summaryrefslogtreecommitdiff
path: root/mathemathica_fwm/CounterPropFWM.nb
blob: 2dfdca03d0ac219687cf8d10db5886d126dce477 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
(* Content-type: application/mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 7.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       145,          7]
NotebookDataLength[   1227086,      23082]
NotebookOptionsPosition[   1216617,      22784]
NotebookOutlinePosition[   1217010,      22801]
CellTagsIndexPosition[   1216967,      22798]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{

Cell[CellGroupData[{
Cell["setup ", "Section"],

Cell[CellGroupData[{

Cell["This loads the package.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258751485*^9},
 CellID->836781195],

Cell[BoxData[
 RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}, 
   3.522586258751662*^9},
 CellID->2058623809],

Cell[TextData[{
 "We define an atomic system consisting of two even-parity lower states and \
two odd-parity upper states. We apply a light field with components at \
frequencies ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
 " (near resonant with the ",
 Cell[BoxData[
  StyleBox[
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", 
     RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
 " transition), ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
 " (near resonant with the ",
 Cell[BoxData[
  StyleBox[
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", 
     RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
 " transition),  ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
 " (near resonant with the ",
 Cell[BoxData[
  StyleBox[
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", 
     RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
 " transition), and ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
 " (near resonant with the ",
 Cell[BoxData[
  StyleBox[
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", 
     RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
 " transition)"
}], "Text",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, {
   3.522540911043191*^9, 3.522540911147507*^9}, 3.522586258751843*^9},
 CellID->525777075],

Cell["\<\
Work with real and imaginary parts of the density matrix variables.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->145610755]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"SetOptions", "[", 
   RowBox[{"DensityMatrix", ",", 
    RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}]}], "]"}], 
  ";"}]], "Input"],

Cell[CellGroupData[{

Cell["Define the atomic system.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258751924*^9},
 CellID->429217524],

Cell[BoxData[
 RowBox[{
  RowBox[{"system", "=", 
   RowBox[{"{", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"AtomicState", "[", 
      RowBox[{"1", ",", 
       RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", 
       RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"AtomicState", "[", 
      RowBox[{"2", ",", 
       RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", 
       RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"AtomicState", "[", 
      RowBox[{"3", ",", 
       RowBox[{"Energy", "\[Rule]", "0"}], ",", 
       RowBox[{"NaturalWidth", "\[Rule]", 
        SubscriptBox["\[CapitalGamma]", "3"]}], ",", 
       RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"AtomicState", "[", 
      RowBox[{"4", ",", 
       RowBox[{"NaturalWidth", "\[Rule]", 
        SubscriptBox["\[CapitalGamma]", "4"]}], ",", 
       RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
     "}"}]}], ";"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9}, 
   3.522586258752063*^9},
 CellID->433132487],

Cell[TextData[{
 "Define the optical field with three frequencies, ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
 ", ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
 ", ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
 ", and ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
 "."
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, {
   3.522541679413973*^9, 3.522541681294852*^9}, 3.522586258752202*^9},
 CellID->133602844]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"SetOptions", "[", 
  RowBox[{"OpticalField", ",", 
   RowBox[{"CartesianCoordinates", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"PolarizationVector", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], ",", 
   RowBox[{"PropagationVector", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",", 
   RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",", 
   RowBox[{"CartesianCoordinates", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"field", "=", 
  RowBox[{
   RowBox[{"OpticalField", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       SubscriptBox["\[Omega]", "1"], ",", 
       SubscriptBox["k", "1"]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[CapitalOmega]", "1"], "/", 
        RowBox[{"ReducedME", "[", 
         RowBox[{"1", ",", 
          RowBox[{"{", 
           RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", 
       SubscriptBox["\[Phi]", "1"]}], "}"}]}], "]"}], "+", 
   RowBox[{"OpticalField", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       SubscriptBox["\[Omega]", "2"], ",", 
       SubscriptBox["k", "2"]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[CapitalOmega]", "2"], "/", 
        RowBox[{"ReducedME", "[", 
         RowBox[{"2", ",", 
          RowBox[{"{", 
           RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", 
       SubscriptBox["\[Phi]", "2"]}], "}"}]}], "]"}], "+", 
   RowBox[{"OpticalField", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       SubscriptBox["\[Omega]", "3"], ",", 
       SubscriptBox["k", "3"]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[CapitalOmega]", "3"], "/", 
        RowBox[{"ReducedME", "[", 
         RowBox[{"2", ",", 
          RowBox[{"{", 
           RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", 
       SubscriptBox["\[Phi]", "3"]}], "}"}]}], "]"}], "+", 
   "\[IndentingNewLine]", 
   RowBox[{"OpticalField", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       SubscriptBox["\[Omega]", "4"], ",", 
       SubscriptBox["k", "4"]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[CapitalOmega]", "4"], "/", 
        RowBox[{"ReducedME", "[", 
         RowBox[{"1", ",", 
          RowBox[{"{", 
           RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", 
       SubscriptBox["\[Phi]", "4"]}], "}"}]}], "]"}]}]}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->534530029],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    FractionBox[
     RowBox[{
      SuperscriptBox["\[ExponentialE]", 
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "1"]}], "+", 
          SubscriptBox["\[Phi]", "1"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "1"]}]}], ")"}]}]], " ", 
      SubscriptBox["\[CapitalOmega]", "1"]}], 
     RowBox[{"ReducedME", "[", 
      RowBox[{"1", ",", 
       RowBox[{"{", 
        RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", 
    FractionBox[
     RowBox[{
      SuperscriptBox["\[ExponentialE]", 
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "2"]}], "+", 
          SubscriptBox["\[Phi]", "2"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "2"]}]}], ")"}]}]], " ", 
      SubscriptBox["\[CapitalOmega]", "2"]}], 
     RowBox[{"ReducedME", "[", 
      RowBox[{"2", ",", 
       RowBox[{"{", 
        RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", 
    FractionBox[
     RowBox[{
      SuperscriptBox["\[ExponentialE]", 
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "3"]}], "+", 
          SubscriptBox["\[Phi]", "3"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "3"]}]}], ")"}]}]], " ", 
      SubscriptBox["\[CapitalOmega]", "3"]}], 
     RowBox[{"ReducedME", "[", 
      RowBox[{"2", ",", 
       RowBox[{"{", 
        RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+", 
    FractionBox[
     RowBox[{
      SuperscriptBox["\[ExponentialE]", 
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "4"]}], "+", 
          SubscriptBox["\[Phi]", "4"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "4"]}]}], ")"}]}]], " ", 
      SubscriptBox["\[CapitalOmega]", "4"]}], 
     RowBox[{"ReducedME", "[", 
      RowBox[{"1", ",", 
       RowBox[{"{", 
        RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0", 
   ",", "0"}], "}"}]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell["\<\
The Hamiltonian for the system subject to the optical field. Each field is \
assumed to interact with only one transition\[LongDash]the other terms are \
set to zero.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258752645*^9},
 CellID->462076121],

Cell[BoxData[
 RowBox[{"MatrixForm", "[", 
  RowBox[{"H", "=", 
   RowBox[{
    RowBox[{"Expand", "@", 
     RowBox[{"Hamiltonian", "[", 
      RowBox[{"system", ",", 
       RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", 
    RowBox[{
     RowBox[{
      RowBox[{"Cos", "[", "_", "]"}], " ", 
      RowBox[{"ReducedME", "[", 
       RowBox[{"_", ",", 
        RowBox[{"{", 
         RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", 
     "0"}]}]}], "]"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258752779*^9},
 CellID->494599775],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {
      RowBox[{"Energy", "[", "1", "]"}], "0", 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "1"]}], "+", 
          SubscriptBox["\[Phi]", "1"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "1"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "1"]}], 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "4"]}], "+", 
          SubscriptBox["\[Phi]", "4"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "4"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "4"]}]},
     {"0", 
      RowBox[{"Energy", "[", "2", "]"}], 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "2"]}], "+", 
          SubscriptBox["\[Phi]", "2"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "2"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "2"]}], 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "3"]}], "+", 
          SubscriptBox["\[Phi]", "3"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "3"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "3"]}]},
     {
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "1"]}], "+", 
          SubscriptBox["\[Phi]", "1"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "1"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "1"]}], 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "2"]}], "+", 
          SubscriptBox["\[Phi]", "2"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "2"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "2"]}], "0", "0"},
     {
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "4"]}], "+", 
          SubscriptBox["\[Phi]", "4"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "4"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "4"]}], 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"Cos", "[", 
         RowBox[{
          RowBox[{"z", " ", 
           SubscriptBox["k", "3"]}], "+", 
          SubscriptBox["\[Phi]", "3"], "-", 
          RowBox[{"t", " ", 
           SubscriptBox["\[Omega]", "3"]}]}], "]"}]}], " ", 
       SubscriptBox["\[CapitalOmega]", "3"]}], "0", 
      RowBox[{"Energy", "[", "4", "]"}]}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell["The level diagram for the system.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258753087*^9},
 CellID->358620443],

