diff options
author | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
commit | 3983eb46023c1edd00617729ba929057fda8d0bd (patch) | |
tree | 816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/tvdantzig_logbarrier.m | |
download | l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip |
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/tvdantzig_logbarrier.m')
-rw-r--r-- | Optimization/tvdantzig_logbarrier.m | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/Optimization/tvdantzig_logbarrier.m b/Optimization/tvdantzig_logbarrier.m new file mode 100644 index 0000000..39c9463 --- /dev/null +++ b/Optimization/tvdantzig_logbarrier.m @@ -0,0 +1,120 @@ +% tvdantzig_logbarrier.m +% +% Solve the total variation Dantzig program +% +% min_x TV(x) subject to ||A'(Ax-b)||_\infty <= epsilon +% +% Recast as the SOCP +% min sum(t) s.t. ||D_{ij}x||_2 <= t, i,j=1,...,n +% <a_{ij},Ax - b> <= epsilon i,j=1,...,n +% and use a log barrier algorithm. +% +% Usage: xp = tvdantzig_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) +% +% x0 - Nx1 vector, initial point. +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% epsilon - scalar, constraint relaxation parameter +% +% lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. +% Also, the number of log barrier iterations is completely +% determined by lbtol. +% Default = 1e-3. +% +% mu - Factor by which to increase the barrier constant at each iteration. +% Default = 10. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% Default = 1e-8. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% Default = 200. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function xp = tvdantzig_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) + +largescale = isa(A,'function_handle'); + +if (nargin < 6), lbtol = 1e-3; end +if (nargin < 7), mu = 10; end +if (nargin < 8), cgtol = 1e-8; end +if (nargin < 9), cgmaxiter = 200; end + +newtontol = lbtol; +newtonmaxiter = 50; + +N = length(x0); +n = round(sqrt(N)); + +% create (sparse) differencing matrices for TV +Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... + reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); +Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... + reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); + +if (largescale) + if (norm(A(x0)-b) > epsilon) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + AAt = @(z) A(At(z)); + [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = At(w); + end +else + if (norm(A*x0-b) > epsilon) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + opts.POSDEF = true; opts.SYM = true; + [w, hcond] = linsolve(A*A', b, opts); + if (hcond < 1e-14) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = A'*w; + end +end +x = x0; +Dhx = Dh*x; Dvx = Dv*x; +t = 1.05*sqrt(Dhx.^2 + Dvx.^2) + .01*max(sqrt(Dhx.^2 + Dvx.^2)); + +% choose initial value of tau so that the duality gap after the first +% step will be about the origial TV +tau = 3*N/sum(sqrt(Dhx.^2+Dvx.^2)); + +lbiter = ceil((log(3*N)-log(lbtol)-log(tau))/log(mu)); +disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); +totaliter = 0; +for ii = 1:lbiter + + [xp, tp, ntiter] = tvdantzig_newton(x, t, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter); + totaliter = totaliter + ntiter; + tvxp = sum(sqrt((Dh*xp).^2 + (Dv*xp).^2)); + + disp(sprintf('\nLog barrier iter = %d, TV = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... + ii, tvxp, sum(tp), tau, totaliter)); + + x = xp; + t = tp; + + tau = mu*tau; + +end +
\ No newline at end of file |