aboutsummaryrefslogtreecommitdiff
path: root/Optimization/l1decode_pd.m
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
commit3983eb46023c1edd00617729ba929057fda8d0bd (patch)
tree816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/l1decode_pd.m
downloadl1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz
l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/l1decode_pd.m')
-rw-r--r--Optimization/l1decode_pd.m175
1 files changed, 175 insertions, 0 deletions
diff --git a/Optimization/l1decode_pd.m b/Optimization/l1decode_pd.m
new file mode 100644
index 0000000..2757404
--- /dev/null
+++ b/Optimization/l1decode_pd.m
@@ -0,0 +1,175 @@
+% l1decode_pd.m
+%
+% Decoding via linear programming.
+% Solve
+% min_x ||b-Ax||_1 .
+%
+% Recast as the linear program
+% min_{x,u} sum(u) s.t. -Ax - u + y <= 0
+% Ax - u - y <= 0
+% and solve using primal-dual interior point method.
+%
+% Usage: xp = l1decode_pd(x0, A, At, y, pdtol, pdmaxiter, cgtol, cgmaxiter)
+%
+% x0 - Nx1 vector, initial point.
+%
+% A - Either a handle to a function that takes a N vector and returns a M
+% vector, or a MxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes an M vector and returns an N vector.
+% If A is a matrix, At is ignored.
+%
+% y - Mx1 observed code (M > N).
+%
+% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if
+% the duality gap is less than pdtol).
+% Default = 1e-3.
+%
+% pdmaxiter - Maximum number of primal-dual iterations.
+% Default = 50.
+%
+% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
+% Default = 1e-8.
+%
+% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
+% if A is a matrix.
+% Default = 200.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+function xp = l1decode_pd(x0, A, At, y, pdtol, pdmaxiter, cgtol, cgmaxiter)
+
+largescale = isa(A,'function_handle');
+
+if (nargin < 5), pdtol = 1e-3; end
+if (nargin < 6), pdmaxiter = 50; end
+if (nargin < 7), cgtol = 1e-8; end
+if (nargin < 8), cgmaxiter = 200; end
+
+N = length(x0);
+M = length(y);
+
+alpha = 0.01;
+beta = 0.5;
+mu = 10;
+
+gradf0 = [zeros(N,1); ones(M,1)];
+
+x = x0;
+if (largescale), Ax = A(x); else Ax = A*x; end
+u = (0.95)*abs(y-Ax) + (0.10)*max(abs(y-Ax));
+
+fu1 = Ax - y - u;
+fu2 = -Ax + y - u;
+
+lamu1 = -1./fu1;
+lamu2 = -1./fu2;
+
+if (largescale), Atv = At(lamu1-lamu2); else Atv = A'*(lamu1-lamu2); end
+
+sdg = -(fu1'*lamu1 + fu2'*lamu2);
+tau = mu*2*M/sdg;
+
+rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);
+rdual = gradf0 + [Atv; -lamu1-lamu2];
+resnorm = norm([rdual; rcent]);
+
+pditer = 0;
+done = (sdg < pdtol)| (pditer >= pdmaxiter);
+while (~done)
+
+ pditer = pditer + 1;
+
+ w2 = -1 - 1/tau*(1./fu1 + 1./fu2);
+
+ sig1 = -lamu1./fu1 - lamu2./fu2;
+ sig2 = lamu1./fu1 - lamu2./fu2;
+ sigx = sig1 - sig2.^2./sig1;
+
+ if (largescale)
+ w1 = -1/tau*(At(-1./fu1 + 1./fu2));
+ w1p = w1 - At((sig2./sig1).*w2);
+ h11pfun = @(z) At(sigx.*A(z));
+ [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
+ if (cgres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ Adx = A(dx);
+ else
+ w1 = -1/tau*(A'*(-1./fu1 + 1./fu2));
+ w1p = w1 - A'*((sig2./sig1).*w2);
+ H11p = A'*(sparse(diag(sigx))*A);
+ opts.POSDEF = true; opts.SYM = true;
+ [dx, hcond] = linsolve(H11p, w1p,opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ Adx = A*dx;
+ end
+
+ du = (w2 - sig2.*Adx)./sig1;
+
+ dlamu1 = -(lamu1./fu1).*(Adx-du) - lamu1 - (1/tau)*1./fu1;
+ dlamu2 = (lamu2./fu2).*(Adx + du) -lamu2 - (1/tau)*1./fu2;
+ if (largescale), Atdv = At(dlamu1-dlamu2); else Atdv = A'*(dlamu1-dlamu2); end
+
+ % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0
+ indl = find(dlamu1 < 0); indu = find(dlamu2 < 0);
+ s = min([1; -lamu1(indl)./dlamu1(indl); -lamu2(indu)./dlamu2(indu)]);
+ indl = find((Adx-du) > 0); indu = find((-Adx-du) > 0);
+ s = (0.99)*min([s; -fu1(indl)./(Adx(indl)-du(indl)); -fu2(indu)./(-Adx(indu)-du(indu))]);
+
+ % backtrack
+ suffdec = 0;
+ backiter = 0;
+ while(~suffdec)
+ xp = x + s*dx; up = u + s*du;
+ Axp = Ax + s*Adx; Atvp = Atv + s*Atdv;
+ lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2;
+ fu1p = Axp - y - up; fu2p = -Axp + y - up;
+ rdp = gradf0 + [Atvp; -lamu1p-lamu2p];
+ rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau);
+ suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm);
+ s = beta*s;
+ backiter = backiter + 1;
+ if (backiter > 32)
+ disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)')
+ xp = x;
+ return
+ end
+ end
+
+ % next iteration
+ x = xp; u = up;
+ Ax = Axp; Atv = Atvp;
+ lamu1 = lamu1p; lamu2 = lamu2p;
+ fu1 = fu1p; fu2 = fu2p;
+
+ % surrogate duality gap
+ sdg = -(fu1'*lamu1 + fu2'*lamu2);
+ tau = mu*2*M/sdg;
+ rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);
+ rdual = rdp;
+ resnorm = norm([rdual; rcent]);
+
+ done = (sdg < pdtol) | (pditer >= pdmaxiter);
+
+ disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',...
+ pditer, tau, sum(u), sdg, norm(rdual)));
+ if (largescale)
+ disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end
+