Cell[BoxData[
 RowBox[{"LevelDiagram", "[", 
  RowBox[{"system", ",", 
   RowBox[{"H", "/.", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{
       RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", 
       RowBox[{"-", "1.5"}]}], ",", 
      RowBox[{
       RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", 
       RowBox[{"-", "1"}]}], ",", 
      RowBox[{
       RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], 
  "]"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.52258625875322*^9},
 CellID->167259034],

Cell[BoxData[
 GraphicsBox[{{{{}, 
     LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, 
     LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{}, 
     LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}, {{}, 
     LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}}, 
   {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], 
    ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], 
    ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}], 
    ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}], 
    ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.5}}]}, 
   {PointSize[0.0225]}},
  ImagePadding->{{2, 2}, {2, 2}},
  ImageSize->94.]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
"MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258753521*^9},
 CellID->577766068],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    RowBox[{"(", 
     RowBox[{"Hrwa", "=", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{
        RowBox[{"RotatingWaveApproximation", "[", 
         RowBox[{"system", ",", 
          RowBox[{
           RowBox[{"H", "/.", 
            RowBox[{"{", 
             RowBox[{
              RowBox[{
               SubscriptBox["\[Omega]", "3"], "\[Rule]", 
               RowBox[{
                SubscriptBox["\[Omega]", "2"], "+", "\[Omega]43"}]}], ",", 
              RowBox[{
               SubscriptBox["\[Omega]", "4"], "\[Rule]", 
               RowBox[{
                SubscriptBox["\[Omega]", "1"], "+", "\[Omega]41"}]}]}], 
             "}"}]}], "/.", 
           RowBox[{"{", 
            RowBox[{
             RowBox[{
              SubscriptBox["k", "3"], "\[Rule]", 
              RowBox[{
               SubscriptBox["k", "2"], "+", "k43"}]}], ",", 
             RowBox[{
              SubscriptBox["k", "4"], "\[Rule]", 
              RowBox[{
               SubscriptBox["k", "1"], "+", "k41"}]}]}], "}"}]}], ",", 
          RowBox[{"{", 
           RowBox[{
            SubscriptBox["\[Omega]", "1"], ",", 
            SubscriptBox["\[Omega]", "2"], ",", "\[Omega]43"}], "}"}], ",", 
          "\[IndentingNewLine]", 
          RowBox[{"TransformMatrix", "\[Rule]", 
           RowBox[{"MatrixExp", "[", 
            RowBox[{
             RowBox[{
              RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", 
              RowBox[{"DiagonalMatrix", "[", 
               RowBox[{"{", 
                RowBox[{
                 RowBox[{"-", 
                  SubscriptBox["\[Omega]", "1"]}], ",", 
                 RowBox[{"-", 
                  SubscriptBox["\[Omega]", "2"]}], ",", "0", ",", 
                 "\[Omega]43"}], "}"}], "]"}]}], "+", 
             RowBox[{"\[ImaginaryI]", " ", "z", " ", 
              RowBox[{"DiagonalMatrix", "[", 
               RowBox[{"{", 
                RowBox[{
                 RowBox[{"-", 
                  SubscriptBox["k", "1"]}], ",", 
                 RowBox[{"-", 
                  SubscriptBox["k", "2"]}], ",", "0", ",", "k43"}], "}"}], 
               "]"}]}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[Omega]", "1"], "\[Rule]", 
           RowBox[{
            RowBox[{"-", 
             RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", 
          RowBox[{
           SubscriptBox["\[Omega]", "2"], "\[Rule]", 
           RowBox[{
            RowBox[{"-", 
             RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",", 
          RowBox[{"\[Omega]43", "\[Rule]", 
           RowBox[{
            RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-", 
            "\[Delta]2"}]}], ",", 
          RowBox[{"\[Omega]41", "\[Rule]", 
           RowBox[{
            RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-", 
            "\[Delta]1"}]}]}], "}"}]}], "/.", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"k43", " ", "\[Rule]", 
          RowBox[{
           SubscriptBox["k", "3"], "-", 
           SubscriptBox["k", "2"]}]}], ",", 
         RowBox[{"k41", " ", "\[Rule]", 
          RowBox[{
           SubscriptBox["k", "4"], "-", 
           SubscriptBox["k", "1"]}]}]}], "}"}]}]}], ")"}], "//", 
    "MatrixForm"}], " ", "//", "Simplify"}], " ", 
  "\[IndentingNewLine]"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {"\[Delta]1", "0", 
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{
         RowBox[{"-", "\[ImaginaryI]"}], " ", 
         SubscriptBox["\[Phi]", "1"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "1"]}], 
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{
         RowBox[{"-", "\[ImaginaryI]"}], " ", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{"t", " ", "\[Delta]1"}], "-", 
           RowBox[{"t", " ", "\[Delta]2"}], "+", 
           RowBox[{"t", " ", "\[Delta]3"}], "-", 
           RowBox[{"t", " ", "\[Delta]4"}], "-", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "1"]}], "+", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "2"]}], "-", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "3"]}], "+", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "4"]}], "+", 
           SubscriptBox["\[Phi]", "4"]}], ")"}]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "4"]}]},
     {"0", "\[Delta]2", 
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{
         RowBox[{"-", "\[ImaginaryI]"}], " ", 
         SubscriptBox["\[Phi]", "2"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "2"]}], 
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{
         RowBox[{"-", "\[ImaginaryI]"}], " ", 
         SubscriptBox["\[Phi]", "3"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "3"]}]},
     {
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{"\[ImaginaryI]", " ", 
         SubscriptBox["\[Phi]", "1"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "1"]}], 
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{"\[ImaginaryI]", " ", 
         SubscriptBox["\[Phi]", "2"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "2"]}], "0", "0"},
     {
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{"\[ImaginaryI]", " ", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{"t", " ", "\[Delta]1"}], "-", 
           RowBox[{"t", " ", "\[Delta]2"}], "+", 
           RowBox[{"t", " ", "\[Delta]3"}], "-", 
           RowBox[{"t", " ", "\[Delta]4"}], "-", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "1"]}], "+", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "2"]}], "-", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "3"]}], "+", 
           RowBox[{"z", " ", 
            SubscriptBox["k", "4"]}], "+", 
           SubscriptBox["\[Phi]", "4"]}], ")"}]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "4"]}], 
      RowBox[{
       RowBox[{"-", 
        FractionBox["1", "2"]}], " ", 
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{"\[ImaginaryI]", " ", 
         SubscriptBox["\[Phi]", "3"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "3"]}], "0", 
      RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell[TextData[{
 "Set ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
 "-",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
 " =  ",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
 "-",
 Cell[BoxData[
  FormBox[
   StyleBox[
    SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
 ", and phase-matching: ",
 Cell[BoxData[
  RowBox[{
   RowBox[{
    RowBox[{"-", 
     SubscriptBox["k", "1"]}], "+", 
    SubscriptBox["k", "2"], "-", 
    SubscriptBox["k", "3"], "+", 
    SubscriptBox["k", "4"]}], "=", "0"}]],
  CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->525228576],

