1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
|
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 275207, 6690]
NotebookOptionsPosition[ 270613, 6531]
NotebookOutlinePosition[ 270979, 6547]
CellTagsIndexPosition[ 270936, 6544]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["General setup", "Section"],
Cell["This loads the package.", "MathCaption",
CellID->836781195],
Cell[BoxData[
RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
CellID->2058623809],
Cell[TextData[{
"We define an atomic system consisting of two even-parity lower states and \
two odd-parity upper states. We apply a light field with components at \
frequencies ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition), and ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]],
" (near resonant with the ",
Cell[BoxData[
StyleBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
" transition)."
}], "Text",
CellID->525777075],
Cell["Define the atomic system.", "MathCaption",
CellID->429217524],
Cell[BoxData[
RowBox[{
RowBox[{"system", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AtomicState", "[",
RowBox[{"1", ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"2", ",",
RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"3", ",",
RowBox[{"Energy", "\[Rule]", "0"}], ",",
RowBox[{"NaturalWidth", "\[Rule]",
SubscriptBox["\[CapitalGamma]", "3"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AtomicState", "[",
RowBox[{"4", ",",
RowBox[{"NaturalWidth", "\[Rule]",
SubscriptBox["\[CapitalGamma]", "4"]}], ",",
RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
"}"}]}], ";"}]], "Input",
CellID->433132487],
Cell[TextData[{
"Define the optical field with three frequencies, ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
", ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
", and ",
Cell[BoxData[
FormBox[
StyleBox[
SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]],
"."
}], "MathCaption",
CellID->133602844],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"field", "=",
RowBox[{
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]1", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]1", "/",
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
"\[Phi]1"}], "}"}]}], "]"}], "+",
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]2", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]2", "/",
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
"\[Phi]2"}], "}"}]}], "]"}], "+",
RowBox[{"OpticalField", "[",
RowBox[{"\[Omega]c", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]c", "/",
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
"\[Phi]c"}], "}"}]}], "]"}]}]}]], "Input",
CellID->534530029],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]1", "-",
RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ",
"\[CapitalOmega]1"}],
RowBox[{"ReducedME", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]2", "-",
RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ",
"\[CapitalOmega]2"}],
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"\[Phi]c", "-",
RowBox[{"t", " ", "\[Omega]c"}]}], ")"}]}]], " ",
"\[CapitalOmega]c"}],
RowBox[{"ReducedME", "[",
RowBox[{"2", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
",", "0"}], "}"}]], "Output"]
}, Open ]],
Cell["\<\
The Hamiltonian for the system subject to the optical field. Each field is \
assumed to interact with only one transition\[LongDash]the other terms are \
set to zero.\
\>", "MathCaption",
CellID->462076121],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"H", "=",
RowBox[{
RowBox[{"Expand", "@",
RowBox[{"Hamiltonian", "[",
RowBox[{"system", ",",
RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "_", "]"}], " ",
RowBox[{"ReducedME", "[",
RowBox[{"_", ",",
RowBox[{"{",
RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
"0"}]}]}], "]"}]], "Input",
CellID->494599775],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"Energy", "[", "1", "]"}], "0",
RowBox[{
RowBox[{"-", "\[CapitalOmega]1"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]1", "-",
RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], "0"},
{"0",
RowBox[{"Energy", "[", "2", "]"}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]2"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]2", "-",
RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]c"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]c", "-",
RowBox[{"t", " ", "\[Omega]c"}]}], "]"}]}]},
{
RowBox[{
RowBox[{"-", "\[CapitalOmega]1"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]1", "-",
RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}],
RowBox[{
RowBox[{"-", "\[CapitalOmega]2"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]2", "-",
RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"},
{"0",
RowBox[{
RowBox[{"-", "\[CapitalOmega]c"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Phi]c", "-",
RowBox[{"t", " ", "\[Omega]c"}]}], "]"}]}], "0",
RowBox[{"Energy", "[", "4", "]"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output"]
}, Open ]],
Cell["The level diagram for the system.", "MathCaption",
CellID->358620443],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LevelDiagram", "[",
RowBox[{"system", ",",
RowBox[{"H", "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Energy", "[", "1", "]"}], "\[Rule]",
RowBox[{"-", "1.5"}]}], ",",
RowBox[{
RowBox[{"Energy", "[", "2", "]"}], "\[Rule]",
RowBox[{"-", "1"}]}], ",",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
"]"}]], "Input",
CellID->167259034],
Cell[BoxData[
GraphicsBox[{{{{},
LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{},
LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{},
LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}, {{},
LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}},
{Arrowheads[{-0.07659574468085106, 0.07659574468085106}],
ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}],
ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}],
ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.5}}]},
{PointSize[0.0225]}},
ImagePadding->{{2, 2}, {2, 2}},
ImageSize->94.]], "Output"]
}, Open ]],
Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
"MathCaption",
CellID->577766068],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"Hrwa", "=",
RowBox[{
RowBox[{"RotatingWaveApproximation", "[",
RowBox[{"system", ",",
RowBox[{"H", "/.",
RowBox[{"\[Omega]c", "\[Rule]",
RowBox[{"\[Omega]2", "+", "\[Omega]4"}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]4"}], "}"}], ",",
RowBox[{"TransformMatrix", "\[Rule]",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "\[Omega]1"}], ",",
RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]4"}], "}"}],
"]"}]}], "]"}]}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Omega]1", "\[Rule]",
RowBox[{
RowBox[{"-",
RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",",
RowBox[{"\[Omega]2", "\[Rule]",
RowBox[{
RowBox[{"-",
RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",",
RowBox[{"\[Omega]4", "\[Rule]",
RowBox[{
RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]c", "-",
"\[Delta]2"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}]], "Input"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Delta]1", "0",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1"}], "0"},
{"0", "\[Delta]2",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2"}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c"}]},
{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}],
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}],
"0", "0"},
{"0",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c"}],
"0",
RowBox[{"\[Delta]2", "-", "\[Delta]c"}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output"]
}, Open ]],
Cell[TextData[{
Cell[BoxData[
ButtonBox["IntrinsicRelaxation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRelaxation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
" supply the relaxation matrices."
}], "MathCaption",
CellID->610306692],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"relax", "=",
RowBox[{
RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
RowBox[{"TransitRelaxation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
CellID->645617687],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"\[Gamma]t", "0", "0", "0"},
{"0", "\[Gamma]t", "0", "0"},
{"0", "0",
RowBox[{"\[Gamma]t", "+",
SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
{"0", "0", "0",
RowBox[{"\[Gamma]t", "+",
SubscriptBox["\[CapitalGamma]", "4"]}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Version using complex DM variables", "Section"],
Cell["Remove explict time dependence from the density matrix.", "MathCaption",
CellID->690131918],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetOptions", "[",
RowBox[{"DensityMatrix", ",",
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input",
CellID->718931880],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
RowBox[{"Label", "\[Rule]", "None"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
ImageSize->{432, 33},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}]
}, Open ]],
Cell[TextData[{
Cell[BoxData[
ButtonBox["OpticalRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
" supply the repopulation matrices."
}], "MathCaption",
CellID->854192725],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"repop", "=",
RowBox[{
RowBox[{
RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
RowBox[{"TransitRepopulation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
RowBox[{
RowBox[{"BranchingRatio", "[",
RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
SubscriptBox["R",
RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
CellID->465762594],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"},
{"0",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}], "0", "0"},
{"0", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output"]
}, Open ]],
Cell["Here are the evolution equations.", "MathCaption",
CellID->314466782],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TableForm", "[",
RowBox[{
RowBox[{"eqs", "=",
RowBox[{
RowBox[{"LiouvilleEquation", "[",
RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//",
"Expand"}]}], ",",
RowBox[{"TableHeadings", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
"]"}]], "Input",
CellID->298399236],
Cell[BoxData[
TagBox[
TagBox[GridBox[{
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "1"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}], "-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
"\[CapitalOmega]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
"\[CapitalOmega]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "+",
RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
" ",
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
"\[CapitalOmega]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}], "-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"4", ",", "4"}]]}]}]}]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxDividers->{
"Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {},
"Rows" -> {{False}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
OutputFormsDump`HeadedColumn],
Function[BoxForm`e$,
TableForm[BoxForm`e$, TableHeadings -> {{
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 1],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 1],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 1],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 1],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 4]},
None}]]]], "Output"]
}, Open ]],
Cell["Make plots from paper.", "Text"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"5", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwtmnk01c//x4UiCde+u9fOXVzr5V6ZIUuWWyKElCKKki1FkUqopLQqS6J8
FNlSIpkpyRKSpQVJkbLvkiy/+z3n98/7fR5n5j3zej1fy5n3OUPad8RpPzcX
F5cA5/G/N6s7fGR1lY1PTFb/lJsmgs8V9yZs/7FxH/XKEp4lgojUlplr82ws
vnP+p98fIih20VzSGGPjxix+vadLRKDa2i3o2MXGzUd4Kz35SECw1oKWVcbG
jm1yfa3yJNBbKBICD7LxwOGrNru3kMDpMwXzsW0OmLH5zSH5bBI4LxX47sFF
ezwyRDYvC1EGim80c8I87PDk9Cn1ECsVsKx6QMJMxxZn8TvGUTRVQWYYbXvB
sA3ecHZkoNxIDTR/mblc88IaH+15UfKFrQ6qqTA1JswKk1e4Hc0yNcBfQyGW
ka4lnpGvTW4W0QKvXLr7bvJuxvSnf30FbmgDex8dx7Rqc3xLAJzZF0IBPoln
Xm9JhngjLdWEdYgGztcUZv6sM8NbyvffPbedDlq3+9mfhqaYO/i1+4YyXaAn
LL8SNGCC/avzebfo6wPpvG+b77sw8BMBjbve4obg6sPc6rY2A2x3aP7nIx0G
2FH9EIc3GOBkz+t4nMEAku0FryWxAc4Z3frRADJA2lLpW4/HBrhfQflMnSMD
3N+GWn4kGOAYm3Pha0MZoHzuU++0qQE+31F85VMZA/SYr18V/U8fm0fUWu1l
GYNMV8E1TzP08XKv4vOWzcZgb6Awj9t1fUzsizQ2dTAGg9cl+NJO62NaowS3
lJcxmPhFElbZpY8t3zXN1scYA+5kppI+QR837/kese61MdDoCgTOJ/RwqmHg
lfU2JmCn+os92iF6mCe3OnVymwlIDBWIXeOvh2+dB2/adpqA3wIPcZGTHsY9
NukJASbgEWvQXFBbD2/JTSwuuGQCaBnelrWfdXHy2XPa+W0mYPdQkW96iy7u
mjE8rd5tAi4brsaFvdHF/44O4NR+EzDZnFFLKtbFzqekK71nTUDJSpd1TIIu
Fnz/IPioBBMYeLvYMox0cRNthuzjwgS+BfcPClF0seuQ8rCKFxPcWJg5/5Ok
i6kfHV53+jLB/JWrjdc26mKY0bh+QzgTlL96bz85QMf2shPRRSlMwFSx2/rw
Gh3bPeVrD29ggoAjt4Niz9OxV2COmnArE6S9+J3sdoqOl//8enz1IxMsOSe8
XxtIx+sYmsLO/UzwMu6N4z4LOv4ROWaT948JxlvFQkyM6Ti1u/jSiTUsoKjg
kyJCo+OVyGglfT4WiHm6pq1aho7z13ZEOYiyQGxTdK7RDx38Z8yyQFyDBTxc
HY6B9zp4UaGt6j6ZBfT7ZLdsqdLB62vD30rRWWBwpnzI/aYOjszZYH3fmAVw
dHzlvrM6WMRPJKLKlAXu8LlcDAzWwTf3mIo9hSzAlpumRNvp4D0WwqOWW1hA
/QFePsfQwScKwpu67FmAS+dyS7KqDm73POKzdRsLlFlQgrNWaHh/EKvvnQsL
JDctwocjNKzmd2FHx04W8HdtIJR+pmGnU57p5Z4sIBvg96SmlIZHdXtyNuxl
gdkZg7imuzQssmGgK8qHBZqjeVw6k2hYVIfQ8Wo/C+Tytan1RtLwe3pmzTd/
jv8pWfODfjT8eBZ1tR/k+C93pG7CmYazbt21yQhkAYMHm1IXIA2fSdhhyDrM
AkI6ggfX0GiYq7X3XUEQC/x63mUiIEfDG7NI9KkjHD0sHgqI8dOw74bes3wh
HD2ajnXLzVGxkmDhz3EOh7taF6j+oGKf+tXg3FAW2NonHk19T8WPiAQzahgL
aAb0s42qqNj3wsjeMxxeM1uiCB5SsYap9/h9DndFx07Y3KTiy0W809c4XMa3
DTuepWKxGJ3jWzmcnKKQ4h5MxRYZc4ntnPX95Ub37vOiYhqXppYyh+GDSr1A
Oyqezd7uYcKxR1bnPE84g4r71z6TlQ7m6PfcreOkKhXPKTjuf8nxr8VC/cE5
AhXfwR90NTn+5zXNHk1eoeDrV3LC3Tj6nHatsb41QsHs0J+Kdv/Try9FKusz
BWddOqK46sfRL8D7d14tBTsNtHsd9eXoN0urKCmlYNJZ7zf5nHj9jl4+X3mX
gpd3KBvd280Cr/maPGqSKHgu8/e1HZz4pqXcITdFUnARxfbFGzeOXg8YzV+d
KdjiL635IydfNHXWZQ5CCr7JmNwXwckn7oqOoAkqZ79dH6RbrFngaVOIyBp+
Ct5VpyRzj5Ofya7w+/o5Mnb34J2XYbDAgT6hUtEfZLxRSFDaWpcF5GfznVWr
yPgEd6fOE1UWmI+OUqU+JGM5++tZUwos8J7Pds7wJhnLRl126JVkgTNygzdt
gsnYxXya+pJTX0MWxK4AVTI+derYoUM/mSCTlfDrqzAZH5l9XqLVzQQ7DMZn
Hf9p4x3hGwOjOPWN1aqEGW3aeO1Clu37CiaIUFRRePRSG/vqOk6+f8wEFKkL
2goPtfGbCbaQ1z0mSOXfacUTq42fRH+6I5HABFvXIKeIQG2c+4YRtSmSCXgX
1byHXLXxgc7V0uEAJjgyMhP1nqqNs4uTeVocmMC65XJxWrcWLrvh8PKcAKef
vJ1/KVSnhbl8NwnnLpiAUuT17nSpFub/L9V106AJUCghD/qf18LkA71pDcgE
zF6rkzNgaOGFo56bNQ5x+m0STes/ZS1M/BAf0+xiArzP3TCSFdLCWYbTN3vM
TMC7CJ/tXD818Rrh0Gs0YROQ7b4a33RVE+cvZ9qF5RmDnU5+10GMJqbUk3/q
XjIGQvbN90oPamKDtQGeDiHGINI0rSoVamKoVPEjmWEMHJUY077jGjjidnqu
chUDrJPOXP30RQOvNe7US01jgCqRtRvtazXw7Br2k91RDKDB3a6hm66Bi9tK
V74YMsDKQJDXsq0GFktMmTh03wiUfe0MCDbUwJqbdsw7xBiBgI+mx/uJGljx
4vZdEW5GoLNO4FrDH3V8cnL+dTafESh4lFt/44E6pvwRat2xxxB4Bvfq09ao
44jHinYrI/rANW5MYM2YGkYSf73AC33gmLr0vf2zGuZt2lLWel4fWGLZK5HF
alhAZ+9/v1T1AU3EbfTNHjV8vlNo31pnPcBd/P6+Z7Uq1hi+e3jnFTrIm8AS
50+o4J5Dbjqm5logm6d11NNfBe8enEgof6EJMqS+1dCcVbCsrrnbaUNNcBUs
h3Roq+DChqMS6hoa4MRlkxalLmXszt6lWsejBrbqlMY/M1bG8iFpLy7nE8Fs
UM6f/jki/qNwJ/8tvwjwD/+xm9BPxH+1LLP3ygqBrkjSW7NWIlbLL1fNUhME
r+LuXr/9iIiTu82zRzbzg+Q7abrb9hCxz9/Goms5XMAxSeNTeIoSLrVmv7m3
t9XM6NaDB+8DlTAl98nFib5sM4VslXBtayXM9WRs5xrBuurhciVC36IiJqo8
0/MO6q+O65eyt/dVxLFv54SyJ+arnzP5EYmhgB1TxuJ2lvOhTKv4SycJCphL
K6A3UX09OufIu+vTiDxOtBHVX3tFADn5cf1NypLHwRLZ/x5v34hGUxb0FtbL
4+MvvTstbAioLT1ijfOAHC7wFioI+EVAFf/Nvn9cLYcd3Fs7LseJoviXk4d8
wuSwKtHzde1TMUQc+p3b0iOLn0fdF8uakUDrZv2OapXL4lSJTVePnJBEYysD
m+NSZPFAGX2ayiWFKsW/95lYy2IBf2n7Y1zSaAf8IvugSAbHHetM2dYjg5j2
bkOr52Uw3aayJNdeFpFcO8s9fGWwntXWQ3Plsmg88MMOERkZvHL3vWhcghxK
uNWQfOKMNDbNLL1Qza2A1GOPf3zkLo1DN8+P7turgN4c0FDsoktjOt/nt7eq
FBA389xj429SOLVjubLxgCLKUjaY838mhX+7msd0VigisKHf9NYlKRyx3p73
Ap8SOtkDm+ZYUvjm+60ZgreVkFzthJiamBSeTFs6NNSjhCofZ3ruGJbE/y0o
VrwVIqI/MUvDpamSuN265MQDOyK66Z+v9+OIJDZ+KneE6UdEBo4eUQQbzglT
TnXv5lgiCiU9Xx88J4Ff04SuvS4iIoKA//a7TRJYeverh+a1RFQ8LXG7JUcC
P7jRcdD6CxFt7X7TtxwlgXk6Jf06R4horCZMk+okgfW+3DWbWSKipALl4F1a
EpzzXfTd+4IkpH3jQ/lFLgksLBYIxmVJqCE6drXykzgmR13u7dAgoQN+OjbD
heJ452MbKy99EuLb1pssEy/O6dcLFkmbSCiXcenjFi9xnGgxVOBnTUKWRFPF
4wbieIcX2WuKTUL9/CP7/9sgjitj4nV1d5DQmanbjz/+EMP24yECZHcSInZt
mVtbKYZ9uiUa+3eREHr9x9QwRQybu7g6e+8hod35uXG+B8Rw291fiQ+8SWj5
mkvTNSCGY9oDHZ5zOP0kr3iNpBieLr0dncGZz9z/xHN6TBRfyTj0192LhL6w
9+WQakVxxxmv29Oc/Y4bEUYc00Vxbvl9vUMuJCSphPViw0Rx2MW4G++2kdBT
viNRRXaimDcqPUnCloR2TCq87iWJ4qQ2y56t5iQ087lpvdBfAjYumDY/aUxC
V1+d2L6plYDNV3LCsmkkRH+kffvQfwScUuSs9FaFhN5f/dKXFkPABiFHh0ek
SCjoRKLmOxcCfmgQGSK9gYQEfRnBixQCDhRxtXFcJiI7wxurO7tFMHEu+e9M
LxENKVjaJJaK4FKZmvoDLUSUuG4mufy8CJazrXu3WEVEtZ8cFSWNRfDLb4c+
J9wiIl+8ut9KWAR3N5lFXTxLRGudvDyHmoSxaGXlqZdBRBQ7Kx2VqyWM8TnL
PS8tiKi6NmL92s9CmEreF3SNTET/bnak+sQLYbh53C5PjIgiTK6UE/s3YnOZ
I8mmNUooMIZv7k66IPaaW6rYOqyIkiTUan0cBfG9TRtk08sUUUGBxQ0KryDO
k/2s3BytiMa7og2rAzfg6OpM6ylBRRTKmD36nSmA517cnuxVVECRk33zGl/4
cCzbtm5WQg7dSVh5O5nEhxupx/PXfZBFlYrytyogHxaLULTadlEWLTm4Mezz
1uHsSKG7N5dlUOzD5mNBx9Zi7eeLU8e+SKOEfZULZRI8OGDcjCATKony/n6q
j27gxh6trW+SlCVR/ZW5VOtobsx3VlvgWJsEEkB0k88Da7CLq8dEFV0CJcv9
F/nvCRcOmTm0NeCXGNJ+qDF39v4SihX/QF8GBGR9qWshQ2EGkZ/+tundy4cK
brgOUhOn0fHun14GReuQWGZb+8vpKdSp7PRMdWkt6itsLPxaN4lm01fk+q/z
ovmsow3MgVF04Imcr+nrNWivhtE9k0v9CB9f/71VcaEaxw9KDg+mIVWemq7P
FiXVFEQTNxw+A3YWH7qu7H/LbD77wo3LB/4DpEX1CKf5KrNcS0s5u33VIEc5
gxLwrs0MXRApujbRCpzf917ymRowm6uuW21s+Q743L5v/r44ZybirpLnZzYN
Ul25kr64rgP1X/o74/qmwdLc+JNeaT5w2uM+T86ZGTBK/3TiYBcfmPZU2/Pt
7Sz4pCBjseS5HrTv1pDcue0PuLiNHZy4UxDc9CXH2XovgeHWY5VmMgSw9edI
iT/3Msi7NTakc5QA1vkVfDt3fxlMaH5llrcSwDF/Kuv17xXwrSLA8ES8KKA8
lYrMeM4FJRLXlUaOigGh5zJ0SXMemDPSqEa6KwkCFv5aq13lgbZ/5hoapiXB
W+MuL4N+Hohb7xxpspICMRV3Ljqd44VFT4giLUNSYKJS7ldyw1roHKkkZ6El
A1pfKmTyOfHDoEqr8MzTcoCyslwmmcMPHVwSSLn1ciDRrPed2iyH9916+kxI
HpijzL+bb66HeFfYn65b8qAUK7nEdglAMy7NlbgMBSC0huvQZfIGOH7ye5FW
jwIIMO87k3lyA1xl9B9+IKMIlF9nFVcpCsKDW2IpfCmK4FoNSfDvvo1QOP12
cUmwEhA0s/iRUbgRSioeLO+4pwTinu97brG4EXZWSvm9+aAEIh7n+CalCMH7
/MSMBUkiGNd4w9T9KgR9Ds/Pi1CJwD97QOSjpjDUWxHXP2tBBDtvqb1UwsJw
o0Tg0QOBRPCbP8f2x1oRePDG0bmOGCJQs35SVkYWgTLf8u2TU4ggE7dfcD8m
Ap9FWPN3lRFB13L/HDlDBPaoSN7dX0sEkqxZ75XXIrAiy/wwvZMILj8VZ+QI
EWCNUlvJ0WkiaJpWzT5qQICTM+3iQ6tEwE833LjFgwCravsTLwmSgOVhq+Oy
sQQY4jIZvEeaBGIfufSPPiBA1s8cTU8VEqj6tX8rekeAZ3OLeKOpJPBXNaIi
