aboutsummaryrefslogtreecommitdiff
path: root/gbeam_propagation.m
blob: 524d4ae38fa16fe219ad536b0ac930a0c3da6ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function q = gbeam_propagation(x_pos, q_in, x_in,  optics_elements)
% calculate the 'q' parameter of the Gaussian beam propagating through optical
% 'optics_elements' array along 'x' axis at points 'x_pos'
%  takes the gaussian beam with initial q_in parameter at x_in
% x_pos must be monotonic!

	q=0*x_pos; % q vector initialization

	if any(x_pos >= x_in)
		% Forward propagation to the right of x_in
		q(x_pos >= x_in) = gbeam_propagation_froward_only(x_pos(x_pos>=x_in), q_in, x_in,  optics_elements);
	end

	if any(x_pos < x_in)
		% Backward propagation part the left of x_in
		% do it as forward propagation of the reverse beam
		x_backw=x_pos(x_pos<x_in);
		% now let's reflect the beam with respect to x_in
		% and solve the problem as forward propagating.
		x_backw=x_in-x_backw;
		% now we need to flip x positions
		x_backw=fliplr(x_backw);
		% reflected beam means inverted radius of curvature or real part of q parameter
		q_in_backw = -real(q_in) + 1i*imag(q_in);
		optics_elements_backw=optics_elements;
		% we need to flip all optics elements around x_in as well
		for i=1:length(optics_elements_backw)
			optics_elements_backw{i}.x=x_in-optics_elements_backw{i}.x;
		end

		q_backw = gbeam_propagation_froward_only(x_backw, q_in_backw, 0,  optics_elements_backw);
		% now we need to flip the radius of curvature again
		q_backw =  -real(q_backw) + 1i*imag(q_backw);

		% final assignment of the backwards propagating beam 
		% which we need to flip back
		q(x_pos<x_in) = fliplr(q_backw);
	end

endfunction