diff options
author | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
commit | 3983eb46023c1edd00617729ba929057fda8d0bd (patch) | |
tree | 816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/tvqc_newton.m | |
download | l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip |
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/tvqc_newton.m')
-rw-r--r-- | Optimization/tvqc_newton.m | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/Optimization/tvqc_newton.m b/Optimization/tvqc_newton.m new file mode 100644 index 0000000..febe8ff --- /dev/null +++ b/Optimization/tvqc_newton.m @@ -0,0 +1,176 @@ +% tvqc_newton.m +% +% Newton algorithm for log-barrier subproblems for TV minimization +% with quadratic constraints. +% +% Usage: +% [xp,tp,niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, +% newtontol, newtonmaxiter, cgtol, cgmaxiter) +% +% x0,t0 - starting points +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% epsilon - scalar, constraint relaxation parameter +% +% tau - Log barrier parameter. +% +% newtontol - Terminate when the Newton decrement is <= newtontol. +% +% newtonmaxiter - Maximum number of iterations. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function [xp, tp, niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) + +largescale = isa(A,'function_handle'); + +alpha = 0.01; +beta = 0.5; + +N = length(x0); +n = round(sqrt(N)); + +% create (sparse) differencing matrices for TV +Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... + reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); +Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... + reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); + +if (~largescale), AtA = A'*A; end; + +% initial point +x = x0; +t = t0; +if (largescale), r = A(x) - b; else r = A*x - b; end +Dhx = Dh*x; Dvx = Dv*x; +ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2); +fe = 1/2*(r'*r - epsilon^2); +f = sum(t) - (1/tau)*(sum(log(-ft)) + log(-fe)); + +niter = 0; +done = 0; +while (~done) + + if (largescale), Atr = At(r); else Atr = A'*r; end + ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + 1/fe*Atr; + ntgt = -tau - t./ft; + gradf = -(1/tau)*[ntgx; ntgt]; + + sig22 = 1./ft + (t.^2)./(ft.^2); + sig12 = -t./ft.^2; + sigb = 1./ft.^2 - (sig12.^2)./sig22; + + w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); + if (largescale) + h11pfun = @(z) H11p(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, Atr); + [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + Adx = A(dx); + else + H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ... + Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ... + Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ... + Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh - ... + (1/fe)*AtA + (1/fe^2)*Atr*Atr'; + opts.POSDEF = true; opts.SYM = true; + [dx,hcond] = linsolve(H11p, w1p, opts); + if (hcond < 1e-14) + disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + Adx = A*dx; + end + Dhdx = Dh*dx; Dvdx = Dv*dx; + dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); + + % minimum step size that stays in the interior + aqt = Dhdx.^2 + Dvdx.^2 - dt.^2; + bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt); + cqt = Dhx.^2 + Dvx.^2 - t.^2; + tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ... + (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ]; + indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0)); + aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2; + smax = min(1,min([... + tsols(indt); ... + (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe) + ])); + s = (0.99)*smax; + + % backtracking line search + suffdec = 0; + backiter = 0; + while (~suffdec) + xp = x + s*dx; tp = t + s*dt; + rp = r + s*Adx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; + ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); + fep = 1/2*(rp'*rp - epsilon^2); + fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep)); + flin = f + alpha*s*(gradf'*[dx; dt]); + suffdec = (fp <= flin); + s = beta*s; + backiter = backiter + 1; + if (backiter > 32) + disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + end + + % set up for next iteration + x = xp; t = tp; + r = rp; Dvx = Dvxp; Dhx = Dhxp; + ft = ftp; fe = fep; f = fp; + + lambda2 = -(gradf'*[dx; dt]); + stepsize = s*norm([dx; dt]); + niter = niter + 1; + done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); + + disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ... + niter, f, lambda2/2, stepsize)); + if (largescale) + disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); + else + disp(sprintf(' H11p condition number = %8.3e', hcond)); + end + +end + + + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% H11p auxiliary function +function y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, atr) + +Dhv = Dh*v; +Dvv = Dv*v; + +y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ... + Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) - ... + 1/fe*At(A(v)) + 1/fe^2*(atr'*v)*atr; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |