1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
%Permute all possible lens combinations out of set of lenses
% keep this list short - computation time goes as factorial of lens set size
lens_set = [.05, 0.025, 0.50 ]; %Given lenses of unique focal lengths
%lens_set = [0.025, 0.035, 0.05, .075, 0.10, .125, 0.150, 0.20, 0.25, 0.300, 0.50, 0.75, -.05, -0.10 ]; % Thorlabs lenses set
%lens_set = [0.025, 0.05, .075, 0.10, .125, 0.20, 0.25, 0.300, 0.50, 0.75, 1.00 ]; % Available in the lab
lens_permutations = pick(lens_set,3,'or'); %3 lens solutions
%Pre-defined Constants
lambda= .795e-6 ; %Wavelength of beam
extra_space = 0.05; % to allow lens holder placement
Ltot=0.63+0.055+0.09 ; %Length of optical system
%% Fiber output parameters
r0= 1.0E+100 ; %Initial radius of curvature
w0= 5.65e-4 ; %Initial waist
x0= 0 ; %Starting position of beam
q0 = wr2q(w0, r0, lambda);
%% this will be used to propagate beam in free space
dummy_lens.abcd = abcd_lens(inf);
dummy_lens.x = 10000;
dummy_optic = {dummy_lens};
%% Cavity parameters calculated by cavity_design_demo.m
Lcav = 0.8025;
zc = 0.5062; % with respect to front mirror
% cavity waist
wc=2.6732e-04;
rc=Inf;
% however this inside of the cavity so we need to propagate it to the front mirror
dist = Lcav - zc;
% calculate beam parameter at the front mirror
% watch out that indeed there is only free space
qf = gbeam_propagation ( dist, wr2q(wc, rc, lambda), 0, dummy_optic );
%% some parameters for visualizer and solution search
lens_width = .03; %Lens width
show_lens_width = 1; %Set to 1 to enable display of lens width on solution propagation plot
show_lens_position = 1; %Set to 1 to enable display of position of center of lens on solution propagation plot
display_prop = [show_lens_width, show_lens_position];
n_truncate = 3; %number of digits in truncated solution
n_visualizations = 5; %number of best solutions to visualize
n_hist = 1000; %number of sample points in histogram
stability_max = 1; %max stability (y-axis) shown on energy vs. stability graph
self_flag = 0; %Set to 1 to use Self's Gaussian beam propagation, otherwise set to 0
%End list
%q0=wr2q(w0,r0,lambda); %Calculate intial q
%qf=wr2q(wf,rf,lambda); %Calculate final q
%Mode match
[ possible_lens_placement, initial_lens_placement, possible_lens_set, possible_sample_energy] = mode_match( q0, qf, Ltot, lambda, lens_permutations, lens_width, self_flag );
%Remove similar solutions
[ possible_lens_placement_uniq, possible_lens_placement, possible_sample_energy, possible_lens_set, index ] = remove_similar_soln( possible_sample_energy, possible_lens_placement, possible_lens_set, n_truncate );
%Visualize solutions
pick_visualization( possible_sample_energy, possible_lens_placement_uniq, possible_lens_placement, possible_lens_set, index, n_visualizations, q0, qf, Ltot, lambda, lens_width, display_prop );
%Plot energy vs. stability for each solution
[stability] = stability_visualization( possible_lens_placement_uniq, q0, qf, Ltot, possible_lens_placement, possible_lens_set, lambda, n_visualizations, n_hist, index, self_flag );
energy_vs_stability( possible_sample_energy, stability, index, stability_max)
|