aboutsummaryrefslogtreecommitdiff
path: root/abcd.m
diff options
context:
space:
mode:
Diffstat (limited to 'abcd.m')
-rw-r--r--abcd.m85
1 files changed, 75 insertions, 10 deletions
diff --git a/abcd.m b/abcd.m
index 8404314..7e02200 100644
--- a/abcd.m
+++ b/abcd.m
@@ -10,23 +10,30 @@ function qnew=q_afteer_element(q_old,abcd)
qnew=(q_old*abcd(1,1)+abcd(1,2))/(q_old*abcd(2,1)+abcd(2,2));
endfunction
-function q = prop(x_pos, q_in, elements)
+function q = prop_forward(x_pos, q_in, x_in, optics_elements)
% calculate the 'q' parameter of the Gaussian beam propagating through optical
-% 'elements' array along 'x' axis at points 'x_pos'
-% takes the gaussian beam with initial q_in parameter at x_pos(1)
+% 'optics_elements' array along 'x' axis at points 'x_pos'
+% takes the gaussian beam with initial q_in parameter at x_in
+%
+% all x_pos must be to the right of x_in
+ if (any(x_pos < x_in))
+ error('all beam positions must be to the right of the x_in');
+ end
+ optics_elements=arrange_optics_along_x(optics_elements);
+
+ % Forward propagation to the right of x_in
Np=length(x_pos); % number of 'x' points
- Nel=length(elements);
+ Nel=length(optics_elements) ;
q=0*x_pos; % q vector initialization
- q(1)=q_in;
q_last_calc=q_in;
- x_last_calc=x_pos(1); % the furthest calculated point
- for i=2:Np
+ x_last_calc=x_in; % the furthest calculated point
+ for i=1:Np
x_pos_i=x_pos(i);
- for k=1:length(elements)
- % iterates through optical elements to make sure
+ for k=1:length(optics_elements)
+ % iterates through optics_elements to make sure
% we take them in account for the beam propagation
- el=elements{k};
+ el=optics_elements{k};
if ( (x_last_calc < el.x) && (el.x <= x_pos_i) )
abcd=abcd_free_space(el.x-x_last_calc);
q_last_calc=q_afteer_element(q_last_calc,abcd);
@@ -41,6 +48,64 @@ function q = prop(x_pos, q_in, elements)
endif
q(i)=q_last_calc;
endfor
+end
+
+function optics = arrange_optics_along_x(optics_unsorted)
+% arrange optics in proper order so it x position increases with number
+ N=length(optics_unsorted);
+
+ % assign x positions
+ x=zeros(1,N);
+ for i=1:N
+ x(i)=optics_unsorted{i}.x;
+ end
+
+ [xs,indx]=sort(x);
+ cntr=1;
+ for i=indx
+ optics{cntr}=optics_unsorted{i};
+ cntr=cntr+1;
+ end
+end
+
+function q = prop(x_pos, q_in, x_in, optics_elements)
+% calculate the 'q' parameter of the Gaussian beam propagating through optical
+% 'optics_elements' array along 'x' axis at points 'x_pos'
+% takes the gaussian beam with initial q_in parameter at x_in
+
+ q=0*x_pos; % q vector initialization
+
+ if any(x_pos >= x_in)
+ % Forward propagation to the right of x_in
+ q(x_pos >= x_in) = prop_forward(x_pos(x_pos>=x_in), q_in, x_in, optics_elements);
+ end
+
+ if any(x_pos < x_in)
+ % Backward propagation part the left of x_in
+ % do it as forward propagation of the reverse beam
+ x_backw=x_pos(x_pos<x_in);
+ % now let's reflect the beam with respect to x_in
+ % and solve the problem as forward propagating.
+ x_backw=x_in-x_backw;
+ % now we need to flip x positions
+ x_backw=fliplr(x_backw);
+ % reflected beam means inverted radius of curvature or real part of q parameter
+ q_in_backw = -real(q_in) + 1i*imag(q_in);
+ optics_elements_backw=optics_elements;
+ % we need to flip all optics elements around x_in as well
+ for i=1:length(optics_elements_backw)
+ optics_elements_backw{i}.x=x_in-optics_elements_backw{i}.x;
+ end
+
+ q_backw = prop_forward(x_backw, q_in_backw, 0, optics_elements_backw);
+ % now we need to flip the radius of curvature again
+ q_backw = -real(q_backw) + 1i*imag(q_backw);
+
+ % final assignment of the backwards propagating beam
+ % which we need to flip back
+ q(x_pos<x_in) = fliplr(q_backw);
+ end
+
endfunction
function waste =q2waste(q, lambda)