1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
function spectrum_analyzer = E4440a_take_data(varargin)
% This script reads data from E440a spectrum analyzer and saves it to a file
% E4440a_take_data( data_save_flag, data_plot_flag, channels_to_grab_flag, data_save_path, data_file_prefix )
% channels_to_grab_flag - is boolean array with true/false for the particular channel
% for example channels_to_grab_flag = [ false true true ] will grab only traces 2 and 3
%
% Eugeniy E. Mikhailov eemikh@wm.edu
% Gleb Romanov gromanov@hellok.org
% 8/12/2015 linux friendly and use of lab file utils
% 7/27/2015 added a choice to save only specific channels
% 7/20/2015 added a choice for saving and plotting
% 6/20/2013
%% some sane defaults
nVarargs = length(varargin);
if (nVarargs > 5 )
error ('wrong number of arguments');
end
if (nVarargs < 5 )
data_file_prefix = 'S';
else
data_file_prefix = varargin{5};
end
if (nVarargs < 4 )
data_path = 'Z:\qol_comp_data\data\';
% do not worry it will convert Z: to proper path in linux
else
data_path = varargin{4};
end
if (nVarargs < 3 )
channels_to_grab_flag = [ true, true, true]; % grab all channels
else
channels_to_grab_flag = varargin{3};
end
if (nVarargs < 2 )
data_plot_flag = true; % Default to plot Data
else
data_plot_flag = varargin{2};
end
if (nVarargs < 1 )
data_save_flag = true; % Default to save data
else
data_save_flag = varargin{1};
end
%% Windows computer parameters
if ispc
% Define instrument parameters
board_index = 0;
gpib_address = 21;
bufSize = 100000;
%% Find and initialize instrument
obj1 = instrfind('Type', 'gpib', 'BoardIndex', board_index, 'PrimaryAddress', gpib_address, 'Tag', '');
% alternatively
% obj1 = instrfind('Type', 'visa-gpib', 'RsrcName', 'GPIB0::21::INSTR', 'Tag', '');
% Create the GPIB object if it does not exist
% otherwise use the object that was found.
if isempty(obj1)
obj1 = gpib('NI', board_index, gpib_address);
else
fclose(obj1);
obj1 = obj1(1);
end
% Adjust the buffers so the traces fit.
% Do this before fopen(obj1);
obj1.InputBufferSize = bufSize;
obj1.OutputBufferSize = bufSize;
%% Connect to instrument object, obj1.
fopen(obj1);
end
%% Unix specific parameters
if isunix
obj1=lgpib('Agilent_E4405b')
end
%disp('--------------------')
device_string = query(obj1, '*IDN?');
%disp(horzcat('Connected to ', device_string));
% Communicating with instrument object, obj1.
%
% You can send commands using:
% fprintf(obj1, '_command_');
%
% Or read stuff using:
% _data_ = query(obj1, '_command_');
%disp('Reading traces...');
%% Find number of points
Npoints_string = query(obj1, ':SENSe:SWEep:POINts?');
Npoints = sscanf(Npoints_string, '%f');
%Npoints=4695;
tr1 = NaN(Npoints,1); % refill traces with NaN
tr2 = NaN(Npoints,1);
tr3 = NaN(Npoints,1);
%% Read traces
% switch to ASCII trace transfer
fwrite(obj1, ':FORMAT:TRACE:DATA ASCII');
if channels_to_grab_flag(1);
tr1_string = query(obj1, ':TRACE:DATA? TRACE1;'); % select traces to grab
end
if channels_to_grab_flag(2);
tr2_string = query(obj1, ':TRACE:DATA? TRACE2;');
end
if channels_to_grab_flag(3);
tr3_string = query(obj1, ':TRACE:DATA? TRACE3;');
end
%disp('Reading Spectrum Analyzer parameters...');
%% Read various spectrum analyzer parameters
freq_start_string = query(obj1, ':SENSE:FREQUENCY:START?');
freq_stop_string = query(obj1, ':SENSE:FREQUENCY:STOP?');
freq_center_string = query(obj1, ':SENSE:FREQUENCY:CENTER?');
freq_span_string = query(obj1, ':SENSE:FREQUENCY:SPAN?');
amplitude_units_string = query(obj1, ':UNIT:POWER?');
attenuation_string = query(obj1, ':SENSE:POWER:RF:ATTenuation?');
ref_level_string = query(obj1, ':DISPLAY:WINDOW:TRACE:Y:SCALE:RLEVEL?');
log_scale_string = query(obj1, ':DISPlAY:WINDOW:TRACE:Y:SCALE:PDIVISION?');
rbw_string = query(obj1, 'SENSE:BANDWIDTH:RESOLUTION?');
vbw_string = query(obj1, 'SENSE:BANDWIDTH:VIDEO?');
sweep_time_string = query(obj1, ':SENSE:SWEEP:TIME?');
%% Disconnect from instrument object, obj1.