Cell[BoxData[
 RowBox[{
  RowBox[{"(", 
   RowBox[{"Hrwa", "=", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"Hrwa", "/.", " ", 
        RowBox[{"\[Delta]4", "\[Rule]", 
         RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}], "/.", 
       " ", 
       RowBox[{
        SubscriptBox["k", "4"], "\[Rule]", 
        RowBox[{
         SubscriptBox["k", "1"], "-", 
         SubscriptBox["k", "2"], "+", 
         SubscriptBox["k", "3"]}]}]}], "/.", 
      RowBox[{
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         RowBox[{"\[ImaginaryI]", " ", 
          SubscriptBox["\[Phi]", "j_"]}]], " ", 
        SubscriptBox["\[CapitalOmega]", "j_"]}], "\[Rule]", 
       RowBox[{
        RowBox[{
         SubscriptBox["\[CapitalOmega]", 
          RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], "+", 
        RowBox[{"\[ImaginaryI]", " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}]}]}]}], "/.", 
     RowBox[{
      RowBox[{
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{
         RowBox[{"-", "\[ImaginaryI]"}], " ", 
         SubscriptBox["\[Phi]", "j_"]}]], " ", 
       SubscriptBox["\[CapitalOmega]", "j_"]}], "\[Rule]", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], "-", 
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{
         SubscriptBox["\[CapitalOmega]", 
          RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}]}]}]}]}], 
   ")"}], "//", "MatrixForm"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {"\[Delta]1", "0", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}]},
     {"0", "\[Delta]2", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}]},
     {
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{
          RowBox[{"-", "\[ImaginaryI]"}], " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{
          RowBox[{"-", "\[ImaginaryI]"}], " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
      "0", "0"},
     {
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{
          RowBox[{"-", "\[ImaginaryI]"}], " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
      RowBox[{
       FractionBox["1", "2"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{
          RowBox[{"-", "\[ImaginaryI]"}], " ", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "-", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
      "0", 
      RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],

Cell[TextData[{
 Cell[BoxData[
  ButtonBox["IntrinsicRelaxation",
   BaseStyle->"Link",
   ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
 " and ",
 Cell[BoxData[
  ButtonBox["TransitRelaxation",
   BaseStyle->"Link",
   ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
 " supply the relaxation matrices."
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.52258625875446*^9},
 CellID->610306692],

Cell[BoxData[
 RowBox[{"MatrixForm", "[", 
  RowBox[{"relax", "=", 
   RowBox[{
    RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", 
    RowBox[{"TransitRelaxation", "[", 
     RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellChangeTimes->{3.522586258754587*^9},
 CellID->645617687],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {"\[Gamma]t", "0", "0", "0"},
     {"0", "\[Gamma]t", "0", "0"},
     {"0", "0", 
      RowBox[{"\[Gamma]t", "+", 
       SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
     {"0", "0", "0", 
      RowBox[{"\[Gamma]t", "+", 
       SubscriptBox["\[CapitalGamma]", "4"]}]}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}, Open  ]],

Cell[CellGroupData[{

Cell[TextData[{
 Cell[BoxData[
  ButtonBox["OpticalRepopulation",
   BaseStyle->"Link",
   ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
 " and ",
 Cell[BoxData[
  ButtonBox["TransitRepopulation",
   BaseStyle->"Link",
   ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
 " supply the repopulation matrices."
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellChangeTimes->{3.522586211804159*^9},
 CellID->854192725],

Cell[BoxData[
 RowBox[{"MatrixForm", "[", 
  RowBox[{"repop", "=", 
   RowBox[{
    RowBox[{
     RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", 
     RowBox[{"TransitRepopulation", "[", 
      RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.", 
    RowBox[{
     RowBox[{"BranchingRatio", "[", 
      RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]", 
     SubscriptBox["R", 
      RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellChangeTimes->{3.522586211804293*^9},
 CellID->465762594],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {
      RowBox[{
       FractionBox["\[Gamma]t", "2"], "+", 
       RowBox[{
        SubscriptBox["\[CapitalGamma]", "3"], " ", 
        SubscriptBox["R", 
         RowBox[{"3", ",", "1"}]], " ", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Re", ",", "3", ",", "3"}]], "[", "t", "]"}]}], "+", 
       RowBox[{
        SubscriptBox["\[CapitalGamma]", "4"], " ", 
        SubscriptBox["R", 
         RowBox[{"4", ",", "1"}]], " ", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Re", ",", "4", ",", "4"}]], "[", "t", "]"}]}]}], "0", "0", 
      "0"},
     {"0", 
      RowBox[{
       FractionBox["\[Gamma]t", "2"], "+", 
       RowBox[{
        SubscriptBox["\[CapitalGamma]", "3"], " ", 
        SubscriptBox["R", 
         RowBox[{"3", ",", "2"}]], " ", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Re", ",", "3", ",", "3"}]], "[", "t", "]"}]}], "+", 
       RowBox[{
        SubscriptBox["\[CapitalGamma]", "4"], " ", 
        SubscriptBox["R", 
         RowBox[{"4", ",", "2"}]], " ", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Re", ",", "4", ",", "4"}]], "[", "t", "]"}]}]}], "0", "0"},
     {"0", "0", "0", "0"},
     {"0", "0", "0", "0"}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10000.}],

Cell["Density-matrix and field variables for one point", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->314466782]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"vars", "=", 
  RowBox[{
   RowBox[{"Join", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"DMVariables", "[", "system", "]"}], "/.", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], 
     ",", 
     RowBox[{"Table", "[", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], ",", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",", 
       RowBox[{"{", 
        RowBox[{"j", ",", "4"}], "}"}]}], "]"}]}], "]"}], "//", 
   "Flatten"}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[Rho]", 
     RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], ",", 
   RowBox[{
    SubscriptBox["\[CapitalOmega]", 
     RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell["Density matrix evolution equations:", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->398692331],

Cell[BoxData[
 RowBox[{"TableForm", "[", 
  RowBox[{"eqs", "=", 
   RowBox[{
    RowBox[{
     RowBox[{"Expand", "@", 
      RowBox[{"LiouvilleEquation", "[", 
       RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], "/.", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Rule]", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[Rho]", 
       RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", 
     RowBox[{
      SubscriptBox["\[Rho]", 
       RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}], 
  "]"}]], "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->298399236]
}, Open  ]],

Cell[BoxData[
 TagBox[
  TagBox[GridBox[{
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        FractionBox["\[Gamma]t", "2"], "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         SubscriptBox["R", 
          RowBox[{"3", ",", "1"}]], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         SubscriptBox["R", 
          RowBox[{"4", ",", "1"}]], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{"\[Delta]1", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", "\[Gamma]t"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]1", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        FractionBox["\[Gamma]t", "2"], "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         SubscriptBox["R", 
          RowBox[{"3", ",", "2"}]], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         SubscriptBox["R", 
          RowBox[{"4", ",", "2"}]], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]1", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          FractionBox["1", "2"]}], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]1", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          FractionBox["1", "2"]}], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]1", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]3", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          FractionBox["1", "2"]}], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]1", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]3", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          FractionBox["1", "2"]}], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]3", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]3", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          FractionBox["1", "2"]}], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]3", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "3"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{
         FractionBox["1", "2"], " ", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "+", 
        RowBox[{"\[Delta]2", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Delta]3", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]},
     {
      RowBox[{
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
         MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
       RowBox[{
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{"\[Gamma]t", " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
        "-", 
        RowBox[{
         SubscriptBox["\[CapitalGamma]", "4"], " ", 
         RowBox[{
          SubscriptBox["\[Rho]", 
           RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", 
          "]"}]}]}]}]}
    },
    GridBoxAlignment->{
     "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.5599999999999999]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}],
   Column],
  Function[BoxForm`e$, 
   TableForm[BoxForm`e$]]]], "Output"],

Cell["Initial conditions for density matrix:", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->8183146],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"inits", "=", 
  RowBox[{
   RowBox[{"InitialConditions", "[", 
    RowBox[{"system", ",", 
     RowBox[{"TransitRepopulation", "[", 
      RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ", 
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", 
     "]"}]}]}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", 
    FractionBox["1", "2"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", 
    FractionBox["1", "2"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[Rho]", 
      RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t0", "]"}], 
    "\[Equal]", "0"}]}], "}"}]], "Output"]
}, Open  ]],

Cell[TextData[{
 "Field evolution equations with finite difference approximation (first-order \
upwind scheme) for co-propagating beams. ",
 StyleBox["h",
  FontSlant->"Italic"],
 " is the the grid spacing in the spatial dimension."
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->142706944],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"fieldeqs", "=", 
  RowBox[{"{", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
      "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "2", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
      "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "3", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
      "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
      "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}]}], "}"}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Re", ",", "1", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Im", ",", "1", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Re", ",", "2", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Im", ",", "2", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Re", ",", "3", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Im", ",", "3", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Re", ",", "4", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Im", ",", "4", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", 
       "]"}]}]}]}]}], "}"}]], "Output"]
}, Open  ]],

