diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2010-01-21 20:06:08 +0000 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2010-01-21 20:06:08 +0000 |
commit | 048813c8b319c77deb742c348645e9853fa706f5 (patch) | |
tree | e38cd2e5aaa54b27fe79ee4b8e05fd569a0140a7 | |
parent | 7ab837a5ba1edbd8d544e1bb6f5857ee0146d754 (diff) | |
download | multi_mode_eit-048813c8b319c77deb742c348645e9853fa706f5.tar.gz multi_mode_eit-048813c8b319c77deb742c348645e9853fa706f5.zip |
proper use of rotation transformation for light polarizations
-rw-r--r-- | compass.m | 41 | ||||
-rw-r--r-- | liouville.m | 39 |
2 files changed, 42 insertions, 38 deletions
@@ -12,10 +12,10 @@ useful_constants; basis_transformation; % load subroutines % load atom energy levels and decay description -%rb87_D1_line; +rb87_D1_line; %four_levels_with_polarization; %four_levels; -three_levels; +%three_levels; %two_levels; % load EM field description @@ -55,19 +55,20 @@ atom_properties.dipole_elements=dipole_elements; Ed=.1; Edc=conj(Ed); Ep=0.8*Ed; Epc=conj(Ep); -%modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; -E_field_drive =[0, 0 , Ed, 0 , Edc, 0, 0 ]; -E_field_probe =[0, Ep, 0 , Epc, 0 , 0, 0 ]; -E_field_zero =[0, 0 , 0 , 0 , 0 , 0, 0 ]; -E_field_lab.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; -E_field_lab.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; -E_field_lab.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; +%light_positive_freq = [wp, wd, wp-wd]; +E_field_drive = [0 , Ed, 0 ]; +E_field_probe = [Ep, 0 , 0 ]; +E_field_zero = [0 , 0 , 0 ]; +E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; +%E_field_lab_pos_freq.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; +%E_field_lab_pos_freq.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; + % phi is angle between linear polarization and axis x phi=pi*2/8; % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') +theta=0/4; theta=pi/2; -theta=pi/4; @@ -89,17 +90,21 @@ for phi=phis; detuning_p=detuning_freq(detuning_p_cntr); wp=wp0+detuning_p; wm=wd-(wp-wd); - %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; - modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; + + light_positive_freq=[ wp, wd, wp-wd]; % we define light as linearly polarized % where phi is angle between light polarization and axis x - [E_field_lab.x, E_field_lab.y] = rotXpolarization(phi, E_field_lab.linear, modulation_freq); - E_field_lab.z=E_field_zero; + [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); + E_field_lab_pos_freq.z=E_field_zero; + % now we transfor x,y,z, to x',y', and z' with respect to magnetic field az z' axis - coord_transf_m = lin2circ * oldlin2newlin(theta); - E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; - E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; - E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; + E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); + + % we calculate dc and negative frequiencies as well as amplitudes + [modulation_freq, E_field] = ... + light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... + light_positive_freq, E_field_pos_freq); + freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; diff --git a/liouville.m b/liouville.m index 10ccc95..53a84ef 100644 --- a/liouville.m +++ b/liouville.m @@ -12,10 +12,10 @@ useful_constants; basis_transformation; % load subroutines % load atom energy levels and decay description -%rb87_D1_line; +rb87_D1_line; %four_levels_with_polarization; %four_levels; -three_levels; +%three_levels; %two_levels; % load EM field description @@ -27,7 +27,7 @@ field_description; %tune probe frequency detuning_p=0; -N_detun_steps=200; +N_detun_steps=100; %detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting detuning_p_min=-0.1; detuning_p_max=-detuning_p_min; @@ -53,32 +53,28 @@ atom_properties.L0m=L0m; atom_properties.polarizability_m=polarizability_m; atom_properties.dipole_elements=dipole_elements; -%modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; -E_field_drive =[0, 0 , Ed, 0 , Edc, 0, 0 ]; -E_field_probe =[0, Ep, 0 , Epc, 0 , 0, 0 ]; -E_field_zero =[0, 0 , 0 , 0 , 0 , 0, 0 ]; -E_field_lab.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; -E_field_lab.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; -E_field_lab.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; +%light_positive_freq = [wp, wd, wp-wd]; +E_field_drive = [0 , Ed, 0 ]; +E_field_probe = [Ep, 0 , 0 ]; +E_field_zero = [0 , 0 , 0 ]; +E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; +%E_field_lab_pos_freq.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; +%E_field_lab_pos_freq.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; % phi is angle between linear polarization and axis x phi=pi*2/8; % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') -theta=0/2; +theta=pi/2; phi=pi/4; % we define light as linearly polarized % where phi is angle between light polarization and axis x % only sign of modulation frequency is important now % we define actual frequency later on - modulation_freq=[0, 1, 1, -1, -1, 1, -1]; - [E_field_lab.x, E_field_lab.y] = rotXpolarization(phi, E_field_lab.linear, modulation_freq); -E_field_lab.z=E_field_zero; + [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); + E_field_lab_pos_freq.z=E_field_zero; -coord_transf_m = lin2circ * oldlin2newlin(theta); -E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; -E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; -E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; + E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); @@ -89,8 +85,11 @@ for detuning_p_cntr=1:N_detun_steps+1; detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); wp=wp0+detuning_p; wm=wd-(wp-wd); - %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; - modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; + light_positive_freq=[ wp, wd, wp-wd]; + % we calculate dc and negative frequiencies as well as amplitudes + [modulation_freq, E_field] = ... + light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... + light_positive_freq, E_field_pos_freq); freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; |