if ispc
% windows needs to close the file
fclose(obj1);
end
%disp('Spectrum Analyzer data communincation is done');
%% Convert the grabbed traces from strings into vectors
if channels_to_grab_flag(1);
tr1 = sscanf(tr1_string, '%f,');
end
if channels_to_grab_flag(2);
tr2 = sscanf(tr2_string, '%f,');
end
if channels_to_grab_flag(3);
tr3 = sscanf(tr3_string, '%f,');
end
% Transpose the vectors
tr1 = tr1';
tr2 = tr2';
tr3 = tr3';
% Create the frequency vector
freq_start = sscanf(freq_start_string, '%f');
freq_stop = sscanf(freq_stop_string, '%f');
freq = linspace(freq_start,freq_stop, Npoints);
% Create spectrum analyzer structure
spectrum_analyzer.traces=[tr1',tr2', tr3'];
spectrum_analyzer.freq=freq';
spectrum_analyzer.RBW=sscanf(rbw_string, '%f');
spectrum_analyzer.VBW=sscanf(vbw_string, '%f');
spectrum_analyzer.sweep_time=sscanf(sweep_time_string, '%f');
%% Save data to a file
if (data_save_flag)
% Get full path of the file to save
save_to_file = qol_get_next_data_file( data_file_prefix, data_path );
% Write the data to a file
%disp(' ');
disp(horzcat('Saving data to ',save_to_file));
header = { ...
horzcat(datestr(clock)) ...
, horzcat('Device:', ' ', device_string) ...
, horzcat('Frequency center, Hz', ' ', freq_center_string) ...
, horzcat('Frequency span, Hz', ' ', freq_span_string) ...
, horzcat('Frequency start, Hz', ' ', freq_start_string) ...
, horzcat('Frequency stop, Hz', ' ', freq_stop_string) ...
, horzcat('Amplitude units ', amplitude_units_string) ...
, horzcat('Attenuation ', attenuation_string) ...
, horzcat('Reference level ', ref_level_string) ...
, horzcat('Log scale ', log_scale_string) ...
, horzcat('Resolution bandwidth, Hz', ' ', rbw_string) ...
, horzcat('Video bandwidth, Hz', ' ', vbw_string) ...
, horzcat('Sweep time, seconds', ' ', sweep_time_string) ...
, horzcat('Columns are : freq tr1 tr2 tr3') ...
};
% preparing data in column wise fashion
data = [freq; tr1; tr2; tr3];
data = data'; % now data is column wise
save_table_with_header(save_to_file, data, header, '%');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (data_plot_flag)
%% Plot raw traces
%
% Open a window
figure111 = figure(111);
% Create plot
plot(freq/1e6, tr1, 'Color', [1 0 0], 'DisplayName', 'Trace 1'); hold on
plot(freq/1e6, tr2, 'Color', [0 0 0], 'DisplayName', 'Trace 2');
plot(freq/1e6, tr3, 'Color', [0 0 1], 'DisplayName', 'Trace 3'); hold off
xlabel('Detection frequency, MHz','FontSize',14);
ylabel('Noise power, dBm','FontSize',14);
% Show legend
legend('show');
grid on;
end
%drawnow;
%% Finish up and cleanup
% Close all opened files
fclose('all');
% Bring focus back to the command window
%commandwindow;
|