diff options
author | Matt Argao <mcargao@email.wm.edu> | 2013-03-31 22:35:49 -0400 |
---|---|---|
committer | Matt Argao <mcargao@email.wm.edu> | 2013-03-31 22:35:49 -0400 |
commit | 4d08c162d5ce4ac8b7eaeb9d985bfef62c886e99 (patch) | |
tree | 45733367770ddc4585faa09976b403a858d5d8e5 /solution_visualization.m | |
parent | 2f3d161985ae2e57ed966981e58eb117d3a49c71 (diff) | |
download | mode_match-3.0.tar.gz mode_match-3.0.zip |
Added descriptions to each function.v3.0
Diffstat (limited to 'solution_visualization.m')
-rw-r--r-- | solution_visualization.m | 64 |
1 files changed, 56 insertions, 8 deletions
diff --git a/solution_visualization.m b/solution_visualization.m index 2cf8ce7..2b4158c 100644 --- a/solution_visualization.m +++ b/solution_visualization.m @@ -1,11 +1,19 @@ -function [waste_at_the_end, radius_at_the_end] = solution_visualization(q0,x0, qf, xf, optics, lambda) +function [waste_at_the_end, radius_at_the_end, waist_at_lens_position] = solution_visualization(q0,x0, qf, xf, optics, lambda, lens_width, display_prop) %Propagates beam with given input parameters % Forward propagation and backward propagation are taken in order to % visualize reasonable solutions. +%Array of lens positions +n_lens = size(optics,2); + +for i = 1:n_lens + lens_position(i) = optics{i}.x; +end + x=linspace(x0,xf,1000); % we will calculate beam profile between x0 and xf + %Forward propagation -q_forward=gbeam_propagation(x,q0,x0,optics); +q_forward =gbeam_propagation(x,q0,x0,optics); [w_forward,r_forward]=q2wr(q_forward, lambda); %Backward propagation @@ -13,13 +21,53 @@ q_backward=gbeam_propagation(x,qf,xf,optics); [w_backward,r_backward]=q2wr(q_backward, lambda); %Plot beam profile -plot ( ... - x,w_forward, '-r', ... - x,-w_forward, '-r', ... - x, w_backward, '-.b', ... - x, -w_backward, '-.b') -legend({'forward propagation', '', 'backward propagation', ''}) +subplot(2,1,1); plot ( ... + x,w_forward, '-r', ... + x,-w_forward, '-r', ... + x, w_backward, '-.b', ... + x, -w_backward, '-.b') +legend({'forward propagation', '', 'backward propagation', ''}) + +%Find q and waist at lens positions +waist_at_lens_position = zeros(1,n_lens); +q_lens = zeros(1,n_lens); + +for i = 1:n_lens + q_lens(i) = gbeam_propagation(lens_position(i),q0,x0,optics); +end + + +for i = 1:n_lens + waist_at_lens_position(i) = q2wr(q_lens(i), lambda); +end + + +%Plot lenses +color = ['m' 'g' 'c']; + +if display_prop(1) == 1 + for i = 1:n_lens + half_width = lens_width/2; + corrected_lens_position = lens_position(i)-half_width; + corrected_waist = waist_at_lens_position(i)*2; + rectangle('Position', [corrected_lens_position,-waist_at_lens_position(i),lens_width,corrected_waist], 'EdgeColor', color(i), 'LineWidth',1); + end +end + +if display_prop(2) == 1 + for i = 1:n_lens + x1 = optics{i}.x; + y1 = waist_at_lens_position(i); + x2 = x1; + y2 = -waist_at_lens_position(i); + + line([x1;x2], [y1;y2], 'LineWidth', 3, 'Color', color(i)); + end +end + [waste_at_the_end,radius_at_the_end] = q2wr(q_forward(end), lambda); + + |