aboutsummaryrefslogtreecommitdiff
path: root/regenTheExpertTA.py
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2023-10-13 11:22:28 -0400
committerEugeniy E. Mikhailov <evgmik@gmail.com>2023-10-13 11:22:28 -0400
commitd10405f019de457deecde02c85c02cf68bb4e0a3 (patch)
tree8d8f8c7d0f2eb5fb2198941fe02543ccf2c6c168 /regenTheExpertTA.py
parent7ba1186326adb7c7e6369c0a8b9370ac08946b44 (diff)
downloadGradeBook-d10405f019de457deecde02c85c02cf68bb4e0a3.tar.gz
GradeBook-d10405f019de457deecde02c85c02cf68bb4e0a3.zip
draft of TheExperTA DB conversion
Diffstat (limited to 'regenTheExpertTA.py')
-rwxr-xr-xregenTheExpertTA.py66
1 files changed, 66 insertions, 0 deletions
diff --git a/regenTheExpertTA.py b/regenTheExpertTA.py
new file mode 100755
index 0000000..335fd7c
--- /dev/null
+++ b/regenTheExpertTA.py
@@ -0,0 +1,66 @@
+#!/usr/bin/python3
+
+import sys
+import pandas as pd
+import numpy as np
+import os
+
+# infile = 'wa.csv'
+infile = sys.argv[1]
+
+f = open(infile)
+l= f.readlines()
+h= l[0]
+hsub=l[1] # TheExpertTA keep headers in 2 lines (mixed with max possible points)
+maxPossible=l[1]
+f.close()
+
+# clean up of headers
+h=h.strip()
+h = h.replace('"', '')
+hsub = hsub.strip()
+hsub = hsub.replace('"', '')
+hsub = hsub.split(',')
+headers = h.split(',')
+
+# we should fail hard if this column namess are not present
+headers[hsub.index('Last')]='LastName'
+headers[hsub.index('First')]='FirstName'
+headers[hsub.index('Email')]='UserName'
+headers[hsub.index('Student No')]='SID'
+
+# headers[0]='FullName'
+# headers[1]='UserName'
+# headers[2]='SID'
+# headers[3]='TotalPcnt'
+# headers[4]='TotalScore'
+
+d = pd.read_csv(infile, skiprows=[0,1], header=None, names=headers)
+# d.loc[0, 'FullName']='MaxScore'
+# d.loc[0, 'UserName']='MaxScore'
+
+# cleanup
+# c = d.columns
+# c=c.drop(['FullName', 'UserName', 'SID'])
+# index = d[c] == 'ND'
+# d[index] = np.nan
+# index = d[c] == 'NS'
+# d[index] = np.nan
+
+# TheExperTA last column contains 'Averages' per student which we do not need
+d.drop(columns=['Averages'], inplace=True)
+# TheExperTA last row contains Averages per assignment which we do not need
+row = d[(d['LastName']=='Averages') & (d['FirstName'].isna()) & (d['UserName'].isna())]
+d.drop(row.index, inplace=True)
+
+# hand tuned fixes
+# d['UserName'].replace('phanng@hotmail.com@tj.va$', 'kphan@wm.edu', regex=True, inplace=True)
+
+d.to_csv('TheExperTA.csv')
+
+# now import to sqlite3
+
+os.popen('rm -f TheExperTA.db')
+p = os.popen('printf ".mode csv\n.import \"TheExperTA.csv\" export_table\n.q" | sqlite3 TheExperTA.db')
+p.close()
+