aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatt Argao <mcargao@email.wm.edu>2012-11-06 17:33:27 -0500
committerMatt Argao <mcargao@email.wm.edu>2012-11-06 17:33:27 -0500
commit9967bdc8f5c9ab51ea69cacdf694a3ddc5fd233e (patch)
tree420d433d2b43301d8d01f33c414bf3f08dcff498
parent6a755b5f70bc4960e818de260b8b5d057295eb5f (diff)
downloadmode_match-9967bdc8f5c9ab51ea69cacdf694a3ddc5fd233e.tar.gz
mode_match-9967bdc8f5c9ab51ea69cacdf694a3ddc5fd233e.zip
Assorted code cleanup, addition of mode_match.m
Refinement of fitness function
-rw-r--r--fitness.m30
-rw-r--r--fitter_check.m78
-rw-r--r--mode_match.m50
3 files changed, 80 insertions, 78 deletions
diff --git a/fitness.m b/fitness.m
index 2cb2278..00cbada 100644
--- a/fitness.m
+++ b/fitness.m
@@ -1,17 +1,21 @@
-function [Energy, Waist_backward, Waist_forward, Penalty] = fitness( q_0, q_final, x_final, optics_positions, optics_focal_length, lambda )
+function [Energy, Waist, Penalty] = fitness( q_0, q_final, x_final, optics_positions, optics_focal_length, lambda )
%FITNESS Summary of this function goes here
% Detailed explanation goes here
x0 = 0;
- x_forward=linspace(0,x_final,15);
- q_forward = gbeam_propagation(x_forward,q_0,x0,optics_placer(optics_positions, optics_focal_length));
- [Waist_forward, Radius_forward] = q2wr(q_forward, lambda);
-
- x_backward=(x_forward);
- q_backward = gbeam_propagation(x_backward,q_final,x_final,optics_placer(optics_positions, optics_focal_length));
- [Waist_backward, Radius_backward] = q2wr(q_backward, lambda);
-
- Energy = sum((Waist_backward - Waist_forward).^2)/(mean(Waist_backward))^2;
-
+ Np=20;
+ x=linspace(x0,x_final,Np);
+ q_f_trial_forward = gbeam_propagation(x,q_0,x0,optics_placer(optics_positions, optics_focal_length));
+ [Waist_trial_forward, Radius_trial_forward] = q2wr(q_f_trial_forward, lambda);
+ q_f_trial_backward = gbeam_propagation(x,q_final,x_final,optics_placer(optics_positions, optics_focal_length));
+ [Waist_trial_backward, Radius_trial_backward] = q2wr(q_f_trial_backward, lambda);
+
+ Energy = 0;
+ Penalty_waist_mismatch = sum(abs((Waist_trial_forward-Waist_trial_backward)./min(Waist_trial_forward, Waist_trial_backward)))/Np;
+ Penalty_waist_mismatch = 0*Penalty_waist_mismatch + 1e9*sum(abs((Waist_trial_forward-Waist_trial_backward)))/Np;
+ Penalty_radius_mismatch = sum(abs((Radius_trial_forward-Radius_trial_backward)./max(Radius_trial_forward, Radius_trial_backward)))/Np;
+
+ Energy = 0*Penalty_radius_mismatch + Penalty_waist_mismatch;
+
% penalty calculation
% do not put lenses too close to each other and end positions
lens_size=0.03;
@@ -44,8 +48,8 @@ function [Energy, Waist_backward, Waist_forward, Penalty] = fitness( q_0, q_fina
d = cat(2, d_from_start, d_from_end);
coef = 1e-2;
-
- penalty_lenses_outside_optical_path = coef * sum(1 + tanh(10*d));
+ distance_scaling=100;
+ penalty_lenses_outside_optical_path = coef * sum(1 + tanh(distance_scaling*d));
Energy = Energy + penalty_lenses_outside_optical_path;
diff --git a/fitter_check.m b/fitter_check.m
index 37ff237..20a7e9d 100644
--- a/fitter_check.m
+++ b/fitter_check.m
@@ -1,9 +1,6 @@
lens_set = [.075, .203, .05, .03];
lens_set = [.075,.203];
lens_permutations = pick(lens_set,3,'or');
-n_perms = size(lens_permutations,1);
-n_shuffles=20; %number of random placements of lenses
-
% ##########################################
% Sample Solution
@@ -12,16 +9,6 @@ Ltot= 1.010675025828971 ;
r0= 1.0E+100 ;
w0= 2.563E-5 ;
x0= 0 ;
-% focal_length1 = .075;
-% focal_length2 = .075;
-% focal_length3 = .203;
-%
-% lns1.abcd=abcd_lens( focal_length1 ) ;
-% lns1.x= 0.21358727296049 ;
-% lns2.abcd=abcd_lens( focal_length2 ) ;
-% lns2.x= 0.40361319425309 ;
-% lns3.abcd=abcd_lens( focal_length3 ) ;
-% lns3.x= 0.80361319425309 ;
wf= 3.709E-5 ;
rf= 1.0E+100 ;
xf= Ltot;
@@ -35,62 +22,13 @@ xf=Ltot;
% figure(1)
% w_final_handmade = solution_visualization(q0,x0, qf, xf, optics, lambda);
% title('Hand made');
-%% ##########################################
-
-
-%Initialize sample arrays
-
-N = n_perms * n_shuffles;
-possible_lens_placement = zeros(N,3);
-possible_lens_set = zeros(N,3);
-possible_sample_energy = zeros(N,1);
-initial_rand_lens_placement=zeros(N,3);
-
-lens_size = .03; % physical size of the lens
-
-for ip = 1:n_perms
- f3=lens_permutations(ip,3);
- x3=xf-f3; % last lense transfer collimated region to focused spot
- for is = 1:n_shuffles
