diff options
Diffstat (limited to 'Optimization/l1qc_newton.m')
-rw-r--r-- | Optimization/l1qc_newton.m | 150 |
1 files changed, 150 insertions, 0 deletions
diff --git a/Optimization/l1qc_newton.m b/Optimization/l1qc_newton.m new file mode 100644 index 0000000..8a25cd2 --- /dev/null +++ b/Optimization/l1qc_newton.m @@ -0,0 +1,150 @@ +% l1qc_newton.m +% +% Newton algorithm for log-barrier subproblems for l1 minimization +% with quadratic constraints. +% +% Usage: +% [xp,up,niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, +% newtontol, newtonmaxiter, cgtol, cgmaxiter) +% +% x0,u0 - starting points +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% epsilon - scalar, constraint relaxation parameter +% +% tau - Log barrier parameter. +% +% newtontol - Terminate when the Newton decrement is <= newtontol. +% Default = 1e-3. +% +% newtonmaxiter - Maximum number of iterations. +% Default = 50. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% Default = 1e-8. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% Default = 200. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + + +function [xp, up, niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) + +% check if the matrix A is implicit or explicit +largescale = isa(A,'function_handle'); + +% line search parameters +alpha = 0.01; +beta = 0.5; + +if (~largescale), AtA = A'*A; end + +% initial point +x = x0; +u = u0; +if (largescale), r = A(x) - b; else r = A*x - b; end +fu1 = x - u; +fu2 = -x - u; +fe = 1/2*(r'*r - epsilon^2); +f = sum(u) - (1/tau)*(sum(log(-fu1)) + sum(log(-fu2)) + log(-fe)); + +niter = 0; +done = 0; +while (~done) + + if (largescale), atr = At(r); else atr = A'*r; end + + ntgz = 1./fu1 - 1./fu2 + 1/fe*atr; + ntgu = -tau - 1./fu1 - 1./fu2; + gradf = -(1/tau)*[ntgz; ntgu]; + + sig11 = 1./fu1.^2 + 1./fu2.^2; + sig12 = -1./fu1.^2 + 1./fu2.^2; + sigx = sig11 - sig12.^2./sig11; + + w1p = ntgz - sig12./sig11.*ntgu; + if (largescale) + h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr; + [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; up = u; + return + end + Adx = A(dx); + else + H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr'; + opts.POSDEF = true; opts.SYM = true; + [dx,hcond] = linsolve(H11p, w1p, opts); + if (hcond < 1e-14) + disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; up = u; + return + end + Adx = A*dx; + end + du = (1./sig11).*ntgu - (sig12./sig11).*dx; + + % minimum step size that stays in the interior + ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0); + aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2; + smax = min(1,min([... + -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ... + (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe) + ])); + s = (0.99)*smax; + + % backtracking line search + suffdec = 0; + backiter = 0; + while (~suffdec) + xp = x + s*dx; up = u + s*du; rp = r + s*Adx; + fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2); + fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep)); + flin = f + alpha*s*(gradf'*[dx; du]); + suffdec = (fp <= flin); + s = beta*s; + backiter = backiter + 1; + if (backiter > 32) + disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; up = u; + return + end + end + + % set up for next iteration + x = xp; u = up; r = rp; + fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp; + + lambda2 = -(gradf'*[dx; du]); + stepsize = s*norm([dx; du]); + niter = niter + 1; + done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); + + disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ... + niter, f, lambda2/2, stepsize)); + if (largescale) + disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); + else + disp(sprintf(' H11p condition number = %8.3e', hcond)); + end + +end + + + + |