ZYoAearlnF8ZkYDRvnhVXylR6LSY5qkKSCD07s3LRptEoYb70J5saxIo7Mld
5PcRhWoRxHQGmwRGZMr3dyeKwvplVZs+JxLQdKtrfVwoCvvMBK6lupGA7/VP
rNgOUdg4Hft4lycJZH34leu0KArFXOyw5m4S6BFaIKgRxeDAveKphT0kIO3A
H/3HSgyqiazd3+BNAi7npX83BIrBW14qrJscvvpW0zk9RQw+Xlm86smZ38Jj
Uh1ULgb/8ipekPAiAQFzWy3zr2LwcpPLJuxOAtYx7tfFeMRhU/SmBjcXEjjz
4uDqT01x6B7yw+7zNhJAC5EBz7eKw+DYgL5NtiSwZHih80K4OIywxQ/jzEnA
OOwO9LojDqWCrRryjEkgvPhRvg4Wh+e6L/jm0kigZKxSkntQHLbNCj2I5Og7
rv3udMcGCSjXv6ZCUYoEtA90j+bqSsD2V8IdKetJwO/BiFukmwR8WU+nv18k
guwf/17bR0vAVs9TQu3DRCDnJX97sl4Cbm8bjFGq4+TXHQpvzbgEvONdXu39
hAiufzI9ckNcEjrp//3qnkkEgk5eVkxvSSjD//ny/mAi2HL5cLFgvCR8znuG
GuJGBOeaouW+5UvC3wefvVbfRAQr1plTZ/9IwnpGQ/IZXiJgxhXuclWQgryy
o2mWTUrg2KvqOs3NUlDb4yutOkkJTLK+ZTQnS0EhnUEPm7VK4DudaCelLg0/
1pUvEDoUgN+VVZbENmm4O5VffHekAhie6KWKHZeG9984JxrIKYDpwgyCcKM0
lH9nP3BwhzyIEIrm2TgjDRM38rlWj8iBxcO75gTkZaDgjt+sxFNygJsq92Vd
kAy0kDcNCUyXBfFJi428t2Sg5i4TGK0mCwRGv1RxYxlY377n/NwjGSCWn5q1
QpCFqadocsL50kBVS/LA/FMOf1Xxe3ZKEuQlzrnP9spCxyMfHBpGJADld4f9
NJ8c3GJU8t1khwQw+O+azri7HKSkRCmayIoDKzXCn5/LclBVflvYVBQB+JEE
4zutFOBzxt5z/up8YDh25Fh7kAIk9inqvbm0FgT1NR78cEsB5j3aPJw4zgMi
7p5nNw9xxmVg6t10LpCgwCdRe0kRclXpNup7zpjlyXDfL+tUgvGjXnJeoj+r
5/iX+hr0SJBR8VlK20wMhWZsFhmyJsGQUw7aNdvE0aTuRcDvSYKSpdIG7H0S
aNhDNtP6LAn+rjKt/HReCvUVGHvWtJNg9vdecVafHGpyPNpZFa4M89J2HRq3
U0Z2P6t4exKVYTb9XlBbpzKqi+Q1+JeuDC8MtOZHeKug19nXrprUKkNztbeE
jnBV9Hy2ZNszCRWo2TzdWJ6qjnJSxxuKnqnAnXeY51zfaCMi1ehvS6MKPLnm
tlGwNRllvorWHO9VgUeOv4gsrCOj1GHBBAqfKrxQtzp5vI6Ckk3Jlg/dVGFR
TdG98Bc0FNXnX529oArdBnv6cxm6aCG8aOyVoBp8cZoeaBqsi46u/yP/nagG
O7sNZ/XydFGwXvwJJVs1WPh7QpIlqYf84u4bp99Wg4eDu6rjh/XQds3vpTeY
6nCs+fbYYKgBcn23sN2DrQ47/s5HNGYYII8gkSlFb3W4O+ZfsVi9AfItAzp5
59Shi+Bi2EdZQxQBM/MrW9XheNIklqswRFH9T+1O9atD1j3fTu1vhuhUfPPQ
5nl1OPW7p/0urxFKbFrSaJbTgMONGd1VbCN0Z6fn/W9+GvDdUJT1+89GKPNf
6Ob7kRpQa6YuSGbRCOVkXvhxIIkzX1H9ZLMsAxUMVBCnSzTg4/NDtAgPBkLB
0hm8yxoQ7i7O6mtjoIHEzhta1zThGyxrNpZnjH6TxwzGH2jCLbnxz+ArYzTW
wttR+lwTSu5QebvxizGaFzcQNe3VhB0NLgkyfCaI/97V5K1aWrDiV1+yrJcJ
ErR8RBUz1YIZf7NSvUJMEOHXq6ZPW7XgQs5+T9VzJkiWOiWwN1wLEo4ZeVjk
myBqxbaEMKQFdZsoHT+nTJDeLn914zYtmDCWpHWIm4mMVmNqlwa04NE7Odyn
RZkIWhXyxAtow+quP5Weukxk+bs2205BGz4xzdipCpnI9uJXc2G6Nnw55DMf
u5WJnD4Ixqa6aMNxvbHCfweZyDVcVcnrgDZsr+NJkD/GRJ5SptWkE9pwKejS
l49nmcjXK3DpUZY2LDz+3lshnYkihhqOvxzRhsGq41+l6pkoU8G2W4qLDKv+
+8LF1c5EddvrN4WKk+FJgzavk1+ZSLryLbfGJjJUSG86YTzFsXfcav/p7WRI
3PHuyolFJjqoXFvXvZ8MQ98lJrjzsFDlhZqkK8lkuOFeYdaoGAv9qLaYGM4m
wyy28Mp9ORbaMPNqu1U5Gdpm/ipdUWahXZ5YcvEbGWb67wtNp7NQ3GUQuWOW
DBvTotL6jVjocU11dyE/BRZENe1sM2WhFfLLLB9dClzUr8wusGEhdW9Tnmor
CjzXVERLc2Chbddf7Jf2oMCTx4+yGdtZ6Hg9sz40iAJHveLCz7iwUNZShXbz
GQr0v0mWiHFnoXq6ySWNWxQo4ByfTvZioSnf5xOn8ymQZBwWluTNQrK3GU49
iAJl+5NW7vmwkEXzszKjDgq0TlbJPOzHQgFrjKRSflPgxreMwskDLHTN8Gnk
yBIFFqlExFMCWajqoEGPFYEKH64xiFI+zEIDGU/MstSo8Ini4c/tQSwk2KZ3
b9GECmtVXo+YB7OQwbpSHpetVEjmOb54OISjD1PXr2gfFfqpHbd2D2Whc0HF
9euPUeElj+0b14axUGG2Dtn3IhUePWeSGMrhjx8LL1XfpUKnBeHRbA6vCNAm
pcuo0O2498FbHFYHj53C6qnweJ8fZTuHt4ZRnjb3UKGph5jXB876x/7Ll9Kc
osKdqsJKMhzO6taOOrOWBnm/vUrR4thTL/yop0eGBotd3Vp5OPZObtYCDBoN
CtfWTuVx/JE5nncvxYIzfrqDX5bjr0WBBu+oKw1ukFNR3cnRI6Av1886kAY9
P9C3+h5koavi6g1Zp2hw5ZDvJeDPQi+2PCD/u0aDDQfFB4Z9OfqU5EwWVdHg
dWW15qd7OPr8VHYW+ECDeWI6jp92sZCXTPZT3580OKgk29TEiWfh6awoGSEd
aBfd58tw5ujxVOlrmLIOPLbHwblwGwutDmWCFiMd+OtYy9clexZydMrgPbtH
B1ZW/oCqlpx8iZf3/xqmA1OfkZtXAAvdq0xrYCTqwH05G73KWCw0rXwnebRY
B+rFnal7osdCjZH2guQ1dGhz6liNjBILKcuFzT0SoMPt551tTWVZKKrqTq+2
OB1aBgz83CzBQlqrQ8XaGnQYqnWshHcDCyXGJbposznflzbTd80xkc3l2kyt
23RYuTqw6XMtpz7pYwkPs+nQTdQ8JQkx0fwH8RCtAjos7PpAoVUwUa6472Yt
RIfKg2MrzAImWneH+7fmTzocNNw8G5/CRG/uA11NXV2odcmObe7ORPLW/rJ5
TF0Y/jpE8t92Jgr/lcyjaakL50TW78mzYyIV7d5ODTdd6EPvetXLYqIzRSej
NKJ1YVK3/asaBSYyr6yoUW/QhSGRPtdLvpmg6vf6rmp79eDAwQb6JKdfhvsk
eBwN0IPPL6zGtLiYIK0/Xbtrw/Qg9bXXrTy2CbqueMZ/f7we/Lb67qPjJhMU
cLj1+IN8PdjTFW0QIW+CJDccTlOb14N3+op5GV3GKMg6t0/toj7cdNXA+fQO
Y6T4UjpQ/akBXJhxIHy3ZaDFlonRbywGHGw6WFKraYhelNQfsLllAgnbBd7Z
HtBHC8+vbfdXM4WZJT49km90kUyKt4Fhohm8ZVV6TzKUjpy5JKbijkBY5KSt
bJlDQ26NoTH2ZebQ55C1zNnTFNRy8gP/wX4LyKO4erHitTY6a/6w4QfZEk4d
OLWPLaWFxrevTuwJsoLaoWGNTTka6J2dq5hBmjVMSeXuu3RYHQ26qB/2/W4D
M3e5uvWaqaFw2z81IwRbeIfiXn8GcM4LidaxEaZ2sLTFgmLlqYKYXUJhXrH2
MGLPaLZhpDLn7/nzvrRCBygTHXaO9zkJ2SUszvY9cYAj5mqJDWUk5Lcon6Be
4QBf6JQ9u1xCQnf79uaX1DjA2IAf15XySUjk8chM3WcHyP3y12Z2JglNWa3G
zXKzYWq71fdvcSRUdkz9P7YbGyb2Z3d+dSKh1uEtJtd2saG8b4dy3TYSGvUK
fPd5LxuuXolJLHEgITXL4gmfQ2yod2r0znlrEropwjSOOs2GruqiTdZMEjr+
kN2Qm8+Goesnvs2SSOi6fLDnaDEbzrYQgicUSaj48tUx3WdsGJF+W3hEjoSG
jn4ivMRs6ES4F/VTgoQ8LPZ6tHeyYZuQ8tTgehKKeHp2VLqbDf9sXB4dWkdC
VzVzY3b3sWHQic8zYzwk1Cg0kj00zIabo/cT/y4T0eDpjYY6k2z49zC3Fdc/
IuKe06kLn2PD5biIUP4FIlI84OReuciGB7yM8whzRPT/9xHg/99HQP8HtnoB
PQ==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-1, 2000],
Rational[1, 2000]}}, {{-60, 60}, {-0.0005, 0.0005}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]2", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "3"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"3", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwtmnk0Vd/7x83jdS8ZEq4hwzXfc64xZO/MKYUiQyQZKqVBaNKHCE1K0Uxl
ppIkqXT3LpQ5JUOaJJlDxhL6nd9a33/OXa+199n7eZ73ez973bWOWuAe92A+
Hh4eJerx/7+WHw8M//vngs0eP3pfL8sEnU9uj63+64JfkRmrOQpMEHWlefLi
jAtONtEVu67MBCUe2vOsny54nWvw3r0sJtBo+Uhz7XLBtPKX3bormIBWY2N4
q8wFTxzVaPqymQm+FEvugztc8M4Gq2qHXCaIO353JvbdWmz4oi3PzEIZnFwa
1pB7eg3W+dMi75eqApSrtbMjfJzx4nrLqcwoVbCgsV3Wmr0aj464Z11hq4HM
CEO3u0OOePRGjNMeseWg6cPkuapnDng4pEO6Z3A54BrAK8ci7HH72zPLH02q
gz8mdEtT0g6XeEr2P5DWBC88PnZfErDFgQ+rxbdZaoE129iu17mr8IsZ34Kq
GyywLfn4S6cUiAskPrstCuuAk1XFmT9eW2NCYHri2hld0OIWsiYOWuGxsfV/
eD30AYehtBjeuwJbVCqHPltqCOQLvtrmeJhh8YzaU794CSqf+oUra8xwaNDV
jgxBAmh0P3p8dpUZnvx2o9BJlACE/Bm9aAMzLBJ8vPyqJAEck82lnQXNcPdp
BX9tFQJEbU/tGSszxVfas1pGLQnQpm0bZyljijOeCTS2RBCgy87QkhAzxSsl
G66aRxOgO2DZtAaPKVYRCI7OOEyAkStj2+kjJpgIydHxjyOAgOgN129VJnir
p3j7kxQCGA9OqSRFmGD/hrXMpgICXCjM4757Z4wf+N3cNP6BABu5hfhAnTHe
e8fEvvATAeRa776Uw8b49EWzFr+vBLg+X/rK554xzmntP/qklwA561FzT5Ix
1jy+cfOKMQI8nu74MmFljOeimH/X8JPgsNjH7jQjY5yhnfGwXJAEVipfekx1
jbG0/8tRRRESYKfevsNLjbHitc6bbTQS1F8fH+WbMMI/Zh1f8cuR4NMq0X9L
8o3wcGeJ3QoWCTI9abyPMoyw6avmhzY6JNgaxuDflGaErwYWetvrkaAvTVb4
epwR7uC3GTNhk2CsX42hvtkIX5/a/PyFKQlK5zWkatyNcEA+2HLBnAQHpLSl
Q1cb4d6Du2N8LUjw28Jw6R1TI+y+Q6WpfSUJ+FIsVIykjHBs6BjvHjsSVGet
VGsTNsJJOh/e8DiQIPExVI9e5ODauFbXU44kEP/mwHo2zMHdRD1fgjMJZIw3
sG1fcbD693RzhisJ2p08yR+VHMx74GyprxsJrvp5GyU95GDJxqdCN91JoJy0
xazhFgcXf45uFPUgAasrDGw4wsGp+py8Xd4k8NJ6tkV3Hwd/aonjO+5DguT9
YrG8oRzswTibeNqXBANihfi+Ower9HnvPOxHAvlNv7sTnTjYtGbXkS3+JFid
7cjrb83BfsWf5My3kKDIsm8VTZeDPxs4rakKIEFXkkngdxUODl+efCFyK5XP
+4TjT2U5+MeHu1ghkNJP9X1WqjgHz63tvlNK8a5d6lXbean56wd0Vm4jwY2K
/d/BLImD+LUkn1LcJPCSf+lPErvtTjfSCSLBoquUxmgPiZ3nGrefotgwI8Cu
ppPEdrSF+M8U+w/eD7rRTOLJM2Ney4NJcM7kX0JENYk3HBF+5kUxjluX6/yU
xH0XYUwsxeNNGTVqJSRObjXcf5ViVYWfP37nkvi63mJYNsWuIVZCLddJPCe3
3yqT4tjS01r5qSQ+v/pH2UmKHyx2ORxLInGZx+q8YIp7nHVDPWJIbLRF6xtJ
8ZLLh5L0I0hMb7lmMkrFZ/O9Np9/B4n1RXwjrlG8ny1f2+VP4r/sBztMKc46
EjrwYCOJf3Uf7X9B5d/6ulzkpDOJY/mMnllRLCAjpBMASbz9zOfSPKp+xgEe
q81MSewUqHjjH1XvoLs5O+j6JG7WULVzpDj99+TJH2okHl5WFh1D6fPKzrao
cimJw4WN+bMo/WbOX6i/KEHiVHZqaRmlr9bnb0M7+Ulcre/m9ojS31OHFLf5
Q+BhgZSi7M0kePzizZrxXgKfYTeWO1H+GZBQ2fW6i8A2Z/sXFr0ov/iEn8ls
IfBSsTJW1iYSHJygNa2tJPDGVbMOxRtJUGC9+ad6KYEv1hg0yW0gwYdTdyT+
5hPYyC99UxjlZwt153WFFwkcsKcnvcOFBDv3XA2PPUngPnXjjtE1JLj+bCBl
038EDpU9b/ZrNQnmNyS9EQyj1v9QEVZuTwL9W+1jnwIIPF9TWHfQlgSbRzQl
yzwJnGI46qO5igTPE6pdA20I/FdpNcvKigSjLdL7VpgT2Mx97WDuCur8MLel
ShpS8TXHjPymzvuxR7zvuMsIPM2YQN4kpX9jTJ5pDxsvPHeo/adBAh/PtdHg
DRu/5Im06FMjgVG3gpNTJRsfKk7WeaxM9ZPJx4Pel9iUHwLuLpUngYvihH6M
Mxvbv/wV3SRK1TsXL5wwY+P23X5CfEIk4GGfa07RYOPjTT9CVPhIUGajv/fW
oiHm7detlp4jgMLOkIdVpYY4RxUNfxogwNSkcULjTUOsmscr6k7106YYfo+2
M4ZYtG69dTHVb2NTb830hRjiyPsykortBOiv6FohpmiIq1ycVPALApQJr8eu
8Qa4Rau8WzCNACmpzFTvvQbYqGl9w9uzBAhVHNka6GeAr9ommcclUfuzT/If
MDPAP6trH5yk7os4zyqHy8P6uJC2kWuxhQA+3alLb3XqYz4DBT8lL+q+2Bkw
UFCjjw+ebL3z1ZUAAzELJ5/e1Me9t6b3iNkQYF2uWdPnDfp4fb+r6dByAmiz
hTL7oD5+x9s3+06BAHxP3oePGehjsVbW1etLCPCocZ8kr4g+HmltTmug7kul
qTsbNCr18OHx/7bB52wwaKPatVNDD1fXxeW3qbNBpmVS/2eGHh4qX7+rXIIN
NhqPTrn+1cVa04anbWcNAdasZJi908WTnrwvAuoMwRURL3v+WF18dKQcXdlh
CByaz5Vc/6iDq216h1KvGoD5VzPP6a918Ey43dR8jAEoRX4NcaU62NDcDdMC
DQDzgV5f6Elq/k0b/mU6BmDq4mtFYzMd3PTD7eiHUn2Q5f0vsfGCNjaM7Fcs
LtMDXu4haeCYNs5uOv7e4qIeoK9pul26QxsnyM+ahu7TA4esrldegdo4Npdj
mKmvB1xVzCaCRlnY/sEnm9hMXbDYG+63sJqFO7Mz2xb36ADfvV+MDHm1sOjP
PQyHei3gmfBTjPenJhbofbHkcoYWcL0y/621UxNfiNbOTtmrBeywwvlDJZr4
yUJtaISsFjCU3DRSvUUTQ6dPE8t9NQFfyZscX64GNterv3yvXR0UjGHZk0fU
8dGltRFZaapgKjx79vu0KuYXuDofOL4EhB7o8Zf6roqbksWa7sYvAV2H1F5Z
t6jiR7bvsv/KLQEvEm6mXS1SxZ2ysY8er5QCKdeuk+u3qGLnP1wHfXkGcD3D
6jiQqoJzw8xa67eIgAoLEaRmxsQEp7Ei8cWMdaZ94tmjUkx8K+/ArtXEtPUJ
V4HNHcNKeDzX9SHr9qS1ewjPnzO3lHDL0d1fok+OW4+k/ub8FqXGi1eGu430
WqsODuQ1f1Kg+umeq1qsh1yhqZBInccUi/qF+ryv5v5c7LVNSFXAPLnVe+Ln
33CfynzrXuGggLGo9N3LPB+5G+EHhdz7y/Be4cZ7g0YD3KTLdSlHjsvjbuG+
V1EaM1yt2IPtRd7yuGReemJ3+Cy3ejtLuYuQx9vBmi1vH/7m8lmcuGf+dSnW
fmgVlkP85R79BBunLZfi2PfmEny//nEVa8akNaWXYuOrw317TvGgp/cyfTcO
yWE7LcFX3ct40eyx+aHSK3K4dsq/mST50H61CtG907J4oPVC6jwUQFJioW43
G2Wxagb3XjBXAJVMyF5tzpbFU9uEHLRXCKKfVRHaBu6yOCE8zaVQSwhtD2E7
DhXLYPOm6lDymzASXv8lZVmiDBWPeMVfJxGUZ3a23clPBgeF7dvOXyyCvosM
B+eLU3zvwU28RxT538lLCNoujUU+dJ949FYMLVz0aLwIpPEne99z+uri6MZR
AZkqOWmco9aZ8nafOPrgEpitVrME19Icj9wWoqGDplLDrjeWYCfdjqH6tTQk
p4I5sRFLMGzV9VA5T0Mbx5kvv6gtwUcro4ATXQJNdjaK0v9I4YA3jo1KqyXQ
hRdH3Fa2SOFKoneXUpwEIop0r+7Kl8IinM23HMsl0JsLH7qvH5PC2gKesjcH
JFD4kWTtBg8pPOKeV6guT0e0ILO9c/pSOIfeu6Pdjo6cTdL/eX2UxNrJuUkN
6XQ0yLRzTC6VxOZdMr2ST+koWWgy5fFJSTwX5rbj1Ec60hq73d4XIIkF7OqF
LOboqKbDVVnOXBJrWDR2qMkxUBD+F2zPoNaT/rPcjs1Agu5+voONDBwFn3ln
2zOQjfqzIccjDDxwtHypjTcDxU7JH87TYeB3u0yWq+9kIG5NlKhgJx3vj00L
XX2Qgf5een9lWyIdWykULT6OZyDz7Rztl8Z07HpSX2v/GQaKWnH+sep3CWyV
LWt35AIDPRQbdfgvVQIvcRP40Z7OQOMf17R/BhKY7n3jWfIlBjK8VxhsNUrD
zTt6b6alMVDYMeHpazdoOPNxVsriOQY6I6tZs82Vhsf7orO8TzLQ3bs26foC
NKzNw2u/N5aBmmwDgqcfi2Mls3YRh0gGGu2KMeGGieNEsbRrX0IZiLH/umCS
iji+NrUNr/RiIEL0Sdv6VjGcXJbgHerAQG632nPlk8Swgv87vy0cBtpvNhX5
zUIMXwLrPusoMdDFZimHolFRHIXy/tXzM1BZMFsuIksUH4WI33GQjtrm1/ZZ
eopiVy1zkNVIRzMXd5YLiIniMvos89s9Olqql5zY9FwE14bcVxM5S0fmL3M9
L+0TwXftwr4p7qSjQ+PdM6wPwnizGY+3kjIdXUtafDV+RhjPqEblLpmWQE+V
lS4/gcK4fNa6XaReAs2v3WS2pkAIL4kv7REJl0DM3gPCMpuFcNHjzcNKKyWQ
9ZELHZ8YQrjZOJK0F5NAsYVN0eHRgvi92ez5/kwaug2HHc30BLH801Nbd4XQ
0MsOEXmerwJ4Jljws4I+DQkI2VWkOghg7fmlv8RKxVFS4NPfZbL8+MChxLNt
BWKo4E9HbUwdHz5WecHePlAM1Z6fvuIQw4d7RH020hTEkBgiVnT28mKfPdKO
FQmiKEUx/9Dfhzx48KN7NeEognQLWdPxOfNol+uzWslEQbSrIzBdljaPyMbx
+naWICoWzDTJj/iL6itc5L1qBRAZKBNVbzOH4n564zxBAWSuyDsr+W0WvSuP
H9Pfz4ccznb9zmBOIptI34Wd5CL3brpnn0HyBNKFX9bybFrgSme+a30+8Qut
XQTRk4fnud3F9cWfX4+j5erXFFncOe7Mrcg6i94RdOz7U1O20Sx3K8v09oqz
31FmVfChra/GuDixT26o7zpab3ljv2xfHlcfGcqYDB0HUUtlty2Kn7OeyTqV
fm57PlhM4Il9b/LQOs/OTtE5kAu2BB0WtP9Za41OSd6/ONYCEm9on16BPlpP
c1//q2/+Bs6Y0kv2L4xYS3qrF4RYT4Di+qDBc0Pz1rUfvrcldE8Ahc7mMLfO
Bes4nxz+7OOT4GXVhjZm9aL1hK/mlq+vpsBAl3NjvTMPaPVnyXmtnwV0zd4d
igw+cOZrv23Ur1lw8vXJ2zYxfMAuoGBf2sXfoFK8R8FwiA+UbdVpaun4A2yu
FD0kMT+4FKSXsDpgHshXfHenbRYE634MPwjlWwAy/xVaRyFBIBRy9+uJnAXw
xEmWJ1hNCESHGli+HFgEprYr/zzoFgL6j5YeyqjggVKOKQ2ctSIgeXr23F1R
XnjlBNIZyRIBvSadec98eGHUMr3tP2dFQEb5lfcf5nkhV0NvsvCGKKBXLCPk
VvHDtbd1PUGLGNj5+4+D5gV+KKn0b1+YvDh4Zd7lZ/ydH5Zq/fcq118cHHty
7bT7CQEo07E8SueHOOj6czhrazvFnU76wZo0YGrh+2QvSxDi96bvLm6jgbGn
iv0pdYJwYHwu4v4HGlj79+9ChoIQrJb1Cz4nJQEKLD/J3AsTgu2cVxwnRwkQ
UHnDpkFCGK4TjTTVuysBKuePenf5C8PqHivG6o8SQH6l397B+8JQu8VWjCVC
By3PmZnC7iJwbl6sRNyXDvQXF8rkskVgSnzMc6E4Oki2/tKgOSUC0w6/fViU
Qwe9x7g9xvaicEZ6q+BEDR2sQpl/bC+JwkrzAtDRSweZ/45JbugXhUoRfeIe
vAwwB7awAs3F4LrAF+wQRQbwjAXW+06KwfD8/rOCRgxQilU8YrvE4Dv9Mi1D
Jwag8/LsOqcnDg8nv5X/6MMAO1d1H888Kg6Loz/fFg5jgFdx+Oq9JnH43p+m
cv8gAyx/eaukUpkGbzg0SjTFM8AxvrjXDXtoEDeH0vzOMECXzdYvXZgGzZ0K
unwuMIBp/KrpQSkJGOsd7fMynQEuVqnR/gRKwOPZ/50/d4kBaNY2PRnFErBi
y56iiTQGSKgIrLCZk4Cnjq3QFU9lgAVOfEq/PR2mLJhrt59igKh72UFnUulw
hJjsdD3OAKOsagvyMx06jCWcPRjNAKFZvZLt2gyoeo1e5ryTAbqVBPsPH2BA
ToNyZzWVn9dlzecqmAHzchSze6n8B0SyV/cISsJdJ4o+5RszgKbDw7IyPUlI
XycXRlNmgMD4KpUkN0loePHhBklBBsjErae8oyVhi7/tsweDdNC18H1aL4N6
/9yGvtEGOpCznApYfEmNx2eseHWHDs49kjHLpktB+ZHqlJVBdNA4oZEVaSwF
NeLVFrus6ECEMJFw8pGCae8C90lI00Fskcf3kVwp2CkyWWJQQfmpP3gdapCC
OXoVf5YlSYA/GlFPUn9JwVvrfoArGyTA/puXzpmuXALXxoisXP2DBoo/5c2J
bFsCayPfJx8pooHhZY+DPyYvgefryHnr3TQQlNZhGft+CZyaXkI/PCwOPE7K
D9SFSUN5ydmapnoxcOGV9oYbqdIwtnCfRfpRMdDMv4Ib/lgaJve/mJ3QEwMO
x7zTpPll4EYBnoyoeFFgHnEN+l2TgS0rhycbZEXAgZKiO2wsA602vRHfXyYM
Hvx8KsfXJwO9Tp3+WOkqDHS3fxzJI2Vht4FQtvNxIaDop3R1vFYWGmdU8abX
CQCva/oCVaOy8MDFcJ5iDwGQ1mG1J11GDvJki8XGf+UHNHc/e4sAOdiyUy17
/wgfWHTI/BU/KwcrO9ZUvxnmAd8IVeelWvKwxOFeVLvIH+uQ8/8sZdfLw4LU
t5dh1az10NgXA+mD8pCnapAhemjGeqI4Q4pRLw+9fvyeG2uftOYzUPwgFL4M
wg+Jr5OfjVhr6Mhtn3mkAKFLgE8lu8Y6RI2W2GbPhDyPF3Pr/Ge5Q7HD0a3h
TKi9mZn4Re4PN7y7fsfby0zolbBJzfbtHDfq5kmXpkEmdB3j3sxbu8hNYgrL
1pxVhgEXI7/ie3yoYBlfTlmbCuQ5Gr5tx3dRNC0y313HUYN8i/3CUq4yaH+G
reSggxoc32DURFbLoHHyNBDxVYPSJauerTKXRUM+CpkO8WpwoF5yN1NVDnXf
NfetalWDFyRD3daMLkWNrpFtlQeWQ/ljjkE/YhVR9pXRuvvl6pBHitZ6iaOG
VA1M/zTXq8MBl62VbaFqKPNFjPboF2r8yTXL1htq6MoQLUlfWAMWN1aNCAgt
RylWenaFmzTg2WKeGLW25ehwdyg367cGZI9Wq7gEayA37W+l6RZaULtHX/aw
Iwt5Nvx283HRgtxTzh11e1jIJ1zyl3KAFvw0qXqs/jILBZUBdsEJLWgzKRny
uY+FomDmnactWvB9q5OCbZw2uublm/M1hAWD5XxuDOTpoMy/+21zDrEgfULl
IbteB2VnnurZfoYF7c93BGj+1EF3e5+oTjxgwUWP1iNKHF2E9spnCCywIDDv
3mBRoYt6k9vSdS5qw6HpznK7R3poQO+n8WiuNiyL2V56pFUP/WwWeF9aoQ3l
Hm1+EPhLD83IGC+x+qINtQ5ZH12lr49Ebl9IWaejA+0YplpOmfrI4Mn6pAik
A4WKDYJLIgwQZ3Oolvk7HVii8Hcd/1kDZPrvWM18rw4UC722XizPAEH7Yv5E
MV2Yal7/xaTDALm/pcVe8dCFBcV552imhihqsO7g82FdKFNkXibcZ4gymas/
LuXRg/NbWd+Pzxui1261K/fL6EGJlX237ixhI/mnr/hYK/Xg3C2XVmFrNnp6
qurM+RQ9+KLb7caf82zUw7UZG8rSg/IqrBdjOWwkPvnCzf6xHvwuuzH3cgUb
bfbFcnNf9eBPG8O2xS9stKj3/NY2Uh8uG7spwZQhkFaAFT/XXh96+9zn9ikR
aH3as2B5H3343upP7GlNAt2af6LbdFwf6mTe9ww1JZBNU3mZ6Xt9KLpmDXOv
J4FOhJfUikYbQJ6OOFnB8wQqzmLrBZ02gI/pQQm3LxGovb34LPemAUx+bx7P
zKD2A/fcI2oNoJwqWv+okEC1jKJPn5YZQu8PHjNhLwg0bqsDzAwNIe9gzGPa
awItO1hwO9XGEDZ6/LY510ignd15IQ5hhjDC/+U7iw4C0R5kj9+vNIQzk6uP
GQ0TyPjH8g1ibw1hefxfy6ExAvkty3oU9MMQZh/P+5UwRcUXd+vwMjobZh9r
8gxdIJCre4ZA/BY2LNwsHdkvQaKDiUqhnyPYkH7OYGuNFIluP71eZ5bMht63
l289KUuiieXXUkZK2PBgRFhOtRKJ6g+toenxElDoeaovQ5dEyxUjpovECGgX
J2v3S59EhyuvfdGVIaD/3zEPLptEOv8GS3RZBDybPvVSwYREsbekrhURBDwY
LZZQZEaizlUr4nUtCOi20sVCy4JEyQnJHrouBBQ8P76ux5pE3Zol1kWeBKwL
/ySpvopE5q87WLoBFNeInXO1JdGAKGtOJ4KA3NyR+P2OJHI8V5Opc5WAHRMF
VzrWkSiT+JlUmEXAT4zipHhXEs28ldmnc5eAiXL+pUx3EuXJBNnqIAKGlRw5
wPQg0eKj0/qFtQR09JoPjfckkeemh7I67wjYW+qyvnMTiYSu8Q1o/yDgeXGh
4vU+JPK31H1bMErAXYO/ju33JVH5J7en2r+p9fgrZhI2k4h+7FB2AS8JhyJd
ViX5kShY5fYZbXESLip6nDrkT6JKXBtZIEPCxlSVBd8tJJIJHPfXViahiMGd
asMAElXnAFKbJKFC77b53K0kUnIIVSiwIKF6/AR2DiTRgf4Ufm07Eo6HCMZ3
U9yYXD6S70JC76U8u0K3kUhd90sbaxMJBTSncr5SfLhBEOUHkLDM9bbn6iAS
vdtlUMDaScLaO5GFORTr0j1S8yOo/R6frflF8fH7Rw+zYkj4NrXsHRFMoi7X
nG35iSRcygz6vZVizkTDWtZ5Eraa1/idoPjUxUmT/KskpPXd17lOcY+xogor
m4TPTt85nk2xRbuNSP5dEh5dPpaSSfGF6J2/tMpJOHBk64EzFA/JX+jKQ9T8
g1e9dlO86umTKq06Em5Z9yVgFcVXfL/dzXtHwtxmVqkIxePzIpe0PpFwMEt5
XxUVr1Mm8V/eDxLm31Z6uY/iW8Bru9YYCYvkDeqkKf7d/Z9b3m8SXpGSKCqk
6uF6PN9Ci48DvQr1ko0oLlB/o54nzoFK24oSH1D15KmZoWnJcuCto3616hR7
hSjP5Cpz4KBl455TlB4lwg5fNbU5UN+LvPmD0muLc/oDTUsOnE9eyzxM6Vk+
XHkt144Dayzmix9SetPP9sZrruPAuRWX1vVQfuC+MfLU3MqBCya2FiqUXw5s
S/KJ3MmBM43sLA7lJ53ZLv+aCA6slprgsaL8lqZ8PDQ4kQPf5bxdRnqRaOfu
loO5dzjw4U63ofwNJFLl1YiZLuPA5z8UrcIpf7elRcfZczlQw6EkTM+NRLBS
+dSPFooT296dos6HnPju65ozHNhSGPGk24nyTya+GfmPA1/PPpoMoM5THEcm
p0bECAasOt/TaU+iEe9nd4MVjWCP8Xu7EhsSvSwQ5eZCI7iiv/7zP0sShTvk
dWueNoJjL7eUmBmQSKPrT29kmhEsfcmottYj0YfdLoM1GUYw0eMhDeiQyC59
6ldwiRG8StdK19MkkUKvDX9emxH0m1T6Vk71m1dxXzW1VI0h/69NdwrESKT8
XD5M65ExPBWxezi2h0Ahy1TdViFj2D7atPL6VwLdi2SZba4zhs1HhbeWfCKQ
laEp/4XPxlD49GxYQzuBfG5uuL4gaAJnR99Xv6onUHpcSsN7TxM44dm34fsD
qr86COjH/zaB/+5a3WPHEGiueWzkq6UZ/Pvta6OPOIGePajd7nh5BXS4caTd
xN0Q/a646BaqaQW9mt/6vtmuj5alBhibJFtD+eWj/L8f66INPLK/EvZA+Cvi
3OwFQx20qX7/sTVlq+AzpmpQcgELNR99K7Ljuw3sM16WxfXTQvGrCut69Ozg
0X2GaaXymmjU7d/YlnB7uJKsOy35Wx01OHtKG193gGKdC64K/Oqoz0Nrd9A3
R1ggHBawKLkcHVg9WzUstRrec9vlkWKjhiqSHWKjrJwhoT3EE5Osiiy66BF+
sWvg3OX+g88yVKh/852B14vXwvMdYVtO+Csj56S5qe6Ha6EXk22p562MQuaU
krSerIU6/YGD7zYoo5vdW+88qFoLCYH0J6zVykjy3vDk6861cMXec5L9Rsro
l/2/hCk+F3j/wWjbM1FlVBatle+yyQXuMEp78biciVqGnFZc3OwCK2KLwaUH
TDTiF9bQudUFWu75cyDqLhNp2pWMbdvlAj/u6uK1ymKiS5IW5ofjXKBP4NTZ
j2eZ6GChS13eHRfokn/gaVgwE6Up7fUdKXGBhyXWOAcHMFHJuQs/yXIX+Mo8
PCHAl4kGIzuknmMXOLZ5/5SvGxP52Gz1aW1zgRame++FrGSiqEfxI/IfXaBB
e/6h3eZMdEE775h/twtcbtw/GGnERPX04azBIRf4123bw9M6TNQXJ2HCHneB
HGcZ8asaTMQ3zX59YNoFhu1/xF+gwkTK2929n85R+Yocv1GhwET/+14D/u97
DfR/StZwhg==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-3, 10000],
Rational[3, 10000]}}, {{-60, 60}, {-0.0003, 0.0003}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3."}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"0", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw12nk0Vd/7OHAiU+Z55pqne81c492myzVEZGzUgCZ6Z2qgEhWShBChTEmo
FFLcZxsilaFSCplShkwZiiLf+1nr9/vnnPWs9Zx9znn2Xuc8r7U2YV+I+8FN
TExMIYzD/85m/WE/NjZccK53YYhT3iL9U92dOdpfF3ySWWAyqWiRHpHVuZj2
ywW/Ks888LZskf7QU21NdcYFb1urOrS/dpGu1N3P7dbngo+HdI7e716kc7+w
Jt1+4oJ3u5g7dbMs0Qcr+f9DhxjjpX6SCz+6RI+5UP7r/Dtn/GbtQlex/TI9
QezI6+IrTjjvXE2+vudvumyLWmGonyPmskF2uvGr9HWlIBFLbRoeUFLxLWde
o+eFkraVT9ljhWwiqpfboHd8XrzW/JyKdZObRKRtmUF6i0hUQQ0V50uGt0o5
M8NRc6OgmEdUzHHviyBhOzNw559ElLtUXJO+nmZ+gBmcD6zPP0ulYrNPQh21
cczwapbNveoQFYPf1YHmVmZoZZEUviNGxcaSzIO+rpuATkRZZ0PtcHPuU9fu
UBYYOvg6IjzYDq9tgCI5mgWY8rw8jx6yw0fqw/pLLrGANe8xQb89dti+S1zg
5k0WaJ29mWToZIddYuI93wILdDxYPD+tYIev17n5Z/KwwoDu3UN+72zxNdc/
LuWVrLBqyGtmpGuLFwLz4x5wsMHJw8UNsVq2+OrKtXF7ITZYyTNHb1VtcfJj
H9YJGTb4xX7E7qisLc6o+pBA0WeDhc9trgVbbHFZiG2O8242+BEdc4D3uw2+
Zd9S8a2aDb68WLr6PdsGL33xcXY+wg6Nnv3DGaw2WLaw/lbPPAesFGctnN2w
xuYxFO+qfxxA+uXJGvjHGjvRlFtzuDkhO6Nb1XjeGmt4hf66rsYJJ3pfBPf2
W+Ovrc2SPP6coOT7cE3ssTXWr5Q479jDCZd2XhS/6W+NT6Y37KO2cIHTfm23
HLoVJhVM6T3q4IbhByub++qscLOpbMSbL9wQttb4XLzaCtceuXt4eYYbbt3Y
rppx3wqnnSksOc7LA7Ntp/6lZFlhDlqBKq8bD1zXaim/dMIKB5HOXlz8wAO9
yz6cJ1SscCZ1/vjgNC/sj7/Q5JCMcGIFv/WdYn542V99OD8B4W0H/7iefMAP
JO1JwV9xCNuvDZJ96vjhzwfX/YVnEP40WdWq18EPKYoyrP+CEF74N8iyfZkf
6um1do9tEKb96G91sxcAtanP180WKDhPR13j4oIALKag0YkJCv5QY9h4dV0A
6MZ39TKGKPhLxWLFbQ5B2H4x7P38Gwrms/xa/01WEM7L84mU3KVg/+ctirNO
gvDJyzaLfxcFT0d1L7OUCkJCc2XetzZL/FSw2eVukBA03fHnedlgiXVGH5Ur
RQjB2jnhqLLHlhi/rfR+GCsEweanfUPyLXHak96vC3lC4F5tJ7waYYldZLSk
VD8KgeTdgQRuFUss5PWwere9MJQncoXrx1lgxwtf9pYaisC3oIavIqctsHiO
