aboutsummaryrefslogtreecommitdiff
path: root/Optimization/tvdantzig_newton.m
diff options
context:
space:
mode:
Diffstat (limited to 'Optimization/tvdantzig_newton.m')
-rw-r--r--Optimization/tvdantzig_newton.m185
1 files changed, 185 insertions, 0 deletions
diff --git a/Optimization/tvdantzig_newton.m b/Optimization/tvdantzig_newton.m
new file mode 100644
index 0000000..68d7148
--- /dev/null
+++ b/Optimization/tvdantzig_newton.m
@@ -0,0 +1,185 @@
+% tvdantzig_newton.m
+%
+% Newton iterations for TV Dantzig log-barrier subproblem.
+%
+% Usage : [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau,
+% newtontol, newtonmaxiter, cgtol, cgmaxiter)
+%
+% x0,t0 - Nx1 vectors, initial points.
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% epsilon - scalar, constraint relaxation parameter
+%
+% tau - Log barrier parameter.
+%
+% newtontol - Terminate when the Newton decrement is <= newtontol.
+%
+% newtonmaxiter - Maximum number of iterations.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+
+function [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
+
+largescale = isa(A,'function_handle');
+
+alpha = 0.01;
+beta = 0.5;
+
+N = length(x0);
+n = round(sqrt(N));
+
+% create (sparse) differencing matrices for TV
+Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ...
+ reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);
+Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ...
+ reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);
+
+% initial point
+x = x0;
+t = t0;
+if (largescale)
+ r = A(x) - b;
+ Atr = At(r);
+else
+ AtA = A'*A;
+ r = A*x - b;
+ Atr = A'*r;
+end
+Dhx = Dh*x; Dvx = Dv*x;
+ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);
+fe1 = Atr - epsilon;
+fe2 = -Atr - epsilon;
+f = sum(t) - (1/tau)*(sum(log(-ft)) + sum(log(-fe1)) + sum(log(-fe2)));
+
+niter = 0;
+done = 0;
+while (~done)
+
+ if (largescale)
+ ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + At(A(1./fe1-1./fe2));
+ else
+ ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + AtA*(1./fe1-1./fe2);
+ end
+ ntgt = -tau - t./ft;
+ gradf = -(1/tau)*[ntgx; ntgt];
+
+ sig22 = 1./ft + (t.^2)./(ft.^2);
+ sig12 = -t./ft.^2;
+ sigb = 1./ft.^2 - (sig12.^2)./sig22;
+ siga = 1./fe1.^2 + 1./fe2.^2;
+
+ w11 = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt);
+ if (largescale)
+ h11pfun = @(w) H11p(w, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga);
+ [dx, cgres, cgiter] = cgsolve(h11pfun, w11, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ Adx = A(dx);
+ AtAdx = At(Adx);
+ else
+ H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ...
+ Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ...
+ Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ...
+ Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh + ...
+ AtA*sparse(diag(siga))*AtA;
+ opts.POSDEF = true; opts.SYM = true;
+ [dx,hcond] = linsolve(H11p, w11, opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ Adx = A*dx;
+ AtAdx = A'*Adx;
+ end
+ Dhdx = Dh*dx; Dvdx = Dv*dx;
+ dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx));
+
+ % minimum step size that stays in the interior
+ ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0);
+ aqt = Dhdx.^2 + Dvdx.^2 - dt.^2;
+ bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt);
+ cqt = Dhx.^2 + Dvx.^2 - t.^2;
+ tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ...
+ (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ];
+ indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0));
+ smax = min(1, min([-fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)); tsols(indt)]));
+ s = (0.99)*smax;
+
+ % backtracking line search
+ suffdec = 0;
+ backiter = 0;
+ while (~suffdec)
+ xp = x + s*dx; tp = t + s*dt;
+ rp = r + s*Adx; Atrp = Atr + s*AtAdx;
+ Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx;
+ ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);
+ fe1p = Atrp - epsilon;
+ fe2p = -Atrp - epsilon;
+ fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + sum(log(-fe1p)) + sum(log(-fe2p)));
+ flin = f + alpha*s*(gradf'*[dx; dt]);
+ suffdec = (fp <= flin);
+ s = beta*s;
+ backiter = backiter + 1;
+ if (backiter > 32)
+ disp('Stuck backtracking, returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ end
+
+ % set up for next iteration
+ x = xp; t = tp;
+ r = rp; Atr = Atrp;
+ Dvx = Dvxp; Dhx = Dhxp;
+ ft = ftp; fe1 = fe1p; fe2 = fe2p; f = fp;
+
+ lambda2 = -(gradf'*[dx; dt]);
+ stepsize = s*norm([dx; dt]);
+ niter = niter + 1;
+ done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
+
+ disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ...
+ niter, f, lambda2/2, stepsize));
+ if (largescale)
+ disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% H11p auxiliary function
+function y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga)
+
+Dhv = Dh*v;
+Dvv = Dv*v;
+
+y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ...
+ Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) + ...
+ At(A(siga.*At(A(v))));
+
+