diff options
author | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
commit | 3983eb46023c1edd00617729ba929057fda8d0bd (patch) | |
tree | 816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/tveq_newton.m | |
download | l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip |
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/tveq_newton.m')
-rw-r--r-- | Optimization/tveq_newton.m | 180 |
1 files changed, 180 insertions, 0 deletions
diff --git a/Optimization/tveq_newton.m b/Optimization/tveq_newton.m new file mode 100644 index 0000000..9e71b73 --- /dev/null +++ b/Optimization/tveq_newton.m @@ -0,0 +1,180 @@ +% tveq_newton.m +% +% Newton algorithm for log-barrier subproblems for TV minimization +% with equality constraints. +% +% Usage: +% [xp,tp,niter] = tveq_newton(x0, t0, A, At, b, tau, +% newtontol, newtonmaxiter, slqtol, slqmaxiter) +% +% x0,t0 - starting points +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% tau - Log barrier parameter. +% +% newtontol - Terminate when the Newton decrement is <= newtontol. +% +% newtonmaxiter - Maximum number of iterations. +% +% slqtol - Tolerance for SYMMLQ; ignored if A is a matrix. +% +% slqmaxiter - Maximum number of iterations for SYMMLQ; ignored +% if A is a matrix. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function [xp, tp, niter] = tveq_newton(x0, t0, A, At, b, tau, newtontol, newtonmaxiter, slqtol, slqmaxiter) + +largescale = isa(A,'function_handle'); + +alpha = 0.01; +beta = 0.5; + +N = length(x0); +n = round(sqrt(N)); +K = length(b); + +% create (sparse) differencing matrices for TV +Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... + reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); +Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... + reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); + +% auxillary matrices for preconditioning +Mdv = spdiags([reshape([ones(n-1,n); zeros(1,n)],N,1) ... + reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); +Mdh = spdiags([reshape([ones(n,n-1) zeros(n,1)],N,1) ... + reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); +Mmd = reshape([ones(n-1,n-1) zeros(n-1,1); zeros(1,n)],N,1); + + +% initial point +x = x0; +t = t0; +Dhx = Dh*x; Dvx = Dv*x; +ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2); +f = sum(t) - (1/tau)*(sum(log(-ft))); + +niter = 0; +done = 0; +while (~done) + + ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx); + ntgt = -tau - t./ft; + gradf = -(1/tau)*[ntgx; ntgt]; + + sig22 = 1./ft + (t.^2)./(ft.^2); + sig12 = -t./ft.^2; + sigb = 1./ft.^2 - (sig12.^2)./sig22; + + w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); + wp = [w1p; zeros(K,1)]; + if (largescale) + % diagonal of H11p + dg11p = Mdh'*(-1./ft + sigb.*Dhx.^2) + Mdv'*(-1./ft + sigb.*Dvx.^2) + 2*Mmd.*sigb.*Dhx.*Dvx; + afac = max(dg11p); + hpfun = @(z) Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac); + [dxv,slqflag,slqres,slqiter] = symmlq(hpfun, wp, slqtol, slqmaxiter); + if (slqres > 1/2) + disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; + return + end + else + H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ... + Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ... + Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ... + Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh; + afac = max(diag(H11p)); + Hp = full([H11p afac*A'; afac*A zeros(K)]); + %keyboard + opts.SYM = true; + [dxv, hcond] = linsolve(Hp, wp, opts); + if (hcond < 1e-14) + disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + end + dx = dxv(1:N); + Dhdx = Dh*dx; Dvdx = Dv*dx; + dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); + + % minimum step size that stays in the interior + aqt = Dhdx.^2 + Dvdx.^2 - dt.^2; + bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt); + cqt = Dhx.^2 + Dvx.^2 - t.^2; + tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ... + (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ]; + indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0)); + smax = min(1, min(tsols(indt))); + s = (0.99)*smax; + + % line search + suffdec = 0; + backiter = 0; + while (~suffdec) + xp = x + s*dx; tp = t + s*dt; + Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; + ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); + fp = sum(tp) - (1/tau)*(sum(log(-ftp))); + flin = f + alpha*s*(gradf'*[dx; dt]); + suffdec = (fp <= flin); + s = beta*s; + backiter = backiter + 1; + if (backiter > 32) + disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)'); + xp = x; tp = t; + return + end + end + + % set up for next iteration + x = xp; t = tp; + Dvx = Dvxp; Dhx = Dhxp; + ft = ftp; f = fp; + + lambda2 = -(gradf'*[dx; dt]); + stepsize = s*norm([dx; dt]); + niter = niter + 1; + done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); + + disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ... + niter, f, lambda2/2, stepsize)); + if (largescale) + disp(sprintf(' SYMMLQ Res = %8.3e, SYMMLQ Iter = %d', slqres, slqiter)); + else + disp(sprintf(' H11p condition number = %8.3e', hcond)); + end + +end + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Implicit application of Hessian +function y = Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac) + +N = length(ft); +K = length(z)-N; +w = z(1:N); +v = z(N+1:N+K); + +Dhw = Dh*w; +Dvw = Dv*w; + +y1 = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhw + sigb.*Dhx.*Dvx.*Dvw) + ... + Dv'*((-1./ft + sigb.*Dvx.^2).*Dvw + sigb.*Dhx.*Dvx.*Dhw) + afac*At(v); +y2 = afac*A(w); + +y = [y1; y2]; |