wpiEnQjI2h93XwmxwH4+SSm3totACstH7YYdFthJnu3Nh1ARCI+6M0XVt8Bf
3/aXST4WActg8l6/UXMsSFLO2mwoCt3bApxikDnemki9q2ovBq1qupsEjM2x
/evt2U3eYvB84+/T20RzzNO4WBgSJAYlFddVsKQ5vjwZfZApUQyiOBuYN5bM
sFzF+4yNDjFQaxR6GnXPDDvs3r3pqq84xOg0Kp0UNMOdP4cuPTonARHsSf3s
nGZ4d2BjZ2uqBBwd9ErN3DDFpn25Ez+LJcAnaXqjZtoU77pNlEh8IwGkCbH+
5VZTfMZ0m1arpCT05QdfDz1jigWuvZ+58lwS9Pik/wWPmWCC0jMlDz5pyJDR
f6/fZ4LLKuol7FSlYVXTsXSlywRX/ihy9KJIA3Y46X7huQmmq5PNe0OkwfVC
T8mNVBPcRbsS7ftOGo4uJ7nWIxMsyzvHm5orA8X967c5c8m4S86kIHarHHBM
CUd0ppIxZ5y149vDcnB0RdMpLZ6Mr7RF8lIvy4GBiN+ydBgZ70y6w1uC5aBp
aw1Nx4mMS+fesRZJysNgY/CC16oxFou8H6uZJg/ipUM2RZ7G+PTvA2bz6QSQ
bXm1nuVkjG9EldVfKiaA0nB17VUrYxw9f03JsIYAOuJJmpFEYyzRz+/f10sA
+3iykONmYzxQxvTYSVoBIoKuj849McJcJYf2L91TgA9qNjFmwkZ4mF1o35vP
itBnSzLT4TLC1dJym5tmFGF4r8SyEpMRrhclUD4yK8F01lwQ77QhdpniPbFD
QwlYOW+5jTQb4sc5a6+HopTAYHJJ7nKoIXY1SFbhUlOG1Hsl9HfvDHAMh2FV
b5YKbKffw2HtBtgi+5tKzAMVEH1f3iSKDfD85hhpl1YVyFmravWrMMCPHzzK
d1lSgSJX6By9bIDfK22ClW2qULvcO7hgboA1P+7abSysBgNWnBuCd/VxyRHn
9DM16pDnxc1cnauPXdXPXeN4pw7+R/hYvNP18T8nUcGmGXX4ni7CnhOjj42P
7VCsV9aAuXECn+JOfXyty33kY6YGbEo2ldMX0MftCuMK63GaoNp3hOJxRg/P
thVqL1wkgo/K8z0a/+nh/jNu9bVlRIg/wXWeOVAP+63fzm/sIsIE1z38wF0P
8/punSmSJEGZ2Xcrbg09rA6p6c8fk4CUu9f2xSddfNTv9mLDojbsnnxw4Fan
Lmb+0t1zhVcHrhluxIW26OLmxQ20V1EH5jtyXxAe6mI5MsU2xkUHHv3ro569
rIsFy6yPVBbqgMFeT5qxESPWk/q4xUcXDpQXHeLV0sX8H3Ky94Towo2VxYRv
BF3c6fDXcOSSLvxKSX2VxqOLmZKeFITU6EJtY5fT/JgOzsoT9X8hpgemio5b
76Xp4Llt5z7VftWD82+iS4xGtbF8qq7ypiID8PNyjqR0aeMTtn0zC2AA+sOS
Dg712rjAvaNffMAAvi/WTvpmaGMBg4T+zSKG4CK1oBXtqI1Fwy2OHE8wBMnD
AY+bq0jYj+fyq4koI3jC7ordYolYX6to48R1MiRfl7nue5yI439fnxp8QoZA
qWn/fbuIuE/3dt3VT2SQ1E5gCTMm4qzfgnnV8iYQ49VMzfyhhX8p3A82eWIC
W4uNO754aGG6hX/A/glTmLSW7zuspIlx6jN278sWkGd2efwLnyaelQ86fqrW
ArYbzC65/dXAz+V6eZbGLQAr1/MZv9PAIrK7e37SLCGLw8eO5bwG1nhlwcEj
SAFq57WHOf3qeDuJct7OF0GB78alN6lq2Dx4JIBP3Bp83APSKWfVcHz6M0tN
Q2vgdeq4U3VIDZ8Wnm466G4Np8xz6rOQGpY5VBKjd9Ua3OSMFw7MqmJZ4oVU
TlYb+DcWvGudpopNtA7+OL5sAzuOD+qTmFXw18MLj9M+24FX3AwX84wyPpi6
wVL2yw7cstZG3n9SxpdqWQJuCVHBFkumnHqojHkrtEw4XKhA4veebtmjjLtI
zzNyGqigphTQnOmkjFfaiHF6n6mMJig8+7CxMu6TidBIWKKC+N40B34+ZRxk
8pY1QMMeNj3sKtpBV8KD7u87jqbaw1rz4BlSmRJePuE1nnLfHn73zrgzZyjh
sdcD7R4t9jC9sYX57jElzJ7R71W0ZA8fXB12LUgrYfHbl6UWXR2ge7+3wQsO
JawoMHws5aADvIoM2JK1pIh7BK8eKD3tAPT8uDqLN4q4sqG9yrDQAUrnsEjC
GUVcZZU8bjPjAAUs3dM7AhXxcRFipsE/B8gVG2omeShipp32f0/z0iCVsv5f
j4Yidr7HNPJLiwZJHty0u6KKGD3aFqtoRoNLgVLypzcp4v7ZNLl0BxqcuWbS
KdengBu6dtro+NMgotCheOGFAl5LEjnncZQGx2u9o148UsC5Y8cJZRE0OPw6
wCMrVwHL91Tb6JynwYGhcI0jCQpY7IKf9Gg8DXYvxjFbhitgQX9d5voUGviy
p3/i91fANNv0Q88yabBdqvDBV2cFXHHtyvznXBps1a66VENWwAt5c15ihTRw
sGnclaCkgGPDLlwMuUsDG+9ug538CjisdiN5qIwGlkeGtmivEXApE6HqQAUN
yOdmR5knCDglLH3HWiUN9NLW63reE3Bu4VfVogc00LrLff0uEPC+SodvvoxY
5blU0On7BKxSGXJDipFP6NKguGQSsPthhZDx+zSQ/moiKh9LwBzHBoael9JA
9LfDzEIwActl2V3NLKIB/xaflhd+BDx4+LrXqXwacMkF5mRRCXiLZaPn3ps0
YNWPOHFEj4B73rYNO6XSYIN6kWYpS8BPC5MSzRJp8McvXV6Ai4BX8zoUtWNo
sBRc+PvrsjzW+vzluUokDQLDRncLfJXHB6vcascZ9e87RWi17JbHRap0kU7G
/Gw9t5d4tEEe3za3PtXnSYPGuPz0m2XymMnl8hMeGg0MEgf/tmbK4/Da16+C
GPNdek1m/1KcPH5zqGNumrEekrNzdF33yGPmCCeVCB4aMN/uy4pylseb3W9e
O7vmAGHFEkxlJvLY9FFATc2UA+x4mNnJKiyP7+9Rnqe3OIBbkmpv2HU5vEEq
7Q0PcQCjzOLiriNy2G1byR0rHweQKVAM06DK4V38e9g8kANM1coJDP+RxWeF
mm5u53WAuK9iTk4HZPH50PlY8wJ7ODx7Q6LEUhav5XQW5160h22rQhNMErL4
i7NM8/4ge5Dl479Y0yGDW/r0O3S07OGpKQcQjGWw80LBimsFFfLsLl2NEpDB
nVtO8folUeGiG+vO3h/SeFI6fWD2MBXcA5hWk25L43Cjxsw3KlSYvr6it8Ip
jcXfvW37dtMO5CcnSjoHJLHdl8Tetf9s4XJme/KZC+I46nkvd/AWa1A5f/Jj
ma84tlYQFWIetYKWIFXZPh1x/Cy1S73mqRVsMr1YQR4Sw6DTZp8ZYAVRA+jN
spkY3nq3N6ygBcEJwlPO48si+FPt2s4cCQoIcAVuy38jgu2I0gU+nZbwcEHk
ZmehCJ4KJPFDrCXMNIeqEd1FsEXsuFrmvAUEBWjbT1UK46bOhqWed+aw+35J
3IEgITzsxfG487kprKd5vkmjCDH6uVv/RUeZwq0oVuFmUSEsPJJb9sfCFD67
7CskvBDEEfwHzPY3m8D2eZmmQYIg/sg07vq7lwyLn95w8q4KYBHuhFjlfDKk
Np7ZZtEtgMtmmwYVA8nQlfp5OOesAKY7UE5dWzUGR8MbGz79/PjE/Lc9AmrG
MCljax9fxY9XVARePlw2gni2xeTaBH6838HytmSLEbzodZMVJfPjcJEwBdp+
Izi/JH66RJ0PvxPr05stM4QjZ9mXs29x4+YnAh78uw0gSUT5xX43bvyse5ea
sakBlJdb39Bi5cbRy79iVkUNYLYv2pB+ZAseEA796PhOH04YL4WPmHLhHnJk
/7KrPqR1ClDLZjlxbE5Fe6eOPjw5qC0aWsCJx/LbpIwF9eFX2uEaVi5G3JVb
9+CjHpyaH/6l+pkd+ziLHRYJ0IPsy/9a55PYMSVrL6+lkx48k5XOrEPsWOCG
SdWkjh6sOXsbO5Wy4e6ugz3N67pw/l5HZHDkZnzK5+q4T64uXN73bOWJCAv+
Y9bkVLegA6WrvS+j2zfhSTdn2u4hHXiZspxFjd6EY7NYPgS/0QEu0DH5NMaM
jw42aXfc1YFkqbun/j5mwtk5Q9x++3XgQVULrSWQCaPo3NNGHjrQTRuVuCrF
hM+mzYqH2eiA4rxpmAXbBlxwjObjVdYBjXuqy7FFa5DBrCNP/qwNR3v33RDh
XoP0liTJJro2VG7OM7wb+hdq+Y5JrBVpg+4+4YhX1n9g5y3PushQbTiR4iq6
s2wVnCQsKdU7tOEJPbFmRmAV3CMy07JttYEsxfybf+Q3cB2Xmtgurg2naeaZ
BQ6/Qf73d0UVFm2oj4w0Nnj4C0wICcWZsySg9MxEep9bhoO3Lh3Z3kYC6tW+
lVyZRYjuzeRnO0+C8hte34nxC1AucoX7bwgJhPLevW9Y+AlP34kWRu8lwXDl
q8ovbfPAXG3kqmJDAvta6q1jevMgOqPWSzMkwY5zF4X+mswBG9f5wWVVEvy6
Hd5uOjYN3meOt47ykqDl0bEiv7of0MOTG0JgIcH1poPnTidPwRXsrz72mwha
Y56Gz8gToDHs2ftzlAirSy78fTzjEBks+cP0MxFaN1N/rI5+g/Pm97eydhPB
X9XojsnVrxCY/6xeGIhAIpOifPeNQtudYEu/WiKsOah4nzIegVZD/3/SD4nQ
7iurd5N7GNxcKz123mPc74OW5InmL6BEPHlbrJAIbb+kux8d64dHpKltW3OJ
sE+c59JPsc/QfMxseCOTMZ7Juplu00fwkH3UqZlGhMwdMz+PH+2Bmerb998m
E0Ev+svdh6Lv4N/Af/w/E4mQZZHzfDimC7o0bt9JuEyEzvNnVPd+fAXOlfW8
OXFEYGnZkTak0Qr+tiGCyheIQGY339h9rhFG6yNPqJ4nQn86+WP93ToI66rc
uHOWCFSp1Yrnbg/h+jBbRno0EfCl76JT33MgOzNJeiOK8T5AEjacukDJoAZe
HGHEvwoSb1wLuks5pPi5w4yRz/+addFhSzXF2oPyj4cxXomtrZTjPjrlT5uA
hs85IsgONd4pHmimWM+NhkjGMPyQM2KoEv+SUqq/Z3V7LBEe+zC/KtHvoBRv
df7LfokIkMj/IG2um5J6JL5aP4EISofkVz3s3lMCJTlDPyURIdFex0Y45wNF
WLAv4VcKEeaU0dWe+V5KBpbakXyDCNtZ3XrTqX2UvFJmj9vZRHg2uofgeWuA
kp/YPaF1mwhyjSFHRBYGKY4+A3kGJURYprdtvOocodQUkctrHxNBrbJL6f7q
KOV4VCDF4DkR/HJ7aVeUxihPbBMPk5oZ9TkznuZ0+jvFlXTtVF4PERYOzz3V
LB6nNKX7/RQZJIKy3+8vW7onKKa1Y2q8E4znJbOrvVH+QXkdcSUybp0IDap8
LuVu05SnX+ROs3KSYF5U7ETSmRlKkb+PEKcICTyXVeqd385Rzu3a5lNEIgG/
r2JpgOUChZu656FNEAlefv76IW54gXIw07bq4CkSxPgVsRReWKSc9UJu2ldI
sLBDec9Q6xLlJGU8Dz9k+GzgW9J60DLFjGOfUFILCfbtKnkmteUXJcjyxH22
zyR4v1tV1Mf1N+Wve/oxAVZtSBoat4n4+Zuy3Uqnq1hSG2z3lv6XnrZCGY1z
bv6py/he+Kt3dPeuUvJo24Lr9mlDxgHNONreNUr0oc+ajh3asPXbj0eBm9Yp
+8Q/SHyZ1Aa2gPKhi0XrFC8tpaRcFh2IDCSaNU38o1Rv2hSrq6ADWtVip3Kf
MiFKSKuvzwEdiF/+fa2ckxk1WW/+sRSuA2OGn0qe+zEjv4s8hzbF60BuTVbP
5zVmdCsmcVtEhQ7wPpXQEbViQYP//ZCYXdeBwyurVOVUFpS+NKdlKaQLreS+
XQZfWVDCTVl2bnVdOFuXfcX9Iiv6LyxlUNVLF+aeSY0nt29Gk3J8FSkMLzr/
/bueK8mGDkYNHNro0oVSswHhiiNs6Bq/1NLqpC7srb9l/ZqHHSVf/lZzU04P
uhtk8tjdORDpWVZQ7XU90Pq3/kS0kAO1s3lP1z7Qg3jLwdfKSxyIW653w71T
D6wgb9UmgxN5IcWte3n0oQrLeZ7v40JXZFjrt6Qx/m/NBO7VfTxIdvePSCu6
AXBbWo/mVvKgvN/31HjGDCDu6b6n1n940AXWwuiTXIYQUVF4IOk6LzqruLFH
39cQfDKVG+QwH3Luk4va9c8QrlULGxfyCqAx+pD9+SBjeLOgVBBuIIAUAvLa
32UZA4eOIY+DnwCi3txa9aHdGM6XeX6dLhZASktegnNEMpzIz7hmZCGIfrhN
7o/6RwbPBPGJ9iNCqOCOf7l0oymktqp53LouhPSbVeNT1kyhk8WEHlwrhC6N
8nE/IZsB9axvuhCLMJKuyBFme2wG5NBstCtbGJk0CLRXPTAHqV3SN+dfiqAP
f8PTM9osYURH3lFMRRxxso54fK6wgoCUDTMRV3F04iSTt0OvFUzNDRKFToqj
lG8xPX1M1rBQmSvA90ocGZZbpfhst4ZNRKnPbMESSHf0oJf+mjUoqYsG/aqW
RFMXRYs+OdpCafyy79KgJHp2ReyMcpgtaE30OC2wS6GcQRM+lGsLBnfTtGd9
pVAvHHB/MWsLdsoCv7+tSyGt7kHpXcl2EEDgvvTBTgbZn5QN531GhanzPyLf
B8sgDvuEd7pfqBA8/OrQ20wZpGPQVvN8gwoR+QkuHZMyaGeGxJ4pa3u4LMMu
8uKqLFLalWzC3WgP3NHf2ZprZBF5mrq9ftAeUgZerOAhWdR+8dfdor/2kJUT
N1CvK4f8pOSLOfUZXpTYVPTkgxxSLjxDvZPpAFqnRm5U/ZND8rs8PJIrHcDn
6LDNJyF55JAmT0hh9PMDr8Hwo7k8sqb2RLQwfJl35gHJc5s8Au5/H+eZaLBX
M1+156A8Im8l3lcWosFY4lmJd8nySKTwr0a+AQ1KTIMFtxXKI9H/PJ8P2dAg
aGrXlu5aeeR6ZE+ivDsNNLJdWF3fyKM8xRn9vXtoME2zWO8YlkcuXOJZuUdo
ULmq9ct5mXH9MOrvZfjy+D3pudecBBQ//+0gL8NHer7cE46yBNT9cOsYYvhp
mWNtuF2PgKySeaghDF+dyLXhn6QSUC+9PO00w1/zulcoHDsIyMJE5fUVhs+O
tb4LVg0hoK4DzBmFDL9N+UnmUWMJqFaL93MTw3dBc/4dBzMJaIHZ7vEUw3/f
Yu+txd0noOiq+Chphg/3if/ULAICSnrk1PI/Pw6Xk3c0vyeg07GSbv/z5W6r
84mj4wSkIswj+Y+R3/+hrY55jYDqO+RdDzF86nOYb1KeXwGd3h7tMsHw68d/
XuJISQF96SkuiGb4dntanv0esgLK7cvi1GL4963q94izzgoo6N5w0K//+bie
WJK7VwEFCmV0DzH8/MYt/EN9mAJ62up98gfD147f6lkH4hWQDge5QTqBBm2n
WA3+3lJA068K5CIZPrfldd4v+UgBZXFZWv1j1LepIC3V5IUCsrRtHa1m+BIZ
9zf6fFZAYf0TI3cYvmx4rfAzckYBCWvKGrcyfPl06ZFrjYgici/Fli8ZnjRK
WD37QV0RlYUNbK8k0uCxjFXlkoUievJdP+6LLGM+qd3c+gGKyDyPUqu24QCF
WbPtD2oUUftIw+e5WgeQJxqtdr5SRNkvzpfkFDHWW2O02uygIuo+51/4JMUB
sqa4L2uxKyGd2KPZKNABks01be95KyFxAUsBK4YfTw8H0gtWlNDNyT8aPfb2
sBL2YKaRWxmFD+TJ/0e0h3DO39Ij8sro34DXWKOgPRzXu3RGjqaMrpUvtyQP
UCEgroh866YyYhUnJlodo8I2tZGqG6YqqOu9uq/6JTvwer2yzc9FBf257fa7
+rAd+AXz/5Tdq4J8Sp5y6LjawYEnFO3Siyoo3IMYvSxmBxEo7/6zbhVU+tJG
hvmeLWT77CgaClBFQtqD/168soGx+A831NPUkGlI4NAVMWuY0JwxmC1WQ4PE
DymC61Yw08naU/VUDfVbBgc/Yfjyl7CBoPmgGqqP1A5xrrQCjjupyVvV1VFn
tuTvQaoVEOtcL4eCOtJ2hYNMZxFETLafbPihgSLHR7fNcFtCngytX4xJE51W
2/C7O2ABbdteWpwQ1kQ5sR/Ha8stQPxZ6yZVC020wyvu0oCLBTxLbE5KSdZE
s2fRmm66OfzTbLi9X1cLSTdKrUzomIHKXnMWup0W2mY5Kbe22Qxc058fFPfT
QrN7DOr39ZvC7bU6jY4LWuhO89EvapdNwbqj5olRjxYiGyp3XR01gYvBD19y
RhKRVvyrYN9SMlQWaGseuEJE/Mq1c/9dIMPHj5VX6flE1MXH2fVxJxlUKBXu
oS+J6JTkr7xYQTK85CsbGJAgIbjkt2lHjDFwPyqcf1BPQk0n/qMmHjWCV6ec
uDWZdRDpbqS+argBKEiFLpdx6aC5CBJ3ra8BnK7PHtQQ1kF83LfLTlsagPrG
5EMNVR20j3XlSg6HAcTHxXtquOig4MkRW3K+Pthfe5GnfpMRcy1dv/BBD1qK
KLpqurroVNIrKNyvC9LUQMlSU11E57g/Pe6iC2HjySxqtrookPK2xIOsC4oa
gx9UvXXRkdfeh27z6MKFB1GnVaN10fTU8f7Nz3TA6llds0q7LtKcNN7NaE2A
3qXvpeyvh1jJjzZbfiNC2P7LfuGH9VDKoZePFBn9pPrvvt0vQvUQf3QaweYO
EdJlLwQevKSHBD417yXuJsLhY90ni+/roSeDQxoFfVoguuVYjvIvPaRdnD1a
8kUTgqklw8pX9JGF/MVQBU4NUOpbHQtP10db/C/7B8yow+djLpMvcvXRufFj
FR/fqoPtjaWfBx/qo4s3LH6a5qiD5Jg1S8kHfaRkFurDoaMOrTFDyiryBohJ
uKf7sL8ayDaIH1GpNkALP/2dxUdUIEBCfpsVGKD/7jtSvF6qQEW4qvHOdgNU
qGz3qP6BCpiTjFhSvxggXo/JWuZzKuCX75GzvtkQtdSps+2XU4EbMcmve7wM
0YXlq7xmgcrATWXVil0xRPJKnKVaAkqwvWCLYN4mI5SwFNowsqYIOf8EV55y
GyGWTd0r1ROKoFFLaJmVN0J3XNLGnmFFcFCj7PSjGSGbbzkvtU8oQizX6STd
bCNULucbcr1PAf50zk0PmRmj6b7vNpVAgIt6Q4kudsbIqm3ScuUBAfgzOtWe
bzVGN98X7vO+TQCVXRUHMvyN0X+ES0nbYwjg/uPwgPNlY8QpTfSi2hKgjP37
67p3xujRmz0aEx3y4IcGytIOkVH7GtE9ZFAOvhW+dmAOJaNNM3HMrc1ycJz9
+ffgKDIaIL4otbwnB5c6byo4XiOjogP3fqeHyUHVTu9spmoyuqEvu7uLWw64
Tr1LOMZkguLuXORwspGF549eBtlnmiCv9fsBC63S8OnLkYlzd0wQV82hIqNK
aVji5At6et8EaaodtMm5IQ2kfZ6B6tgEGUkvNbYckIYCwdGDWyZNkOGncyWp
rNKQGPp3X5epKXrsuL1hiiYFfoakXd6Dpmg5Jq5EbUoCIv3fDlybMEVfh1au
C32QgPSrYTtfLpiiqZLzt8SxBHR+e7bDhN0MuRrz+x/PkADrDHs/KR0zlN1Z
93ebrQRjPe/1HooxQ7T/pHTrisRh5WnatkBlcyT02oTCFikGPtOyCQskc4Sb
jldLBIhBnVwZjiabo4r2gEaKpxicvoS1053M0QWfQa1mfTFY85jhafzPHDlc
Vd9V9FMUmOaoryTp5khmR7VM3XFR4FD+Y93pZYFaSt+fiz4jAkE+F0/77rVA
F9zGBKuOikD7Ff6qsUMW6GGBueqvXSKQuKBC+BtlgTgu+EeVIxHgxh4bqoUW
qCxEL7qLTQT4d1Q8j5mzQBR6wqmBG8IgcX2vgWG8JQpedX5wiS4En2rELqdc
t0THma4utTwSgoyBzs8/si3R3389TXzFQiCoZnGuoMIStbSYPH11RQi4QOIV
33tLdOzyWfMeXyFYm363Z0qGgp6IjTxWXRGEYQe7K/mPKYh35/TgQQtB8GAS
+RkXgtBVVz5P43F+iIp03JIVhpDOUtRXxwF+KJo9p3z/FEKlVnc1Dr3lh6WB
Kd+3sQjdPHmz7MVzfkivw00yWQhlRY9PrqXwQ8+Jo+k1GCG/ityTPhb84Pmt
2XhCwAo9zfoEb035wPvVibNOT6zQj09XqA/nuUHe7tYSe50VsqlNP3hjmBum
4MXhlgYr9I82Ih3fzQ1nq8W9LdqsUGjHddGMh9xQcpuurd1nhYbM9a+4/8cN
SxFcI4JM1mhImCcQLW+BVMUCmz4na/Qzn5ByhW0LdEa95Tj01Rp9yXex++vE
CSP9PXOJE9aoePQCxhacsGT66WP5jDVqz7m7I1WbEyRWB4vmf1sjMXmLZ75C
nHAgfBqd5LZB1qH7syL7OeDvMfZTlw1t0D7iuOjYMQ5Q22MxWXzZBpklXx9T
zmGHWKt77aOatojl7WTiY2E2aLlpTZ/WsUWPRhd4PTnZgG2hv+qXoS3a198f
vLG+GRILeG9xIVsUaGKRGzy+GVJYwoL1ttuiXpOwx9XPNkPeC0uhC1G2iDZw
7vvgvs3wlNazk9BhizrrbrXtrWOF2W0bc3uC7ZDvUl3g3mgWeFeRhIRC7RAt
+mdiVhgLVHNKXm+NtGN47vi9j0dYIKrRQI8YY4d0sw81HfBjAS7dw2F/0uwQ
Cr36ps2YBZT5P6yk19mhsSL9rKLFTbCzs4z5FSsVHa7Y+Sc9ZBO8dvQSMsih
olvcCkXWkczw3VPl2IERe+TZ7JZ1jrxBD6P9bv4hQEMeTK3pj2zX6E/jqecj
zB2Rl+yc7+vmVbppH2/orvNOiHPsRsPDoN90kvCnfTmVzqj0627P0ehluuPl
P0vDj52R9xA7ZTB8mR7wR/qySp0zCkjqujd4bJmeP+x//1GzM5Kt0F6e3rVM
56/4sdj2yRnV+Yhuplgu03/abcQtbXJB9lnfFWo2luhPIlXuuni7IOsR76bP
F5fo3VMOJmk7XdCW1ZHTe84u0ad3HXn9yd8FndZl2zoZsURXtn04t/+oC+pV
4idzBi3RM/hNyadjXFD+n8NtpxyX6CfvubSX3HdBT8vIllL8S/R06eM7ph+6
IMftyeYjHEv0h9dSZ3RrXNCfiEsq95mX6JPhvQIN2AVN7Fx/5Li4SPez9vd7
/8EFfWmb9376cZEeUR07Ld7vgqrZ9A/kdi3SU9VKzu4edkFr61l2l14u0l/x
/iiYnHJBs2s4av+zRfr3GB5D7XkX9LGOucP78SJ907J2W9iyC5JI3z/uWr5I
lw1y9332xwU1SGm1OxUv0v/f/jb0//e3/R+fTfKC
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-1, 1250], 0}}, {{-60, 60}, {-0.0008, 0}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "6."}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "6"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"0", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw1mnk0VV/Yx83zPM9T7nXN83y5+5oyNkgUkaTI1EAqUimkkspQUmkyNCkN
iuI+G6kImcpUhkJmMvMzvOdd633/uXd91zl7n+d8v3uf83nWOsoBB933sTAx
MVUSP//7b9kVNbq+7oafCFi4/bs6w2gvvT/p9J8bVnGfvap/Y4YRndUwkz7v
htdOSHZE3ZlhFG2nrKiNu+EynYhTbE9mGKqNXXxbOt0wWfuKh2PVDIOv2kbn
3hs3XLyeOL53fobR/VzoMDrghlWHl5SW/GYZ8WefzZ9pdsU128orRC3mGBck
Q7/mXXLB0SqTl55sXGAofKQ8jPR2xlqeXz9Jxy4xVlWDxa11nXDs+Mu8e3P/
MXIidbY+G9mId7ZdOj4kvs6o75i5UvXBAf86+LWOm84McrziJx+8dcBCPY0N
ok7MEEY1CY5/6YCl8PtzG7YyA9/d44hW4IBHOElyHnuYwTVwdep9mgN+uaz5
YDmeGWonONxfHXDAviWmU3s+MsMnVhmx+5IO2Ew54EilGwswtFHWqUh7fH3h
h6hmFCv07PsafTTCHj9muhieG8cKTDme28MO2OPJT5aNqudZwUYgXMR7tz0+
YsRSb5HNCp8mbqYYu9hjstRIWBlmhfoXM2fGVOxxhJPjUzlBNvipX3DAu9kO
G5ybdkx6yQZLxgKWJvp2+BjF+FWNAAccD8krP6dlh/3JOjVx0hywmENFTWp2
uDO8otFclQPmOUPtwxTsMOVAU1ONOQdMd3ze/IDXDr+buX7KeR8HjMbFBwoM
2uLPqqfLv5dzwK/q2cuD2bZ45UXo8OajnFCxvav3OpstPmv8tLtznQsW87Km
T63b4G37egaH+blBZ347W9CyDZY+UCrALscN2dcb1UynbLCw38X53WbccKSt
OqKtywafs0n58PgwN6juLFqRfG2DM/1VeLMHuSFpV6LUzT02uNlcl8W7kwdc
9upuucWgY80Vi+9843zQ+2KRvbOUjj+OcTYcW+WDqJWKD1LFdOxjZKn4j58f
bmd6qF1/SscfrG4LCuryw8TnE2tXs+i4yfei4PJhfrim9fFZ0hE6Tvzjqnh7
mR/a5nZwHyHTMW1gZDxNUhDCbFSgSJmOmWNo7mPqgsB0ZTRqUo6OjyyEhHpS
BYFCOdUbJkrHZ837BX33CEKM98N3QUx0nOUkcMTkmSDIw/g+306EuUo5na6r
CMHe5LOVjqkIH2zf+TqgUgi+dBWH3L2AcKN8k8PJOiHQ0R0WmU8gjn/5ZHv3
hxAsf9+892Eswt02MU+YR4Xg6gZ5trVghANlY+PNxYShjPHO/rUtwheDBl3P
BAsDZaTjmuU0DZMvxMV+khKBmavo99AQDf/UPapPVhUBhmmBwfUeGj7zx2Pl
qq4IeCRGtUzV0fCWcB++ZAcROKMkKJ5fQMOiLSJlq1Ei0O5plyXkS8M9DxMH
xFpF4ELV85yBz9bY02Q2MvCWKFTe38P/pdwa37qrnej3WBRWToudfPLaGjsd
jRQNficKEdSYnQfvWuNj3mvsT1pEwb3YXmwp2hovKNsPjPKJgUzBzwt8ZGt8
veEiNe6sGDy7yHPUMMEK3210d02NEYeB4PI/4jFWOLr1yZ3HF8VBYeMh98WD
VngqLeBjW7Y4XGX9oVvuY4VvDNXxhn8Qh6Mn7484GFrhpqpDA6dWxcE6wszf
+zcVH5JeeumTKAGNW/e7xCMqFoj0P/A3VxI+UfRZhE2p+ET/Zu1dbyXhw/p/
Jfe0qXjq57rUwGdJyC+8RsYyVBz8+vCQ4agknOQuZ16ftcRzu/B/XwykgFIh
WnLysSXeIZAQNVEtBfF6FarHRSwxZ/GfROVVaYjmTOni5LbETvZb2vyEZSCs
2zPtxroFzhXHvW9IMrAjZWz97ZgF7v72pPLpJhnQGZLsmvtkgd1k9gfV3JeB
zrsR1yJjLbDsJ5lLI66yYCAotxbRb44ntdzMeEvk4Lq8YYthpzkmYZmPxU1y
sKTp/Gjxmzm2Ca3ZnTAqB9jxuPvZD+ZYVyuxO1VRHjafbc3PTDPHc6ZK1f4X
5CFsLmVzGTLHj0txl1mgAuR1rd7jvmOGHaWRaaScEnCNiEU3pJnhPOU1nlZN
JQhb1HRJTzbDoby0/1wslcBI3HtOLsoMb8ZTk/HeSlC56a2TnosZ7r8QHsub
rQTdFRHTnkumeGfTpH2FvDJIPeqxzd1uiv949Q4ZmauAwsfa1SwXU1zeFFF6
3kUFVHuL312mm2Imm+KkBV8V0JNK0TymbYodq+lCuudUYGOymagzuykeD7rV
yPZNBaKDr/2efGOCc/TZixPCNsB3im28pZgJHhi4Lv0Fq0KnnY6lHo8J3vLz
WCOtTRV6/aXnVJlMcApPfM6vcVUYy5oMFhgzxhKZ9m0psiRg4769pa/KGLPO
1W2qOk4Co+FZxfORxnhXvEF3jwUZ0h7nM5qbjfCqBNJP7FUDD8ZjHFVjhI18
dV6kL6uBRMuzSglshO8kq2k0iFHg1sqrT96FRpj2aSDtixMFcjdDw+/zRnh4
Ohp+FVPg3Vxb9zTVCJM6rCt6r6vDTzr3ukiBIRZmH3mqe1oTcjz5mIvvGOKF
cNULiXc1YU+oIKtXhiG+3VfQKYY1YTBDnPNWvCEe2GlY0cesBZN/lQU37DLE
cvsuSdgkawFLqoWiobAhvhr4csOle9qg1hlK2xZrgNcKxnYcYNaDHeQPuzUO
G+Dn6uI8/pJ6kHyE5wxzkAHOPipvdFZbD4Z4HuMX7gZ4u+nprc7eevDEcpDO
p2GAd3AetJsp1gOdO/521e36+Aar5eTMUX0w8t/uZGqij+9vetbyT8YQAp/l
HhDQ0sfJ/319sWRiCJmLMxcGlPXx8WjeNpNthjB/Na02nV8fBwgd79uaYgjv
Kr65TPXr4S9n9jgIMRuBxQbnTY/T9XDl76V3DbNGcKYuLt/kty5+c2JfzCF2
U/D2dD1G+6aLNZ6Ia06STMGwV8bRsUwXC+WpTmQ7mMLgzLvhndd1sSXNXuR4
sim4yU5rxTnr4tRmi1lLATOQCdn/uuqVDvYL9jkcpGwObzg34y3ntPGlp1+k
Nf0tIfWa/LWdh7SxX9DLvh8JlhAkO7YnwFcbm32+u3rlsSXI6F5gjTLVxh21
R6dUZiwh3rPK4caoFk4vl3ucmUSFTXmm9b+2aeE7qPd+7TMrGLZR6gxR1cQx
myLrlPppkGN5/u8vQU2cLPUTb2JD4GE0MbvlPw2c9ubwyz0SCDCpTNC0WQO/
vfrTZMUcQRbXDnvWMxo43yNupvIUgk3M4B4dqoG17mzYtO8KArZlkv+wpwZW
WJK9WXMXwcHRmZhv2hr4xNX4cw2AwKHhStGtLnXMIT185vwKgpVP8+UCn9Xx
lzvLtAUeOrwC36/xr9SxQ+9FHQlpOsi/1BwMuqCOTx/uTtthRIfmx2kznVHq
uDkt+eYxOh2SHywxbfJXx2ZXMmaom+gwm/5Z1shUHZddzDV6tZ8OT1J01AtU
1HFurDqb3xE6+CdmmsgIqOOryHi5II4OX6P3bmUaoOBUjYpagXQ6nDlY6xfZ
SMEhN8I4KXfoYBKsHzb4gYLfveTVb8+nw4Od60l1aRS8nevYr/kSOuxw359B
O0XB+/N3+AZU0EHApf7+qwMUfLbd7pNfDR0+2hq9IG2n4KHjiw0jjXQ4Qb1V
loUoOGyzkwN7Ox10jFlqebUoeOuhVdHCbjr0ax9oOyVJwbrlN8z7+umQTW7s
/8dCwZwFUi33RuiwRdF0OnBCDSvufCU5OkkHDqmc9bYONXwk7qA3zNKhTIid
36VaDev9+Mojv0SHI9xhMowiNfx8xqqYdZUOaiwtavq31fAjn5eskUw28HPZ
3Dj3vBoeSpgqD2G1gbSZezaSkWrYR2atZoTdBhzHOLdc9FPDzNy+WjOcNrDW
H+G76qSGW8cduBK4beDNr+8hh4zVsOelxrt3eGwg5Af1+B8lNbybeWUb4rUB
pW8PEz351PDDzJLcMEJ//8yTXrNAxoOT3/Q2EPoiPnyP+oeMhzAuDiTGo9L2
whcNZDzckyRoQMw//5L2QeU9GbevbzFLIa7/7En+l8w8MjbVV3WMIuoLeMj/
g4t4RZbHhEeNstiA1O2oP7EnyfjgYLzgzDodGjK6piaCyDg4ij85ZYUOCZdt
1vZsI2P7Y4eDSxfpYJH0mPe7NRlXT4l4xhL+TZ0SknbUIOPfGTeFWgl/fQ51
G+owkzG7hNeBrQN08EwY52EeJ+GWrQty13uIPLJW+lraSXgrWZcnroMOdljm
6okiEq5jlmOyqKODdat6kOttEt64ZHVQrJoO5kNm1orJJNwU3Pj7ZjmRv5DX
2MfdhE509n1RSAeK6v6qGy4kHF0/6GKXR4cNZkezQ0xJ2C1Hhy/1Nh2k/NMd
hQRJ2O/pjLfzRTqwFH3L9WGoYsOXV98XBdBhpao7VueJKs7co7fPZAcdFtrG
3Zmvq+LU0wWhSW50GFvnZS4IV8WmxiFvr5rS4ftmR99pOVW87UfF7dvcdHg0
icUvxG7APNccjFcLEDxgbRzzCdqAMQc5O+oWgjuSPVU62zbgMInOhr5UBGm0
1cOtGhswV+be1IKjCGKvmDcodqrg4Gh3ww22xPNB91XSWzMVHBCafuMK0MDR
tsL3gqoKLth5y8KrgAa2Xo1Gu4RUsEyblMKmKzQwOz3xm3lIGUesNpb82E0D
5W8aNLcbyvi0iLD3I1YazEY8XPgzp4SHau0Us3ZYQ1DUbz/hP0r43p/dL2ft
raHzhPIn60YlPJuSkn3b0BoqEu5m3HyihNt/pSS2CFpDavYt/c27lfAbt8Zt
q1+tgPleZ9ZJVyW8aK/4vvWDFUTlSTM9MVfCYttcWtefWoFP0Y0GNjElHO66
LOFx2Qq2pKi1RV1TxMfJabocHlZgciMv71uoIj5wa2g9xcEK5B9siNJwUMSH
nE9PhJpbwcg7ReHeZQWcHSTmbahkBY2Vd3osvitgbwMfdzkxK3hXL/s884UC
tljQ9vfjsoKEP5IuLoEKWIo7xmjiHxVCJjKl860VcCXTuiz1LxW2LokOMUkr
4I8v2nz+/KSCgqBQ4tt6eSwSvuudVQ0VSiy4QNlUHifyPr6lkE+FHPukyyeF
5bEdFnYxyqFC4ha2XW2jcnile6vwg+tUcN/PtJRyTw7f6+B8lJBMBbPDpz7/
jZHDu04/qlmMp4LiyZVMm+1ymCy7mlsVS4Wxa4sGi9xy2ENk8rfPISo0345m
3tYvi5lET++lhFKhtGD2WyFDFls8U+p02k+Fe6+O5HDdlMVF7MWfYQ8Vksqn
wvZGyuLz3L0FF3ypEPYlwpLhJotb3a3/5e+kwraWMW5piiye8rspLulJBYvu
kPZIFln8g1PmbIc7FZSGh/IbfsrgTrcTd8c3U4Fjdv9R9Xcy+Pkx3WZ3NyqM
r/XbJlyTwfjK/RguFyq0cu8V6QmVwd0ObnP8TlR4L9bXa+4ggx/azmQHbCTq
U9z9IkOJ0IOA2R2ocF7jV9zksjQ+mnKkZN6OChHGPq7O36Vxt8e5RiNCe6AO
mbwX0lj7xEYPsCXqc/EaXr8gjb3NxVIyCa3s+f2dd6A0fn3Av/wtobn2bEsq
tpbGuY/7NVSI8ROhTR5C0tK43fW9WBuhW6M3bwidkcJv1o+XtNoT9cXX/6uu
l8Khetu2yvxvfSkuWOmRFG6z15cqcCTqu1GTGntWCtc8+2ob40wF8pnjP57s
lMJlMV0BVa5U+BisptCpJ4UZzidcfQl/9m79sY+bSwo3XtdedCD8Y7FILDTr
kcRc/Uw+p7cT86sYzQW9lcS/M7OD2An/abx/qDcuS+Iv5n4C7buocPInqpuz
lMR2g7Z9fvuoIFs9KUoSlcSFtvV/hEKIegtzfDxGJPBF/jPavAepsHBqZeRV
lgQedOfRbT1BhetBTw1+H5TAZb2CL+6dpoLRFu8Y4Y0S2MS9kuNlIhWOKJdw
H5oTx/k5A2VZaVQQ5gnaerdOHC9cqmwLv0mFomnxmw0PxfE9djvbs/eIfKsi