Cell["\<\
Field evolution equations with finite difference approximation (first-order \
upwind scheme) for fields 1 and 2 forward propagating, fields 3 and 4 \
backward propagating. \
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->97303873],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"counterfieldeqs", "=", 
  RowBox[{"{", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
      "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "2", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}], 
      "-", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", 
             RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/", 
        "h"}]}]}]}], ",", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "+", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "3", ",", 
             RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}], 
        "/", "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
      "+", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", 
             RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}], 
        "/", "h"}]}]}]}], ",", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", " ", 
       RowBox[{"(", 
        RowBox[{
         SubscriptBox["\[Rho]", 
          RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], 
        ")"}]}], "+", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", 
             RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}], 
        "/", "h"}]}]}]}], ",", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        SubscriptBox["\[CapitalOmega]", 
         RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
       MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      RowBox[{"\[Eta]", " ", "c", "  ", 
       RowBox[{
        SubscriptBox["\[Rho]", 
         RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}], 
      "+", 
      RowBox[{"c", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", 
             RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}], 
        "/", "h"}]}]}]}]}], "}"}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Re", ",", "1", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Im", ",", "1", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Re", ",", "2", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"c", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{
            SubscriptBox["\[CapitalOmega]", 
             RowBox[{"Im", ",", "2", ",", 
              RowBox[{
               RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], 
       "h"]}], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     FractionBox[
      RowBox[{"c", " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "+", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "3", ",", 
            RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     FractionBox[
      RowBox[{"c", " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "+", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "3", ",", 
            RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     FractionBox[
      RowBox[{"c", " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "+", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Re", ",", "4", ",", 
            RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}], 
   ",", 
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       SubscriptBox["\[CapitalOmega]", 
        RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
      MultilineFunction->None], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     FractionBox[
      RowBox[{"c", " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           SubscriptBox["\[CapitalOmega]", 
            RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "+", 
         RowBox[{
          SubscriptBox["\[CapitalOmega]", 
           RowBox[{"Im", ",", "4", ",", 
            RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+", 
     RowBox[{"c", " ", "\[Eta]", " ", 
      RowBox[{
       SubscriptBox["\[Rho]", 
        RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", 
       "]"}]}]}]}]}], "}"}]], "Output"]
}, Open  ]],

Cell["\<\
Initial conditions for fields (assume uniform in space).\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->138519002],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"initfields", "=", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     SubscriptBox["\[CapitalOmega]0", "1"]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], " ", 
      RowBox[{"Exp", "[", 
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"t0", "/", "tp"}], ")"}], "2"]}], "]"}]}]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     SubscriptBox["\[CapitalOmega]0", "3"]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], " ", 
      RowBox[{"Exp", "[", 
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"t0", "/", "tp"}], ")"}], "2"]}], "]"}]}]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
     "0"}]}], "}"}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    SubscriptBox["\[CapitalOmega]0", "1"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox[
        SuperscriptBox["t0", "2"], 
        SuperscriptBox["tp", "2"]]}]], " ", 
     SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    SubscriptBox["\[CapitalOmega]0", "3"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox[
        SuperscriptBox["t0", "2"], 
        SuperscriptBox["tp", "2"]]}]], " ", 
     SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", 
    "0"}]}], "}"}]], "Output"]
}, Open  ]],

Cell["\<\
Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \
fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->3468672],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"boundaryconds", "=", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     SubscriptBox["\[CapitalOmega]0", "1"]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], " ", 
      RowBox[{"Exp", "[", 
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{
           RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}], 
    ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     SubscriptBox["\[CapitalOmega]0", "3"]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], 
      RowBox[{"Exp", "[", 
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{
           RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}], 
    ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}]}], "}"}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    SubscriptBox["\[CapitalOmega]0", "1"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox[
        SuperscriptBox["t", "2"], 
        SuperscriptBox["tp", "2"]]}]], " ", 
     SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    SubscriptBox["\[CapitalOmega]0", "3"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox[
        SuperscriptBox["t", "2"], 
        SuperscriptBox["tp", "2"]]}]], " ", 
     SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
    ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
    ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
    ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    "0"}]}], "}"}]], "Output"]
}, Open  ]],

Cell["\<\
Boundary conditions for counter-propagating fields. Fields 1 and 3 are \
constant, fields 2 and 4 are pulsed.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->102411945],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"counterboundaryconds", "=", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     SubscriptBox["\[CapitalOmega]0", "1"]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], " ", 
      RowBox[{"Exp", "[", 
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{
           RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}], 
    ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
     SubscriptBox["\[CapitalOmega]0", "3"]}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Re", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], 
      RowBox[{"Exp", "[", 
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{
           RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}], 
    ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}], ",", 
    RowBox[{
     RowBox[{
      SubscriptBox["\[CapitalOmega]", 
       RowBox[{"Im", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
     "0"}]}], "}"}]}]], "Input"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    SubscriptBox["\[CapitalOmega]0", "1"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox[
        SuperscriptBox["t", "2"], 
        SuperscriptBox["tp", "2"]]}]], " ", 
     SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
    SubscriptBox["\[CapitalOmega]0", "3"]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Re", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox[
        SuperscriptBox["t", "2"], 
        SuperscriptBox["tp", "2"]]}]], " ", 
     SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
    ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
    ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
    "0"}], ",", 
   RowBox[{
    RowBox[{
     SubscriptBox["\[CapitalOmega]", 
      RowBox[{"Im", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]", 
    "0"}]}], "}"}]], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Results", "Section"],

Cell[CellGroupData[{

Cell["More setup", "Subsection"],

Cell["\<\
Choose number of spatial points.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->573833124],

Cell[BoxData[
 RowBox[{
  RowBox[{"n", "=", "100"}], ";"}]], "Input"],

Cell["\<\
All system variables for all spatial points.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->289922153],

Cell[BoxData[
 RowBox[{
  RowBox[{"allvars", "=", 
   RowBox[{"Flatten", "@", 
    RowBox[{"Table", "[", 
     RowBox[{"vars", ",", 
      RowBox[{"{", 
       RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],

Cell["\<\
Equations for all points for the co-propagating case.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->605757010],

Cell[BoxData[
 RowBox[{
  RowBox[{"TableForm", "[", 
   RowBox[{"alleqs", "=", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{"DeleteCases", "[", 
       RowBox[{
        RowBox[{"Flatten", "@", 
         RowBox[{"Table", "[", 
          RowBox[{
           RowBox[{"Join", "[", 
            RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}],
             "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",", 
        RowBox[{"Alternatives", "@@", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{
            RowBox[{
             RowBox[{"D", "[", 
              RowBox[{
               RowBox[{"#", "[", 
                RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
              "_"}], "&"}], "/@", 
           RowBox[{"(", 
            RowBox[{"boundaryconds", "/.", 
             RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",", 
      RowBox[{"(", 
       RowBox[{"boundaryconds", "/.", 
        RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}], 
  ";"}]], "Input"],

Cell["\<\
Equations for all points for the counter-propagating case.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->546154363],

Cell[BoxData[
 RowBox[{
  RowBox[{"TableForm", "[", 
   RowBox[{"allcountereqs", "=", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{"DeleteCases", "[", 
       RowBox[{
        RowBox[{"Flatten", "@", 
         RowBox[{"Table", "[", 
          RowBox[{
           RowBox[{"Join", "[", 
            RowBox[{
            "eqs", ",", "inits", ",", "counterfieldeqs", ",", "initfields"}], 
            "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",", 
        RowBox[{"Alternatives", "@@", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{
            RowBox[{
             RowBox[{"D", "[", 
              RowBox[{
               RowBox[{"#", "[", 
                RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
              "_"}], "&"}], "/@", 
           RowBox[{"(", 
            RowBox[{"counterboundaryconds", "/.", 
             RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",", 
      RowBox[{"(", 
       RowBox[{"counterboundaryconds", "/.", 
        RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}], 
  ";"}]], "Input"],

Cell["Choose tolerance for NDSolve.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->53519095],

