aboutsummaryrefslogtreecommitdiff
path: root/Optimization/l1qc_logbarrier.m
diff options
context:
space:
mode:
Diffstat (limited to 'Optimization/l1qc_logbarrier.m')
-rw-r--r--Optimization/l1qc_logbarrier.m116
1 files changed, 116 insertions, 0 deletions
diff --git a/Optimization/l1qc_logbarrier.m b/Optimization/l1qc_logbarrier.m
new file mode 100644
index 0000000..388529e
--- /dev/null
+++ b/Optimization/l1qc_logbarrier.m
@@ -0,0 +1,116 @@
+% l1qc_logbarrier.m
+%
+% Solve quadratically constrained l1 minimization:
+% min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon
+%
+% Reformulate as the second-order cone program
+% min_{x,u} sum(u) s.t. x - u <= 0,
+% -x - u <= 0,
+% 1/2(||Ax-b||^2 - \epsilon^2) <= 0
+% and use a log barrier algorithm.
+%
+% Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
+%
+% x0 - Nx1 vector, initial point.
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% epsilon - scalar, constraint relaxation parameter
+%
+% lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
+% Also, the number of log barrier iterations is completely
+% determined by lbtol.
+% Default = 1e-3.
+%
+% mu - Factor by which to increase the barrier constant at each iteration.
+% Default = 10.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+% Default = 1e-8.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+% Default = 200.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
+
+largescale = isa(A,'function_handle');
+
+if (nargin < 6), lbtol = 1e-3; end
+if (nargin < 7), mu = 10; end
+if (nargin < 8), cgtol = 1e-8; end
+if (nargin < 9), cgmaxiter = 200; end
+
+newtontol = lbtol;
+newtonmaxiter = 50;
+
+N = length(x0);
+
+% starting point --- make sure that it is feasible
+if (largescale)
+ if (norm(A(x0)-b) > epsilon)
+ disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
+ AAt = @(z) A(At(z));
+ [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('A*At is ill-conditioned: cannot find starting point');
+ xp = x0;
+ return;
+ end
+ x0 = At(w);
+ end
+else
+ if (norm(A*x0-b) > epsilon)
+ disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
+ opts.POSDEF = true; opts.SYM = true;
+ [w, hcond] = linsolve(A*A', b, opts);
+ if (hcond < 1e-14)
+ disp('A*At is ill-conditioned: cannot find starting point');
+ xp = x0;
+ return;
+ end
+ x0 = A'*w;
+ end
+end
+x = x0;
+u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
+
+disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u)));
+
+% choose initial value of tau so that the duality gap after the first
+% step will be about the origial norm
+tau = max((2*N+1)/sum(abs(x0)), 1);
+
+lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
+disp(sprintf('Number of log barrier iterations = %d\n', lbiter));
+
+totaliter = 0;
+
+for ii = 1:lbiter
+
+ [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
+ totaliter = totaliter + ntiter;
+
+ disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ...
+ ii, sum(abs(xp)), sum(up), tau, totaliter));
+
+ x = xp;
+ u = up;
+
+ tau = mu*tau;
+
+end
+