Kdru4nh/utmxwBdUCN6vu3HkuRie8j7MPPGNCpybu1Olk8Tw+T81O+60UyHf
9PIPR18xLDKh/OFsHxX+cI3uK+AVwyfNZkdHZqjg9zQ/ITBYFJNi7vQIylrB
avr2unSaKK59UxC9iWQFt0+yiVVJiOLBHtqtUl0r6HALeKhcLYIDsmMrhOyt
wGNKvrJbWQS/eavQdO+wFTgbZ67v6BLCjulCv8yarCD0FOdc9m0+HDKzKYFx
3xpSxEnVe7fwYWHqUvPm59bw7JlNphYbHz7GQxUcfG8NE51xxoxQXhyv4rFT
vtUajpjOHu2z4MHC/5wSb3HQ4MRU77xaByf27171Wg6hQfb5tU9TKZy48OCl
o4HHaPBeQe5GKeLE79m2dFedo8GKq5epyyMOfHvYvdLvNg3OPK4/FnGMHW/2
2B04UkeD8wHvF9+Is+KA+PEqO3EEj5bavsTVsODpsAzrMRkEX67OZTnEseCq
kjyu80oIeEDPvL2fGYc5hjVmaCJIlS048d9rJmyskOLMTkfw4tVHp49BTDji
bqCnpQOCRqff0pdlmXCdTornHhcEG6Ysoqw41iFsa2927HYEGo/V5s7lroCu
qKdTdzCCsLaATHG+FRC7m8h+IRzBc/Yc44LI/2DvfHmu0hEE+gFi0bU2yzB6
l1VePBaBmSzzglDfAiRITlhypyCIcaLeeOC4AB4LLW7CVxGUHTtmalQ0D+xk
zUusGQhorePHvE7PAX3VzzmPeJ85XO5cvCM/A0PY78L3xwieZXoOaidPQ+Dj
DopEIQLRnOaW8ul/cMCt9DqtCEHv89rnvz5PwYv6yL8ubxFsfOdwO9xgCgJR
5jadUgQ+pxNF/zOfBP3+1/cWPyCYv3e0xqJ/DD7f0GGzq0Dw8WV4rnfpKEgp
2736WIXgWuW+0zGpI8Ay3XJI6xMCrf7txu/NhiBkw+G9RbUIlmbdhDr5/8LZ
v67WdXUIPrE7jC79HoCP1xyPNTQg2KNmct/88h8Ip97dn9iMQMdM5+TOgN/Q
0hrSYt5K8LUj2euEaR9IjVnztn5HULNTweAmXy+gUY+JbW3E9b5ryRyp+gVv
Csf8StsRfJ6Xa3wZ3gXKFzbT2ToRBEjxJ/2T7AAmlZZYoy5iPvNVS/3KHxDA
93Pe6SeCGz7j/w6FtYKRWe9tu18IDOJ+FRRJNMMZygFv1W6iX7C69aE3/hvU
z4orDBO64Uysmv+PWogSu9Oe1oOA9aNPeo/GJ6DN1J9U7iXy5KSu+52ugIVN
aesZhO7KMPtRVlAKH3wnvcYJ7SC7VPhhSxE4l3Gc1ugj+pOkQYmRwVtQoSp5
yJXQWqAjZjxylvZn7CRlG6HnH1zMvBJcQItzfVVgTWihr2wzjrzFNK3QzZMC
hM63s5N1DmDQeEx4WD8S8yv0VNzP+1lF614pHvIl9NCtPmNy8heaX5vNo59E
va93MNfmG9bTVJrLXBCh4aLQi/TJRhp/v3NPMnF/qgeUlrbZt9B+PdU+/Jbw
4+JGPVuxW99pXfPlwjWEX5MkdLl1qo22XSi0BRN+erBtactw6KQNd5bU3iH8
fv97t/L22z9pla+tBPw7EChWHAwVn+6mXVC695aTyGeO8Xm9tqGPVmHW8YCT
yJPy/Jvq06XftMV5YxX/FgTed9qcLqn208r8ouNymgh/Yv+mu8QM0uJzv3vU
1yOYDpks0cz7SzM8nyjH+IqA5L3wi7dxiCaWYOiVWUPUa8ZJqSON0k4E6Dcv
fERQribo9mzLGM2k9WH4uUoEUxKSR1Jix2mKcVsM5ol+bvscucy1aZI2/3EP
S9p7wt+dGx7tt56mRRqfe/noOfH86PjzPaF3mnZP4gFD6ymCeO9c1odnZ2hS
Ot1PMwm+nPYh7e75NEtrnvoRKXkPQYufmsSOzQu0zktynv1EP5nS89c2+t8C
7eTUo8msSwjs/B8dzkhfpGX947E2Po/gzR71+sa2JdrF8/tTyEQ/ej1QM8HJ
f4W2t3Vi70IIwZ8Doy+DWFZpR5f+cM/tQ8Cx/1lPYu4qLbBNrPyXP4JjQdqW
lUNrNP5T/6SPeBLrp1jyxJ0SJiTMovvyNUIgUCKtJ0FnRdvJxfs5RRCELC45
kNJY0VsJS7dJXmI/mnX6Gv1hRVq9ppRadgSnSrMvuSeyocoy3qriaRpMvpf9
m1rDjqhbHewmCf5tLJfP4XTnQq0vnMNMvGiQXqXMtxTAj56ncnOqxVsDn7XN
7zvP+dGrqZk7n6OsIaEkoMRmmR8FX1m5cjjYGqILHwamXBNAg28lQgc2W8OO
G6RyRSyIriQJOgcrWsOVYjHThwLC6KBDskRxhRXUTas+OGokjAQuu+/wf2sF
XHrG/I7ewohrIuKSKsG3Z55s/zOWJ4xqJaby/8uwgiN3r18xsRJBh3fqNawf
sILtF6SGakJFkdZIxhtTGStI+0TZdvuaKPKd9mwbELKCBlZzRsQ7UUR+1+FS
xmkFDqd2ZoiyiqHqjv6ZgTmCJyOzkW+2GGpf2Zvv0EqFqKInT3WxGIoa+oq3
1lHh5fh7CZZBMdTE0v8y5SMVNIK7xvL1xZHK7eqGzGKCN3zlbk59EUcaa2Vf
BLKpsCNbi61qgtBmV468SqdCRhv1YKaYBDLj8XO9fJkKfO6+9hb+EsjrmovW
GMGvjlfCi/iSJFBQjNza4ZME/9bFyfY8lUCIzeyGwTEqrDnk/Du3IIFUGE1P
gsIJnkt4vstTXhK9FVYY+hVMhWMVjM8UW0n0uN34SFogFd6sNRj8FyyJTva6
qSX5U2HKsudOfaokerrPrL+U4CWtE5Nc995IIqZSjwQdgqeC365HHumURF7C
p/r6Cd7KnRHssWOSQoPxSy2/CB7r01NyliRLodu8ew1ktlBh/9V1S/HNUmi9
QsgnmODZkclubdHjUmgl+WsZJ8GzEZsZisL3pRAPz/k9SwQPTj+/IyxYK4WK
tQ9vsSZ4MVogjpV/Rgq5rtVfbiN4cjl81xyPnDRSKmuS+UTw5ql6y79c9tJo
VOTEHA+hWbRlOzgipJGK/26pAoJXk1KWa9luSCOrpbSYW4TmGesoY8HS6Oae
IMFhQqe6lD5nGpZG2bvtP10lxos+zbq3JiyD2nuOX0wnrpfFczxtxUIGdV5f
sZkmeFouxCthea8M2rvFtrmQqPdejUn0YooMOvBzTfwzwa+q6hLB88UySO9i
/6A1cb+Pkud2znbLoGTlg1IShB9aQ60u05yyKMQl57jbNoIHN76xmtKTRSPe
r78NEP2BUUG67sROWeQfPNrT4030PxyRymNnZVHQS5N91N1UoO53Fx15KosE
9MbFVvZSwZ4kvDCwKosqxTXyCyKoUJswNfSHLIfSL2c1ZERRYVP/t86+zXLo
144bz//GUMHzYSrj1305JEYdqsVEf9TJElHUVSuH+s5p8jleJfgxwO1Bx4wc
sj6gIGCaReSnzJf03V4evQ/YMef2mMjvzOixlgh5lDUcdC36FZFfb+2Bphvy
KCLopzdXGZHX3Qtu9cPyyHZhd3BwI5HXWjDtq4gC4nnhyWnaReTl56hfY6mA
XpinJh8cJPhfnlO8+rICahtr8lJYI9Z73CBH1VsFNGRdlJnBYwVXf1Yv4h4F
9MU6JCNK0gqybiX8LNNXRFTO7/yHDazgkTRL7pvvisi6JeuPe7gVsV77Ml+t
KaKhgYPnBOKsYEdYr227qBKaKIAbekS/+/MrGP+gKqEAg0zRvOdW0H/xlHRz
qhJq6gs8aDxvBXNcK701BsroOI9JV/t1glfv2AoNOyijrNNKFL5n1jClf4nG
5aOMQnOztqZUWMOIt0yOwzlltOQadzRk3Bp6n5n5VLUoI6abTQ+8HWlQt+Xo
97IoFTTLfDHeiQ2B80AZ289kFRT8b/rKYyGCT06wGf13WwVdHXirKCWPoPJB
epp5tQpK2YFbpEwQlMy+3PxWfAOy4LvPFEHw5MOsiZoXbzcgeskw3wGCn5S0
TZYaajegLNM2+0fE+zSnIo4y0b0BjbMm3WvsJ3hlhO+8FqcqCrHdyNG8QvAt
VdPusZcqGhus2u+iSQe+piORX0JV0d/PnO/Pm9Dhwr73D/6eVkU3rb+63qDT
ISHViZn8SBWpWmuKk7zoENMbxHiwqIpMvm1sLTxNh8WoF+MVfCQkXbL0zeQC
HY5yL8j1KZGQ8i5Dlbg0OhwySIpVdCKh9fJWe9NcOkx8qn9i7UtCu+QTx/Oe
0SHUR7zT9zAJteefy/78hg77E3LNbt8koSaTc0YyH+nQLzUW9KGQhFI4VnY5
fKXDnkLDG50VJPSKqZlVrpkO3fTYT0vfSSjv7chEVjsddv2onJMaISFnf5H5
99106AjhIZmtkZD4lnnWM/108Fzf6uElQkYtrpKSg8N02Erpe5VpQUakwIcv
Ls8Qx78ubvV2I6Nh58nyxAU6eEcI/VPwJyPvFlE20n902C1MufrnCBkJ8TtY
hKzRIfANTfdRIpnI30PTg9kGgr28GsKyyGinhWxxH6sNhC9HhOs/JSMO+PdF
mMOGWE9JfPPlZBScxBv2h9MGolHO0/eNZJQFTe+2c9tAzJ9i59N/yIipV78z
iMcGTifVD9vOkxHS+i0uzWsDCeoDyVzcauhF263KYEIn162o1cuqoYvpzm6e
hE45KPb5mo4aOnpY36yPGH9NRGu/J12N8I9dlpvQ14tt2WU91FDop+UH9Vw2
kL3DJ7dnvxrKvVGfpkPUk/PfEdvcE2pIqfBdpSa7DTzMufg7OEUNvSrdo1TN
YgOP6A/ite+qoce3Pz9fXqfDs/5SpemXaki9SCSpboUOL883wduPaujGyIEW
iyU6vNUY9ottI+bnL2m3n6PD+3qmNdqIGponBY+NT9EBDkndYVtVQ+b5UicM
x+jwUVSPWiNIQWaH7Fcl/tLhy9uNXZdVKOgaaZjnZh8dmleipSUdKWjz8fMH
Yr/T4cfd1JIubwrCCRrUXw106LLJ97oXTkFjtvezez8T6yf5e6Z6OgUJ3F9i
fCuhw5DmuNFEHgVlGP++Ul5Eh/EGttZXJRSkJ32eeesjOsyLGYlQuynodxw5
Mfw6Hbjup6VuUldHVx1qqPcjiP1i90RblKqOXIJOfu/ZSwfhvxV1bZvUUe3+
wM6GHXSQ0f7HsydKHUWLF+35SOwf7dLN5yNBHa1kJldbCNHBYFcQ2axZHb3m
/PtDnZUOJuunqlf61dHCO7GLP+YQIPvnrEk8Guj12uSvgwQ/uzfxncnaroG2
TfsrtxI8GT1cc7x8VAPtM/zsPr+B2O/yTl2STJqo4lEnxYDguc9bv1gdEdNE
Fq71r+lMCKTef2JRs9JENjs+76t5R/TTF6tSrqZqosDrntNjKjRY0yy/t1df
C4mtNFcqT1pBYkTRF+5j2ijiCuXm4DFLeP5AVzPwkjY6D29k0rZYwo8fzy8z
7mojkwZa3WZ1SyDTCt0jv2ij/v8afnF3WcAXwSc/f0rrIO6M1qhCmgXwvXw4
9aJMBwVaqDEpCJpD7QkXPk1mPTS4/eHVhgYTUJGNnHvCo4daWJJjy56bQExZ
dreGmB7SkODoaE81AfX14SINNT10ls1/8c5mE0hOSN6u4aaHGkb563e3GMPG
K9U56jf1UPeqqUzvHyP4mEvTp+jro8EtdL9eiiHIOQTJPLLQR7G3aCyVAoYQ
9TeVlWKnjwYkVeaaZg1gg0b3dzUvfdQ9e3wttsIAzr44GaMWp4+0qAufp3cZ
AP19aRW5Rh8dC83TMLutD4xvhp6kPQZo0/VlN28LPYjae977aIgBYuKv+7RA
0gP1hU6/6kgDRFt9Nl8qrAcZCmeD9iUZoD0X2Ls8W3QhJLzxeN5TA8SctqMw
2kQXJHjDb5HmDVClR/3nR9w6EOGQ30u6ZIgCiqlXUK8mqHYu9R/NMETxuzlV
H4MmdIS7DVffMUScSc8Wne9qgl3m7L99RYYIJP4mmO3WBJl+G9b874bISjTf
9XmfBnyK7yGRlYxQs4uz170pdVAolwolFxuhXlnPkAJDCuyXVtpKByP0Vfvr
HEmSAoVH1Ux31Rghc8c4jfZlNaDqmLCm/TJCAZf73nyvVAPvu9turbIboyCr
4KuU7WqQGZ/6tdXTGIndcuX4epYMfA5sWucWjdGUQeVz8roqeDzgFclhMUEF
EnzHHYdU4daayGIJnwny+ZkpdK1JFTTeKX+cUDJBrwfiPTJzVcGRQtvl7WSC
nHB1l7+rKpzjiUnRzzZBK0W8jmUPNsByw+RYj6Upyia9YDkcrAKJBj0X3exN
USZbiYOIlwoIXW+gfNhkimQXrpnW26sA2bcw8PoeU3TKOXvblQ0q4D4a8tP1
vCnyz36ybN2rDE84B7+WNpuiw2dTXyv7KYM3+vkk/YAZUuhbGS4JUYKBh18d
mSPN0E9y9GbjXUpwiPPDYMRJM2R/nr+12k0JkhpuqjhfMUO/zg09UNFXgle7
vLKZis3QOVLwhdR/isBzovlCOJM5+hP/wtBCUhE+vPwSvPGGOQJugzqFOHlo
/xU6dPq+Obovv9fhYoA8zHILBpc8NUcCUgsbZR3lQSdge5A6Nkdffc7AM1F5
eCDyex/vMHH+rsLSxGdycDHyv4BvFhaogsTd0NIvC97GOr5e3RYosevARqUI
GTi2p+nnlSELJH72gmuZlwxkXI7a9WXaAk3VZSwcpctAw8B7H3NOS1R3jSuY
Li4DNtc3esvqWSIV2bhhA4Y0sZ79vXriLZHBRcnCbeLSsFiSvjWIREUXFCvW
qW2SsGNM4cK0DhXt3fHB9VC1JJQqPsFxZlT0uc5va8lrSYhJwroZLlR0MFJ1
NfGqJKxsG+evOExF32DQTcxFEpgmHWplGFRknuC9oa9KArhIyzYNnlboykf/
xyFV4hC8IzFmp78VaugQDlp6LQ41l4Re9R+wQgrlndo3c8Xh4jRZ+b+TVihB
KPogb5I48OFt62oPrdD9e6vL75zEQcin8EP8pBUSrOpKk20VA+lr/kbGydao
qzpH7sCsKLS/lTx/9Zo1Gg8v59D5KwrXfzZ0jGZbozwf3ktMnaIgQrE6/aDQ
GuV2HhJvAFHgAelawRZrZGmcqsidIgorY827R+Rp6LBJxNAEWRR6He0v3X1N
Q+yr7A1r+0QgJ2Ll13IZDbW8rDP18BaBXRmv9Tw/0VAEPU6keJMIdPQo/+Dr
oKGXHJK/skxFoDl6TSlmjYbOqLkp/OUWgYBmH58nqgjpb5zwvVYkDNuYxP8l
HCRwwDSC+p5dGE4ec+bNikJo8pDEVPyyEOROnCY9PYHQv7/hfNsnhWD258jO
pnMIcbE9ocl3CEFGKa6Uz0LozM7lDsNCIWg9EpbxFiMU6juaEOYlBNsHqkyH
hOmIvQWfcQ0SBK/aI6dc3tBRfMfmrFIhflCyvz3LWUpHubH4yiYmfhiB6pCP
5XT0qutI9b9JPjhVLOVl9ZmOhHl1HwV844P8ewxd3U46Kh9MOz6Wygez0Tx9
Ikw2iPZ1kCVNiA/SNjyw7XSxQcn54ZfeyfNCw8kmrgN/bNBdUs5W513c0NfV
OnlxyAadeLDG6HLjhlmL9h/Pxm1Q0Whe+QkaN0gvdedOLdigzd+QYZcKNwQe
HUPH+WyR2b7vew1GuOC/cM4T541t0avgYltSLBdQdlsN5523RZkl6elleZxw
jv645remHfpW+480LsMBH2/aMMb07JDwgYCxQ4IcwDHd9Wre2A6xMNPrV1k5
4OIDgds8yA6dvKL6zmCcHa6yRkUYeNihQJdjclyYHXKqrUXPnrRDU33ve3YE
sUOJU+su5Xo7pDhlc9C9jA0mtq5P7o6wR9I2ZSt1cazQXJiCRCPtUUKRWtVs
FCsUc8tc+3TMHvUvKuephLHCyQojA+14e7Rp/2TuVW9W4NEPiVpOt0eGnDlz
b0xZgST0fTGj1B6FrFxZk55hgV0NT5hr2RzQ0b/20noRLPDV2VPU6JYDkW9s
cGQUMwxuJ4cH9m1EkiUVdRU664wop4WqUWEnNBnEvO+r2QqjJNnhTDTVGZks
i17+9HaJYdEpEOl7xgVl39wK6j4LDB2x9oBbz11RMSlMxu3QHMP5/PJs72tX
9Hv6SLhT8Bxj/7LceXKpKxJOP+3g7D/HuNu75+nLKlcUxjF/cueWOYZQ4ejM
53ZXFBCqdLtQb47xz349YZbFDcWUU9+oT88y3hwjF7h5uaHH4jbR3sdnGY0j
jubpu9zQGHeqSt+hWcaYb+jX9j1uaDHJeDz0wCyDZFc0uTfMDV1oPdB02XuW
cV3Iwiwm3g39k6g5w2I1yzj+2K0m/6kbohim9TxjmWVkyB3yGStyQ5N3RHii
/pthFF1JG9d/64aG/sZuoM3OMIaPtgmXYzd0//glyb6BGYa3zR7vlu9u6FdJ
5ZttNTOM6OJzY1Jdbsjm5i0Oi8oZRhol/5RfrxtSt83XU/0ww6gVGH0wPOKG
6vLILGyFM4zBeH5j3SlifBZ/7lLeDINlTvdz1JwbOvSRS3QmZ4ahEOy+8/2y
G1KS8XKdujHD+L/vgdH/fw/8P5ata74=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-3, 5000], 0}}, {{-60, 60}, {-0.0006, 0}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"MapThread", "[",
RowBox[{"Equal", ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], "/.",
RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",",
RowBox[{"Collect", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"eqs", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.",
RowBox[{
RowBox[{"Complex", "[",
RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
RowBox[{"a", " ", "i"}]}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"i", " ", "\[Phi]1"}]], "\[CapitalOmega]1"}], "\[Rule]",
RowBox[{"2", " ", "E1"}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "i"}], " ", "\[Phi]1"}]], "\[CapitalOmega]1"}],
"\[Rule]",
RowBox[{"2", " ", "E1c"}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"i", " ", "\[Phi]2"}]], "\[CapitalOmega]2"}], "\[Rule]",
RowBox[{"2", " ", "E2"}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "i"}], " ", "\[Phi]2"}]], "\[CapitalOmega]2"}],
"\[Rule]",
RowBox[{"2", " ", "E2c"}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"i", " ", "\[Phi]c"}]], "\[CapitalOmega]c"}], "\[Rule]",
RowBox[{"2", " ", "Ec"}]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "i"}], " ", "\[Phi]c"}]], "\[CapitalOmega]c"}],
"\[Rule]",
RowBox[{"2", " ", "Ecc"}]}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}]}],
"}"}]}], "/.",
RowBox[{"\[Rho]", "\[Rule]", "r"}]}], ",", "i", ",", "FullSimplify"}],
"]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"DeleteCases", "[",
RowBox[{"%", ",",
RowBox[{
RowBox[{
SubscriptBox["dr",
RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;",
RowBox[{"b", "<", "a"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"StringJoin", "[",
RowBox[{
RowBox[{
RowBox[{"StringReplace", "[",
RowBox[{
RowBox[{
RowBox[{"ToString", "@",
RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
RowBox[{
RowBox[{
"\"\<Subscript(dr,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_",
"~~", "\"\<)\>\""}], ":>",
RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
",",
RowBox[{
RowBox[{
"\"\<Subscript(\>\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_",
"~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}],
"\[RuleDelayed]",
RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@",
"%"}], "]"}], "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{
RowBox[{"ToFileName", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<code.txt\>\""}],
"]"}], ",", "%"}], "]"}]}], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "1"}]], "\[Equal]",
RowBox[{
FractionBox["gt", "2"], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"1", ",", "1"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E1"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}]}], ")"}]}], "+",
RowBox[{"G3", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "2"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "gt"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E1c"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "Ecc"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "1"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "gt"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "1"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "1"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "2"}]], "\[Equal]",
RowBox[{
FractionBox["gt", "2"], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E2"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "+",
RowBox[{"G3", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E1c"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "Ecc"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"3", ",", "1"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "1"}]]}], "+",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "1"}]]}], "+",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"3", ",", "2"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "+",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"3", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"G3", "+", "gt"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"3", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+", "G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"d2", "-", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"4", ",", "1"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "1"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "1"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"4", ",", "2"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "+",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"4", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"4", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+", "G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "3"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"4", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "d2"}], "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"4", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"G4", "+", "gt"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]]}]}]}]}], "}"}]], "Output"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "1"}]], "\[Equal]",
RowBox[{
FractionBox["gt", "2"], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"1", ",", "1"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E1"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}]}], ")"}]}], "+",
RowBox[{"G3", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "2"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "gt"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E1c"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"1", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "Ecc"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "2"}]]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "2"}]], "\[Equal]",
RowBox[{
FractionBox["gt", "2"], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E2"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "+",
RowBox[{"G3", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "E1c"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"2", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "Ecc"}], " ",
SubscriptBox["r",
RowBox[{"2", ",", "2"}]]}], "-",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "+",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"3", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "3"}]]}], "-",
RowBox[{"E1c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "1"}]]}], "-",
RowBox[{"E2c", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"G3", "+", "gt"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "3"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"3", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+", "G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}], "+",
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
SubscriptBox["r",
RowBox[{"1", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"3", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"d2", "-", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"4", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{"i", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Ec", " ",
SubscriptBox["r",
RowBox[{"2", ",", "4"}]]}], "-",
RowBox[{"Ecc", " ",
SubscriptBox["r",
RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"G4", "+", "gt"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"4", ",", "4"}]]}]}]}]}], "}"}]], "Output"],
Cell[BoxData["\<\"dr11_dt = gt/2. - gt*r11 + i*(-(E1*r13) + E1c*r31) + \
G3*r33*R31 + G4*r44*R41;\\ndr12_dt = -(gt*r12) + i*((-d1 + d2)*r12 - E2*r13 - \
Ec*r14 + E1c*r32);\\ndr13_dt = -((G3 + 2*gt)*r13)/2. + i*(-(E1c*r11) - \
E2c*r12 - d1*r13 + E1c*r33);\\ndr14_dt = -((G4 + 2*gt)*r14)/2. + \
i*(-(Ecc*r12) - (d1 - d2 + d3)*r14 + E1c*r34);\\ndr22_dt = gt/2. - gt*r22 + \
i*(-(E2*r23) - Ec*r24 + E2c*r32 + Ecc*r42) + G3*r33*R32 + \
G4*r44*R42;\\ndr23_dt = -((G3 + 2*gt)*r23)/2. + i*(-(E1c*r21) - E2c*r22 - \
d2*r23 + E2c*r33 + Ecc*r43);\\ndr24_dt = -((G4 + 2*gt)*r24)/2. + \
i*(-(Ecc*r22) - d3*r24 + E2c*r34 + Ecc*r44);\\ndr33_dt = i*(E1*r13 + E2*r23 - \
E1c*r31 - E2c*r32) - (G3 + gt)*r33;\\ndr34_dt = -((G3 + G4 + 2*gt)*r34)/2. + \
i*(E1*r14 + E2*r24 - Ecc*r32 + (d2 - d3)*r34);\\ndr44_dt = i*(Ec*r24 - \
Ecc*r42) - (G4 + gt)*r44;\\n\"\>"], "Output"],
Cell[BoxData["\<\"C:\\\\Users\\\\Simon\\\\WorkLaptop\\\\Home\\\\RocSci\\\\\
NavySTTR2011\\\\mathematica\\\\code.txt\"\>"], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Version using real DM variables", "Section"],
Cell["Remove explict time dependence from the density matrix.", "MathCaption",
CellID->540592006],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetOptions", "[",
RowBox[{"DensityMatrix", ",",
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}]}],
"]"}]], "Input",
CellID->227015699],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
RowBox[{"Label", "\[Rule]", "None"}], ",",
RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",",
RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
ImageSize->{432, 33},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}}]
}, Open ]],
Cell[TextData[{
Cell[BoxData[
ButtonBox["OpticalRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
" and ",
Cell[BoxData[
ButtonBox["TransitRepopulation",
BaseStyle->"Link",
ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
" supply the repopulation matrices."