Cell[BoxData[
 RowBox[{
  RowBox[{"SetOptions", "[", 
   RowBox[{"NDSolve", ",", 
    RowBox[{"PrecisionGoal", "\[Rule]", "4"}], ",", 
    RowBox[{"AccuracyGoal", "\[Rule]", "4"}]}], "]"}], ";"}]], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"SetOptions", "[", 
   RowBox[{"Plot", ",", 
    RowBox[{"PlotRange", "\[Rule]", "All"}], ",", 
    RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"SetOptions", "[", 
   RowBox[{"ListDensityPlot", ",", 
    RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"],

Cell["\<\
Here we choose parameters and integrate the equations for the co- and \
counter-propagating cases.\
\>", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->434761194]
}, Open  ]],

Cell[CellGroupData[{

Cell[TextData[{
 "case I (",
 Cell[BoxData[
  FormBox[
   RowBox[{"f", "=", "0"}], TraditionalForm]], "None",
  FormatType->"TraditionalForm"],
 ")"
}], "Subsection"],

Cell[BoxData[
 RowBox[{
  RowBox[{"params", "=", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"\[Gamma]t", "\[Rule]", 
      RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",", 
     RowBox[{"c", "\[Rule]", 
      RowBox[{"3.", " ", 
       SuperscriptBox["10", "8"]}]}], ",", 
     RowBox[{"\[Eta]", "\[Rule]", 
      RowBox[{"2", " ", "3.", " ", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"794.7", " ", 
          SuperscriptBox["10", 
           RowBox[{"-", "9"}]]}], ")"}], "2"], 
       SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ", 
       RowBox[{
        SuperscriptBox["10", "6"], "/", 
        RowBox[{"(", 
         RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",", 
     RowBox[{"t0", "\[Rule]", 
      RowBox[{
       RowBox[{"-", "15."}], " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{"tp", "\[Rule]", 
      RowBox[{"4.", " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", 
      RowBox[{"3.", " ", "2", "\[Pi]", "  ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]", 
      RowBox[{"1.", " ", "2", "\[Pi]", " ", 
       SuperscriptBox["10", "3"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]", 
      RowBox[{"6.", " ", "2", "\[Pi]", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]", 
      RowBox[{"0", " ", "1.", " ", "2", "\[Pi]", "  ", 
       SuperscriptBox["10", "3"]}]}], ",", 
     RowBox[{"h", "\[Rule]", 
      RowBox[{"1.5", " ", 
       RowBox[{
        SuperscriptBox["10", 
         RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"alleqs1", "=", 
   RowBox[{"Expand", "[", 
    RowBox[{"alleqs", "/.", "params"}], "]"}]}], ";"}], "\n", 
 RowBox[{
  RowBox[{"sol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"alleqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "15."}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"15.", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"TableForm", "[", 
   RowBox[{"allcountereqs1", "=", 
    RowBox[{"Expand", "[", 
     RowBox[{"allcountereqs", "/.", "params"}], "]"}]}], "]"}], ";"}], "\n", 
 RowBox[{
  RowBox[{"countersol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"allcountereqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "15."}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"15.", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[TextData[{
 "Time dependence before and after the cell. ",
 " Black is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse before the medium, blue is  ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse after the medium, red is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]]],
 " pulse after the medium. Solid lines are co-propagating, dashed lines are \
fields 1 and 2 forward propagating, fields 3 and 4 backward propagating. "
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->117093481],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"sol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}], ",", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"countersol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{
      RowBox[{"-", "5."}], " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}], ",", 
     RowBox[{"5.", " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}]}], "}"}], ",", 
   RowBox[{"PlotStyle", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"Black", ",", "Blue", ",", "Red", ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Blue", ",", "Dashed"}], "]"}], ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",", 
