734c2db9fe (patch) | |
tree | 8fd3a754993193f81488b72136bdf2f086584ceb /faraday/propagation_problem.m | |
parent | b06d36c8981fb5a3859099b84e1ce442b5364b00 (diff) | |
download | multi_mode_eit-f25ef4ac36b03b1c4e26ef0aa14905734c2db9fe.tar.gz multi_mode_eit-f25ef4ac36b03b1c4e26ef0aa14905734c2db9fe.zip |
clean up of unused files and link to the master copy
Diffstat (limited to 'faraday/propagation_problem.m')
-rw-r--r-- | faraday/propagation_problem.m | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/faraday/propagation_problem.m b/faraday/propagation_problem.m new file mode 100644 index 0000000..74b4471 --- /dev/null +++ b/faraday/propagation_problem.m @@ -0,0 +1,79 @@ +function [xi_linear, xi_left, xi_right]=propagation_problem(detuning_freq, Ep, psi_el, B_field, theta, phi) +% calculates transmission if light polarizations vs B field in the cell +% for given laser probe and B fields array +% Probe field defined by field strength (Ep) and ellipticity angle (pse_el) +% Magnetic field defined by magnitude (B_field) and angles theta and phi. +% +% Note: it is expensive to recalculate atom property for each given B_field strength +% so run as many calculation for constant magnetic field as possible + +t0 = clock (); % we will use this latter to calculate elapsed time + + +% load useful functions; +useful_functions; + +% some physical constants +useful_constants; + +basis_transformation; % load subroutines + + +% load atom energy levels and decay description +rb87_D1_line; + +% calculate E_field independent properties of the atom +% to be used as sub matrix templates for Liouville operator matrix +[L0m, polarizability_m]=L0_and_polarization_submatrices( ... +Nlevels, ... +H0, g_decay, g_dephasing, dipole_elements ... +); + +global atom_properties; +atom_properties.L0m=L0m; +atom_properties.polarizability_m=polarizability_m; +atom_properties.dipole_elements=dipole_elements; + +%light_positive_freq = [wp]; +E_field_drive = [0 ]; +E_field_probe = [Ep ]; +E_field_zero = [0 ]; +E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; + +% we define light as linearly polarized +% where phi is angle between light polarization and axis x +% only sign of modulation frequency is important now +% we define actual frequency later on +[E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); +% we add required ellipticity +E_field_lab_pos_freq.x*=exp(I*psi_el); +E_field_lab_pos_freq.y*=exp(-I*psi_el); +E_field_lab_pos_freq.z=E_field_zero; + +E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); + + +wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1 +wp=wp0+detuning_freq; +light_positive_freq=[ wp]; +% we calculate dc and negative frequencies as well as amplitudes +[modulation_freq, E_field] = ... + light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... + light_positive_freq, E_field_pos_freq); +freq_index=freq2index(wp,modulation_freq); + +atom_field_problem.E_field = E_field; +atom_field_problem.modulation_freq = modulation_freq; +atom_field_problem.freq_index = freq_index; + +problems_cell_array=atom_field_problem; + +[xi_linear, xi_left, xi_right]=susceptibility_steady_state_at_freq( problems_cell_array); + + +elapsed_time = etime (clock (), t0) +return + +endfunction + +% vim: ts=2:sw=2:fdm=indent |