aboutsummaryrefslogtreecommitdiff
path: root/Optimization/tvqc_newton.m
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
commit3983eb46023c1edd00617729ba929057fda8d0bd (patch)
tree816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/tvqc_newton.m
downloadl1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz
l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/tvqc_newton.m')
-rw-r--r--Optimization/tvqc_newton.m176
1 files changed, 176 insertions, 0 deletions
diff --git a/Optimization/tvqc_newton.m b/Optimization/tvqc_newton.m
new file mode 100644
index 0000000..febe8ff
--- /dev/null
+++ b/Optimization/tvqc_newton.m
@@ -0,0 +1,176 @@
+% tvqc_newton.m
+%
+% Newton algorithm for log-barrier subproblems for TV minimization
+% with quadratic constraints.
+%
+% Usage:
+% [xp,tp,niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau,
+% newtontol, newtonmaxiter, cgtol, cgmaxiter)
+%
+% x0,t0 - starting points
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% epsilon - scalar, constraint relaxation parameter
+%
+% tau - Log barrier parameter.
+%
+% newtontol - Terminate when the Newton decrement is <= newtontol.
+%
+% newtonmaxiter - Maximum number of iterations.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+function [xp, tp, niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
+
+largescale = isa(A,'function_handle');
+
+alpha = 0.01;
+beta = 0.5;
+
+N = length(x0);
+n = round(sqrt(N));
+
+% create (sparse) differencing matrices for TV
+Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ...
+ reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);
+Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ...
+ reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);
+
+if (~largescale), AtA = A'*A; end;
+
+% initial point
+x = x0;
+t = t0;
+if (largescale), r = A(x) - b; else r = A*x - b; end
+Dhx = Dh*x; Dvx = Dv*x;
+ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);
+fe = 1/2*(r'*r - epsilon^2);
+f = sum(t) - (1/tau)*(sum(log(-ft)) + log(-fe));
+
+niter = 0;
+done = 0;
+while (~done)
+
+ if (largescale), Atr = At(r); else Atr = A'*r; end
+ ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + 1/fe*Atr;
+ ntgt = -tau - t./ft;
+ gradf = -(1/tau)*[ntgx; ntgt];
+
+ sig22 = 1./ft + (t.^2)./(ft.^2);
+ sig12 = -t./ft.^2;
+ sigb = 1./ft.^2 - (sig12.^2)./sig22;
+
+ w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt);
+ if (largescale)
+ h11pfun = @(z) H11p(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, Atr);
+ [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ Adx = A(dx);
+ else
+ H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ...
+ Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ...
+ Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ...
+ Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh - ...
+ (1/fe)*AtA + (1/fe^2)*Atr*Atr';
+ opts.POSDEF = true; opts.SYM = true;
+ [dx,hcond] = linsolve(H11p, w1p, opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ Adx = A*dx;
+ end
+ Dhdx = Dh*dx; Dvdx = Dv*dx;
+ dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx));
+
+ % minimum step size that stays in the interior
+ aqt = Dhdx.^2 + Dvdx.^2 - dt.^2;
+ bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt);
+ cqt = Dhx.^2 + Dvx.^2 - t.^2;
+ tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ...
+ (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ];
+ indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0));
+ aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
+ smax = min(1,min([...
+ tsols(indt); ...
+ (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
+ ]));
+ s = (0.99)*smax;
+
+ % backtracking line search
+ suffdec = 0;
+ backiter = 0;
+ while (~suffdec)
+ xp = x + s*dx; tp = t + s*dt;
+ rp = r + s*Adx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx;
+ ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);
+ fep = 1/2*(rp'*rp - epsilon^2);
+ fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep));
+ flin = f + alpha*s*(gradf'*[dx; dt]);
+ suffdec = (fp <= flin);
+ s = beta*s;
+ backiter = backiter + 1;
+ if (backiter > 32)
+ disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ end
+
+ % set up for next iteration
+ x = xp; t = tp;
+ r = rp; Dvx = Dvxp; Dhx = Dhxp;
+ ft = ftp; fe = fep; f = fp;
+
+ lambda2 = -(gradf'*[dx; dt]);
+ stepsize = s*norm([dx; dt]);
+ niter = niter + 1;
+ done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
+
+ disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ...
+ niter, f, lambda2/2, stepsize));
+ if (largescale)
+ disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% H11p auxiliary function
+function y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, atr)
+
+Dhv = Dh*v;
+Dvv = Dv*v;
+
+y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ...
+ Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) - ...
+ 1/fe*At(A(v)) + 1/fe^2*(atr'*v)*atr;
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%