   RowBox[{"FrameLabel", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Time (\[Mu]s)\>\"", ",", 
      "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {}, 
   {GrayLevel[0], LineBox[CompressedData["
1:eJwt2Hk0Vd3/B3CZQigiQ4bIkKHSzI2dz+MxZIhkTINE5Wue57r3EKLIkDmP
i1wRhVRKuzKFMt17SVGoKCXzEKXnd561fn+d9Vpn7XPW2fvzee+9joKLj7Ub
JwcHx/o1HBz/XeM44sJrf7Kx0KqUPj2EAuFjdj7/W2Dj0uptvCUpFPB+reIq
P8vG6atDjs/LKWCX1WJx5Tsb24UsDuwbpoCKFq/CyQ9srH38L4ay6UFoOn35
JXcTGwvLWx/eqqgLa55Fi9kks/FUk97HyY96EBFFrZxVZmNxbYGHh3v1YTqw
uc5ZkXxeKSqPHdMHV0+B5k45Nj5wvk+TuaQP5k7pA2USbKy2e2I5XRpARqeU
7yw/G4d/OFra7gxQP9/lwppg4dGUnQ2rUwC/PeQl7tewcK/GVD2WMoCLx/Gl
IGBhUzvCJSXPED4fWd28BbHw8Hr/w0fuGYKZge6jdgoLf73H1SzVZAiSmo+n
5feycN5JSubgd0OoWa09067CwmX9iYGiukbwtaDCQF6QhdvvUSMNh4zg2Je8
tW19THzmmpDzby0T2BYYkSzjycTLNTInLbnMwLjvyOpsTg+eiZpTNiqxgqCs
c3zrH3XjugujW0rKbCB9x6+i/NYu7LCsKy/C5wgnJqr8ylY7cIGtv1Zd2CkQ
Onjjl9jB1zi24YpznrELCHGFcLZmtOPslfaSPH830EgcMeDtasUOl8+bCem6
Q+ZVU85ryi/xmMPvlWhRL5iQG470j2nGfyaXAmMSfMHZ78+uT88a8RvKL0Yx
2x8U9Ta75kk14BuWybzCAkHA2fa8e9jyObY0tv1VFxICGa+U59bKPsWPWo6o
jPeFQfNSCxrqq8NRK87jSqsRoFUc9u/rww+wKO8UbWXXRdA2UHtstlyN6329
PJcFqFBr/FV48ls1lp49bPtOmAq7zRlnrw9W4ypHowN1olTQtFUW6n1WjSmO
Nh98pamw5byC86nYanx+sP7iSzUq8CdK8fptrMZltFztDSZUeMfkt87YXoVD
zbMjOaOpsNLEZr1orMRmVtJPJWapwJUp7n6VUYmTgkOZjgtUEHS3+2OXWIk/
xUtcy/5JBVmh/m0T1pXYVFFsQuRfKujbDkRt+liBI3N+q4yto0Hs6IiqB0cF
Nixygc3KNBDhnYoQ0yvHsUOthRW2NJDu3ykytKUc70vZGEV3oIFimW/Jbe5y
7PF9V0eqEw32HpntRq/LMA7d1OZ1hgZ2GQvK7k5luIfdzcvjRYM8ld9dT8Nu
40jEbfcwmgbbjPmVzj9gYBnbYorCXRq0cEjDpjwGfloiyJdeRYOzj9VPNdMY
WO7YUAj3fRrkbzfP2mrBwIF52pQPj2ggLpYsOPypBOebcaoHNdCAc0RswUGk
BI8zfep29tJgMHxLi6lnMc64eLq16ycNwvfu+rR8tBjT3gk9nF+hgcQkcNw+
UIyd9iYpSazSwPrMWcparmI8FVsRYrOGgDbjksrG7CKcTts8fI+fgAdimpm6
LwvxGb+O1ikpApIrD1zYoUjHjSv3G6K0CdgxP61dwkPH30+d8QyhENCpU8Yv
N16AeY5bLnrpEiDULFMudK8AW4r+YhzVJyBxYM3khF4B3s8h6D1nTICwSNYX
u5p8rB6V/ukfOwIs8gSuGIXnY8boMcp5BwKuqkap74d8rEAbctM4ToAAcvES
77qJT5XnaJedJIDXQ3OO9S0Pu0Qk1NFcCfjT9PyPlWIubr9rk5bpR4Ce1Z4C
/fEczLlnZVQjgIDIgVugdS8Ht51p43waSMDKTELMepSDj+g7ZvWGELAoZyvQ
6ZiNKx1vKgxHETAZOi5ulpKJT+/0UDx+hYAhTdHthhzpeDBA/OH7mwSYxCl9
WG1Pw6IvYywX8wm4N7I/+cEN0v7a6wQLCCAynGZUNdIwi179bUchASoct2oF
7FJxAvtfPesSAjxZB1B3+XVs7369X7iSgN7tplPxwdfxS3qX/zJpFH+iAOA6
7q58oDZylwC5cE6ecxXJeFBv4jujigBXixvXNLiSsJe0+kPRWgKm5x7nP6hM
wHd+t4idfEJAQ+kQx7a/E7BqP6e5VD0BaSe5z2a/vYLbc+eymaT3v7RQjeS+
gvtik0J1MQFROcN34XgcTgWBAz+eE3DEkke0ZioW/1lzWDr1BQFbuNUDlS7H
YmdqtMjeBgKavAK01967jB1mcyk+jeT6AO+L1zwxeI2WtXdDMwGDC+pbUW40
3l9+5qtlCwEVZZaX72pF48SlDwHvSFuJZR9OdSIw59zXp2MvCcj4osG0r6Li
AeV28cE2Ai7kWe1tM6JiJSmWqHU7Af6F3zSDHl3CKPiLXDPpuqCoWorwRZy9
T/hs4SsCjGSKWprrwnFMYWSaTgcBpzo5x998DcN2EenbM0gHUV3WfZMIw+rF
wzNTpIs/K1gJB4dgmZ0SP3M6CajPoPlvuRWMUzqidSZIs01G0nezg/D8XrVi
ShcBXBUFb+12B+LOAbX5TtLSpzl+XzgTgD/5C74V6yZgt4izXMR1f+xK7B+z
J+0SJH/2n0lfrNQUHNpLOlz10uUqWV983ktqdX0PAYo1Ty3jsr3x8SiZ28ak
qRG6b7tsPbBe19ngStJ3h37Jzte44+pyncz3pD8YPHGRFL2AZZXSPvAzyf4p
DWfo+p7DH+kU8z2k9QQpE86drjh4z68hR9KevstalzXP4stXC7KjSOexHwXd
TjiDN/IuheaTzvCbDsztOY1z8l9F1ZOe1/H58+naCay58p3xhrQ152Scpqkj
znZRWZoiXdXuKRLEa4fjXx724GERsCHte87TBmucj5W5JUkPPmCbCP45gnOj
E16oks42ZjrdDDbBl36aFO0lbdff5b1jCrCggkIpIq3CzOG61LUft8uGtxqS
1v+icewv2lZcMS/BZUpayz4ketRPAO3wO+RgRtqzLSBB+qQWmuff33qY9Cwj
1PWnhx6iD8Ox/8brNiJ5Dz1DVPTi9rIe6Uu7QfBdkxla2lr7ZA/pkW56pJLK
UTSz7U62CmmCb+vcgLsN2pD3Jm0TaSX9Yve0CnvUOEst4yLdEqI8bDpzHGmZ
z77/QX7/+bsldpz7TiE+v+AdvaRj5tLGTtQ7IxOWQ14dadtkNl37lAviTRpV
zSWtoiF+UozDFSE3954w0osttpLTdDdEb96VbUs6609fEmP0Anok1xbDTdo9
R8I0Ou5/yIqy//Ybcr0p+x14Tqt5Ij8lpR8M0gNebyM2efmgpKFm9iHSfdzX
NofF+aK0DbJha0lj6+3L5xz8UEPXQfSarLfkSa/7f634I+FRWU0L0qG6wqla
rwLQnZ4rtvyknRMqfeTyAtG6MGF6A1nPWipT6it6wcjK5PE/mqSZJ33pVbQw
xGmtbviB7Jdys9cjjq7h6EGw0f0I0jE62xQ5jSMQa+1kizjpA+LDhdaCUejE
YFX/oddkfoypMsPMqMhr6s9jD7JfKe9tZzvqqYj7vcuxSbK/VdnRooo7aChV
TDjNizRHw5B1+wYCtYuoCbi0ElB9M5Ml3ReNtmipjSqSeZGf3jznbRyD9u0M
a04g8yUxcW5j46MYRORyH51qIvMwzNLGI/cyqjzd71FJ5pGE7dreJ85x6BB9
EnOT+RUpGNJ34nsC4rsWfVSUzMcLXLcW751IRKP5aUqGj8n1W2Fu4ulMRC+f
eJUH1pH729cd9hX3riLm/Rd9bQ/J+mkce7MalIROBHyqMb9PQJFeuaclRwrS
LbotUHuHzAOdhshl7RSU2NZ+uqacgOt7314t8ktB5sZy/pVl5Ps11lYsfUxB
xgxWd04p2Q9SZ3/805yK9iyMx5kXE8C3IO09nZCOakr4PcRyCbBRSPXueZaO
VvTjSuayCaBb8PtUz6ejmbNfNnZnkfNZsuQTeOoGasHhsdQMsj/s2X4/d2Wg
8QT9d89SCOiuuxbE8TYT0Z2GHz2KI+vtIkfUBtVcVFjLa//f/vi5LCRqxikX
