aboutsummaryrefslogtreecommitdiff
path: root/Optimization/l1qc_newton.m
diff options
context:
space:
mode:
Diffstat (limited to 'Optimization/l1qc_newton.m')
-rw-r--r--Optimization/l1qc_newton.m150
1 files changed, 150 insertions, 0 deletions
diff --git a/Optimization/l1qc_newton.m b/Optimization/l1qc_newton.m
new file mode 100644
index 0000000..8a25cd2
--- /dev/null
+++ b/Optimization/l1qc_newton.m
@@ -0,0 +1,150 @@
+% l1qc_newton.m
+%
+% Newton algorithm for log-barrier subproblems for l1 minimization
+% with quadratic constraints.
+%
+% Usage:
+% [xp,up,niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau,
+% newtontol, newtonmaxiter, cgtol, cgmaxiter)
+%
+% x0,u0 - starting points
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% epsilon - scalar, constraint relaxation parameter
+%
+% tau - Log barrier parameter.
+%
+% newtontol - Terminate when the Newton decrement is <= newtontol.
+% Default = 1e-3.
+%
+% newtonmaxiter - Maximum number of iterations.
+% Default = 50.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+% Default = 1e-8.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+% Default = 200.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+
+function [xp, up, niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
+
+% check if the matrix A is implicit or explicit
+largescale = isa(A,'function_handle');
+
+% line search parameters
+alpha = 0.01;
+beta = 0.5;
+
+if (~largescale), AtA = A'*A; end
+
+% initial point
+x = x0;
+u = u0;
+if (largescale), r = A(x) - b; else r = A*x - b; end
+fu1 = x - u;
+fu2 = -x - u;
+fe = 1/2*(r'*r - epsilon^2);
+f = sum(u) - (1/tau)*(sum(log(-fu1)) + sum(log(-fu2)) + log(-fe));
+
+niter = 0;
+done = 0;
+while (~done)
+
+ if (largescale), atr = At(r); else atr = A'*r; end
+
+ ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
+ ntgu = -tau - 1./fu1 - 1./fu2;
+ gradf = -(1/tau)*[ntgz; ntgu];
+
+ sig11 = 1./fu1.^2 + 1./fu2.^2;
+ sig12 = -1./fu1.^2 + 1./fu2.^2;
+ sigx = sig11 - sig12.^2./sig11;
+
+ w1p = ntgz - sig12./sig11.*ntgu;
+ if (largescale)
+ h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
+ [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; up = u;
+ return
+ end
+ Adx = A(dx);
+ else
+ H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
+ opts.POSDEF = true; opts.SYM = true;
+ [dx,hcond] = linsolve(H11p, w1p, opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; up = u;
+ return
+ end
+ Adx = A*dx;
+ end
+ du = (1./sig11).*ntgu - (sig12./sig11).*dx;
+
+ % minimum step size that stays in the interior
+ ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
+ aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
+ smax = min(1,min([...
+ -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
+ (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
+ ]));
+ s = (0.99)*smax;
+
+ % backtracking line search
+ suffdec = 0;
+ backiter = 0;
+ while (~suffdec)
+ xp = x + s*dx; up = u + s*du; rp = r + s*Adx;
+ fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2);
+ fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
+ flin = f + alpha*s*(gradf'*[dx; du]);
+ suffdec = (fp <= flin);
+ s = beta*s;
+ backiter = backiter + 1;
+ if (backiter > 32)
+ disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; up = u;
+ return
+ end
+ end
+
+ % set up for next iteration
+ x = xp; u = up; r = rp;
+ fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp;
+
+ lambda2 = -(gradf'*[dx; du]);
+ stepsize = s*norm([dx; du]);
+ niter = niter + 1;
+ done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
+
+ disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ...
+ niter, f, lambda2/2, stepsize));
+ if (largescale)
+ disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end
+
+
+
+