- possible_lens_set((ip-1)*n_shuffles + is,:) = lens_permutations(ip,:);
-
- initial_rand_lens_placement_tmp = sort(lens_size+(x3-2*lens_size)*rand(1,2));
- initial_rand_lens_placement((ip-1)*n_shuffles + is,:) = [initial_rand_lens_placement_tmp, x3];
- end
-end
-
-parfor i = 1:N
-
- fitness_simplified=@(x) fitness(q0, qf, Ltot, x, possible_lens_set(i,:), lambda );
- [x_sol, energy]=fminsearch(fitness_simplified, initial_rand_lens_placement(i,:), optimset('TolX',1e-8,'TolFun',1e-8,'MaxFunEvals',1e8,'MaxIter',200));
-
- possible_lens_placement(i,:) =x_sol;
- possible_sample_energy(i) = energy;
-
- %Visualize solution
-% figure(2)
-% solution_visualization(q0,x0, qf, xf, optics_placer(x_sol, lens_permutations(ip,:)), lambda);
-% title('Testing Points');
-% drawnow;
-
-end
-
-
-
-%Sorting possible solution according to energy
-[possible_sample_energy, index] = sort(possible_sample_energy);
-possible_lens_placement = possible_lens_placement(index,:);
-possible_lens_set = possible_lens_set(index,:);
+% ##########################################
-%Truncate other possible solutions to an accuracy of n decimal places
-n=4;
-possible_lens_placement_trunc = round(possible_lens_placement*10^n)./10^n;
-[possible_lens_placement_uniq, index] = unique(possible_lens_placement_trunc,'rows','stable'); %Unique solutions only
+[ possible_lens_placement, possible_lens_set, possible_sample_energy, n_possible_lens_placement, index ] = mode_match( q0, qf, Ltot, lambda, lens_permutations );
%Visualize five best solutions
-n_possible_lens_placement = min(5,size(possible_lens_placement_uniq,1));
for n_graph = 1:n_possible_lens_placement
- figure(n_graph+1)
+ figure(n_graph)
w_final_trial = solution_visualization(q0,x0, qf, xf, optics_placer(possible_lens_placement(index(n_graph),:), possible_lens_set(index(n_graph),:)), lambda);
title('Other Solutions');
end
@@ -98,3 +36,13 @@ end
possible_lens_placement(index(1:n_graph),:)
possible_lens_set(index(1:n_graph),:)
possible_sample_energy(index(1:n_graph),:)
+
+
+%Visualize fitness function for fixed f2 and f3
+lens_set = [.075, .075, .203];
+f2= 0.40361319425309 ;
+f3= 0.80361319425309 ;
+
+fitness_simplified=@(x) fitness(q0, qf, Ltot, [x, f2, f3], lens_set, lambda );
+figure(6)
+ezplot(fitness_simplified, [0,Ltot]) \ No newline at end of file
diff --git a/mode_match.m b/mode_match.m
new file mode 100644
index 0000000..596cff1
--- /dev/null
+++ b/mode_match.m
@@ -0,0 +1,50 @@
+function [ possible_lens_placement, possible_lens_set, possible_sample_energy, n_possible_lens_placement, index ] = mode_match( q0, qf, Ltot, lambda, lens_permutations )
+%MODE_MATCH Summary of this function goes here
+% Detailed explanation goes here
+
+n_perms = size(lens_permutations,1);
+n_shuffles=1; %number of random placements of lenses
+
+%Initialize sample arrays
+N = n_perms * n_shuffles;
+possible_lens_placement = zeros(N,3);
+possible_lens_set = zeros(N,3);
+possible_sample_energy = zeros(N,1);
+initial_rand_lens_placement=zeros(N,3);
+
+lens_size = .03; % physical size of the lens
+
+for ip = 1:n_perms
+ f3=lens_permutations(ip,3);
+ x3=Ltot-f3; % last lense transfer collimated region to focused spot
+ for is = 1:n_shuffles
+ possible_lens_set((ip-1)*n_shuffles + is,:) = lens_permutations(ip,:);
+
+ initial_rand_lens_placement_tmp = sort(lens_size+(x3-2*lens_size)*rand(1,2));
+ initial_rand_lens_placement((ip-1)*n_shuffles + is,:) = [initial_rand_lens_placement_tmp, x3];
+ end
+end
+
+parfor i = 1:N
+
+ fitness_simplified=@(x) fitness(q0, qf, Ltot, x, possible_lens_set(i,:), lambda );
+ [x_sol, energy]=fminsearch(fitness_simplified, initial_rand_lens_placement(i,:), optimset('TolX',1e-8,'TolFun',1e-8,'MaxFunEvals',1e8,'MaxIter',200));
+
+ possible_lens_placement(i,:) =x_sol;
+ possible_sample_energy(i) = energy;
+
+end
+
+%Sorting possible solution according to energy
+[possible_sample_energy, index] = sort(possible_sample_energy);
+possible_lens_placement = possible_lens_placement(index,:);
+possible_lens_set = possible_lens_set(index,:);
+
+%Truncate other possible solutions to an accuracy of n decimal places
+n=4;
+possible_lens_placement_trunc = round(possible_lens_placement*10^n)./10^n;
+[possible_lens_placement_uniq, index] = unique(possible_lens_placement_trunc,'rows','stable'); %Unique solutions only
+
+n_possible_lens_placement = min(5,size(possible_lens_placement_uniq,1));
+
+end