dT1z+yLrS8CuN5NRzOu56NABjXq6NwHtO99fTF/JRRlLZ/bRPQj4PVxHlezM
I5vse8glN7J+DAJitgTlo8F53F5H7tdi3HOGWSMF6Gb8GS11PQK0hWNF9f8U
oK97RpL3HCTgpKTU0BdpOqLpbmfq6BBQonko9IANHb0uOr+iu4+sH9vEsr4W
OjK+pe4nu52A4yVb14vfKUQ/gm6uN5EhoMDEpj8luBhdsLRhHiHPN03WX4p1
0ooRz2xc/MICDcZPhPuN3C1GTgYdkD1Hg91+BQK7xouRxeJQ45tJGjRmT+h2
O91Ctp4Ju3eN0mDsWwxdGEqQ/+MJOfseGmhcq/1f4rpS9L3/VUg4gwb6nZfN
KlRL0SGbG049xeT5br2dZpdBKQo43ZusXEgDImXxh2hkKerqnptqzqPBuxsH
/HImSlHS1xOPx1JoEJ9fF3K74zbS5e/vux1Bg893n8a8TC5HWR0uB8GCPN8x
m/O5xO4i7Z/cVsLjVPCS8p6601ONmiJfdSluosKRtvM54PwAWYTMd7oqX4TU
WFczw+o6lPY4kXFBPBK4FfliEufqkeJy75vsuTC4KddR9F7vObrO4c4hlBIC
36oz+So+vUBO15sKtI8FgWTc290zdxqRXfbfCfE//OHniMzwhH0zYhnJi3A2
+sJU+Z6eKyst6LZ1itBymBe01r6Iy33eihhshl/iCXewNjr6wvVCO/q1rW1T
RY8b4E0Ozwv3vEae676Eddu6ANjt5iIWO1DWO3F5yZRTECwj3CaZ24VM5G3l
fOIdwShFSz21qhtZeiLzNW02UPbmeFVAbA9a93mNBM8vK8jp9X6nbM9EI4zA
Tb2ZZiAqln/17nEm2lG02OJ70QyuWHcgnVNMpCroMi/nZgahXRpF5m5MFDF9
q7h6txnYtX31CAgg7wf0+T3oNAXRpy6rz5OZ6Norp9BtAqaQUGy35UQrE/Un
pClEJplAeAA6l6rDQmm2u/02vjKEf+8HxA3pstCI3HRG4ENDiFksLdXUZ6Ha
hEKBz0WGkBS28XuLEQtVbnB/8SPSEOiXvvr8OsZCM3x6NeU7DaE1MTXM1ZuF
/uYyGH6V+TdsKh67ur+IhXrOiXsE+xtADTup5p0gG6VwBvgsWAK41JbJJWxg
o3V9LlYsPQDRjJYrOmJsNPNk5s1zDQBf+z+nszaz0SXxiKr2tQA73nkJ2qmz
kWOAmlfWc30oHTJ36zFmI8nBAaGN+/Th5jcBiVaCjSzVvhlEWiMwf6VChMSy
Ua+7vM7KLgS/y//6oZLARvIOjovpIgiOe4U3Xk5hI5ECeviWHj2QnB73MShg
oytJM/HXjupB6kJrK37KRjwKsx2V9roAfZ/3eL9go7i2PI1pbV2YfsDxj2wz
GzFl4mUspHXBMlQ7KPI1G3U6bvd0fH8QBH8xFCgDbCTRyVlV53oQ6gcar45/
YKOfak0ZvUYHwaN+aCnrIxuVWLeFCqodhPYoic6lcTZKkHw11v6DAmGn9ugw
frCR6aZAC+tuCmw7ZFlsN0OOz6tzm6+mQL+8x3reBTY6osEnW3WDAv//fwOt
3dbrHB9Kgf8DO2VKVw==
     "]]}, 
   {RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwt2Hk0Ff//B/Ab0iZtQhIiFCrtEe+8kiVXtkKhCFmyE0JkvZOlZEn2yE6I
Iop3lgjJcu+kLIVPEhIKWYq+8zvn99ecx5kzZ87M+/l8zfvMTnMnvatsNBpt
wwoa7f+OBI3wLpsnse7AB2LwuRJ4Dxs4XZslcUgNR9X5JiVwbJWwFP5F4oXk
ttj3H5XAIL7xbOh3El+5V3uOtqgEErKcOy99JrGDkOHQogLAa9OQNxyvSZw2
91UpvAFgxasgnvORJD7JXPdJZ/AU+Pj6F/0SJ3F46YjiURUVmLreUGkmSuKq
76kv2Y1VwNJ+bUObEIl7Rj1yvjirgKZxbG8+H4k/mVjP9CSrgKBc7mqLNSRe
7/w1MndWBapm2s1Z4yzs62J6ojlfFf7aCfM9e8rCUVcjrOzF1MHPCN9yBxYW
nqTvzNChw5DW0nYRxMIZl236kmzpQFdWqGiRZ2G5hV8bcwLpwC/zYkr4MAub
lNmtm31Gh6dLZVdaJFhYZtdaDWcBTRhJK1QW5mLhw9hz6/iIJpz7lryquYuJ
T+0uuy0fqwW7r/tECtozsYcpj6DYFl1Q69Ja+pXYiRek6Fkh6/XBPd5q9YaK
Dnx8iTjlKWYEsfv+ZKQ2tePoz3XHwvNNwWS8xCV/6R0O6UmrWVSzgPUn7v/h
OdGKI+9s964TtYb17J5sTXEtuDwgc7Zcwg6kwweVOdub8Ep/7fn+aSd4EKHB
dkf8DTZomchesHGFcaGBm67BDZjT7WrSnpnrYOayfODLq3o8K296jLvPE0QV
t1smb6vDgfsb+sfzvIGtuaZjQLsG7zhjPhL+yhfi3opPr9pRjQ/zPHh994o/
NMw1ov6uSvy1w7fo3KsAkM30+td6phzfKPgeFycRBMeV97ygL5TiGedF1Qyj
YChTG+GeGCvFp4u+tsSYBsNBzRyLe32luPtEHw6wDAYZffH171+V4oKHpuP6
jsEgYr3T7DKjFJ9RnNzSHxAMa8K3cbpsKcUWgu2qrrnB0MNcoxe3twQra/67
HT4dDIuvSVZtfREWXTNzXzggBNgfbLWNyCnCQ3+t5lVDQoDL1mDZILwIxyyH
mtqFhsCO9R93j+sVYa/6Q4cLokJASb/Xl/e/QjzPd6OW81EIML4OStrRCrHa
bnqNdF0IbOKc9OFRLMAZGd3rRGgMEPi4f1O/SAEeT7quP8TOANF85+w8jgJs
vHDSOmsVAw5r/epArfn4m/pC744NDDCImxW3Nc7HYsPru77tYECyxN/2aq88
nLROxemzPAN2q63ZZV2egx07HlqfcWVAI00AeJNzcICYU7mtOwMsXkhdbgjI
wVu8760kbjAgda9mvNjZHEw3+Jta4ceArTyRXANfsnH4nYX7c2EMYBvkmb2w
KRvrn5PU+/KIAX3eIo0a9plYX9d6rU0HA7wPH/iyoJuJPSVup4izGMA3AbS8
Y5lYZT/BPvCeAXpXLORXsWfieIPYU/ReBjSrZRfVJ2TgCR45qz9fGVDOI/NA
4c0j/FttakPtIgMii47Z7BNNx9tAyO/DTgL2zUwdz16Zji3aKrMu7yKgTS5/
jdBoGm4aNvkwKEHA+gbBgvVP0rBy7PfzfdIEhPeumBhXTMM3vWpT048QwL0p
/pvB01Tc9twqxV6dgLPJa0NVvVMxk9N99qkGARGSvlJHIRWXrGtRn9MkYC0y
d9janoJf61Z9ctElgNNOZpo1lowfr9yTe9SIgOXXNcs6okn4eHzr0tI1AhR1
DqUpjSbi5xJcjzgcCLjZmwWyTxLxXdu+Q6ucCFj8GRa8ASXif7bDgjQ3An4L
6a9tu5iAr5zu/1HjTcDEjdGt9KgHWGxl90ffUAL6ZTbvVaHFYuamCo/+DALU
iV2fl1picJrAfK16FgFPBo9Glt+PwTvcr9kVZRMQGGf8U1I6Blv65XU55hEg
QcsqW2sQjXVmeP/VFxFgzzqGOgru4YGviUKvKgh4v1dj8rbHPbz6S8q6iUoC
0G2TNIB7WFAJtLa9JEDIm22lVWEkfvrfFaZlNQGWZ+/fkWa/i/dcWdXUXkvA
1PSL1PKiMJzjG/FnppmAutx+2u7TYfhvpc+q0RYCYi5xWCR0h+IDl3SudL8l
4Oibs5I3OULxvYaPf4veEeCbOFAMRgQ+YfS5cW8nAVraKzc/nWTgqq12RziY
BIhwSF3fFcLAR5R1J7oov3ZwO77qSQgWkb+u6EJS6wOcta0rg3FcjKaK1wcC
+malxFBSENbu61o88JGAwnztkGLZINztdXVumLIOT8KZaONADAGz9So9BMR9
k2YalvjjmMbuh119BNgk6xxuVvXHhqVegS6fCHB9NCbjXnELv15Hy1v9mYBK
d98yeW4/7BcBNdL9BKgKZjQ2VHpjF6Fz61UGCbjcxjb6YcQL173vSXhF2d3f
fN0Ynxc+RxZHHP2PgMyhnTrcHp643Hk6Y9sXAqriAlxFsjxwyXzVmxDKpPpg
7EHSHccmh+pMUGYvTOs2OHgdR82MRT4bIkDAlPbX5oobXsE9qLL5KwEHN5kJ
+dxzxRe4U0ztKZu7C1s8nHDGs74Hq7cOE+AteSukZIcz3s5yo12lLPq0WptI