}], "MathCaption",
CellID->164472800],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"repop", "=",
RowBox[{
RowBox[{
RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
RowBox[{"TransitRepopulation", "[",
RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
RowBox[{
RowBox[{"BranchingRatio", "[",
RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
SubscriptBox["R",
RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
CellID->358732873],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}], "0", "0", "0"},
{"0",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}], "0", "0"},
{"0", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output"]
}, Open ]],
Cell["Here are the evolution equations.", "MathCaption",
CellID->2682843],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TableForm", "[",
RowBox[{
RowBox[{"eqs", "=",
RowBox[{
RowBox[{"LiouvilleEquation", "[",
RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//",
"Expand"}]}], ",",
RowBox[{"TableHeadings", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
"]"}]], "Input",
CellID->161699191],
Cell[BoxData[
TagBox[
TagBox[GridBox[{
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{"\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
RowBox[{"\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{"\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
FractionBox["\[Gamma]t", "2"], "+",
RowBox[{"\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{"\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
RowBox[{"\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[CapitalOmega]1"}], " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{"\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"\[Delta]1", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{"\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{"\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[Gamma]t"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{"\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
RowBox[{"\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ",
RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "3"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{
FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"\[Delta]2", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
RowBox[{"\[Delta]c", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
{
TagBox[
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]],
HoldForm],
RowBox[{"0", "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "\[CapitalOmega]c"}], " ",
RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"\[CapitalOmega]c", " ",
RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
RowBox[{"\[Gamma]t", " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}], "-",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], " ",
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxDividers->{
"Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {},
"Rows" -> {{False}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
OutputFormsDump`HeadedColumn],
Function[BoxForm`e$,
TableForm[BoxForm`e$, TableHeadings -> {{
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 1],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 2],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 2, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 3, 3],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 2, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 3, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 3, 4],
Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 4, 4]},
None}]]]], "Output"]
}, Open ]],
Cell["Make plots from paper.", "Text"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"Re", ",", "1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"5", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwtmnk0lc//wG1FEq59d6+du7jWy70yg5DlyhKKlEpkSYoUfUgSKimtyhpS
oiyRSGYiSSGJEiWFSvY1Kfzu95zfP89zXueZM8/7/Zr3zDPPOUPac9B1Hw8X
F5cg5/K/O6svYnR1lY3/m6oflp8hgp6aW5N2f9m4n3rxH54jgsj09tnLC2ws
tm1h2P83EZS5a/3THGfj1lwB/ap/RKDW0Sfk3MvGbQf5ar35SUCoyZKWW8nG
rp3yAx0KJND/QPQQDGTjbwcu2e7cTAIn40sW4jodsbHV8xCFPBI4Ix38+vY5
B/xjhGxReUgFKD3Xyg/3sscTMyc0DlmrgmW1/ZLmunY4R8A5gaKlBrLDaS4l
v2zx+lOjQ9XG6qDt4+yFxic2+OinJ+Uf2RqgngrTY8OtscYKj7N5tib4YyTM
MtbbhCcUmlLbRLXBM/e+gWt8VphW9cdP8KoOcNir65xRb4FvCIL4PYcoYG9y
fMPmVIgFaemmrBAaONP4IHu42RzbVe/LOe1CBx0u/g4noRnmDmvYvr5SD+iL
KKyEDpni3fXFfJsNDIDM3S9WBe4M/FBQM8dXwghcKiqs7+w0xLYhC8P3dBlg
a30RjmgxxBe9r+AJBgNIvStpkMKG+M6Y03tDyAAZ/ypeeN03xD8UVeKbnRmg
YAtq/5ZkiI/bno5Yc5gBquc/9M+YGeLkrrKLHyoZ4JPFulWxOwbYKrLJejfL
BGR7CHFXZRng1X6lx+1WJmB3sAiv5xUDrDAQZWLmaAK+X5HkzzhpgHVfSfJI
+5iAyR8kEdUdBtj2devcy1gTwJPKVDYgGODWXV8j1zaYAM3eYOB2XB9nGAVf
XGdrCrZpPNmlc0gf8xTWp09tMQXJhwXjuAP0cfoZ8Lxzmyn4KViES131ce0n
28ykIFNwj/XdQkhHH9sVJpeVnDcFtCzfTU09evjsqdM6xZ2mYOdIqV9mux7+
NGt0UqPPFFwwWk0If66Hl44M4fRBUzDVltVEKtPDHidkan3nTEH5Sq9NbJIe
Fn9zO+yIJBMY+rrbMYz1cBNtlrzXnQn8SgoChSl6eNuIyi9VHya4ujh7Zpik
h8nvHRu6/Zhg4eKlV5c36GHzrFfr1kcwQfWzNw5TQ3TsJDcZU5rGBExVe6ei
yxyu4n8X0cIEQQdvhMadoWPf4Hx1kQ4myHjyM9XzBB3/+f3j/qX3TPDPLenN
mmA65mdoibgNMsHThOfOeyzp+FvUuO3dv0ww0SF+yNSEji/1lZ0/zs0CSop7
00RpdLwUFaNswM8CsVXcnfWydFy0pivaUYwF4lpjCo2/6eK58U0lEpos4OXh
eBS80cV/FDvrCsgsYDAgt3lznS5e2xTxQprOAt9nq0e2X9PF4fnrbQpMWADH
JNbuOaWLCf6ikXVmLHCT3/1ccJguvrbLTLwKsgBbfoYSY6+Ld1uKjG3azAIa
t/HyaYYuji2JaO11YAEu3QvtqWq6+K33wb1OW1ig0pISlrtCw3tDWQOv3Vkg
tXUJFo3SsKb/2a1d21ggwKOFUNFDwy4nvDOrvVlALsj/YWMFDY/pfcpfv5sF
5mYNE1pzaHj9+qHe6L0s0BbD696dQsOiuoSuZ/tYoJC/U70/ioY76NmNXwI4
+aflLnz3p+F7c6j3XSAnf/mDzZNuNJx7Pcc2K5gFDG9vTF+ENByTtNWIdYAF
hHWFArlpNLzypv91SSgL/HjcayooT8PCuST69EGOD8siQXEBGt63vv8U/yGO
j9ajffLzVKwo9GB4gsMRHjYlat+o2O/laljhYRZwGpCIob6h4jtEgjk1nAW0
ggbZxnVUvOfs6O54DnPPlSuBIirWMfOdKOBwb0zcpO01Kr5YyjdzmcOV/Fuw
8ykqFonVPebE4dQ0xbTtYVQMsuaT33H6D5Af273Hh4p1ubS0VTgMb9fqB9tT
8e88Fy9TTjxyumd4IxhUPLjmkZxMGMffY8+u/9SoeFbRed9TTn7tlhq3TxOo
+CZ+q6fFyf9u69yR1BUKzriYH+HJ8XPSo9Hm+igFux4eVrL/n7+BNOncHgrO
Pn9QadWf4y/I9+fdJgp2G3rnc8SP42+OVlNeQcGqp3yfF3PG62fM8pnaHAqe
36pifGsnCzTwt3o1plDwZPbPy1s545uRdpPcGkXBRRS7J889Ob5uM9o+u1Gw
1R9a23tOvWjprs3+Dik4hzG1J5JTTzw1XaGTVAp23/FWpt2GBapaD4lyC1Cw
T7Oy7C1OfaZ6wK/r5snYy4tvQZbBAvsHhCvEvpGxkLCQjI0eCyjMFbup1ZFx
FE+37kM1FliIiVajFpGxnMOV3GlFFnjDbzdvdI2MpaIvOPZLsUC8/PdrtmFk
7GIxQ33KmV8jlsTeIDUyPnHiaEjIMBNks5J+fBYh4+C5x+XafUyw1XBizvmv
DnaJ2BAczZnfWL1OhNGpgwUWc+3e1DBBpJKq4r2nOni3nvPUm/tMQJE+q6NY
pIMbJ9nCPreYIF1gmzVvnA4ujflwUzKJCZy4kWtksA7Of86I3hjFBHxL6r4j
Hjo4sHu14lcQExwcnY1+Q9XBBWWpvO2OTGDTfqEso08bP7zq+PS0IGc9ebHw
VLhZG//du1GkcNEUVCCf1ycrtDH/nXSPjd9NgWI5+XvAGW1M39+f0YJMwdzl
ZnlDhjbmjvS20gzhrLcpNO07KtpY8W1ibJu7KfA9fdVYTlgb5xjNXPtkbgpe
R+514RrWwlwihy/TRExB3vbVxNZLWrhkOds+/K4J2ObqfwXEamGNl+RhvfMm
QNih7VZFoBY2WBPk7XjIBESZZdSlQy0MlWu+pTJMgLMyY8ZvQhMfvpFZqFLH
AGtlslc/fNTEa0269dMzGKBOdM0GhyZNPM3NfrgzmgE0ed5p6mVq4rLOipWP
RgywMhTqs2yniUWS0yZDCoxB5efuoDAjTUzeuHXBMdYYBL03OzZI1MSy51x2
RHoag+5mwcstvzXwsamFhjx+Y1Byr/Dl1dsamPpbuGPrLiPgHdZvQOPWwEfu
K9mvjBoAj4RxQe5xdfxE8o8PeGIAnNP/fX3Xo465WzdXdpwxAJuw3MWoMnXM
p7v7zg81A0AT9Rx7vksdx3cL71njpg94yt4UeNerYc1fOQe2XaSDu5NY8sxx
Vdwb4qlrZqEN8ng7xrwDVLH398mk6idaIEv6SyPNTRXL6Vl4njTSApfA8qEu
HVVc1HJEUkNTExy/YNqu3KuCPdk71Jp51YGTbkXiIxMVrHAo48mFYiKYC83/
PThPxHOKN4tfCIiCgIhvOwmDRCyisylvt5ww6I0ivTDvIGLV4mq1XHUh8Cwh
58qNe0R8ps8ib9RKAKTezNDbsouI9/95VXo5nws4p2h+iEhTxhq27Oe3dneY
G1+/fftNsDJWLXx4bnIgz1wxTzVCx0YZby0f38Yt1Fz/q1qZMLCkhGVVH+n7
hg7WJwxKOzj4KeH0F/PCeZML9Y+ZAojEUMQmaeMJ26r5UbZ14vn/CIpYQjuo
P1ljHTrtzLfjw6gCzrMVM1hzURC5+nP9SclVwMck8/7ed9mAxtIW9RfXcfip
b7elLQF1ZkZyuw3J4zJf4ZKgHwRUc2fuzf16ebx5e0fXhQQxlPh0KmRvuDyW
I3o3NFWJI+LIz8L2T3L4UXSBeO6sJFo7539Eu1oO50puvHTwuBQaXxmySkiT
w18r6TNULmlUK/F1wNRGDosHyDgc5ZJBW+FHudulsvj00e60LZ9kEdPBc2T1
jCzWsa0tL3SQQySP7movP1nMsnYKma+WQxPBb7eKysrivzlvxBKS5FHS9ZbU
4/EyeGN2xdl6HkWkEXfs/b3tMjjCamFsz25F9Hy/plIvXQaT+HteXK9TRDzM
0/dNvkjj4q7l2lf7lVCuiuF8wCNpPOFhEdtdo4TA+kGz6+elcfg6B76z/Mro
v0+wdZ4ljbPeOGUJ3VBG8k2T4uri0ng+41/IyCdlVHs/23vrLymct6hU80KY
iH7H/vtVkS6FO23Kj9+2J6JrAcX63w5Kcfa38geZ/kRk6OwVTbCVwnryarut
4ojoMOnxurB5SYxpwpcbSomIIBjgktMqiSV3PiuyaCKishnJG+35kvjO1a5A
m49E5NT3fGA5WhKvdkn5d48S0XhjuBbVVRLTPuaYz/4jopQSlbAd2pLYtjAm
p0CIhHSuvq0+xyWJxcWDwYQcCbXExK3WfpDAlOgL/V2aJLTfX9f21wMJ7HXf
1trHgIT4t/SnyiZKYDeLRcuUjSRUyDj/frOPBE61HCnxtyGhTUQzpWOGEtjV
h+wzzSahQYHRfXfWS+BHsYl6eltJKH76xv3338Sx/cQhQfJ2EiL2bp5fUyuO
d/dJvhrcQUKo4beZUZo4tnT3cPPdRUI7iwsT/PaL47c5P5Jv+5LQ8mX31stA
HMe9C3Z8zOHM//gkGqXE8WzFjZgsTnvmvofeM+Ni+GxWyJ/tPiT0kb0nn9Qk
hgfifW7McN53zJgw6pwphm9VF+iHuJOQlDLWjwsXw2HnEq6+3kJCVfwHo0vt
xfC66MwUSTsS2jql2NBPEsMpnZs+OVmQ0GxP6zrhPwTMKpmx+M+EhC49O+6y
sYOAwUp+eB6NhOj3dG6E3CHga6Vuyi9USejNpY8DGbEETDt05NeoNAmFHk/W
eu1OwKWGUYdk1pOQkB8jbIlCwIGiHrbOy0Rkb3R1dVufKCbOp/6Z7SeiEcVN
tskVorhCtvHl/nYiSl47m1p9RhTL2DW/XqojoqYPzkpSJqK44UtIT9J1IvLD
q/usRURxV6t59LlTRLTG1cd7pFUEi9XWnngaSkRxczLRhdoiuOH0pl1PLYmo
vily3ZoeYUwm7wm9TCaiv9e60vcmCmNgNWF/V5yIIk0vVhMHN2Br2YOpZo3K
KDiWf/5mphDeNv+vxumXEkqRVG/a6yyECzaul8usVEIlJZZXKXxCuFSuR6Ut
RglN9MYY1QevxzH12TbTQkroMGPuyFemIF56cmOqX0kRRU0NLGh+5Men2XbN
c5Ly6GbSyoupFH78hnqseO1bOVSrpHC9BvJjkUgl6y3n5NA/R0+Gw921uChK
OOfasiyKK2o7Gnp0DVZ5vDR99KMMStpTu1gpyYsDJ8wJsoel0N0/H17GtPBg
/46O5ykqUujlxfl0mxgezH1KR/BopyQSRHTTniFu7O7hNVlHl0Sp8nei/j7k
wsGzIU5BP8SRTpHm/KmCf+i4xFv6MiAgm/O9i1mKs0ir6qdt/25+VHLV4zs1
eQbF9A37GJauReLZne+ezkyjjyquj9T+rUEDD149+Nw8heYyV+QHr/Chhdwj
LcyhMbT7obyfWQM32q1pfMv0/CB6dmzd1w6lxXqc+F3q1/cMpMzb2NtjWV5P
QTQJo1/xgF0WckUl4Lr5Qt7Zqxf23wHaSxqRrgt15oWbNsnb76kHxSpZlKDX
neborGjp5ckO4Pqm//ze6SHz+frm1VftXwGX51err0vz5qLbVe/6m8+Aqx5c
KR891oKXHwe7EwZmwMr8xMN+GX5w0quANz9+FizQPxwP7OUHM97qu768mAMd
irKW/7zXgXc7NaW2bfkN0reww5K3CYFrfuQEO99/YKjjaK25LAE4DY+WB/As
g9Lr4yO6RwhgrX/Jl9MFy2Ba6zOzuoMAjgZQWQ0/V8CXmiCj44ligFIlHZX1
mAvKJK+tiBoTB8KPZelSFrwwb/SVOilHCgQt/rFRv8QLLX/Pt7TMSIEXJr0+
hoO88EXHzYOt1tIgtubmOdfTfLD+IVG0fUQaTNbK/0htWQO9o5TlLbVlQcdT
xWx+VwF4uNY6IvukPKCsLFdK5QtAR/ckUuFLeZBs3v9afU4Auu65XvVIWAFY
oOw/VtfWwRc7wn/3XlcAFVjZPa5XEJpzaa0kZCkCYW6ukAvk9XDpv6+l2p8U
QZDFQHz2f+vhMmPwwG1ZJaDSkFtWpyQEAzfHUfjTlMDlRpLQnz0boGjmjbLy
MGUgZG75LevBBqisFFjddUsZJDze89hyaQNsrZX2f/5WGUTez/dLSROGOQLE
rEUpIpjQfM7U+ywMdx5YWBClEkFA3pDoey0RaLQiYXDKkgi2XVd/qoxF4AbJ
4CP7g4ngp0C+3bc1ojDw6pH5rlgiULd5WFlJFoXiX4odUtOIIBu/O7v9qCh8
HGkj0FtJBL3Lg/PkLFHYoyqVs6+JCKRYc74rDaKwJtfiAL2bCC5USTDyhQkQ
KXeWH5khgtYZtbwjhgQ4MftOYmSVCAToRhs2exHg06bB5PNCJLDpgPUxuTgC
POg+FbZLhgTi7rkPjt0mwE3D+VreqiRQ92OfE3pNgMmFpXwxVBL4oxZZkzZN
gDz18m7PjEnAeE+imp+0GHReyvBWAyRwOOfaBeONYlB9+8iuPBsSePCpcElg
rxjUiCRmMtgkMCpbva8vWQy+XlazHXAlAS3P5o77D8Tgd3PBy+meJOB35QMr
rksMts3E3d/hTQK5b38Uui6JQVl3e6y1kwQ+CS8S1InisP9W2fTiLhKQcRSI
+W0tDrVF1+xr8SUB9zMyP1uCxWG2jyrrGocvvdByy0wTh0UrS5e8Oe3beU3r
Q6vF4W8+pbOSPiQgaGGnbfFZHKa2um/E20nAJnb7FXFeCdgUs7HF050E4p8E
rg5rSUDvQ9/se7aQAFqMCnrsJAEPxAUNbLQjgX9GZ7vPRkjASDtclGBBAibh
N6HPTQkoEWbdcteEBCLK7hXrYgmY2HfWr5BGAuXjtVI83yVgx5zw7SiO3wmd
1ye71ktCxUHuGiVpEtDZ3zdWqCcJ3z8T6UpbRwL+t0c9ozwlIX5Jp79ZIoK8
b38bHGIk4RvvE8LvfhGBvI/CjamXkpDd+T1WuZlTXzcpfI0TkjDTt7re9yER
XPlgdvCqhBR0M/jzeXs2EQi5+lgzfaWgrEDPhX1hRLD5woEyoUQpiPjiqYc8
ieB0a4z8l2Ip+DXwUYPGRiJYscmePvVbCjYyWlLj+YiAmfBgh4eiNNwgN5ax
qVUZHH1W36xlJQ2NvD7T6lOUwRTrS1ZbqjQU0v3uZbtGGXylE+2lNWTgl+bq
RUKXIvC/uMqS3CIDd6ULSOyMUgS/Jvup4sdkYPFzt2RDeUUw8yCLIPJKBqq9
dhgK3KoAIoVjeDfMysDIDfwe9aPyYOnAjnlBBVkotvUnK/mEPOChyn9cGyoL
NyuYHQrOlAOJKUuv+K7LQuIOUxijLgcExz7W8WBZ+OzdrjPz92SBeHF67gpB
Dl49QZMXKZYBatpS+xeq5GDmZ1X/RyekwN3k+e1z/XJwx8G3ji2jkoDys8th
hl8eOhuXfzXdKgkM71zWndguD6lp0UqmchLAWp3we3hZHiorbAmfjiYAf5JQ
Yre1Iqxi7D4doMEPfsWNHn0XqghdBpT0n59fA0IHXgW+va4IT92z+pU8wQsi
c86w20YUoaosTM/J5AJJivySTeeVIL1O75WB96z5XVmegspuZeg85iPvIzZc
Py/wb6BFnwR1a3qkdczF0eEsK9ERGxIMO+Go07hFAk3pnQMC3iQoUiFjyN4j
iX55yWXbnCLB6Tqz2g9npNFAiYl34zsSzPvaL8EakEetzke66yJUYEHGjpAJ
exVkP1zH9ylZBWbSb4V2dqug5ig+w7+ZKjBlqKM40lcVNeRdvmTapALN1F8Q
uiLU0OO58i2PJFWhZtvMq+p0DZSfPtFS+kgVut9knvZ4roOIVOM/7a9UYRT3
DeMwGzLKfhajNdGvCoOOPYl60ExG6b+Ekij8avBi8+rUsWYKSjUjbyryVINl
jaW3Ip7QUPRAQH3eohr0+P5psJChhxYjSsefCanDJyfpwWZheujIut8KX4nq
8F2f0Zz+XT0Upp94XNlOHZb+nJRiSekj/4QCk8wb6jA0rLc+8Zc+ctH6WnGV
qQHH226Mfz9siDxeL7p4sTVg55+FyFdZhsgrVHRayVcD7o39Wyb+0hD5VQLd
u6c1oIvQUvh7OSMUCbOLazs04GTKFJavMULRg1X2JwY1oMktv26dL0boRGLb
iNUC5/nPT+9y+IxRcus/zTZ5TTj+Kquvjm2Mbm7zLvjirwnbR6Jt3vQYo+y/
h60KojQhebY5VHbJGOVnn/22P0UTDilp/Ncmx0AlQzXEmXJNeO/MCC3Si4FQ
mEwW37ImBDvLcgc6GWgoufuq9mUt2IjlzMfvmqCf5HHDidta0K4w8RF8ZoLG
2/m6Kh5rQYmtqi82fDRBCxKGYmb9WvBdi3uSLL8pErh1KdVJWxvW/BhIlfMx
RUKb7lHFzbThrT+56T6HTBHhx7PWD07a8E/+Pm+106ZIjjotuDtCG64/auxl
WWyKqDVbksKRNqS1UrqGp02R/o4ADZNObZg4nqIdwsNExquxTf+GtGHEzXye
k2JMBK0f8CYK6kDc+7vWW4+JNv1syrNX1IE1Zlnb1CAT2Z37bCFC14GVI3sX
4pyYyPWtUFy6uw4c0x9/8DeQiTwi1JR99uvArmbeJIWjTOQtbVZPOq4Dl0PP
f3x/ion8fIL/3cvVgfeOvfFVzGSiyJGWY09HdWCo2sRn6ZdMlK1o1yfNRYZP
7nzk4nrHRM0uLzceliDD/ww7ff77zEQytS94NDeSoUJm63GTaU68E9b7TrqQ
odLW1xePLzFRoEpTc98+Mjz0OjlpOy8L1Z5tTLmYSoaCtx7kjomz0Ld6y8lf
eWSYxRZZKZBnofWzz1ysq8nQNvtHxYoKC+3wxlJLX8gwJ2DP4Uw6CyVcAFFb
58iwOSM6Y9CYhe431vc9EKDA0ujWbZ1mLLRCfpq7V48Clwxq80psWUjD14y3
3poCE1tLaRmOLLTlypN9Ml4UGHfsCJvhwkLHXjJfHg6lwHGfhIh4dxbK/Vej
0xZPgQHXyJKx21noJd30vOZ1ChRyS8wk+7DQtN/jyZPFFChvEh6e4stCcjcY
rp8QhfM9Slm5tZeFLNseVRp3UaB1qmr2AX8WCuI2lk77SYGCLxgPpvaz0GWj
qqjRfxRYrBqZSAlmobpAw0/WBCos4jaMVjnAQkNZD81z1anwodKBnnehLCTU
qX9ryZQKW1QbRi3CWMhwbQWvuxMV6vAeWzpwiOOHqedfuocKQ9SP2Ww/zEKn
Q8terjtKhWe8XDasCWehB3m6ZL9zVBhz2jT5MIffv39wvj6HCrcsiozlcXhF
kDYlU0mFLsd8A69zWAPcdw1/SYXRA/4UFw47hVOq2j5RIfAS93nL6f/onWJp
rWkq3KomoizL4dw+nej4NTTI9eVZmjYnnpci9z59kqXBUg/PDl5OvFNW2oBB
o0Gxpqbpu5x8ZI/dvZVmSYMVJ7sE5Dj5WpZo8o150KCAvKraNo6PoIFCf5tg
GvR5S3fyC2ShSxIaLbknaHAuxO88CGChJ5tvk/9epsG2QImhX34cP+X5U6V1
NHhJRb2tahfHz7CKm+BbGrwnruv8YQcL+cjmVfkN0+CQslxrK2c8H5zMjZYV
1oVOMQN+DDeOjyrlz+EquvDILke3B1tYaHUkG7Qb68KfR9s//3NgIWfXLL5T
u3RhXe03qLaJUy+JCgGfw3XhtUfkthXAQrdqM1oYybrQM3+DTyWLhWZUbqaO
lelCo4T45of6LPQqykGIzE2HjieONsoqs5CKfPj8PUE63HLGzc5MjoWi6272
60jQoVXQ0LCVJAtpr46U6WjS4UHto+V861koOSHZXYdNh7YVbfQd80xke6Ep
W/sGHdasDm3saeLMT/p4UlEeHbqKWaSlICZaeCtxSLuEDit631JoNUxUKOFn
pY3oUOX7+AqzhInW3uT5qTVMhyNGVnOJaUz0vADoaenpQa3z9myL7UykYBMg
d5epByMbDkn9dWGiiB+pvFqb9OCM6Lpdd+2ZSFWnv1vTUw/upPc+62cxUXzp
f9GaMXowuc/hWaMiE1nU1jRqtOjB0Ki9V8q/mKL6NwYe6rv14Y/AFvoUZ72M
2JvkdSRIH1adXY1tdzdF2r97dzaF60Nyg8/1u2xTdEUpPmBfoj4cWH393nmj
KQo60HHsdrE+7OmNMYxUMEVS6w9kqC/ow6sDZXyMXhMUalM4oH7OAMJLhm4n
t5ogpacywRpVhvDPrCPhqx0DLbVPjn1hMeBwa2B5k5YRelL+cr/tdVMo4SL4
2m6/AVp8fNklQN0M5pTv/ST1XA/JpvkaGiWbw2vWFbekDtORG5fkdMJBCO+7
6qhsyqchz1eHYx0qLeDeEBvZUycpqP2/twKBg5ZwvdLquZoGHXTKoqjlG3kT
nNx/Yg9bWhtNuKxO7gq1htqHw1+15mui1/Ye4oYZNvBaOs/A+QMa6Lu7xgG/
r7YwY4eHZ7+5Ooqw+904SrCDNynbX8YDzn4h2SYu0swelrVbUqy9VRGzVzjc
J84BRu8ayzOKUuH8PffsyXjgCOViwk/zPSYh+6SluYGHjnDMQj25pZKE/JcU
kjRqHGGdbuWjC+UklDOwu7i80RHGB327olxMQqL3R2ebexzhat0PK3Y2CU1b
rybM8bDhtXfWX78kkFDlUY07bE82TBjM6/7sSkIdvzabXt7BhjJ+XSrNW0ho
zCf4dc9uNly+GJtc7khC6pvKJveGsKHBibGbZ2xI6Joo0yT6JBt6aoi12jBJ
6FgRu6WwmA3D101+mSOR0BWFMO+xMjacbieETSqRUNmFS+N6j9jwSOYNkVF5
Eho58oHwFLOhG+FW9LAkCXlZ7vZ6182GHcIq09/XkVBk1akxmT42XNiwPDay
loQuaRXG7hxgw0PHe2bHeUnolfBo3sgvNrSN2Uf8s0xE309uMNKdYsPFAzzW
XH+JiGdetzling1XEyIPCywSkdJ+1+21S2wY4mNylzBPRP9/HgH+/3kE9H+e
DALX
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-1, 2000],
Rational[1, 2000]}}, {{-60, 60}, {-0.0005, 0.0005}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"2", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]2", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "3"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"3", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwtmnk0Vd/7x83jdS8ZEq4hwzXfc64xZO/MKYUiQyQZKqVBaNKHCE1K0Uxl
ppIkqXT3LpQ5JUOaJJlDxhL6nd9a33/OXa+199n7eZ73ez973bWOWuAe92A+
Hh4eJerx/7+WHw8M//vngs0eP3pfL8sEnU9uj63+64JfkRmrOQpMEHWlefLi
jAtONtEVu67MBCUe2vOsny54nWvw3r0sJtBo+Uhz7XLBtPKX3bormIBWY2N4
q8wFTxzVaPqymQm+FEvugztc8M4Gq2qHXCaIO353JvbdWmz4oi3PzEIZnFwa
1pB7eg3W+dMi75eqApSrtbMjfJzx4nrLqcwoVbCgsV3Wmr0aj464Z11hq4HM
CEO3u0OOePRGjNMeseWg6cPkuapnDng4pEO6Z3A54BrAK8ci7HH72zPLH02q
gz8mdEtT0g6XeEr2P5DWBC88PnZfErDFgQ+rxbdZaoE129iu17mr8IsZ34Kq
GyywLfn4S6cUiAskPrstCuuAk1XFmT9eW2NCYHri2hld0OIWsiYOWuGxsfV/
eD30AYehtBjeuwJbVCqHPltqCOQLvtrmeJhh8YzaU794CSqf+oUra8xwaNDV
jgxBAmh0P3p8dpUZnvx2o9BJlACE/Bm9aAMzLBJ8vPyqJAEck82lnQXNcPdp
BX9tFQJEbU/tGSszxVfas1pGLQnQpm0bZyljijOeCTS2RBCgy87QkhAzxSsl
G66aRxOgO2DZtAaPKVYRCI7OOEyAkStj2+kjJpgIydHxjyOAgOgN129VJnir
p3j7kxQCGA9OqSRFmGD/hrXMpgICXCjM4757Z4wf+N3cNP6BABu5hfhAnTHe
e8fEvvATAeRa776Uw8b49EWzFr+vBLg+X/rK554xzmntP/qklwA561FzT5Ix
1jy+cfOKMQI8nu74MmFljOeimH/X8JPgsNjH7jQjY5yhnfGwXJAEVipfekx1
jbG0/8tRRRESYKfevsNLjbHitc6bbTQS1F8fH+WbMMI/Zh1f8cuR4NMq0X9L
8o3wcGeJ3QoWCTI9abyPMoyw6avmhzY6JNgaxuDflGaErwYWetvrkaAvTVb4
epwR7uC3GTNhk2CsX42hvtkIX5/a/PyFKQlK5zWkatyNcEA+2HLBnAQHpLSl
Q1cb4d6Du2N8LUjw28Jw6R1TI+y+Q6WpfSUJ+FIsVIykjHBs6BjvHjsSVGet
VGsTNsJJOh/e8DiQIPExVI9e5ODauFbXU44kEP/mwHo2zMHdRD1fgjMJZIw3
sG1fcbD693RzhisJ2p08yR+VHMx74GyprxsJrvp5GyU95GDJxqdCN91JoJy0
xazhFgcXf45uFPUgAasrDGw4wsGp+py8Xd4k8NJ6tkV3Hwd/aonjO+5DguT9
YrG8oRzswTibeNqXBANihfi+Ower9HnvPOxHAvlNv7sTnTjYtGbXkS3+JFid
7cjrb83BfsWf5My3kKDIsm8VTZeDPxs4rakKIEFXkkngdxUODl+efCFyK5XP
+4TjT2U5+MeHu1ghkNJP9X1WqjgHz63tvlNK8a5d6lXbean56wd0Vm4jwY2K
/d/BLImD+LUkn1LcJPCSf+lPErvtTjfSCSLBoquUxmgPiZ3nGrefotgwI8Cu
ppPEdrSF+M8U+w/eD7rRTOLJM2Ney4NJcM7kX0JENYk3HBF+5kUxjluX6/yU
xH0XYUwsxeNNGTVqJSRObjXcf5ViVYWfP37nkvi63mJYNsWuIVZCLddJPCe3
3yqT4tjS01r5qSQ+v/pH2UmKHyx2ORxLInGZx+q8YIp7nHVDPWJIbLRF6xtJ
8ZLLh5L0I0hMb7lmMkrFZ/O9Np9/B4n1RXwjrlG8ny1f2+VP4r/sBztMKc46
EjrwYCOJf3Uf7X9B5d/6ulzkpDOJY/mMnllRLCAjpBMASbz9zOfSPKp+xgEe
q81MSewUqHjjH1XvoLs5O+j6JG7WULVzpDj99+TJH2okHl5WFh1D6fPKzrao
cimJw4WN+bMo/WbOX6i/KEHiVHZqaRmlr9bnb0M7+Ulcre/m9ojS31OHFLf5
Q+BhgZSi7M0kePzizZrxXgKfYTeWO1H+GZBQ2fW6i8A2Z/sXFr0ov/iEn8ls
IfBSsTJW1iYSHJygNa2tJPDGVbMOxRtJUGC9+ad6KYEv1hg0yW0gwYdTdyT+
5hPYyC99UxjlZwt153WFFwkcsKcnvcOFBDv3XA2PPUngPnXjjtE1JLj+bCBl
038EDpU9b/ZrNQnmNyS9EQyj1v9QEVZuTwL9W+1jnwIIPF9TWHfQlgSbRzQl
yzwJnGI46qO5igTPE6pdA20I/FdpNcvKigSjLdL7VpgT2Mx97WDuCur8MLel
ShpS8TXHjPymzvuxR7zvuMsIPM2YQN4kpX9jTJ5pDxsvPHeo/adBAh/PtdHg
DRu/5Im06FMjgVG3gpNTJRsfKk7WeaxM9ZPJx4Pel9iUHwLuLpUngYvihH6M
Mxvbv/wV3SRK1TsXL5wwY+P23X5CfEIk4GGfa07RYOPjTT9CVPhIUGajv/fW
oiHm7detlp4jgMLOkIdVpYY4RxUNfxogwNSkcULjTUOsmscr6k7106YYfo+2
