diff options
author | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2024-11-19 13:40:38 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2024-11-19 13:40:38 -0500 |
commit | 984d56b4d94bf298a197f1567834451acf49cab9 (patch) | |
tree | fc545b26d7997106a77f0353aa61062f5b77e098 /python_src/williamson.py | |
parent | 268050742bfd920490d90152686178ffba1f6a85 (diff) | |
download | matlab_strawberryfields-0.1.tar.gz matlab_strawberryfields-0.1.zip |
dir renamev0.1
Diffstat (limited to 'python_src/williamson.py')
-rw-r--r-- | python_src/williamson.py | 70 |
1 files changed, 0 insertions, 70 deletions
diff --git a/python_src/williamson.py b/python_src/williamson.py deleted file mode 100644 index 19a2f5f..0000000 --- a/python_src/williamson.py +++ /dev/null @@ -1,70 +0,0 @@ -def williamson(V, tol=1e-11): - r"""Williamson decomposition of positive-definite (real) symmetric matrix. - - See :ref:`williamson`. - - Note that it is assumed that the symplectic form is - - .. math:: \Omega = \begin{bmatrix}0&I\\-I&0\end{bmatrix} - - where :math:`I` is the identity matrix and :math:`0` is the zero matrix. - - See https://math.stackexchange.com/questions/1171842/finding-the-symplectic-matrix-in-williamsons-theorem/2682630#2682630 - - Args: - V (array[float]): positive definite symmetric (real) matrix - tol (float): the tolerance used when checking if the matrix is symmetric: :math:`|V-V^T| \leq` tol - - Returns: - tuple[array,array]: ``(Db, S)`` where ``Db`` is a diagonal matrix - and ``S`` is a symplectic matrix such that :math:`V = S^T Db S` - """ - (n, m) = V.shape - - if n != m: - raise ValueError("The input matrix is not square") - - diffn = np.linalg.norm(V - np.transpose(V)) - - if diffn >= tol: - raise ValueError("The input matrix is not symmetric") - - if n % 2 != 0: - raise ValueError("The input matrix must have an even number of rows/columns") - - n = n // 2 - omega = sympmat(n) - vals = np.linalg.eigvalsh(V) - - for val in vals: - if val <= 0: - raise ValueError("Input matrix is not positive definite") - - Mm12 = sqrtm(np.linalg.inv(V)).real - r1 = Mm12 @ omega @ Mm12 - s1, K = schur(r1) - X = np.array([[0, 1], [1, 0]]) - I = np.identity(2) - seq = [] - - # In what follows I construct a permutation matrix p so that the Schur matrix has - # only positive elements above the diagonal - # Also the Schur matrix uses the x_1,p_1, ..., x_n,p_n ordering thus I use rotmat to - # go to the ordering x_1, ..., x_n, p_1, ... , p_n - - for i in range(n): - if s1[2 * i, 2 * i + 1] > 0: - seq.append(I) - else: - seq.append(X) - - p = block_diag(*seq) - Kt = K @ p - s1t = p @ s1 @ p - dd = xpxp_to_xxpp(s1t) - perm_indices = xpxp_to_xxpp(np.arange(2 * n)) - Ktt = Kt[:, perm_indices] - Db = np.diag([1 / dd[i, i + n] for i in range(n)] + [1 / dd[i, i + n] for i in range(n)]) - S = Mm12 @ Ktt @ sqrtm(Db) - return Db, np.linalg.inv(S).T - |