diff options
Diffstat (limited to 'Optimization/tvdantzig_newton.m')
-rw-r--r-- | Optimization/tvdantzig_newton.m | 185 |
1 files changed, 185 insertions, 0 deletions
diff --git a/Optimization/tvdantzig_newton.m b/Optimization/tvdantzig_newton.m new file mode 100644 index 0000000..68d7148 --- /dev/null +++ b/Optimization/tvdantzig_newton.m @@ -0,0 +1,185 @@ +% tvdantzig_newton.m +% +% Newton iterations for TV Dantzig log-barrier subproblem. +% +% Usage : [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, +% newtontol, newtonmaxiter, cgtol, cgmaxiter) +% +% x0,t0 - Nx1 vectors, initial points. +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% epsilon - scalar, constraint relaxation parameter +% +% tau - Log barrier parameter. +% +% newtontol - Terminate when the Newton decrement is <= newtontol. +% +% newtonmaxiter - Maximum number of iterations. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + + +function [xp, tp, niter] = tvdantzig_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) + +largescale = isa(A,'function_handle'); + +alpha = 0.01; +beta = 0.5; + +N = length(x0); +n = round(sqrt(N)); + +% create (sparse) differencing matrices for TV +Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... + reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); +Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... + reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); + +% initial point +x = x0; +t = t0; +if (largescale) + r = A(x) - b; + Atr = At(r); +else + AtA = A'*A; + r = A*x - b; + Atr = A'*r; +end +Dhx = Dh*x; Dvx = Dv*x; +ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2); +fe1 = Atr - epsilon; +fe2 = -Atr - epsilon; +f = sum(t) - (1/tau)*(sum(log(-ft)) + sum(log(-fe1)) + sum(log(-fe2))); + +niter = 0; +done = 0; +while (~done) + + if (largescale) + ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + At(A(1./fe1-1./fe2)); + else + ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + AtA*(1./fe1-1./fe2); + end + ntgt = -tau - t./ft; + gradf = -(1/tau)*[ntgx; ntgt]; + + sig22 = 1./ft + (t.^2)./(ft.^2); + sig12 = -t./ft.^2; + sigb = 1./ft.^2 - (sig12.^2)./sig22; + siga = 1./fe1.^2 + 1./fe2.^2; + + w11 = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); + if (largescale) + h11pfun = @(w) H11p(w, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga); + [dx, cgres, cgiter] = cgsolve(h11pfun, w11, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + Adx = A(dx); + AtAdx = At(Adx); + else + H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ... + Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ... + Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ... + Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh + ... + AtA*sparse(diag(siga))*AtA; + opts.POSDEF = true; opts.SYM = true; + [dx,hcond] = linsolve(H11p, w11, opts); + if (hcond < 1e-14) + disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + Adx = A*dx; + AtAdx = A'*Adx; + end + Dhdx = Dh*dx; Dvdx = Dv*dx; + dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); + + % minimum step size that stays in the interior + ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0); + aqt = Dhdx.^2 + Dvdx.^2 - dt.^2; + bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt); + cqt = Dhx.^2 + Dvx.^2 - t.^2; + tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ... + (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ]; + indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0)); + smax = min(1, min([-fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)); tsols(indt)])); + s = (0.99)*smax; + + % backtracking line search + suffdec = 0; + backiter = 0; + while (~suffdec) + xp = x + s*dx; tp = t + s*dt; + rp = r + s*Adx; Atrp = Atr + s*AtAdx; + Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; + ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); + fe1p = Atrp - epsilon; + fe2p = -Atrp - epsilon; + fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + sum(log(-fe1p)) + sum(log(-fe2p))); + flin = f + alpha*s*(gradf'*[dx; dt]); + suffdec = (fp <= flin); + s = beta*s; + backiter = backiter + 1; + if (backiter > 32) + disp('Stuck backtracking, returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + end + + % set up for next iteration + x = xp; t = tp; + r = rp; Atr = Atrp; + Dvx = Dvxp; Dhx = Dhxp; + ft = ftp; fe1 = fe1p; fe2 = fe2p; f = fp; + + lambda2 = -(gradf'*[dx; dt]); + stepsize = s*norm([dx; dt]); + niter = niter + 1; + done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); + + disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ... + niter, f, lambda2/2, stepsize)); + if (largescale) + disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); + else + disp(sprintf(' H11p condition number = %8.3e', hcond)); + end + +end + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% H11p auxiliary function +function y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, siga) + +Dhv = Dh*v; +Dvv = Dv*v; + +y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ... + Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) + ... + At(A(siga.*At(A(v)))); + + |