M4ZYtG69dTHVb2NTb830hRjiyPsykortBOiv6FohpmiIq1ycVPALApQJr8eu
8Qa4Rau8WzCNACmpzFTvvQbYqGl9w9uzBAhVHNka6GeAr9ommcclUfuzT/If
MDPAP6trH5yk7os4zyqHy8P6uJC2kWuxhQA+3alLb3XqYz4DBT8lL+q+2Bkw
UFCjjw+ebL3z1ZUAAzELJ5/e1Me9t6b3iNkQYF2uWdPnDfp4fb+r6dByAmiz
hTL7oD5+x9s3+06BAHxP3oePGehjsVbW1etLCPCocZ8kr4g+HmltTmug7kul
qTsbNCr18OHx/7bB52wwaKPatVNDD1fXxeW3qbNBpmVS/2eGHh4qX7+rXIIN
NhqPTrn+1cVa04anbWcNAdasZJi908WTnrwvAuoMwRURL3v+WF18dKQcXdlh
CByaz5Vc/6iDq216h1KvGoD5VzPP6a918Ey43dR8jAEoRX4NcaU62NDcDdMC
DQDzgV5f6Elq/k0b/mU6BmDq4mtFYzMd3PTD7eiHUn2Q5f0vsfGCNjaM7Fcs
LtMDXu4haeCYNs5uOv7e4qIeoK9pul26QxsnyM+ahu7TA4esrldegdo4Npdj
mKmvB1xVzCaCRlnY/sEnm9hMXbDYG+63sJqFO7Mz2xb36ADfvV+MDHm1sOjP
PQyHei3gmfBTjPenJhbofbHkcoYWcL0y/621UxNfiNbOTtmrBeywwvlDJZr4
yUJtaISsFjCU3DRSvUUTQ6dPE8t9NQFfyZscX64GNterv3yvXR0UjGHZk0fU
8dGltRFZaapgKjx79vu0KuYXuDofOL4EhB7o8Zf6roqbksWa7sYvAV2H1F5Z
t6jiR7bvsv/KLQEvEm6mXS1SxZ2ysY8er5QCKdeuk+u3qGLnP1wHfXkGcD3D
6jiQqoJzw8xa67eIgAoLEaRmxsQEp7Ei8cWMdaZ94tmjUkx8K+/ArtXEtPUJ
V4HNHcNKeDzX9SHr9qS1ewjPnzO3lHDL0d1fok+OW4+k/ub8FqXGi1eGu430
WqsODuQ1f1Kg+umeq1qsh1yhqZBInccUi/qF+ryv5v5c7LVNSFXAPLnVe+Ln
33CfynzrXuGggLGo9N3LPB+5G+EHhdz7y/Be4cZ7g0YD3KTLdSlHjsvjbuG+
V1EaM1yt2IPtRd7yuGReemJ3+Cy3ejtLuYuQx9vBmi1vH/7m8lmcuGf+dSnW
fmgVlkP85R79BBunLZfi2PfmEny//nEVa8akNaWXYuOrw317TvGgp/cyfTcO
yWE7LcFX3ct40eyx+aHSK3K4dsq/mST50H61CtG907J4oPVC6jwUQFJioW43
G2Wxagb3XjBXAJVMyF5tzpbFU9uEHLRXCKKfVRHaBu6yOCE8zaVQSwhtD2E7
DhXLYPOm6lDymzASXv8lZVmiDBWPeMVfJxGUZ3a23clPBgeF7dvOXyyCvosM
B+eLU3zvwU28RxT538lLCNoujUU+dJ949FYMLVz0aLwIpPEne99z+uri6MZR
AZkqOWmco9aZ8nafOPrgEpitVrME19Icj9wWoqGDplLDrjeWYCfdjqH6tTQk
p4I5sRFLMGzV9VA5T0Mbx5kvv6gtwUcro4ATXQJNdjaK0v9I4YA3jo1KqyXQ
hRdH3Fa2SOFKoneXUpwEIop0r+7Kl8IinM23HMsl0JsLH7qvH5PC2gKesjcH
JFD4kWTtBg8pPOKeV6guT0e0ILO9c/pSOIfeu6Pdjo6cTdL/eX2UxNrJuUkN
6XQ0yLRzTC6VxOZdMr2ST+koWWgy5fFJSTwX5rbj1Ec60hq73d4XIIkF7OqF
LOboqKbDVVnOXBJrWDR2qMkxUBD+F2zPoNaT/rPcjs1Agu5+voONDBwFn3ln
2zOQjfqzIccjDDxwtHypjTcDxU7JH87TYeB3u0yWq+9kIG5NlKhgJx3vj00L
XX2Qgf5een9lWyIdWykULT6OZyDz7Rztl8Z07HpSX2v/GQaKWnH+sep3CWyV
LWt35AIDPRQbdfgvVQIvcRP40Z7OQOMf17R/BhKY7n3jWfIlBjK8VxhsNUrD
zTt6b6alMVDYMeHpazdoOPNxVsriOQY6I6tZs82Vhsf7orO8TzLQ3bs26foC
NKzNw2u/N5aBmmwDgqcfi2Mls3YRh0gGGu2KMeGGieNEsbRrX0IZiLH/umCS
iji+NrUNr/RiIEL0Sdv6VjGcXJbgHerAQG632nPlk8Swgv87vy0cBtpvNhX5
zUIMXwLrPusoMdDFZimHolFRHIXy/tXzM1BZMFsuIksUH4WI33GQjtrm1/ZZ
eopiVy1zkNVIRzMXd5YLiIniMvos89s9Olqql5zY9FwE14bcVxM5S0fmL3M9
L+0TwXftwr4p7qSjQ+PdM6wPwnizGY+3kjIdXUtafDV+RhjPqEblLpmWQE+V
lS4/gcK4fNa6XaReAs2v3WS2pkAIL4kv7REJl0DM3gPCMpuFcNHjzcNKKyWQ
9ZELHZ8YQrjZOJK0F5NAsYVN0eHRgvi92ez5/kwaug2HHc30BLH801Nbd4XQ
0MsOEXmerwJ4Jljws4I+DQkI2VWkOghg7fmlv8RKxVFS4NPfZbL8+MChxLNt
BWKo4E9HbUwdHz5WecHePlAM1Z6fvuIQw4d7RH020hTEkBgiVnT28mKfPdKO
FQmiKEUx/9Dfhzx48KN7NeEognQLWdPxOfNol+uzWslEQbSrIzBdljaPyMbx
+naWICoWzDTJj/iL6itc5L1qBRAZKBNVbzOH4n564zxBAWSuyDsr+W0WvSuP
H9Pfz4ccznb9zmBOIptI34Wd5CL3brpnn0HyBNKFX9bybFrgSme+a30+8Qut
XQTRk4fnud3F9cWfX4+j5erXFFncOe7Mrcg6i94RdOz7U1O20Sx3K8v09oqz
31FmVfChra/GuDixT26o7zpab3ljv2xfHlcfGcqYDB0HUUtlty2Kn7OeyTqV
fm57PlhM4Il9b/LQOs/OTtE5kAu2BB0WtP9Za41OSd6/ONYCEm9on16BPlpP
c1//q2/+Bs6Y0kv2L4xYS3qrF4RYT4Di+qDBc0Pz1rUfvrcldE8Ahc7mMLfO
Bes4nxz+7OOT4GXVhjZm9aL1hK/mlq+vpsBAl3NjvTMPaPVnyXmtnwV0zd4d
igw+cOZrv23Ur1lw8vXJ2zYxfMAuoGBf2sXfoFK8R8FwiA+UbdVpaun4A2yu
FD0kMT+4FKSXsDpgHshXfHenbRYE634MPwjlWwAy/xVaRyFBIBRy9+uJnAXw
xEmWJ1hNCESHGli+HFgEprYr/zzoFgL6j5YeyqjggVKOKQ2ctSIgeXr23F1R
XnjlBNIZyRIBvSadec98eGHUMr3tP2dFQEb5lfcf5nkhV0NvsvCGKKBXLCPk
VvHDtbd1PUGLGNj5+4+D5gV+KKn0b1+YvDh4Zd7lZ/ydH5Zq/fcq118cHHty
7bT7CQEo07E8SueHOOj6czhrazvFnU76wZo0YGrh+2QvSxDi96bvLm6jgbGn
iv0pdYJwYHwu4v4HGlj79+9ChoIQrJb1Cz4nJQEKLD/J3AsTgu2cVxwnRwkQ
UHnDpkFCGK4TjTTVuysBKuePenf5C8PqHivG6o8SQH6l397B+8JQu8VWjCVC
By3PmZnC7iJwbl6sRNyXDvQXF8rkskVgSnzMc6E4Oki2/tKgOSUC0w6/fViU
Qwe9x7g9xvaicEZ6q+BEDR2sQpl/bC+JwkrzAtDRSweZ/45JbugXhUoRfeIe
vAwwB7awAs3F4LrAF+wQRQbwjAXW+06KwfD8/rOCRgxQilU8YrvE4Dv9Mi1D
Jwag8/LsOqcnDg8nv5X/6MMAO1d1H888Kg6Loz/fFg5jgFdx+Oq9JnH43p+m
cv8gAyx/eaukUpkGbzg0SjTFM8AxvrjXDXtoEDeH0vzOMECXzdYvXZgGzZ0K
unwuMIBp/KrpQSkJGOsd7fMynQEuVqnR/gRKwOPZ/50/d4kBaNY2PRnFErBi
y56iiTQGSKgIrLCZk4Cnjq3QFU9lgAVOfEq/PR2mLJhrt59igKh72UFnUulw
hJjsdD3OAKOsagvyMx06jCWcPRjNAKFZvZLt2gyoeo1e5ryTAbqVBPsPH2BA
ToNyZzWVn9dlzecqmAHzchSze6n8B0SyV/cISsJdJ4o+5RszgKbDw7IyPUlI
XycXRlNmgMD4KpUkN0loePHhBklBBsjErae8oyVhi7/tsweDdNC18H1aL4N6
/9yGvtEGOpCznApYfEmNx2eseHWHDs49kjHLpktB+ZHqlJVBdNA4oZEVaSwF
NeLVFrus6ECEMJFw8pGCae8C90lI00Fskcf3kVwp2CkyWWJQQfmpP3gdapCC
OXoVf5YlSYA/GlFPUn9JwVvrfoArGyTA/puXzpmuXALXxoisXP2DBoo/5c2J
bFsCayPfJx8pooHhZY+DPyYvgefryHnr3TQQlNZhGft+CZyaXkI/PCwOPE7K
D9SFSUN5ydmapnoxcOGV9oYbqdIwtnCfRfpRMdDMv4Ib/lgaJve/mJ3QEwMO
x7zTpPll4EYBnoyoeFFgHnEN+l2TgS0rhycbZEXAgZKiO2wsA602vRHfXyYM
Hvx8KsfXJwO9Tp3+WOkqDHS3fxzJI2Vht4FQtvNxIaDop3R1vFYWGmdU8abX
CQCva/oCVaOy8MDFcJ5iDwGQ1mG1J11GDvJki8XGf+UHNHc/e4sAOdiyUy17
/wgfWHTI/BU/KwcrO9ZUvxnmAd8IVeelWvKwxOFeVLvIH+uQ8/8sZdfLw4LU
t5dh1az10NgXA+mD8pCnapAhemjGeqI4Q4pRLw+9fvyeG2uftOYzUPwgFL4M
wg+Jr5OfjVhr6Mhtn3mkAKFLgE8lu8Y6RI2W2GbPhDyPF3Pr/Ge5Q7HD0a3h
TKi9mZn4Re4PN7y7fsfby0zolbBJzfbtHDfq5kmXpkEmdB3j3sxbu8hNYgrL
1pxVhgEXI7/ie3yoYBlfTlmbCuQ5Gr5tx3dRNC0y313HUYN8i/3CUq4yaH+G
reSggxoc32DURFbLoHHyNBDxVYPSJauerTKXRUM+CpkO8WpwoF5yN1NVDnXf
NfetalWDFyRD3daMLkWNrpFtlQeWQ/ljjkE/YhVR9pXRuvvl6pBHitZ6iaOG
VA1M/zTXq8MBl62VbaFqKPNFjPboF2r8yTXL1htq6MoQLUlfWAMWN1aNCAgt
RylWenaFmzTg2WKeGLW25ehwdyg367cGZI9Wq7gEayA37W+l6RZaULtHX/aw
Iwt5Nvx283HRgtxTzh11e1jIJ1zyl3KAFvw0qXqs/jILBZUBdsEJLWgzKRny
uY+FomDmnactWvB9q5OCbZw2uublm/M1hAWD5XxuDOTpoMy/+21zDrEgfULl
IbteB2VnnurZfoYF7c93BGj+1EF3e5+oTjxgwUWP1iNKHF2E9spnCCywIDDv
3mBRoYt6k9vSdS5qw6HpznK7R3poQO+n8WiuNiyL2V56pFUP/WwWeF9aoQ3l
Hm1+EPhLD83IGC+x+qINtQ5ZH12lr49Ebl9IWaejA+0YplpOmfrI4Mn6pAik
A4WKDYJLIgwQZ3Oolvk7HVii8Hcd/1kDZPrvWM18rw4UC722XizPAEH7Yv5E
MV2Yal7/xaTDALm/pcVe8dCFBcV552imhihqsO7g82FdKFNkXibcZ4gymas/
LuXRg/NbWd+Pzxui1261K/fL6EGJlX237ixhI/mnr/hYK/Xg3C2XVmFrNnp6
qurM+RQ9+KLb7caf82zUw7UZG8rSg/IqrBdjOWwkPvnCzf6xHvwuuzH3cgUb
bfbFcnNf9eBPG8O2xS9stKj3/NY2Uh8uG7spwZQhkFaAFT/XXh96+9zn9ikR
aH3as2B5H3343upP7GlNAt2af6LbdFwf6mTe9ww1JZBNU3mZ6Xt9KLpmDXOv
J4FOhJfUikYbQJ6OOFnB8wQqzmLrBZ02gI/pQQm3LxGovb34LPemAUx+bx7P
zKD2A/fcI2oNoJwqWv+okEC1jKJPn5YZQu8PHjNhLwg0bqsDzAwNIe9gzGPa
awItO1hwO9XGEDZ6/LY510ignd15IQ5hhjDC/+U7iw4C0R5kj9+vNIQzk6uP
GQ0TyPjH8g1ibw1hefxfy6ExAvkty3oU9MMQZh/P+5UwRcUXd+vwMjobZh9r
8gxdIJCre4ZA/BY2LNwsHdkvQaKDiUqhnyPYkH7OYGuNFIluP71eZ5bMht63
l289KUuiieXXUkZK2PBgRFhOtRKJ6g+toenxElDoeaovQ5dEyxUjpovECGgX
J2v3S59EhyuvfdGVIaD/3zEPLptEOv8GS3RZBDybPvVSwYREsbekrhURBDwY
LZZQZEaizlUr4nUtCOi20sVCy4JEyQnJHrouBBQ8P76ux5pE3Zol1kWeBKwL
/ySpvopE5q87WLoBFNeInXO1JdGAKGtOJ4KA3NyR+P2OJHI8V5Opc5WAHRMF
VzrWkSiT+JlUmEXAT4zipHhXEs28ldmnc5eAiXL+pUx3EuXJBNnqIAKGlRw5
wPQg0eKj0/qFtQR09JoPjfckkeemh7I67wjYW+qyvnMTiYSu8Q1o/yDgeXGh
4vU+JPK31H1bMErAXYO/ju33JVH5J7en2r+p9fgrZhI2k4h+7FB2AS8JhyJd
ViX5kShY5fYZbXESLip6nDrkT6JKXBtZIEPCxlSVBd8tJJIJHPfXViahiMGd
asMAElXnAFKbJKFC77b53K0kUnIIVSiwIKF6/AR2DiTRgf4Ufm07Eo6HCMZ3
U9yYXD6S70JC76U8u0K3kUhd90sbaxMJBTSncr5SfLhBEOUHkLDM9bbn6iAS
vdtlUMDaScLaO5GFORTr0j1S8yOo/R6frflF8fH7Rw+zYkj4NrXsHRFMoi7X
nG35iSRcygz6vZVizkTDWtZ5Eraa1/idoPjUxUmT/KskpPXd17lOcY+xogor
m4TPTt85nk2xRbuNSP5dEh5dPpaSSfGF6J2/tMpJOHBk64EzFA/JX+jKQ9T8
g1e9dlO86umTKq06Em5Z9yVgFcVXfL/dzXtHwtxmVqkIxePzIpe0PpFwMEt5
XxUVr1Mm8V/eDxLm31Z6uY/iW8Bru9YYCYvkDeqkKf7d/Z9b3m8SXpGSKCqk
6uF6PN9Ci48DvQr1ko0oLlB/o54nzoFK24oSH1D15KmZoWnJcuCto3616hR7
hSjP5Cpz4KBl455TlB4lwg5fNbU5UN+LvPmD0muLc/oDTUsOnE9eyzxM6Vk+
XHkt144Dayzmix9SetPP9sZrruPAuRWX1vVQfuC+MfLU3MqBCya2FiqUXw5s
S/KJ3MmBM43sLA7lJ53ZLv+aCA6slprgsaL8lqZ8PDQ4kQPf5bxdRnqRaOfu
loO5dzjw4U63ofwNJFLl1YiZLuPA5z8UrcIpf7elRcfZczlQw6EkTM+NRLBS
+dSPFooT296dos6HnPju65ozHNhSGPGk24nyTya+GfmPA1/PPpoMoM5THEcm
p0bECAasOt/TaU+iEe9nd4MVjWCP8Xu7EhsSvSwQ5eZCI7iiv/7zP0sShTvk
dWueNoJjL7eUmBmQSKPrT29kmhEsfcmottYj0YfdLoM1GUYw0eMhDeiQyC59
6ldwiRG8StdK19MkkUKvDX9emxH0m1T6Vk71m1dxXzW1VI0h/69NdwrESKT8
XD5M65ExPBWxezi2h0Ahy1TdViFj2D7atPL6VwLdi2SZba4zhs1HhbeWfCKQ
laEp/4XPxlD49GxYQzuBfG5uuL4gaAJnR99Xv6onUHpcSsN7TxM44dm34fsD
qr86COjH/zaB/+5a3WPHEGiueWzkq6UZ/Pvta6OPOIGePajd7nh5BXS4caTd
xN0Q/a646BaqaQW9mt/6vtmuj5alBhibJFtD+eWj/L8f66INPLK/EvZA+Cvi
3OwFQx20qX7/sTVlq+AzpmpQcgELNR99K7Ljuw3sM16WxfXTQvGrCut69Ozg
0X2GaaXymmjU7d/YlnB7uJKsOy35Wx01OHtKG193gGKdC64K/Oqoz0Nrd9A3
R1ggHBawKLkcHVg9WzUstRrec9vlkWKjhiqSHWKjrJwhoT3EE5Osiiy66BF+
sWvg3OX+g88yVKh/852B14vXwvMdYVtO+Csj56S5qe6Ha6EXk22p562MQuaU
krSerIU6/YGD7zYoo5vdW+88qFoLCYH0J6zVykjy3vDk6861cMXec5L9Rsro
l/2/hCk+F3j/wWjbM1FlVBatle+yyQXuMEp78biciVqGnFZc3OwCK2KLwaUH
TDTiF9bQudUFWu75cyDqLhNp2pWMbdvlAj/u6uK1ymKiS5IW5ofjXKBP4NTZ
j2eZ6GChS13eHRfokn/gaVgwE6Up7fUdKXGBhyXWOAcHMFHJuQs/yXIX+Mo8
PCHAl4kGIzuknmMXOLZ5/5SvGxP52Gz1aW1zgRame++FrGSiqEfxI/IfXaBB
e/6h3eZMdEE775h/twtcbtw/GGnERPX04azBIRf4123bw9M6TNQXJ2HCHneB
HGcZ8asaTMQ3zX59YNoFhu1/xF+gwkTK2929n85R+Yocv1GhwET/+14D/u97
DfR/StZwhg==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-3, 10000],
Rational[3, 10000]}}, {{-60, 60}, {-0.0003, 0.0003}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "3."}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"0", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw12nk0Vd/7OHAiU+Z55pqne81c492myzVEZGzUgCZ6Z2qgEhWShBChTEmo
FFLcZxsilaFSCplShkwZiiLf+1nr9/vnnPWs9Zx9znn2Xuc8r7U2YV+I+8FN
TExMIYzD/85m/WE/NjZccK53YYhT3iL9U92dOdpfF3ySWWAyqWiRHpHVuZj2
ywW/Ks888LZskf7QU21NdcYFb1urOrS/dpGu1N3P7dbngo+HdI7e716kc7+w
Jt1+4oJ3u5g7dbMs0Qcr+f9DhxjjpX6SCz+6RI+5UP7r/Dtn/GbtQlex/TI9
QezI6+IrTjjvXE2+vudvumyLWmGonyPmskF2uvGr9HWlIBFLbRoeUFLxLWde
o+eFkraVT9ljhWwiqpfboHd8XrzW/JyKdZObRKRtmUF6i0hUQQ0V50uGt0o5
M8NRc6OgmEdUzHHviyBhOzNw559ElLtUXJO+nmZ+gBmcD6zPP0ulYrNPQh21
cczwapbNveoQFYPf1YHmVmZoZZEUviNGxcaSzIO+rpuATkRZZ0PtcHPuU9fu
UBYYOvg6IjzYDq9tgCI5mgWY8rw8jx6yw0fqw/pLLrGANe8xQb89dti+S1zg
5k0WaJ29mWToZIddYuI93wILdDxYPD+tYIev17n5Z/KwwoDu3UN+72zxNdc/
LuWVrLBqyGtmpGuLFwLz4x5wsMHJw8UNsVq2+OrKtXF7ITZYyTNHb1VtcfJj
H9YJGTb4xX7E7qisLc6o+pBA0WeDhc9trgVbbHFZiG2O8242+BEdc4D3uw2+
Zd9S8a2aDb68WLr6PdsGL33xcXY+wg6Nnv3DGaw2WLaw/lbPPAesFGctnN2w
xuYxFO+qfxxA+uXJGvjHGjvRlFtzuDkhO6Nb1XjeGmt4hf66rsYJJ3pfBPf2
W+Ovrc2SPP6coOT7cE3ssTXWr5Q479jDCZd2XhS/6W+NT6Y37KO2cIHTfm23
HLoVJhVM6T3q4IbhByub++qscLOpbMSbL9wQttb4XLzaCtceuXt4eYYbbt3Y
rppx3wqnnSksOc7LA7Ntp/6lZFlhDlqBKq8bD1zXaim/dMIKB5HOXlz8wAO9
yz6cJ1SscCZ1/vjgNC/sj7/Q5JCMcGIFv/WdYn542V99OD8B4W0H/7iefMAP
JO1JwV9xCNuvDZJ96vjhzwfX/YVnEP40WdWq18EPKYoyrP+CEF74N8iyfZkf
6um1do9tEKb96G91sxcAtanP180WKDhPR13j4oIALKag0YkJCv5QY9h4dV0A
6MZ39TKGKPhLxWLFbQ5B2H4x7P38Gwrms/xa/01WEM7L84mU3KVg/+ctirNO
gvDJyzaLfxcFT0d1L7OUCkJCc2XetzZL/FSw2eVukBA03fHnedlgiXVGH5Ur
RQjB2jnhqLLHlhi/rfR+GCsEweanfUPyLXHak96vC3lC4F5tJ7waYYldZLSk
VD8KgeTdgQRuFUss5PWwere9MJQncoXrx1lgxwtf9pYaisC3oIavIqctsHiO
wpiEnQjI2h93XwmxwH4+SSm3totACstH7YYdFthJnu3Nh1ARCI+6M0XVt8Bf
3/aXST4WActg8l6/UXMsSFLO2mwoCt3bApxikDnemki9q2ovBq1qupsEjM2x
/evt2U3eYvB84+/T20RzzNO4WBgSJAYlFddVsKQ5vjwZfZApUQyiOBuYN5bM
sFzF+4yNDjFQaxR6GnXPDDvs3r3pqq84xOg0Kp0UNMOdP4cuPTonARHsSf3s
nGZ4d2BjZ2uqBBwd9ErN3DDFpn25Ez+LJcAnaXqjZtoU77pNlEh8IwGkCbH+
5VZTfMZ0m1arpCT05QdfDz1jigWuvZ+58lwS9Pik/wWPmWCC0jMlDz5pyJDR
f6/fZ4LLKuol7FSlYVXTsXSlywRX/ihy9KJIA3Y46X7huQmmq5PNe0OkwfVC
T8mNVBPcRbsS7ftOGo4uJ7nWIxMsyzvHm5orA8X967c5c8m4S86kIHarHHBM
CUd0ppIxZ5y149vDcnB0RdMpLZ6Mr7RF8lIvy4GBiN+ydBgZ70y6w1uC5aBp
aw1Nx4mMS+fesRZJysNgY/CC16oxFou8H6uZJg/ipUM2RZ7G+PTvA2bz6QSQ
bXm1nuVkjG9EldVfKiaA0nB17VUrYxw9f03JsIYAOuJJmpFEYyzRz+/f10sA
+3iykONmYzxQxvTYSVoBIoKuj849McJcJYf2L91TgA9qNjFmwkZ4mF1o35vP
itBnSzLT4TLC1dJym5tmFGF4r8SyEpMRrhclUD4yK8F01lwQ77QhdpniPbFD
QwlYOW+5jTQb4sc5a6+HopTAYHJJ7nKoIXY1SFbhUlOG1Hsl9HfvDHAMh2FV
b5YKbKffw2HtBtgi+5tKzAMVEH1f3iSKDfD85hhpl1YVyFmravWrMMCPHzzK
d1lSgSJX6By9bIDfK22ClW2qULvcO7hgboA1P+7abSysBgNWnBuCd/VxyRHn
9DM16pDnxc1cnauPXdXPXeN4pw7+R/hYvNP18T8nUcGmGXX4ni7CnhOjj42P
7VCsV9aAuXECn+JOfXyty33kY6YGbEo2ldMX0MftCuMK63GaoNp3hOJxRg/P
thVqL1wkgo/K8z0a/+nh/jNu9bVlRIg/wXWeOVAP+63fzm/sIsIE1z38wF0P
8/punSmSJEGZ2Xcrbg09rA6p6c8fk4CUu9f2xSddfNTv9mLDojbsnnxw4Fan
Lmb+0t1zhVcHrhluxIW26OLmxQ20V1EH5jtyXxAe6mI5MsU2xkUHHv3ro569
rIsFy6yPVBbqgMFeT5qxESPWk/q4xUcXDpQXHeLV0sX8H3Ky94Towo2VxYRv
BF3c6fDXcOSSLvxKSX2VxqOLmZKeFITU6EJtY5fT/JgOzsoT9X8hpgemio5b
76Xp4Llt5z7VftWD82+iS4xGtbF8qq7ypiID8PNyjqR0aeMTtn0zC2AA+sOS
Dg712rjAvaNffMAAvi/WTvpmaGMBg4T+zSKG4CK1oBXtqI1Fwy2OHE8wBMnD
AY+bq0jYj+fyq4koI3jC7ordYolYX6to48R1MiRfl7nue5yI439fnxp8QoZA
qWn/fbuIuE/3dt3VT2SQ1E5gCTMm4qzfgnnV8iYQ49VMzfyhhX8p3A82eWIC
W4uNO754aGG6hX/A/glTmLSW7zuspIlx6jN278sWkGd2efwLnyaelQ86fqrW
ArYbzC65/dXAz+V6eZbGLQAr1/MZv9PAIrK7e37SLCGLw8eO5bwG1nhlwcEj
SAFq57WHOf3qeDuJct7OF0GB78alN6lq2Dx4JIBP3Bp83APSKWfVcHz6M0tN
Q2vgdeq4U3VIDZ8Wnm466G4Np8xz6rOQGpY5VBKjd9Ua3OSMFw7MqmJZ4oVU
TlYb+DcWvGudpopNtA7+OL5sAzuOD+qTmFXw18MLj9M+24FX3AwX84wyPpi6
wVL2yw7cstZG3n9SxpdqWQJuCVHBFkumnHqojHkrtEw4XKhA4veebtmjjLtI
zzNyGqigphTQnOmkjFfaiHF6n6mMJig8+7CxMu6TidBIWKKC+N40B34+ZRxk
8pY1QMMeNj3sKtpBV8KD7u87jqbaw1rz4BlSmRJePuE1nnLfHn73zrgzZyjh
sdcD7R4t9jC9sYX57jElzJ7R71W0ZA8fXB12LUgrYfHbl6UWXR2ge7+3wQsO
JawoMHws5aADvIoM2JK1pIh7BK8eKD3tAPT8uDqLN4q4sqG9yrDQAUrnsEjC
GUVcZZU8bjPjAAUs3dM7AhXxcRFipsE/B8gVG2omeShipp32f0/z0iCVsv5f
j4Yidr7HNPJLiwZJHty0u6KKGD3aFqtoRoNLgVLypzcp4v7ZNLl0BxqcuWbS
KdengBu6dtro+NMgotCheOGFAl5LEjnncZQGx2u9o148UsC5Y8cJZRE0OPw6
wCMrVwHL91Tb6JynwYGhcI0jCQpY7IKf9Gg8DXYvxjFbhitgQX9d5voUGviy
p3/i91fANNv0Q88yabBdqvDBV2cFXHHtyvznXBps1a66VENWwAt5c15ihTRw
sGnclaCkgGPDLlwMuUsDG+9ug538CjisdiN5qIwGlkeGtmivEXApE6HqQAUN
yOdmR5knCDglLH3HWiUN9NLW63reE3Bu4VfVogc00LrLff0uEPC+SodvvoxY
5blU0On7BKxSGXJDipFP6NKguGQSsPthhZDx+zSQ/moiKh9LwBzHBoael9JA
9LfDzEIwActl2V3NLKIB/xaflhd+BDx4+LrXqXwacMkF5mRRCXiLZaPn3ps0
YNWPOHFEj4B73rYNO6XSYIN6kWYpS8BPC5MSzRJp8McvXV6Ai4BX8zoUtWNo
sBRc+PvrsjzW+vzluUokDQLDRncLfJXHB6vcascZ9e87RWi17JbHRap0kU7G
/Gw9t5d4tEEe3za3PtXnSYPGuPz0m2XymMnl8hMeGg0MEgf/tmbK4/Da16+C
GPNdek1m/1KcPH5zqGNumrEekrNzdF33yGPmCCeVCB4aMN/uy4pylseb3W9e
O7vmAGHFEkxlJvLY9FFATc2UA+x4mNnJKiyP7+9Rnqe3OIBbkmpv2HU5vEEq
7Q0PcQCjzOLiriNy2G1byR0rHweQKVAM06DK4V38e9g8kANM1coJDP+RxWeF
mm5u53WAuK9iTk4HZPH50PlY8wJ7ODx7Q6LEUhav5XQW5160h22rQhNMErL4
i7NM8/4ge5Dl479Y0yGDW/r0O3S07OGpKQcQjGWw80LBimsFFfLsLl2NEpDB
nVtO8folUeGiG+vO3h/SeFI6fWD2MBXcA5hWk25L43Cjxsw3KlSYvr6it8Ip
jcXfvW37dtMO5CcnSjoHJLHdl8Tetf9s4XJme/KZC+I46nkvd/AWa1A5f/Jj
ma84tlYQFWIetYKWIFXZPh1x/Cy1S73mqRVsMr1YQR4Sw6DTZp8ZYAVRA+jN
spkY3nq3N6ygBcEJwlPO48si+FPt2s4cCQoIcAVuy38jgu2I0gU+nZbwcEHk
ZmehCJ4KJPFDrCXMNIeqEd1FsEXsuFrmvAUEBWjbT1UK46bOhqWed+aw+35J
3IEgITzsxfG487kprKd5vkmjCDH6uVv/RUeZwq0oVuFmUSEsPJJb9sfCFD67
7CskvBDEEfwHzPY3m8D2eZmmQYIg/sg07vq7lwyLn95w8q4KYBHuhFjlfDKk
Np7ZZtEtgMtmmwYVA8nQlfp5OOesAKY7UE5dWzUGR8MbGz79/PjE/Lc9AmrG
MCljax9fxY9XVARePlw2gni2xeTaBH6838HytmSLEbzodZMVJfPjcJEwBdp+
Izi/JH66RJ0PvxPr05stM4QjZ9mXs29x4+YnAh78uw0gSUT5xX43bvyse5ea
sakBlJdb39Bi5cbRy79iVkUNYLYv2pB+ZAseEA796PhOH04YL4WPmHLhHnJk
/7KrPqR1ClDLZjlxbE5Fe6eOPjw5qC0aWsCJx/LbpIwF9eFX2uEaVi5G3JVb
9+CjHpyaH/6l+pkd+ziLHRYJ0IPsy/9a55PYMSVrL6+lkx48k5XOrEPsWOCG
SdWkjh6sOXsbO5Wy4e6ugz3N67pw/l5HZHDkZnzK5+q4T64uXN73bOWJCAv+
Y9bkVLegA6WrvS+j2zfhSTdn2u4hHXiZspxFjd6EY7NYPgS/0QEu0DH5NMaM
jw42aXfc1YFkqbun/j5mwtk5Q9x++3XgQVULrSWQCaPo3NNGHjrQTRuVuCrF
hM+mzYqH2eiA4rxpmAXbBlxwjObjVdYBjXuqy7FFa5DBrCNP/qwNR3v33RDh
XoP0liTJJro2VG7OM7wb+hdq+Y5JrBVpg+4+4YhX1n9g5y3PushQbTiR4iq6
s2wVnCQsKdU7tOEJPbFmRmAV3CMy07JttYEsxfybf+Q3cB2Xmtgurg2naeaZ
BQ6/Qf73d0UVFm2oj4w0Nnj4C0wICcWZsySg9MxEep9bhoO3Lh3Z3kYC6tW+
lVyZRYjuzeRnO0+C8hte34nxC1AucoX7bwgJhPLevW9Y+AlP34kWRu8lwXDl
q8ovbfPAXG3kqmJDAvta6q1jevMgOqPWSzMkwY5zF4X+mswBG9f5wWVVEvy6
Hd5uOjYN3meOt47ykqDl0bEiv7of0MOTG0JgIcH1poPnTidPwRXsrz72mwha
Y56Gz8gToDHs2ftzlAirSy78fTzjEBks+cP0MxFaN1N/rI5+g/Pm97eydhPB
X9XojsnVrxCY/6xeGIhAIpOifPeNQtudYEu/WiKsOah4nzIegVZD/3/SD4nQ
7iurd5N7GNxcKz123mPc74OW5InmL6BEPHlbrJAIbb+kux8d64dHpKltW3OJ
sE+c59JPsc/QfMxseCOTMZ7Juplu00fwkH3UqZlGhMwdMz+PH+2Bmerb998m
E0Ev+svdh6Lv4N/Af/w/E4mQZZHzfDimC7o0bt9JuEyEzvNnVPd+fAXOlfW8
OXFEYGnZkTak0Qr+tiGCyheIQGY339h9rhFG6yNPqJ4nQn86+WP93ToI66rc
uHOWCFSp1Yrnbg/h+jBbRno0EfCl76JT33MgOzNJeiOK8T5AEjacukDJoAZe
HGHEvwoSb1wLuks5pPi5w4yRz/+addFhSzXF2oPyj4cxXomtrZTjPjrlT5uA
hs85IsgONd4pHmimWM+NhkjGMPyQM2KoEv+SUqq/Z3V7LBEe+zC/KtHvoBRv
df7LfokIkMj/IG2um5J6JL5aP4EISofkVz3s3lMCJTlDPyURIdFex0Y45wNF
WLAv4VcKEeaU0dWe+V5KBpbakXyDCNtZ3XrTqX2UvFJmj9vZRHg2uofgeWuA
kp/YPaF1mwhyjSFHRBYGKY4+A3kGJURYprdtvOocodQUkctrHxNBrbJL6f7q
KOV4VCDF4DkR/HJ7aVeUxihPbBMPk5oZ9TkznuZ0+jvFlXTtVF4PERYOzz3V
LB6nNKX7/RQZJIKy3+8vW7onKKa1Y2q8E4znJbOrvVH+QXkdcSUybp0IDap8
LuVu05SnX+ROs3KSYF5U7ETSmRlKkb+PEKcICTyXVeqd385Rzu3a5lNEIgG/
r2JpgOUChZu656FNEAlefv76IW54gXIw07bq4CkSxPgVsRReWKSc9UJu2ldI
sLBDec9Q6xLlJGU8Dz9k+GzgW9J60DLFjGOfUFILCfbtKnkmteUXJcjyxH22
zyR4v1tV1Mf1N+Wve/oxAVZtSBoat4n4+Zuy3Uqnq1hSG2z3lv6XnrZCGY1z
bv6py/he+Kt3dPeuUvJo24Lr9mlDxgHNONreNUr0oc+ajh3asPXbj0eBm9Yp
+8Q/SHyZ1Aa2gPKhi0XrFC8tpaRcFh2IDCSaNU38o1Rv2hSrq6ADWtVip3Kf
MiFKSKuvzwEdiF/+fa2ckxk1WW/+sRSuA2OGn0qe+zEjv4s8hzbF60BuTVbP
5zVmdCsmcVtEhQ7wPpXQEbViQYP//ZCYXdeBwyurVOVUFpS+NKdlKaQLreS+
XQZfWVDCTVl2bnVdOFuXfcX9Iiv6LyxlUNVLF+aeSY0nt29Gk3J8FSkMLzr/
/bueK8mGDkYNHNro0oVSswHhiiNs6Bq/1NLqpC7srb9l/ZqHHSVf/lZzU04P
uhtk8tjdORDpWVZQ7XU90Pq3/kS0kAO1s3lP1z7Qg3jLwdfKSxyIW653w71T
D6wgb9UmgxN5IcWte3n0oQrLeZ7v40JXZFjrt6Qx/m/NBO7VfTxIdvePSCu6
AXBbWo/mVvKgvN/31HjGDCDu6b6n1n940AXWwuiTXIYQUVF4IOk6LzqruLFH
39cQfDKVG+QwH3Luk4va9c8QrlULGxfyCqAx+pD9+SBjeLOgVBBuIIAUAvLa
32UZA4eOIY+DnwCi3txa9aHdGM6XeX6dLhZASktegnNEMpzIz7hmZCGIfrhN
7o/6RwbPBPGJ9iNCqOCOf7l0oymktqp53LouhPSbVeNT1kyhk8WEHlwrhC6N
8nE/IZsB9axvuhCLMJKuyBFme2wG5NBstCtbGJk0CLRXPTAHqV3SN+dfiqAP
f8PTM9osYURH3lFMRRxxso54fK6wgoCUDTMRV3F04iSTt0OvFUzNDRKFToqj
lG8xPX1M1rBQmSvA90ocGZZbpfhst4ZNRKnPbMESSHf0oJf+mjUoqYsG/aqW
RFMXRYs+OdpCafyy79KgJHp2ReyMcpgtaE30OC2wS6GcQRM+lGsLBnfTtGd9
pVAvHHB/MWsLdsoCv7+tSyGt7kHpXcl2EEDgvvTBTgbZn5QN531GhanzPyLf
B8sgDvuEd7pfqBA8/OrQ20wZpGPQVvN8gwoR+QkuHZMyaGeGxJ4pa3u4LMMu
8uKqLFLalWzC3WgP3NHf2ZprZBF5mrq9ftAeUgZerOAhWdR+8dfdor/2kJUT
N1CvK4f8pOSLOfUZXpTYVPTkgxxSLjxDvZPpAFqnRm5U/ZND8rs8PJIrHcDn
6LDNJyF55JAmT0hh9PMDr8Hwo7k8sqb2RLQwfJl35gHJc5s8Au5/H+eZaLBX
M1+156A8Im8l3lcWosFY4lmJd8nySKTwr0a+AQ1KTIMFtxXKI9H/PJ8P2dAg
aGrXlu5aeeR6ZE+ivDsNNLJdWF3fyKM8xRn9vXtoME2zWO8YlkcuXOJZuUdo
ULmq9ct5mXH9MOrvZfjy+D3pudecBBQ//+0gL8NHer7cE46yBNT9cOsYYvhp
mWNtuF2PgKySeaghDF+dyLXhn6QSUC+9PO00w1/zulcoHDsIyMJE5fUVhs+O
