summaryrefslogtreecommitdiff
path: root/gui_win.m
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2012-09-18 15:31:22 -0400
committerEugeniy Mikhailov <evgmik@gmail.com>2012-09-18 15:31:22 -0400
commit9994dc85ac594d04c1c0d348e948dcd6c78bd36c (patch)
tree9590b55b7337d9dfac9da7cf592e708360579386 /gui_win.m
parent4633f3a8e9660201525ee822818981de7c0c7c5a (diff)
downloadbeam_profiler-9994dc85ac594d04c1c0d348e948dcd6c78bd36c.tar.gz
beam_profiler-9994dc85ac594d04c1c0d348e948dcd6c78bd36c.zip
Fitting callback cleaned up
Diffstat (limited to 'gui_win.m')
-rw-r--r--gui_win.m165
1 files changed, 57 insertions, 108 deletions
diff --git a/gui_win.m b/gui_win.m
index 8a98241..9ec90e8 100644
--- a/gui_win.m
+++ b/gui_win.m
@@ -314,14 +314,8 @@ global image_cleaned;
global image_negative;
global background_m;
-%If background subtraction is on
-if get(handles.button2substract,'Value') > 0
- image_display = image_display - background_m;
-end;
-
-if (isworking == 1)
-else
+if (~isworking)
isworking = 1;
set(handles.button2clean,'String','Working');
%read the attenuation from the GUI
@@ -350,128 +344,83 @@ function button2fit_Callback(hObject, eventdata, handles)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
+% We will fit displayed image
+
global isworking;
global image_display;
-global background_m;
global image_fitted;
-global image_cross;
-
-if (isworking == 1)
-else
-isworking = 1;
-set(handles.button2fit,'String','Working');
-
-axes(handles.image2display);
-[x,y] = ginput(1);
-cx = x(1);
-cy = y(1);
-
-
-% If we need to substract the background, we do it
-% background_m is a global variable
-if get(handles.button2substract,'Value') > 0
- m = image_display - background_m;
-else
- m = image_display;
-end;
-
-
-% Read the tolerance value from the GUI
-tol = str2num(get(handles.readtolerance,'String'));
-
-
-% Here we do our fit. Output is a vector with gauss parameters
-p = fitgaussian2D(m,cx,cy,tol);
-
-% Parameters we got
-cx = p(1);
-cy = p(2);
-wx = p(3);
-wy = p(4);
-amp = p(5);
-theta = p(6);
-background=p(7);
+if (~isworking)
+ isworking = 1;
+ set(handles.button2fit,'String','Working');
-% Display them into the table in GUI
-set(handles.fitparameters,'Data',p')
+ axes(handles.image2display);
+ [x,y] = ginput(1);
+ cx = x(1);
+ cy = y(1);
-% This is for drawing fitted gaussian
-[sizey sizex] = size(m);
-[x,y] = meshgrid(1:sizex,1:sizey);
+ % Read the tolerance value from the GUI
+ tol = str2num(get(handles.readtolerance,'String'));
-% This takes parameters 'p' and produces fit array (same size as initial 'm' array)
-fit = Gaussian2D(p,x,y);
+ % Here we do our fit. Output is a vector with gauss parameters
+ p = fitgaussian2D(double(image_display),cx,cy,tol);
-% Now we want to draw sections of our gaussians
-% If we have some wierd image and the center is outside of arrays, we do crossections on the closest border
-% Need it because there will be an error if we try to acces some data that is not in our arrays
-tcx = round(cx);
-if isnan(tcx) > 0
- tcx = sizex/2;
-end;
-if round(cx) > sizex
- tcx = sizex;
-end;
-if round(cx) < 1
- tcx = 1;
-end;
+ % Parameters we got
+ cx = p(1);
+ cy = p(2);
+ wx = p(3);
+ wy = p(4);
+ amp = p(5);
+ theta = p(6);
+ background=p(7);
+ % Display them into the table in GUI
+ set(handles.fitparameters,'Data',p')
-tcy = round(cy);
-if isnan(tcy) > 0
- tcy = sizey/2;
-end;
-if round(cy) > sizey
- tcy = sizey;
-end;
-if round(cy) < 1
- tcy = 1;
-end;
+ % This is for drawing fitted gaussian
+ [Ny Nx] = size(image_display);
+ [x,y] = meshgrid(1:Nx,1:Ny);
+ % This takes parameters 'p' and produces fit array (same size as initial 'm' array)
+ image_fitted = Gaussian2D(p,x,y);
-% Here we draw crossections
-hold off;
-axes(handles.ysectiondisplay);
-h = plot(m(:,tcx));
-hold on;
-set(h,'Color','red','LineWidth',2);
-h = plot(fit(:,tcx));
-set(h,'Color','blue','LineWidth',2);
-hold off;
-axes(handles.xsectiondisplay);
-h = plot(m(tcy,:));
-set(h,'Color','red','LineWidth',2);
-hold on;
-h = plot(fit(tcy,:));
-set(h,'Color','blue','LineWidth',2);
-hold off;
+ % Now we want to draw sections of our Gaussians
+ % If we have some weird image and the center is outside of arrays,
+ % we do cross sections on the closest border
+ % Need it because there will be an error if we try to access
+ % some data that is not in our arrays
+ cx=check_bound(cx, 1, Nx);
+ cy=check_bound(cy, 1, Ny);
+ tcx = round(cx);
+ tcy = round(cy);
-%To display the intersection
-max1=max(image_display(:));
-image_cross=zeros(sizey,sizex);
-image_cross(:,tcx) = max1;
-image_cross(tcy,:) = max1;
-
-
-
-%Here we plot the ideal fitted image
-for x=1:sizex
- for y=1:sizey
- Xn = (x-cx)*cos(theta) - (y-cy)*sin(theta);
- Yn = (x-cx)*sin(theta) + (y-cy)*cos(theta);
- image_fitted(y,x) = amp*(exp(-2*((Xn).^2./(wx^2)+(Yn).^2./(wy^2)))) + background;
- end;
-end;
+ % Here we draw crossections
+ hold off;
+ axes(handles.ysectiondisplay);
+ h = plot(image_display(:,tcx));
+ hold on;
+ set(h,'Color','red','LineWidth',2);
+ h = plot(image_fitted(:,tcx));
+ set(h,'Color','blue','LineWidth',2);
+
+ hold off;
+ axes(handles.xsectiondisplay);
+ h = plot(image_display(tcy,:));
+ set(h,'Color','red','LineWidth',2);
+ hold on;
+ h = plot(image_fitted(tcy,:));
+ set(h,'Color','blue','LineWidth',2);
+ hold off;
+ set(handles.button2fit,'String','Fit');
+ display_stuff(handles);
-set(handles.button2fit,'String','Fit');
end;
isworking = 0;