aboutsummaryrefslogtreecommitdiff
path: root/Optimization/l1decode_pd.m
blob: 275740475d6cb44a4412fee6d2ff12b0049b8556 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
% l1decode_pd.m
%
% Decoding via linear programming.
% Solve
% min_x  ||b-Ax||_1 .
%
% Recast as the linear program
% min_{x,u} sum(u)  s.t.  -Ax - u + y <= 0
%                          Ax - u - y <= 0
% and solve using primal-dual interior point method.
%
% Usage: xp = l1decode_pd(x0, A, At, y, pdtol, pdmaxiter, cgtol, cgmaxiter)
%
% x0 - Nx1 vector, initial point.
%
% A - Either a handle to a function that takes a N vector and returns a M 
%     vector, or a MxN matrix.  If A is a function handle, the algorithm
%     operates in "largescale" mode, solving the Newton systems via the
%     Conjugate Gradients algorithm.
%
% At - Handle to a function that takes an M vector and returns an N vector.
%      If A is a matrix, At is ignored.
%
% y - Mx1 observed code (M > N).
%
% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if
%     the duality gap is less than pdtol).  
%     Default = 1e-3.
%
% pdmaxiter - Maximum number of primal-dual iterations.  
%     Default = 50.
%
% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
%     Default = 1e-8.
%
% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
%     if A is a matrix.
%     Default = 200.
%
% Written by: Justin Romberg, Caltech
% Email: jrom@acm.caltech.edu
% Created: October 2005
%

function xp = l1decode_pd(x0, A, At, y, pdtol, pdmaxiter, cgtol, cgmaxiter)

largescale = isa(A,'function_handle');   

if (nargin < 5), pdtol = 1e-3; end
if (nargin < 6), pdmaxiter = 50; end
if (nargin < 7), cgtol = 1e-8; end
if (nargin < 8), cgmaxiter = 200; end

N = length(x0);
M = length(y);

alpha = 0.01;
beta = 0.5;
mu = 10;

gradf0 = [zeros(N,1); ones(M,1)];

x = x0;
if (largescale),  Ax = A(x);  else  Ax = A*x;  end
u = (0.95)*abs(y-Ax) + (0.10)*max(abs(y-Ax));

fu1 = Ax - y - u;
fu2 = -Ax + y - u;

lamu1 = -1./fu1;
lamu2 = -1./fu2;

if (largescale), Atv = At(lamu1-lamu2);  else Atv = A'*(lamu1-lamu2);  end

sdg = -(fu1'*lamu1 + fu2'*lamu2);
tau = mu*2*M/sdg;

rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);
rdual = gradf0 + [Atv; -lamu1-lamu2];
resnorm = norm([rdual; rcent]);

pditer = 0;
done = (sdg < pdtol)| (pditer >= pdmaxiter);
while (~done)
  
  pditer = pditer + 1;
  
  w2 = -1 - 1/tau*(1./fu1 + 1./fu2);
  
  sig1 = -lamu1./fu1 - lamu2./fu2;
  sig2 = lamu1./fu1 - lamu2./fu2;
  sigx = sig1 - sig2.^2./sig1;
  
  if (largescale)
    w1 = -1/tau*(At(-1./fu1 + 1./fu2));
    w1p = w1 - At((sig2./sig1).*w2);
    h11pfun = @(z) At(sigx.*A(z));
    [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); 
    if (cgres > 1/2)
      disp('Cannot solve system.  Returning previous iterate.  (See Section 4 of notes for more information.)');
      xp = x;
      return
    end
    Adx = A(dx);
  else
    w1 = -1/tau*(A'*(-1./fu1 + 1./fu2));
    w1p = w1 - A'*((sig2./sig1).*w2);
    H11p = A'*(sparse(diag(sigx))*A);
    opts.POSDEF = true; opts.SYM = true;
    [dx, hcond] = linsolve(H11p, w1p,opts);
    if (hcond < 1e-14)
      disp('Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for more information.)');
      xp = x;
      return
    end
    Adx = A*dx;
  end
  
  du = (w2 - sig2.*Adx)./sig1;
  
  dlamu1 = -(lamu1./fu1).*(Adx-du) - lamu1 - (1/tau)*1./fu1;
  dlamu2 = (lamu2./fu2).*(Adx + du) -lamu2 - (1/tau)*1./fu2;
  if (largescale), Atdv = At(dlamu1-dlamu2);  else  Atdv = A'*(dlamu1-dlamu2); end
  
  % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0
  indl = find(dlamu1 < 0);  indu = find(dlamu2 < 0);
  s = min([1; -lamu1(indl)./dlamu1(indl); -lamu2(indu)./dlamu2(indu)]);
  indl = find((Adx-du) > 0);  indu = find((-Adx-du) > 0);
  s = (0.99)*min([s; -fu1(indl)./(Adx(indl)-du(indl)); -fu2(indu)./(-Adx(indu)-du(indu))]);
  
  % backtrack 
  suffdec = 0;
  backiter = 0;
  while(~suffdec)
    xp = x + s*dx;  up = u + s*du;
    Axp = Ax + s*Adx;  Atvp = Atv + s*Atdv;
    lamu1p = lamu1 + s*dlamu1;  lamu2p = lamu2 + s*dlamu2;
    fu1p = Axp - y - up;  fu2p = -Axp + y - up;
    rdp = gradf0 + [Atvp; -lamu1p-lamu2p];
    rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau);
    suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm);
    s = beta*s;
    backiter = backiter + 1;
    if (backiter > 32)
      disp('Stuck backtracking, returning last iterate.  (See Section 4 of notes for more information.)')
      xp = x;
      return
    end
  end
  
  % next iteration
  x = xp;  u = up;
  Ax = Axp;  Atv = Atvp;
  lamu1 = lamu1p;  lamu2 = lamu2p;
  fu1 = fu1p;  fu2 = fu2p;
  
  % surrogate duality gap
  sdg = -(fu1'*lamu1 + fu2'*lamu2);
  tau = mu*2*M/sdg;
  rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);
  rdual = rdp;
  resnorm = norm([rdual; rcent]);
  
  done = (sdg < pdtol) | (pditer >= pdmaxiter);
  
  disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',...
    pditer, tau, sum(u), sdg, norm(rdual)));
  if (largescale)
    disp(sprintf('                CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
  else
    disp(sprintf('                  H11p condition number = %8.3e', hcond));
  end  
  
end