tb4LVg0hoK4DzBmFDL9N+UnmUWMJqFaL93MTw3dBc/4dBzMJaIHZ7vEUw3/f
Yu+txd0noOiq+Chphg/3if/ULAICSnrk1PI/Pw6Xk3c0vyeg07GSbv/z5W6r
84mj4wSkIswj+Y+R3/+hrY55jYDqO+RdDzF86nOYb1KeXwGd3h7tMsHw68d/
XuJISQF96SkuiGb4dntanv0esgLK7cvi1GL4963q94izzgoo6N5w0K//+bie
WJK7VwEFCmV0DzH8/MYt/EN9mAJ62up98gfD147f6lkH4hWQDge5QTqBBm2n
WA3+3lJA068K5CIZPrfldd4v+UgBZXFZWv1j1LepIC3V5IUCsrRtHa1m+BIZ
9zf6fFZAYf0TI3cYvmx4rfAzckYBCWvKGrcyfPl06ZFrjYgici/Fli8ZnjRK
WD37QV0RlYUNbK8k0uCxjFXlkoUievJdP+6LLGM+qd3c+gGKyDyPUqu24QCF
WbPtD2oUUftIw+e5WgeQJxqtdr5SRNkvzpfkFDHWW2O02uygIuo+51/4JMUB
sqa4L2uxKyGd2KPZKNABks01be95KyFxAUsBK4YfTw8H0gtWlNDNyT8aPfb2
sBL2YKaRWxmFD+TJ/0e0h3DO39Ij8sro34DXWKOgPRzXu3RGjqaMrpUvtyQP
UCEgroh866YyYhUnJlodo8I2tZGqG6YqqOu9uq/6JTvwer2yzc9FBf257fa7
+rAd+AXz/5Tdq4J8Sp5y6LjawYEnFO3Siyoo3IMYvSxmBxEo7/6zbhVU+tJG
hvmeLWT77CgaClBFQtqD/168soGx+A831NPUkGlI4NAVMWuY0JwxmC1WQ4PE
DymC61Yw08naU/VUDfVbBgc/Yfjyl7CBoPmgGqqP1A5xrrQCjjupyVvV1VFn
tuTvQaoVEOtcL4eCOtJ2hYNMZxFETLafbPihgSLHR7fNcFtCngytX4xJE51W
2/C7O2ABbdteWpwQ1kQ5sR/Ha8stQPxZ6yZVC020wyvu0oCLBTxLbE5KSdZE
s2fRmm66OfzTbLi9X1cLSTdKrUzomIHKXnMWup0W2mY5Kbe22Qxc058fFPfT
QrN7DOr39ZvC7bU6jY4LWuhO89EvapdNwbqj5olRjxYiGyp3XR01gYvBD19y
RhKRVvyrYN9SMlQWaGseuEJE/Mq1c/9dIMPHj5VX6flE1MXH2fVxJxlUKBXu
oS+J6JTkr7xYQTK85CsbGJAgIbjkt2lHjDFwPyqcf1BPQk0n/qMmHjWCV6ec
uDWZdRDpbqS+argBKEiFLpdx6aC5CBJ3ra8BnK7PHtQQ1kF83LfLTlsagPrG
5EMNVR20j3XlSg6HAcTHxXtquOig4MkRW3K+Pthfe5GnfpMRcy1dv/BBD1qK
KLpqurroVNIrKNyvC9LUQMlSU11E57g/Pe6iC2HjySxqtrookPK2xIOsC4oa
gx9UvXXRkdfeh27z6MKFB1GnVaN10fTU8f7Nz3TA6llds0q7LtKcNN7NaE2A
3qXvpeyvh1jJjzZbfiNC2P7LfuGH9VDKoZePFBn9pPrvvt0vQvUQf3QaweYO
EdJlLwQevKSHBD417yXuJsLhY90ni+/roSeDQxoFfVoguuVYjvIvPaRdnD1a
8kUTgqklw8pX9JGF/MVQBU4NUOpbHQtP10db/C/7B8yow+djLpMvcvXRufFj
FR/fqoPtjaWfBx/qo4s3LH6a5qiD5Jg1S8kHfaRkFurDoaMOrTFDyiryBohJ
uKf7sL8ayDaIH1GpNkALP/2dxUdUIEBCfpsVGKD/7jtSvF6qQEW4qvHOdgNU
qGz3qP6BCpiTjFhSvxggXo/JWuZzKuCX75GzvtkQtdSps+2XU4EbMcmve7wM
0YXlq7xmgcrATWXVil0xRPJKnKVaAkqwvWCLYN4mI5SwFNowsqYIOf8EV55y
GyGWTd0r1ROKoFFLaJmVN0J3XNLGnmFFcFCj7PSjGSGbbzkvtU8oQizX6STd
bCNULucbcr1PAf50zk0PmRmj6b7vNpVAgIt6Q4kudsbIqm3ScuUBAfgzOtWe
bzVGN98X7vO+TQCVXRUHMvyN0X+ES0nbYwjg/uPwgPNlY8QpTfSi2hKgjP37
67p3xujRmz0aEx3y4IcGytIOkVH7GtE9ZFAOvhW+dmAOJaNNM3HMrc1ycJz9
+ffgKDIaIL4otbwnB5c6byo4XiOjogP3fqeHyUHVTu9spmoyuqEvu7uLWw64
Tr1LOMZkguLuXORwspGF549eBtlnmiCv9fsBC63S8OnLkYlzd0wQV82hIqNK
aVji5At6et8EaaodtMm5IQ2kfZ6B6tgEGUkvNbYckIYCwdGDWyZNkOGncyWp
rNKQGPp3X5epKXrsuL1hiiYFfoakXd6Dpmg5Jq5EbUoCIv3fDlybMEVfh1au
C32QgPSrYTtfLpiiqZLzt8SxBHR+e7bDhN0MuRrz+x/PkADrDHs/KR0zlN1Z
93ebrQRjPe/1HooxQ7T/pHTrisRh5WnatkBlcyT02oTCFikGPtOyCQskc4Sb
jldLBIhBnVwZjiabo4r2gEaKpxicvoS1053M0QWfQa1mfTFY85jhafzPHDlc
Vd9V9FMUmOaoryTp5khmR7VM3XFR4FD+Y93pZYFaSt+fiz4jAkE+F0/77rVA
F9zGBKuOikD7Ff6qsUMW6GGBueqvXSKQuKBC+BtlgTgu+EeVIxHgxh4bqoUW
qCxEL7qLTQT4d1Q8j5mzQBR6wqmBG8IgcX2vgWG8JQpedX5wiS4En2rELqdc
t0THma4utTwSgoyBzs8/si3R3389TXzFQiCoZnGuoMIStbSYPH11RQi4QOIV
33tLdOzyWfMeXyFYm363Z0qGgp6IjTxWXRGEYQe7K/mPKYh35/TgQQtB8GAS
+RkXgtBVVz5P43F+iIp03JIVhpDOUtRXxwF+KJo9p3z/FEKlVnc1Dr3lh6WB
Kd+3sQjdPHmz7MVzfkivw00yWQhlRY9PrqXwQ8+Jo+k1GCG/ityTPhb84Pmt
2XhCwAo9zfoEb035wPvVibNOT6zQj09XqA/nuUHe7tYSe50VsqlNP3hjmBum
4MXhlgYr9I82Ih3fzQ1nq8W9LdqsUGjHddGMh9xQcpuurd1nhYbM9a+4/8cN
SxFcI4JM1mhImCcQLW+BVMUCmz4na/Qzn5ByhW0LdEa95Tj01Rp9yXex++vE
CSP9PXOJE9aoePQCxhacsGT66WP5jDVqz7m7I1WbEyRWB4vmf1sjMXmLZ75C
nHAgfBqd5LZB1qH7syL7OeDvMfZTlw1t0D7iuOjYMQ5Q22MxWXzZBpklXx9T
zmGHWKt77aOatojl7WTiY2E2aLlpTZ/WsUWPRhd4PTnZgG2hv+qXoS3a198f
vLG+GRILeG9xIVsUaGKRGzy+GVJYwoL1ttuiXpOwx9XPNkPeC0uhC1G2iDZw
7vvgvs3wlNazk9BhizrrbrXtrWOF2W0bc3uC7ZDvUl3g3mgWeFeRhIRC7RAt
+mdiVhgLVHNKXm+NtGN47vi9j0dYIKrRQI8YY4d0sw81HfBjAS7dw2F/0uwQ
Cr36ps2YBZT5P6yk19mhsSL9rKLFTbCzs4z5FSsVHa7Y+Sc9ZBO8dvQSMsih
olvcCkXWkczw3VPl2IERe+TZ7JZ1jrxBD6P9bv4hQEMeTK3pj2zX6E/jqecj
zB2Rl+yc7+vmVbppH2/orvNOiHPsRsPDoN90kvCnfTmVzqj0627P0ehluuPl
P0vDj52R9xA7ZTB8mR7wR/qySp0zCkjqujd4bJmeP+x//1GzM5Kt0F6e3rVM
56/4sdj2yRnV+Yhuplgu03/abcQtbXJB9lnfFWo2luhPIlXuuni7IOsR76bP
F5fo3VMOJmk7XdCW1ZHTe84u0ad3HXn9yd8FndZl2zoZsURXtn04t/+oC+pV
4idzBi3RM/hNyadjXFD+n8NtpxyX6CfvubSX3HdBT8vIllL8S/R06eM7ph+6
IMftyeYjHEv0h9dSZ3RrXNCfiEsq95mX6JPhvQIN2AVN7Fx/5Li4SPez9vd7
/8EFfWmb9376cZEeUR07Ld7vgqrZ9A/kdi3SU9VKzu4edkFr61l2l14u0l/x
/iiYnHJBs2s4av+zRfr3GB5D7XkX9LGOucP78SJ907J2W9iyC5JI3z/uWr5I
lw1y9332xwU1SGm1OxUv0v/f/jb0//e3/R+fTfKC
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-1, 1250], 0}}, {{-60, 60}, {-0.0008, 0}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["\[Rho]",
RowBox[{"1", ",", "3"}]], "/.",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqs", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
RowBox[{
SubscriptBox["R",
RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "6."}]}], ",",
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
RowBox[{"\[Delta]1", "\[Rule]",
RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "6"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"0", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw1mnk0VV/Yx83zPM9T7nXN83y5+5oyNkgUkaTI1EAqUimkkspQUmkyNCkN
iuI+G6kImcpUhkJmMvMzvOdd633/uXd91zl7n+d8v3uf83nWOsoBB933sTAx
MVUSP//7b9kVNbq+7oafCFi4/bs6w2gvvT/p9J8bVnGfvap/Y4YRndUwkz7v
htdOSHZE3ZlhFG2nrKiNu+EynYhTbE9mGKqNXXxbOt0wWfuKh2PVDIOv2kbn
3hs3XLyeOL53fobR/VzoMDrghlWHl5SW/GYZ8WefzZ9pdsU128orRC3mGBck
Q7/mXXLB0SqTl55sXGAofKQ8jPR2xlqeXz9Jxy4xVlWDxa11nXDs+Mu8e3P/
MXIidbY+G9mId7ZdOj4kvs6o75i5UvXBAf86+LWOm84McrziJx+8dcBCPY0N
ok7MEEY1CY5/6YCl8PtzG7YyA9/d44hW4IBHOElyHnuYwTVwdep9mgN+uaz5
YDmeGWonONxfHXDAviWmU3s+MsMnVhmx+5IO2Ew54EilGwswtFHWqUh7fH3h
h6hmFCv07PsafTTCHj9muhieG8cKTDme28MO2OPJT5aNqudZwUYgXMR7tz0+
YsRSb5HNCp8mbqYYu9hjstRIWBlmhfoXM2fGVOxxhJPjUzlBNvipX3DAu9kO
G5ybdkx6yQZLxgKWJvp2+BjF+FWNAAccD8krP6dlh/3JOjVx0hywmENFTWp2
uDO8otFclQPmOUPtwxTsMOVAU1ONOQdMd3ze/IDXDr+buX7KeR8HjMbFBwoM
2uLPqqfLv5dzwK/q2cuD2bZ45UXo8OajnFCxvav3OpstPmv8tLtznQsW87Km
T63b4G37egaH+blBZ347W9CyDZY+UCrALscN2dcb1UynbLCw38X53WbccKSt
OqKtywafs0n58PgwN6juLFqRfG2DM/1VeLMHuSFpV6LUzT02uNlcl8W7kwdc
9upuucWgY80Vi+9843zQ+2KRvbOUjj+OcTYcW+WDqJWKD1LFdOxjZKn4j58f
bmd6qF1/SscfrG4LCuryw8TnE2tXs+i4yfei4PJhfrim9fFZ0hE6Tvzjqnh7
mR/a5nZwHyHTMW1gZDxNUhDCbFSgSJmOmWNo7mPqgsB0ZTRqUo6OjyyEhHpS
BYFCOdUbJkrHZ837BX33CEKM98N3QUx0nOUkcMTkmSDIw/g+306EuUo5na6r
CMHe5LOVjqkIH2zf+TqgUgi+dBWH3L2AcKN8k8PJOiHQ0R0WmU8gjn/5ZHv3
hxAsf9+892Eswt02MU+YR4Xg6gZ5trVghANlY+PNxYShjPHO/rUtwheDBl3P
BAsDZaTjmuU0DZMvxMV+khKBmavo99AQDf/UPapPVhUBhmmBwfUeGj7zx2Pl
qq4IeCRGtUzV0fCWcB++ZAcROKMkKJ5fQMOiLSJlq1Ei0O5plyXkS8M9DxMH
xFpF4ELV85yBz9bY02Q2MvCWKFTe38P/pdwa37qrnej3WBRWToudfPLaGjsd
jRQNficKEdSYnQfvWuNj3mvsT1pEwb3YXmwp2hovKNsPjPKJgUzBzwt8ZGt8
veEiNe6sGDy7yHPUMMEK3210d02NEYeB4PI/4jFWOLr1yZ3HF8VBYeMh98WD
VngqLeBjW7Y4XGX9oVvuY4VvDNXxhn8Qh6Mn7484GFrhpqpDA6dWxcE6wszf
+zcVH5JeeumTKAGNW/e7xCMqFoj0P/A3VxI+UfRZhE2p+ET/Zu1dbyXhw/p/
Jfe0qXjq57rUwGdJyC+8RsYyVBz8+vCQ4agknOQuZ16ftcRzu/B/XwykgFIh
WnLysSXeIZAQNVEtBfF6FarHRSwxZ/GfROVVaYjmTOni5LbETvZb2vyEZSCs
2zPtxroFzhXHvW9IMrAjZWz97ZgF7v72pPLpJhnQGZLsmvtkgd1k9gfV3JeB
zrsR1yJjLbDsJ5lLI66yYCAotxbRb44ntdzMeEvk4Lq8YYthpzkmYZmPxU1y
sKTp/Gjxmzm2Ca3ZnTAqB9jxuPvZD+ZYVyuxO1VRHjafbc3PTDPHc6ZK1f4X
5CFsLmVzGTLHj0txl1mgAuR1rd7jvmOGHaWRaaScEnCNiEU3pJnhPOU1nlZN
JQhb1HRJTzbDoby0/1wslcBI3HtOLsoMb8ZTk/HeSlC56a2TnosZ7r8QHsub
rQTdFRHTnkumeGfTpH2FvDJIPeqxzd1uiv949Q4ZmauAwsfa1SwXU1zeFFF6
3kUFVHuL312mm2Imm+KkBV8V0JNK0TymbYodq+lCuudUYGOymagzuykeD7rV
yPZNBaKDr/2efGOCc/TZixPCNsB3im28pZgJHhi4Lv0Fq0KnnY6lHo8J3vLz
WCOtTRV6/aXnVJlMcApPfM6vcVUYy5oMFhgzxhKZ9m0psiRg4769pa/KGLPO
1W2qOk4Co+FZxfORxnhXvEF3jwUZ0h7nM5qbjfCqBNJP7FUDD8ZjHFVjhI18
dV6kL6uBRMuzSglshO8kq2k0iFHg1sqrT96FRpj2aSDtixMFcjdDw+/zRnh4
Ohp+FVPg3Vxb9zTVCJM6rCt6r6vDTzr3ukiBIRZmH3mqe1oTcjz5mIvvGOKF
cNULiXc1YU+oIKtXhiG+3VfQKYY1YTBDnPNWvCEe2GlY0cesBZN/lQU37DLE
cvsuSdgkawFLqoWiobAhvhr4csOle9qg1hlK2xZrgNcKxnYcYNaDHeQPuzUO
G+Dn6uI8/pJ6kHyE5wxzkAHOPipvdFZbD4Z4HuMX7gZ4u+nprc7eevDEcpDO
p2GAd3AetJsp1gOdO/521e36+Aar5eTMUX0w8t/uZGqij+9vetbyT8YQAp/l
HhDQ0sfJ/319sWRiCJmLMxcGlPXx8WjeNpNthjB/Na02nV8fBwgd79uaYgjv
Kr65TPXr4S9n9jgIMRuBxQbnTY/T9XDl76V3DbNGcKYuLt/kty5+c2JfzCF2
U/D2dD1G+6aLNZ6Ia06STMGwV8bRsUwXC+WpTmQ7mMLgzLvhndd1sSXNXuR4
sim4yU5rxTnr4tRmi1lLATOQCdn/uuqVDvYL9jkcpGwObzg34y3ntPGlp1+k
Nf0tIfWa/LWdh7SxX9DLvh8JlhAkO7YnwFcbm32+u3rlsSXI6F5gjTLVxh21
R6dUZiwh3rPK4caoFk4vl3ucmUSFTXmm9b+2aeE7qPd+7TMrGLZR6gxR1cQx
myLrlPppkGN5/u8vQU2cLPUTb2JD4GE0MbvlPw2c9ubwyz0SCDCpTNC0WQO/
vfrTZMUcQRbXDnvWMxo43yNupvIUgk3M4B4dqoG17mzYtO8KArZlkv+wpwZW
WJK9WXMXwcHRmZhv2hr4xNX4cw2AwKHhStGtLnXMIT185vwKgpVP8+UCn9Xx
lzvLtAUeOrwC36/xr9SxQ+9FHQlpOsi/1BwMuqCOTx/uTtthRIfmx2kznVHq
uDkt+eYxOh2SHywxbfJXx2ZXMmaom+gwm/5Z1shUHZddzDV6tZ8OT1J01AtU
1HFurDqb3xE6+CdmmsgIqOOryHi5II4OX6P3bmUaoOBUjYpagXQ6nDlY6xfZ
SMEhN8I4KXfoYBKsHzb4gYLfveTVb8+nw4Od60l1aRS8nevYr/kSOuxw359B
O0XB+/N3+AZU0EHApf7+qwMUfLbd7pNfDR0+2hq9IG2n4KHjiw0jjXQ4Qb1V
loUoOGyzkwN7Ox10jFlqebUoeOuhVdHCbjr0ax9oOyVJwbrlN8z7+umQTW7s
/8dCwZwFUi33RuiwRdF0OnBCDSvufCU5OkkHDqmc9bYONXwk7qA3zNKhTIid
36VaDev9+Mojv0SHI9xhMowiNfx8xqqYdZUOaiwtavq31fAjn5eskUw28HPZ
3Dj3vBoeSpgqD2G1gbSZezaSkWrYR2atZoTdBhzHOLdc9FPDzNy+WjOcNrDW
H+G76qSGW8cduBK4beDNr+8hh4zVsOelxrt3eGwg5Af1+B8lNbybeWUb4rUB
pW8PEz351PDDzJLcMEJ//8yTXrNAxoOT3/Q2EPoiPnyP+oeMhzAuDiTGo9L2
whcNZDzckyRoQMw//5L2QeU9GbevbzFLIa7/7En+l8w8MjbVV3WMIuoLeMj/
g4t4RZbHhEeNstiA1O2oP7EnyfjgYLzgzDodGjK6piaCyDg4ij85ZYUOCZdt
1vZsI2P7Y4eDSxfpYJH0mPe7NRlXT4l4xhL+TZ0SknbUIOPfGTeFWgl/fQ51
G+owkzG7hNeBrQN08EwY52EeJ+GWrQty13uIPLJW+lraSXgrWZcnroMOdljm
6okiEq5jlmOyqKODdat6kOttEt64ZHVQrJoO5kNm1orJJNwU3Pj7ZjmRv5DX
2MfdhE509n1RSAeK6v6qGy4kHF0/6GKXR4cNZkezQ0xJ2C1Hhy/1Nh2k/NMd
hQRJ2O/pjLfzRTqwFH3L9WGoYsOXV98XBdBhpao7VueJKs7co7fPZAcdFtrG
3Zmvq+LU0wWhSW50GFvnZS4IV8WmxiFvr5rS4ftmR99pOVW87UfF7dvcdHg0
icUvxG7APNccjFcLEDxgbRzzCdqAMQc5O+oWgjuSPVU62zbgMInOhr5UBGm0
1cOtGhswV+be1IKjCGKvmDcodqrg4Gh3ww22xPNB91XSWzMVHBCafuMK0MDR
tsL3gqoKLth5y8KrgAa2Xo1Gu4RUsEyblMKmKzQwOz3xm3lIGUesNpb82E0D
5W8aNLcbyvi0iLD3I1YazEY8XPgzp4SHau0Us3ZYQ1DUbz/hP0r43p/dL2ft
raHzhPIn60YlPJuSkn3b0BoqEu5m3HyihNt/pSS2CFpDavYt/c27lfAbt8Zt
q1+tgPleZ9ZJVyW8aK/4vvWDFUTlSTM9MVfCYttcWtefWoFP0Y0GNjElHO66
LOFx2Qq2pKi1RV1TxMfJabocHlZgciMv71uoIj5wa2g9xcEK5B9siNJwUMSH
nE9PhJpbwcg7ReHeZQWcHSTmbahkBY2Vd3osvitgbwMfdzkxK3hXL/s884UC
tljQ9vfjsoKEP5IuLoEKWIo7xmjiHxVCJjKl860VcCXTuiz1LxW2LokOMUkr
4I8v2nz+/KSCgqBQ4tt6eSwSvuudVQ0VSiy4QNlUHifyPr6lkE+FHPukyyeF
5bEdFnYxyqFC4ha2XW2jcnile6vwg+tUcN/PtJRyTw7f6+B8lJBMBbPDpz7/
jZHDu04/qlmMp4LiyZVMm+1ymCy7mlsVS4Wxa4sGi9xy2ENk8rfPISo0345m
3tYvi5lET++lhFKhtGD2WyFDFls8U+p02k+Fe6+O5HDdlMVF7MWfYQ8Vksqn
wvZGyuLz3L0FF3ypEPYlwpLhJotb3a3/5e+kwraWMW5piiye8rspLulJBYvu
kPZIFln8g1PmbIc7FZSGh/IbfsrgTrcTd8c3U4Fjdv9R9Xcy+Pkx3WZ3NyqM
r/XbJlyTwfjK/RguFyq0cu8V6QmVwd0ObnP8TlR4L9bXa+4ggx/azmQHbCTq
U9z9IkOJ0IOA2R2ocF7jV9zksjQ+mnKkZN6OChHGPq7O36Vxt8e5RiNCe6AO
mbwX0lj7xEYPsCXqc/EaXr8gjb3NxVIyCa3s+f2dd6A0fn3Av/wtobn2bEsq
tpbGuY/7NVSI8ROhTR5C0tK43fW9WBuhW6M3bwidkcJv1o+XtNoT9cXX/6uu
l8Khetu2yvxvfSkuWOmRFG6z15cqcCTqu1GTGntWCtc8+2ob40wF8pnjP57s
lMJlMV0BVa5U+BisptCpJ4UZzidcfQl/9m79sY+bSwo3XtdedCD8Y7FILDTr
kcRc/Uw+p7cT86sYzQW9lcS/M7OD2An/abx/qDcuS+Iv5n4C7buocPInqpuz
lMR2g7Z9fvuoIFs9KUoSlcSFtvV/hEKIegtzfDxGJPBF/jPavAepsHBqZeRV
lgQedOfRbT1BhetBTw1+H5TAZb2CL+6dpoLRFu8Y4Y0S2MS9kuNlIhWOKJdw
H5oTx/k5A2VZaVQQ5gnaerdOHC9cqmwLv0mFomnxmw0PxfE9djvbs/eIfKsi
Kdru4nh/utmxwBdUCN6vu3HkuRie8j7MPPGNCpybu1Olk8Tw+T81O+60UyHf
9PIPR18xLDKh/OFsHxX+cI3uK+AVwyfNZkdHZqjg9zQ/ITBYFJNi7vQIylrB
avr2unSaKK59UxC9iWQFt0+yiVVJiOLBHtqtUl0r6HALeKhcLYIDsmMrhOyt
wGNKvrJbWQS/eavQdO+wFTgbZ67v6BLCjulCv8yarCD0FOdc9m0+HDKzKYFx
3xpSxEnVe7fwYWHqUvPm59bw7JlNphYbHz7GQxUcfG8NE51xxoxQXhyv4rFT
vtUajpjOHu2z4MHC/5wSb3HQ4MRU77xaByf27171Wg6hQfb5tU9TKZy48OCl
o4HHaPBeQe5GKeLE79m2dFedo8GKq5epyyMOfHvYvdLvNg3OPK4/FnGMHW/2
2B04UkeD8wHvF9+Is+KA+PEqO3EEj5bavsTVsODpsAzrMRkEX67OZTnEseCq
kjyu80oIeEDPvL2fGYc5hjVmaCJIlS048d9rJmyskOLMTkfw4tVHp49BTDji
bqCnpQOCRqff0pdlmXCdTornHhcEG6Ysoqw41iFsa2927HYEGo/V5s7lroCu
qKdTdzCCsLaATHG+FRC7m8h+IRzBc/Yc44LI/2DvfHmu0hEE+gFi0bU2yzB6
l1VePBaBmSzzglDfAiRITlhypyCIcaLeeOC4AB4LLW7CVxGUHTtmalQ0D+xk
zUusGQhorePHvE7PAX3VzzmPeJ85XO5cvCM/A0PY78L3xwieZXoOaidPQ+Dj
DopEIQLRnOaW8ul/cMCt9DqtCEHv89rnvz5PwYv6yL8ubxFsfOdwO9xgCgJR
5jadUgQ+pxNF/zOfBP3+1/cWPyCYv3e0xqJ/DD7f0GGzq0Dw8WV4rnfpKEgp
2736WIXgWuW+0zGpI8Ay3XJI6xMCrf7txu/NhiBkw+G9RbUIlmbdhDr5/8LZ
v67WdXUIPrE7jC79HoCP1xyPNTQg2KNmct/88h8Ip97dn9iMQMdM5+TOgN/Q
0hrSYt5K8LUj2euEaR9IjVnztn5HULNTweAmXy+gUY+JbW3E9b5ryRyp+gVv
Csf8StsRfJ6Xa3wZ3gXKFzbT2ToRBEjxJ/2T7AAmlZZYoy5iPvNVS/3KHxDA
93Pe6SeCGz7j/w6FtYKRWe9tu18IDOJ+FRRJNMMZygFv1W6iX7C69aE3/hvU
z4orDBO64Uysmv+PWogSu9Oe1oOA9aNPeo/GJ6DN1J9U7iXy5KSu+52ugIVN
aesZhO7KMPtRVlAKH3wnvcYJ7SC7VPhhSxE4l3Gc1ugj+pOkQYmRwVtQoSp5
yJXQWqAjZjxylvZn7CRlG6HnH1zMvBJcQItzfVVgTWihr2wzjrzFNK3QzZMC
hM63s5N1DmDQeEx4WD8S8yv0VNzP+1lF614pHvIl9NCtPmNy8heaX5vNo59E
va93MNfmG9bTVJrLXBCh4aLQi/TJRhp/v3NPMnF/qgeUlrbZt9B+PdU+/Jbw
4+JGPVuxW99pXfPlwjWEX5MkdLl1qo22XSi0BRN+erBtactw6KQNd5bU3iH8
fv97t/L22z9pla+tBPw7EChWHAwVn+6mXVC695aTyGeO8Xm9tqGPVmHW8YCT
yJPy/Jvq06XftMV5YxX/FgTed9qcLqn208r8ouNymgh/Yv+mu8QM0uJzv3vU
1yOYDpks0cz7SzM8nyjH+IqA5L3wi7dxiCaWYOiVWUPUa8ZJqSON0k4E6Dcv
fERQribo9mzLGM2k9WH4uUoEUxKSR1Jix2mKcVsM5ol+bvscucy1aZI2/3EP
S9p7wt+dGx7tt56mRRqfe/noOfH86PjzPaF3mnZP4gFD6ymCeO9c1odnZ2hS
Ot1PMwm+nPYh7e75NEtrnvoRKXkPQYufmsSOzQu0zktynv1EP5nS89c2+t8C
7eTUo8msSwjs/B8dzkhfpGX947E2Po/gzR71+sa2JdrF8/tTyEQ/ej1QM8HJ
f4W2t3Vi70IIwZ8Doy+DWFZpR5f+cM/tQ8Cx/1lPYu4qLbBNrPyXP4JjQdqW
lUNrNP5T/6SPeBLrp1jyxJ0SJiTMovvyNUIgUCKtJ0FnRdvJxfs5RRCELC45
kNJY0VsJS7dJXmI/mnX6Gv1hRVq9ppRadgSnSrMvuSeyocoy3qriaRpMvpf9
m1rDjqhbHewmCf5tLJfP4XTnQq0vnMNMvGiQXqXMtxTAj56ncnOqxVsDn7XN
7zvP+dGrqZk7n6OsIaEkoMRmmR8FX1m5cjjYGqILHwamXBNAg28lQgc2W8OO
G6RyRSyIriQJOgcrWsOVYjHThwLC6KBDskRxhRXUTas+OGokjAQuu+/wf2sF
XHrG/I7ewohrIuKSKsG3Z55s/zOWJ4xqJaby/8uwgiN3r18xsRJBh3fqNawf
sILtF6SGakJFkdZIxhtTGStI+0TZdvuaKPKd9mwbELKCBlZzRsQ7UUR+1+FS
xmkFDqd2ZoiyiqHqjv6ZgTmCJyOzkW+2GGpf2Zvv0EqFqKInT3WxGIoa+oq3
1lHh5fh7CZZBMdTE0v8y5SMVNIK7xvL1xZHK7eqGzGKCN3zlbk59EUcaa2Vf
BLKpsCNbi61qgtBmV468SqdCRhv1YKaYBDLj8XO9fJkKfO6+9hb+EsjrmovW
GMGvjlfCi/iSJFBQjNza4ZME/9bFyfY8lUCIzeyGwTEqrDnk/Du3IIFUGE1P
gsIJnkt4vstTXhK9FVYY+hVMhWMVjM8UW0n0uN34SFogFd6sNRj8FyyJTva6
qSX5U2HKsudOfaokerrPrL+U4CWtE5Nc995IIqZSjwQdgqeC365HHumURF7C
p/r6Cd7KnRHssWOSQoPxSy2/CB7r01NyliRLodu8ew1ktlBh/9V1S/HNUmi9
QsgnmODZkclubdHjUmgl+WsZJ8GzEZsZisL3pRAPz/k9SwQPTj+/IyxYK4WK
tQ9vsSZ4MVogjpV/Rgq5rtVfbiN4cjl81xyPnDRSKmuS+UTw5ql6y79c9tJo
VOTEHA+hWbRlOzgipJGK/26pAoJXk1KWa9luSCOrpbSYW4TmGesoY8HS6Oae
IMFhQqe6lD5nGpZG2bvtP10lxos+zbq3JiyD2nuOX0wnrpfFczxtxUIGdV5f
sZkmeFouxCthea8M2rvFtrmQqPdejUn0YooMOvBzTfwzwa+q6hLB88UySO9i
/6A1cb+Pkud2znbLoGTlg1IShB9aQ60u05yyKMQl57jbNoIHN76xmtKTRSPe
r78NEP2BUUG67sROWeQfPNrT4030PxyRymNnZVHQS5N91N1UoO53Fx15KosE
9MbFVvZSwZ4kvDCwKosqxTXyCyKoUJswNfSHLIfSL2c1ZERRYVP/t86+zXLo
144bz//GUMHzYSrj1305JEYdqsVEf9TJElHUVSuH+s5p8jleJfgxwO1Bx4wc
sj6gIGCaReSnzJf03V4evQ/YMef2mMjvzOixlgh5lDUcdC36FZFfb+2Bphvy
KCLopzdXGZHX3Qtu9cPyyHZhd3BwI5HXWjDtq4gC4nnhyWnaReTl56hfY6mA
XpinJh8cJPhfnlO8+rICahtr8lJYI9Z73CBH1VsFNGRdlJnBYwVXf1Yv4h4F
9MU6JCNK0gqybiX8LNNXRFTO7/yHDazgkTRL7pvvisi6JeuPe7gVsV77Ml+t
KaKhgYPnBOKsYEdYr227qBKaKIAbekS/+/MrGP+gKqEAg0zRvOdW0H/xlHRz
qhJq6gs8aDxvBXNcK701BsroOI9JV/t1glfv2AoNOyijrNNKFL5n1jClf4nG
5aOMQnOztqZUWMOIt0yOwzlltOQadzRk3Bp6n5n5VLUoI6abTQ+8HWlQt+Xo
97IoFTTLfDHeiQ2B80AZ289kFRT8b/rKYyGCT06wGf13WwVdHXirKCWPoPJB
epp5tQpK2YFbpEwQlMy+3PxWfAOy4LvPFEHw5MOsiZoXbzcgeskw3wGCn5S0
TZYaajegLNM2+0fE+zSnIo4y0b0BjbMm3WvsJ3hlhO+8FqcqCrHdyNG8QvAt
VdPusZcqGhus2u+iSQe+piORX0JV0d/PnO/Pm9Dhwr73D/6eVkU3rb+63qDT
ISHViZn8SBWpWmuKk7zoENMbxHiwqIpMvm1sLTxNh8WoF+MVfCQkXbL0zeQC
HY5yL8j1KZGQ8i5Dlbg0OhwySIpVdCKh9fJWe9NcOkx8qn9i7UtCu+QTx/Oe
0SHUR7zT9zAJteefy/78hg77E3LNbt8koSaTc0YyH+nQLzUW9KGQhFI4VnY5
fKXDnkLDG50VJPSKqZlVrpkO3fTYT0vfSSjv7chEVjsddv2onJMaISFnf5H5
99106AjhIZmtkZD4lnnWM/108Fzf6uElQkYtrpKSg8N02Erpe5VpQUakwIcv
Ls8Qx78ubvV2I6Nh58nyxAU6eEcI/VPwJyPvFlE20n902C1MufrnCBkJ8TtY
hKzRIfANTfdRIpnI30PTg9kGgr28GsKyyGinhWxxH6sNhC9HhOs/JSMO+PdF
mMOGWE9JfPPlZBScxBv2h9MGolHO0/eNZJQFTe+2c9tAzJ9i59N/yIipV78z
iMcGTifVD9vOkxHS+i0uzWsDCeoDyVzcauhF263KYEIn162o1cuqoYvpzm6e
hE45KPb5mo4aOnpY36yPGH9NRGu/J12N8I9dlpvQ14tt2WU91FDop+UH9Vw2
kL3DJ7dnvxrKvVGfpkPUk/PfEdvcE2pIqfBdpSa7DTzMufg7OEUNvSrdo1TN
YgOP6A/ite+qoce3Pz9fXqfDs/5SpemXaki9SCSpboUOL883wduPaujGyIEW
iyU6vNUY9ottI+bnL2m3n6PD+3qmNdqIGponBY+NT9EBDkndYVtVQ+b5UicM
x+jwUVSPWiNIQWaH7Fcl/tLhy9uNXZdVKOgaaZjnZh8dmleipSUdKWjz8fMH
Yr/T4cfd1JIubwrCCRrUXw106LLJ97oXTkFjtvezez8T6yf5e6Z6OgUJ3F9i
fCuhw5DmuNFEHgVlGP++Ul5Eh/EGttZXJRSkJ32eeesjOsyLGYlQuynodxw5
Mfw6Hbjup6VuUldHVx1qqPcjiP1i90RblKqOXIJOfu/ZSwfhvxV1bZvUUe3+
wM6GHXSQ0f7HsydKHUWLF+35SOwf7dLN5yNBHa1kJldbCNHBYFcQ2axZHb3m
/PtDnZUOJuunqlf61dHCO7GLP+YQIPvnrEk8Guj12uSvgwQ/uzfxncnaroG2
TfsrtxI8GT1cc7x8VAPtM/zsPr+B2O/yTl2STJqo4lEnxYDguc9bv1gdEdNE
Fq71r+lMCKTef2JRs9JENjs+76t5R/TTF6tSrqZqosDrntNjKjRY0yy/t1df
C4mtNFcqT1pBYkTRF+5j2ijiCuXm4DFLeP5AVzPwkjY6D29k0rZYwo8fzy8z
7mojkwZa3WZ1SyDTCt0jv2ij/v8afnF3WcAXwSc/f0rrIO6M1qhCmgXwvXw4
9aJMBwVaqDEpCJpD7QkXPk1mPTS4/eHVhgYTUJGNnHvCo4daWJJjy56bQExZ
dreGmB7SkODoaE81AfX14SINNT10ls1/8c5mE0hOSN6u4aaHGkb563e3GMPG
K9U56jf1UPeqqUzvHyP4mEvTp+jro8EtdL9eiiHIOQTJPLLQR7G3aCyVAoYQ
9TeVlWKnjwYkVeaaZg1gg0b3dzUvfdQ9e3wttsIAzr44GaMWp4+0qAufp3cZ
AP19aRW5Rh8dC83TMLutD4xvhp6kPQZo0/VlN28LPYjae977aIgBYuKv+7RA
0gP1hU6/6kgDRFt9Nl8qrAcZCmeD9iUZoD0X2Ls8W3QhJLzxeN5TA8SctqMw
2kQXJHjDb5HmDVClR/3nR9w6EOGQ30u6ZIgCiqlXUK8mqHYu9R/NMETxuzlV
H4MmdIS7DVffMUScSc8Wne9qgl3m7L99RYYIJP4mmO3WBJl+G9b874bISjTf
9XmfBnyK7yGRlYxQs4uz170pdVAolwolFxuhXlnPkAJDCuyXVtpKByP0Vfvr
HEmSAoVH1Ux31Rghc8c4jfZlNaDqmLCm/TJCAZf73nyvVAPvu9turbIboyCr
4KuU7WqQGZ/6tdXTGIndcuX4epYMfA5sWucWjdGUQeVz8roqeDzgFclhMUEF
EnzHHYdU4daayGIJnwny+ZkpdK1JFTTeKX+cUDJBrwfiPTJzVcGRQtvl7WSC
nHB1l7+rKpzjiUnRzzZBK0W8jmUPNsByw+RYj6Upyia9YDkcrAKJBj0X3exN
USZbiYOIlwoIXW+gfNhkimQXrpnW26sA2bcw8PoeU3TKOXvblQ0q4D4a8tP1
vCnyz36ybN2rDE84B7+WNpuiw2dTXyv7KYM3+vkk/YAZUuhbGS4JUYKBh18d
mSPN0E9y9GbjXUpwiPPDYMRJM2R/nr+12k0JkhpuqjhfMUO/zg09UNFXgle7
vLKZis3QOVLwhdR/isBzovlCOJM5+hP/wtBCUhE+vPwSvPGGOQJugzqFOHlo
/xU6dPq+Obovv9fhYoA8zHILBpc8NUcCUgsbZR3lQSdge5A6Nkdffc7AM1F5
eCDyex/vMHH+rsLSxGdycDHyv4BvFhaogsTd0NIvC97GOr5e3RYosevARqUI
GTi2p+nnlSELJH72gmuZlwxkXI7a9WXaAk3VZSwcpctAw8B7H3NOS1R3jSuY
Li4DNtc3esvqWSIV2bhhA4Y0sZ79vXriLZHBRcnCbeLSsFiSvjWIREUXFCvW
qW2SsGNM4cK0DhXt3fHB9VC1JJQqPsFxZlT0uc5va8lrSYhJwroZLlR0MFJ1
NfGqJKxsG+evOExF32DQTcxFEpgmHWplGFRknuC9oa9KArhIyzYNnlboykf/
xyFV4hC8IzFmp78VaugQDlp6LQ41l4Re9R+wQgrlndo3c8Xh4jRZ+b+TVihB
KPogb5I48OFt62oPrdD9e6vL75zEQcin8EP8pBUSrOpKk20VA+lr/kbGydao
qzpH7sCsKLS/lTx/9Zo1Gg8v59D5KwrXfzZ0jGZbozwf3ktMnaIgQrE6/aDQ
GuV2HhJvAFHgAelawRZrZGmcqsidIgorY827R+Rp6LBJxNAEWRR6He0v3X1N
Q+yr7A1r+0QgJ2Ll13IZDbW8rDP18BaBXRmv9Tw/0VAEPU6keJMIdPQo/+Dr
oKGXHJK/skxFoDl6TSlmjYbOqLkp/OUWgYBmH58nqgjpb5zwvVYkDNuYxP8l
HCRwwDSC+p5dGE4ec+bNikJo8pDEVPyyEOROnCY9PYHQv7/hfNsnhWD258jO
pnMIcbE9ocl3CEFGKa6Uz0LozM7lDsNCIWg9EpbxFiMU6juaEOYlBNsHqkyH
hOmIvQWfcQ0SBK/aI6dc3tBRfMfmrFIhflCyvz3LWUpHubH4yiYmfhiB6pCP
5XT0qutI9b9JPjhVLOVl9ZmOhHl1HwV844P8ewxd3U46Kh9MOz6Wygez0Tx9
Ikw2iPZ1kCVNiA/SNjyw7XSxQcn54ZfeyfNCw8kmrgN/bNBdUs5W513c0NfV
OnlxyAadeLDG6HLjhlmL9h/Pxm1Q0Whe+QkaN0gvdedOLdigzd+QYZcKNwQe
HUPH+WyR2b7vew1GuOC/cM4T541t0avgYltSLBdQdlsN5523RZkl6elleZxw
jv645remHfpW+480LsMBH2/aMMb07JDwgYCxQ4IcwDHd9Wre2A6xMNPrV1k5
4OIDgds8yA6dvKL6zmCcHa6yRkUYeNihQJdjclyYHXKqrUXPnrRDU33ve3YE
sUOJU+su5Xo7pDhlc9C9jA0mtq5P7o6wR9I2ZSt1cazQXJiCRCPtUUKRWtVs
FCsUc8tc+3TMHvUvKuephLHCyQojA+14e7Rp/2TuVW9W4NEPiVpOt0eGnDlz
b0xZgST0fTGj1B6FrFxZk55hgV0NT5hr2RzQ0b/20noRLPDV2VPU6JYDkW9s
cGQUMwxuJ4cH9m1EkiUVdRU664wop4WqUWEnNBnEvO+r2QqjJNnhTDTVGZks
i17+9HaJYdEpEOl7xgVl39wK6j4LDB2x9oBbz11RMSlMxu3QHMP5/PJs72tX
9Hv6SLhT8Bxj/7LceXKpKxJOP+3g7D/HuNu75+nLKlcUxjF/cueWOYZQ4ejM
53ZXFBCqdLtQb47xz349YZbFDcWUU9+oT88y3hwjF7h5uaHH4jbR3sdnGY0j
jubpu9zQGHeqSt+hWcaYb+jX9j1uaDHJeDz0wCyDZFc0uTfMDV1oPdB02XuW
cV3Iwiwm3g39k6g5w2I1yzj+2K0m/6kbohim9TxjmWVkyB3yGStyQ5N3RHii
/pthFF1JG9d/64aG/sZuoM3OMIaPtgmXYzd0//glyb6BGYa3zR7vlu9u6FdJ
5ZttNTOM6OJzY1Jdbsjm5i0Oi8oZRhol/5RfrxtSt83XU/0ww6gVGH0wPOKG
6vLILGyFM4zBeH5j3SlifBZ/7lLeDINlTvdz1JwbOvSRS3QmZ4ahEOy+8/2y
G1KS8XKdujHD+L/vgdH/fw/8P5ata74=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
Frame->True,
PlotRange->NCache[{{-60, 60}, {
Rational[-3, 5000], 0}}, {{-60, 60}, {-0.0006, 0}}],
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"eqs", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", " ", "E1"}]}], ",", " ",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "E2"}]}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "Ec"}]}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}], ",",
RowBox[{
RowBox[{"Complex", "[",
RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
RowBox[{"a", " ", "i"}]}], ",",
RowBox[{"\[Rho]", "\[Rule]", "r"}], ",",
RowBox[{"Cos", "\[Rule]", "cos"}], ",",
RowBox[{"Sin", "\[Rule]", "sin"}]}], "}"}]}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["gt", "2"], "+",
RowBox[{"2", " ", "E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
RowBox[{"2", " ", "E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"G3", " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "gt"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ",",
RowBox[{
FractionBox["gt", "2"], "+",
RowBox[{"2", " ", "E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{"2", " ", "Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
RowBox[{"2", " ", "E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"2", " ", "Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"G3", " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "E2"}], " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "E1"}], " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"2", " ", "E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"2", " ", "E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{"2", " ", "E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
RowBox[{"G3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",",
RowBox[{
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G4", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "Ec"}], " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G4", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G4", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "G4", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "E1"}], " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G4", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "E1"}], " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ", "G4", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"2", " ", "Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
RowBox[{"G4", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], "}"}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"MapThread", "[",
RowBox[{"Equal", ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"DMVariables", "[", "system", "]"}], "/.",
RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",",
RowBox[{"Collect", "[",
RowBox[{
RowBox[{
RowBox[{"eqs", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalOmega]1", "\[Rule]",
RowBox[{"2", " ", "E1"}]}], ",", " ",
RowBox[{"\[CapitalOmega]2", "\[Rule]",
RowBox[{"2", "E2"}]}], ",",
RowBox[{"\[CapitalOmega]c", "\[Rule]",
RowBox[{"2", "Ec"}]}], ",",
RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",",
RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",",
RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",",
RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",",
RowBox[{
SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}], ",",
RowBox[{
RowBox[{"Complex", "[",
RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
RowBox[{"a", " ", "i"}]}], ",",
RowBox[{"\[Rho]", "\[Rule]", "r"}], ",",
RowBox[{"Cos", "\[Rule]", "cos"}], ",",
RowBox[{"Sin", "\[Rule]", "sin"}]}], "}"}]}], ",", "i", ",",
"FullSimplify"}], "]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"StringJoin", "[",
RowBox[{
RowBox[{
RowBox[{"StringReplace", "[",
RowBox[{
RowBox[{
RowBox[{"ToString", "@",
RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
RowBox[{
RowBox[{
"\"\<Subscript(dr,\>\"", "~~", "f1_", "~~", "f2_", "~~", "\"\<,\>\"",
"~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>",
RowBox[{
"\"\<d\>\"", "<>", "f1", "<>", "f2", "<>", "\"\<r\>\"", "<>", "a", "<>",
"b", "<>", "\"\<_dt\>\""}]}], ",",
RowBox[{
RowBox[{
"\"\<Subscript(r,\>\"", "~~", "f1_", "~~", "f2_", "~~", "\"\<,\>\"",
"~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>",
RowBox[{
"f1", "<>", "f2", "<>", "\"\<r\>\"", "<>", "a", "<>", "b"}]}]}],
"}"}]}], "]"}], "&"}], "/@", "%"}], "]"}], "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{
RowBox[{"ToFileName", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<code.txt\>\""}],
"]"}], ",", "%"}], "]"}]}], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "1", ",", "1"}]], "\[Equal]",
RowBox[{
FractionBox["gt", "2"], "+",
RowBox[{"2", " ", "E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
RowBox[{"2", " ", "E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"G3", " ",
SubscriptBox["R",
RowBox[{"3", ",", "1"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["R",
RowBox[{"4", ",", "1"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "1", ",", "2"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Im", ",", "1", ",", "2"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "gt"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "2", ",", "2"}]], "\[Equal]",
RowBox[{
FractionBox["gt", "2"], "+",
RowBox[{"2", " ", "E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{"2", " ", "Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"gt", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
RowBox[{"2", " ", "E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"2", " ", "Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"G3", " ",
SubscriptBox["R",
RowBox[{"3", ",", "2"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
RowBox[{"G4", " ",
SubscriptBox["R",
RowBox[{"4", ",", "2"}]], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "1", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Im", ",", "1", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{"d1", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "2", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Im", ",", "2", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G3", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{"d2", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "3", ",", "3"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"G3", "+", "gt"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "1", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Im", ",", "1", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
RowBox[{
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "2", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Im", ",", "2", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{"G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"d3", " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}], ")"}]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "3", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "d2"}], "+", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
RowBox[{"E1", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}]}], ")"}]}], "-",
RowBox[{"Ec", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
RowBox[{
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ")"}]}], "-",
RowBox[{"E2", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
RowBox[{
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}]}], ")"}]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G3", "+", "G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Im", ",", "3", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "E1"}], " ",
RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
RowBox[{"Ec", " ",
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
RowBox[{"E2", " ",
RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"G3", "+", "G4", "+",
RowBox[{"2", " ", "gt"}]}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
RowBox[{"E1", " ",
RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
RowBox[{"Ec", " ",
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
RowBox[{"E2", " ",
RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"d2", "-", "d3"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
RowBox[{
SubscriptBox["dr",
RowBox[{"Re", ",", "4", ",", "4"}]], "\[Equal]",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "Ec", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
RowBox[{
RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "2", ",", "4"}]]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"G4", "+", "gt"}], ")"}], " ",
SubscriptBox["r",
RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}], "}"}]], "Output"],
Cell[BoxData["\<\"dRer11_dt = gt/2. + 2*E1*cos(\[Phi]1)*Imr13 - gt*Rer11 + \
2*E1*sin(\[Phi]1)*Rer13 + G3*Subscript(R,3,1)*Rer33 + \
G4*Subscript(R,4,1)*Rer44;\\ndRer12_dt = (d1 - d2)*Imr12 + \
E2*cos(\[Phi]2)*Imr13 + Ec*cos(\[Phi]c)*Imr14 + E1*cos(\[Phi]1)*Imr23 - \
gt*Rer12 + E2*sin(\[Phi]2)*Rer13 + Ec*sin(\[Phi]c)*Rer14 + \
E1*sin(\[Phi]1)*Rer23;\\ndImr12_dt = -(gt*Imr12) + E2*sin(\[Phi]2)*Imr13 + \
Ec*sin(\[Phi]c)*Imr14 - E1*sin(\[Phi]1)*Imr23 + (-d1 + d2)*Rer12 - E2*cos(\
\[Phi]2)*Rer13 - Ec*cos(\[Phi]c)*Rer14 + E1*cos(\[Phi]1)*Rer23;\\ndRer22_dt = \
gt/2. + 2*E2*cos(\[Phi]2)*Imr23 + 2*Ec*cos(\[Phi]c)*Imr24 - gt*Rer22 + \
2*E2*sin(\[Phi]2)*Rer23 + 2*Ec*sin(\[Phi]c)*Rer24 + G3*Subscript(R,3,2)*Rer33 \
+ G4*Subscript(R,4,2)*Rer44;\\ndRer13_dt = E2*cos(\[Phi]2)*Imr12 + d1*Imr13 - \
E2*sin(\[Phi]2)*Rer12 - ((G3 + 2*gt)*Rer13)/2. + E1*sin(\[Phi]1)*(-Rer11 + \
Rer33);\\ndImr13_dt = -((G3 + 2*gt)*Imr13)/2. - E2*(sin(\[Phi]2)*Imr12 + cos(\
\[Phi]2)*Rer12) - d1*Rer13 + E1*cos(\[Phi]1)*(-Rer11 + Rer33);\\ndRer23_dt = \
d2*Imr23 + Ec*cos(\[Phi]c)*Imr34 - E1*(cos(\[Phi]1)*Imr12 + \
sin(\[Phi]1)*Rer12) - ((G3 + 2*gt)*Rer23)/2. + E2*sin(\[Phi]2)*(-Rer22 + \
Rer33) + Ec*sin(\[Phi]c)*Rer34;\\ndImr23_dt = E1*sin(\[Phi]1)*Imr12 - ((G3 + \
2*gt)*Imr23)/2. - Ec*sin(\[Phi]c)*Imr34 - E1*cos(\[Phi]1)*Rer12 - d2*Rer23 + \
E2*cos(\[Phi]2)*(-Rer22 + Rer33) + Ec*cos(\[Phi]c)*Rer34;\\ndRer33_dt = \
-2*(E1*cos(\[Phi]1)*Imr13 + E2*cos(\[Phi]2)*Imr23 + E1*sin(\[Phi]1)*Rer13 + \
E2*sin(\[Phi]2)*Rer23) - (G3 + gt)*Rer33;\\ndRer14_dt = Ec*cos(\[Phi]c)*Imr12 \
+ (d1 - d2 + d3)*Imr14 - E1*cos(\[Phi]1)*Imr34 - Ec*sin(\[Phi]c)*Rer12 - ((G4 \
+ 2*gt)*Rer14)/2. + E1*sin(\[Phi]1)*Rer34;\\ndImr14_dt = -((G4 + \
2*gt)*Imr14)/2. + E1*sin(\[Phi]1)*Imr34 - Ec*(sin(\[Phi]c)*Imr12 + \
cos(\[Phi]c)*Rer12) - (d1 - d2 + d3)*Rer14 + \
E1*cos(\[Phi]1)*Rer34;\\ndRer24_dt = d3*Imr24 - E2*cos(\[Phi]2)*Imr34 - ((G4 \
+ 2*gt)*Rer24)/2. + E2*sin(\[Phi]2)*Rer34 + Ec*sin(\[Phi]c)*(-Rer22 + Rer44);\
\\ndImr24_dt = -((G4 + 2*gt)*Imr24)/2. + E2*sin(\[Phi]2)*Imr34 - d3*Rer24 + \
E2*cos(\[Phi]2)*Rer34 + Ec*cos(\[Phi]c)*(-Rer22 + Rer44);\\ndRer34_dt = (-d2 \
+ d3)*Imr34 - E1*(cos(\[Phi]1)*Imr14 + sin(\[Phi]1)*Rer14) - \
Ec*(cos(\[Phi]c)*Imr23 + sin(\[Phi]c)*Rer23) - E2*(cos(\[Phi]2)*Imr24 + sin(\
\[Phi]2)*Rer24) - ((G3 + G4 + 2*gt)*Rer34)/2.;\\ndImr34_dt = \
-(E1*sin(\[Phi]1)*Imr14) + Ec*sin(\[Phi]c)*Imr23 - E2*sin(\[Phi]2)*Imr24 - \
((G3 + G4 + 2*gt)*Imr34)/2. + E1*cos(\[Phi]1)*Rer14 - Ec*cos(\[Phi]c)*Rer23 + \
E2*cos(\[Phi]2)*Rer24 + (d2 - d3)*Rer34;\\ndRer44_dt = \
-2*Ec*(cos(\[Phi]c)*Imr24 + sin(\[Phi]c)*Rer24) - (G4 + gt)*Rer44;\\n\"\>"], \
"Output"],
Cell[BoxData["\<\"C:\\\\Users\\\\Simon\\\\WorkLaptop\\\\Home\\\\RocSci\\\\\
NavySTTR2011\\\\mathematica\\\\code.txt\"\>"], "Output"]
}, Open ]]
}, Open ]]
},
WindowSize->{815, 873},
WindowMargins->{{10, Automatic}, {Automatic, 18}},
ShowSelection->True,
FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[567, 22, 32, 0, 71, "Section"],
Cell[602, 24, 66, 1, 43, "MathCaption",
CellID->836781195],
Cell[671, 27, 85, 2, 31, "Input",
CellID->2058623809],
Cell[759, 31, 1290, 44, 65, "Text",
CellID->525777075],
Cell[2052, 77, 68, 1, 43, "MathCaption",
CellID->429217524],
Cell[2123, 80, 1090, 28, 132, "Input",
CellID->433132487],
Cell[3216, 110, 458, 18, 43, "MathCaption",
CellID->133602844],
Cell[CellGroupData[{
Cell[3699, 132, 1105, 33, 72, "Input",
CellID->534530029],
Cell[4807, 167, 1306, 40, 53, "Output"]
}, Open ]],
Cell[6128, 210, 217, 5, 59, "MathCaption",
CellID->462076121],
Cell[CellGroupData[{
Cell[6370, 219, 528, 16, 52, "Input",
CellID->494599775],
Cell[6901, 237, 1808, 52, 86, "Output"]
}, Open ]],
Cell[8724, 292, 76, 1, 43, "MathCaption",
CellID->358620443],
Cell[CellGroupData[{
Cell[8825, 297, 464, 15, 31, "Input",
CellID->167259034],
Cell[9292, 314, 673, 12, 118, "Output"]
}, Open ]],
Cell[9980, 329, 102, 2, 43, "MathCaption",
CellID->577766068],
Cell[CellGroupData[{
Cell[10107, 335, 1347, 35, 72, "Input"],
Cell[11457, 372, 1983, 58, 126, "Output"]
}, Open ]],
Cell[13455, 433, 384, 12, 43, "MathCaption",
CellID->610306692],
Cell[CellGroupData[{
Cell[13864, 449, 272, 7, 31, "Input",
CellID->645617687],
Cell[14139, 458, 827, 23, 86, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[15015, 487, 53, 0, 71, "Section"],
Cell[15071, 489, 98, 1, 43, "MathCaption",
CellID->690131918],
Cell[CellGroupData[{
Cell[15194, 494, 230, 5, 31, "Input",
CellID->718931880],
Cell[15427, 501, 471, 11, 50, "Output"]
}, Open ]],
Cell[15913, 515, 390, 12, 43, "MathCaption",
CellID->854192725],
Cell[CellGroupData[{
Cell[16328, 531, 459, 13, 72, "Input",
CellID->465762594],
Cell[16790, 546, 1605, 47, 104, "Output"]
}, Open ]],
Cell[18410, 596, 76, 1, 43, "MathCaption",
CellID->314466782],
Cell[CellGroupData[{
Cell[18511, 601, 424, 13, 52, "Input",
CellID->298399236],
Cell[18938, 616, 27043, 716, 426, "Output"]
}, Open ]],
Cell[45996, 1335, 38, 0, 29, "Text"],
Cell[CellGroupData[{
Cell[46059, 1339, 2423, 63, 164, "Input"],
Cell[48485, 1404, 11401, 193, 226, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[59923, 1602, 2423, 63, 164, "Input"],
Cell[62349, 1667, 11716, 198, 232, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[74102, 1870, 2422, 63, 164, "Input"],
Cell[76527, 1935, 13483, 226, 232, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[90047, 2166, 2422, 63, 164, "Input"],
Cell[92472, 2231, 15122, 253, 232, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[107631, 2489, 3941, 105, 243, "Input"],
Cell[111575, 2596, 13117, 440, 524, "Output"],
Cell[124695, 3038, 8187, 275, 325, "Output"],
Cell[132885, 3315, 851, 11, 221, "Output"],
Cell[133739, 3328, 132, 1, 30, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[133920, 3335, 50, 0, 71, "Section"],
Cell[133973, 3337, 98, 1, 43, "MathCaption",
CellID->540592006],
Cell[CellGroupData[{
Cell[134096, 3342, 237, 6, 31, "Input",
CellID->227015699],
Cell[134336, 3350, 475, 11, 50, "Output"]
}, Open ]],
Cell[134826, 3364, 390, 12, 43, "MathCaption",
CellID->164472800],
Cell[CellGroupData[{
Cell[135241, 3380, 459, 13, 72, "Input",
CellID->358732873],
Cell[135703, 3395, 1649, 47, 104, "Output"]
}, Open ]],
Cell[137367, 3445, 74, 1, 43, "MathCaption",
CellID->2682843],
Cell[CellGroupData[{
Cell[137466, 3450, 424, 13, 52, "Input",
CellID->161699191],
Cell[137893, 3465, 28257, 707, 406, "Output"]
}, Open ]],
Cell[166165, 4175, 38, 0, 29, "Text"],
Cell[CellGroupData[{
Cell[166228, 4179, 2363, 62, 120, "Input"],
Cell[168594, 4243, 11401, 193, 226, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[180032, 4441, 2423, 63, 164, "Input"],
Cell[182458, 4506, 11716, 198, 232, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[194211, 4709, 2422, 63, 164, "Input"],
Cell[196636, 4774, 13483, 226, 232, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[210156, 5005, 2422, 63, 164, "Input"],
Cell[212581, 5070, 15122, 253, 232, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[227740, 5328, 1032, 27, 52, "Input"],
Cell[228775, 5357, 17313, 499, 678, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[246125, 5861, 2747, 68, 192, "Input"],
Cell[248875, 5931, 18931, 555, 695, "Output"],
Cell[267809, 6488, 2641, 36, 620, "Output"],
Cell[270453, 6526, 132, 1, 30, "Output"]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)
|