cMQnejWyn1D291Hobte3wzveRPMrfiOguP/PjpmntjiH13XIl/Jn5Zfm/Jtt
8Maf9ZteUubO9c5RcLbCbg8gbYayIpf8uFmbJXYTzIqUGqHy5bwgGyJjgX0t
8/pNKCeTFe55YVfwkPjae+GU41ymrid1mmLu0aC0csozck7LX+6Y4ILV5MbP
lPXYJggZjYu4uaRiYMUoASUt9pvcOQ2wwNDUBlHKG2O+J1bX6eFVrgqpiHJf
OanOtayFf9JMwg0pJ6gxjVM81DF9zaYP9pQNPrY77psE/JRZe8uPsgQzkf1W
+1HM61HrE0FZ6Zv0uVMBYrhr083mOMqyhp5BX13Woj1marYplO2b3cIELsmi
yRkv4zTKv3JuWM7bKSJrRbu0h5QV6pGwnaIK+nXL7XgS5VsHgavnNR01934X
i6E82JF+c5eELqpR32dBUA5cLTbda3se/Yu7/9uT8i6lTNuYQkNU7ej72ZJy
o6f4gMZPI/RX+9R2LcrWxdkGbEcuo7PRUHiIcvB0zLBJlRkKsOyO3UpZP5JM
P37ZHNm32jCnqfcnIb31Eg/NEmVma1u1Uf7dqM8/lX4VHcme0MmiHL/cdTfn
qw3y3NgnrU7ZNpFPI4i4hugbpgR5KMsfvbDSdI89UjBWs+qj1rfXoduH18EJ
2e09z25OuYvjznYvwhkJ/nxvKEwZ6+1dsLrggnRuHuLspvIUOeHw7NSiKzoY
JOYKlG8ocEfLvnVDip9uy05R+TQLK3ISSr6O5l44aSRRlpWYlFpU9EDFnc7R
w1S+mZec00sCvFCL9NFbulT+C+itgxctvdHuxOaUbqo/wXK7RdnUfJD8RzbP
S5SPbR14pMflixzHiowvUH3TGpZketH9UXWi+LIA1U/5T/q/3lX5o6p3fGwB
VH8lyaDNovsCUJP5pYb/qH7T6vr1WjYGoktvtSISqP6XpjxgCXQFoZPPlmTI
bgJSYxumHdWC0XNUrsBPOTx8ekt9RTD6oPV84wVqnlh6aZ+3SwpBYVmiq992
EcCnv+r9SzMCHfZsVvVjUfOfy7PL5HsYqrPUjBdopeYLe9bvJybhKOhM3ont
1DzUX2TyrmwLR+53uYr4qHm5b2SfYeGTCCT87iUbRxOVn/rhD0vudxEjuuNW
fj0BGYoF9tq0KLRxeMZ+/wtqHsjV3Vw4HoU2jMwb/qDm+b3D3REZLlGoj7tr
R85z6v7Sqwrn/otCUTVHFLnLqD5ss/jxsCEaVXv5DOQXE7B6VsBxKiwWjUjx
2wtlEnB+Z7Rj56tYlL8lzfnZIwLSz65xKp2JRdLix4ZU06n3mT3ndP3yfRTx
/ez2K6lUPwxJl/kDcWjPD+u+a/EEdFTecad1P0DdTCk1MpzKmx/Nd6NkEvJd
vtjG7kzAUL6n70/jJLQ7fTPvHkcCDnyY8GXeS0JvbsoMadgT0LL/k1/sYhIS
3p7OG2xDwN+BSn/+tmRE+gWPtZpR+VF2CxZxT0UcnRdplToE8HBMq8QPpqHS
L7LJtH0EHOdmbFZaTkP/HJ8JEdT3/xL/tv5vAunokoh8wZo9BGTLnLxx7Hw6
Et74vpeN2j8c0w/P72pMR0ZPeDc2bCPAKFtsw9bHj1Cnep9oGAcBaernP0Z5
ZCIFDfPbuz4w4LXet0y5mEz0ppLmupdkwKiJt8tgcSaS/37nzsFOBhx0SVt7
YDQTsQe4mh94y4D6hHGFDuMspJ/g93LFKwYMjwWnc0M2ui3Y8mMiiwHSd8qu
ha/LRUP6fvfWuDBAqS2EXiiZi07rJxY9dqD2dxsMZNqVc9G4WJWZ5jUGBEb9
/rH5Zi46n/LzdoAFA3ruH3NJHM9FkhxWIvX6DLidWumZ9y4PffpLl8ySY8BQ
cXXwm8gClLHEHflrOQRSmQ2p7DzFaO75D/Fd/iHgsM1x8nFnKRrhf1w6fz0Y
tJqtE8GsHGWZ7Tm8RSYIohmWdJXSSuSYe7jowKcA4BBdHRw+XYVenGtpZAb6
Q4rQu4xPijXo1Zb+NWbLvjBW+mB14ZdaJDI1HO8p7gP8RPfBn4/rkU5Yq9OD
bTdgflBwYNywARX8Mz8Sc8EdJgsOdYYuNiLN74UqFQ2u0FRWSyTVNKE+Ltc3
WZLOoKeqW2tp04IGBUR66e/sAPNeqHl0qBWxOZlE8Vy2BjA4yB74+x1iJRj2
O/tYgIcgdzN/Ujva+bNxlF3NDFSjZKWiSzqQvHxhZmeAEeR/MCpxY3Si3Uzm
k5RcfUh879gjbshEucL00PQEXdjMkxpRbMRExZE2Hq6huhCq9w7JXWYitNC7
R9tLF260S2doXmUirpO+bdIXdcGgecTOzY2J6mlvvVy2UddXmy/VRDJRU8KP
0j3JOhCWaSBi0sREiReOyOqe1wZvN2QVLcdChnGm313a6PDvmRvRr8BCJ5cn
pxzK6BD8OzdXRomFujsL995MpsNdry3fG1Wp8yIjUu3X6JB+a8TpzzkWqijn
VNdaTYem8GgvS0cWuvv8WmGeqgbwZg5HHM1gobHF5flHHerwlLz7tIeLRIbG
8Uov+FTBvCxfKGwjiQbo8iiRpgqb4xpD5XhI1HLJZO/dURVwNlw2jd9OIqmo
/oKSlyqwr8eBy0CKRNw7jau/mqlAbr/m1U41Ep0oqR34XXQaUsbW8jUFkqjx
YXazxUVl0HwrEejJINGMQsWWvNPK8Lfg1A+JMBJNsolU0GSVwcjBuz4kikQj
5sTnYU5l4J8adVJOI1HeW/Yzd8pOQfRsUxOuJlFYusPgMd5TAF1DhxxrSeS6
NL4phe0UTJXTHu5oINGfupTuLZMA2jeOu99sJdGDUxHLR5oAuP7k7JTvJRGn
Wao23Qegqrc+YvQziYgnQWMnbADsqvrn4v8j0QGWQLWiPkCLL1/b3Cj1fH84
e67vB/C6fEgu5weJRAarufIFAXaf1M40+EkixwtjalNrAD4K223gnCWR2u+W
W2pzSvD//zfQ+7qM3OIhJfgfR1JiSw==
     "]]}, 
   {RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwt2Hk0Vd8XAPAXkkQiMiRThowZKsOXU5tECCmPqPDuU0QRGUNIhGSsDCUi
pEwZKumkzEPieSmpkIxJlClFv9tav7/u+qx7z7r3nnP2vntfSZqHlTMLhULZ
sIpC+XeMokQFVi4ycZjUlsKfZsIQOEL1ODXHxOaHdyUYnhCGM+2ydPEfTDxS
vPLjwQVhoKY2Hoj+ysQbf6bSah4Kg6wqu+SxT0y8KfI5tV9YBOodLjWx1TNx
9bOn7DApAqueX+Q/HM/Esi8K/7zOFoXzwaHFP2SY+M6tuYpIeQmYPtfwxFGK
iYvDLCQJHQmgu3M2dIgxcVe5p4K5qQSY2af0FQoy8SmXl7ssT0uAqHYBB7GW
iXXzLdVXP5SAmtnXtO7JbszTdCdZB0nCHzdxwYrybrzeaCyCjyYFIXb4gg90
49r8RPugXmn4Yr68WQJ1YwjPqx6ZlAZTA93HrTrdWFn/SZ8DRQaElKqnxXd0
48Qn2y6GyMlA+XKlU6tsN7YtZ+qf8ZWBsawiA3Gubkx3N3YVE5SFQ6M317T0
MLBLWcDHRUIOtp07Hy/qzsC/rzxl2CorQOkL9fG3LgzsLJu2qLtXAbR5JvST
nRnYifObqpq9ApgU2s6vdWDgW5E9P/ZHK4D7wM5jCwcZeLjvgafeCDnebFqB
ocnADtezltRyFEFLxrkxipWBh25mHg2RVwajHvPlH+ld2MT2hd+lHargk3qC
g+dxJ05w1hte2LkDUlR+52Q2v8bNKkbp969rwdHJsrOFy69wjP+yWxY/Au7/
rv3m/68dh0ad2t4moQ/crH4szddb8YainjKBY4agGDtowP66GQfyaK4Lgv1w
44oJS5xME97R8oF3TvsATIoNBHlFNOCUB89exJVbguPZFbWh53XYy3c5313k
EEjpbabfFH6Jl/I7FWU8rYGlpbZzwKIW+649Nz7CbgvX22R+rtnyDF+Wi2Va
pthBw0Ij6u95gjdGj+/xmDgKqrkBf9v3V2HV6HzHXhsH0DKQrzb99RDbt/g2
rKt2hKV6ZveLumJsVqlcxah1AtYbAq5X8ovxfPdJo6R6J+Bypa5QY4uxcHVW
mEWzE2zhfrdt0qoYl9yWmnj52gn2WPcFb/pchK9aUOzjPjlB5PCgnBulCKf3
9GqX/HYCXvbv5/n17uPrHrvHRXbQYJvRWumTVfnYQaGdS+MWDRopIrDpZj7W
GN4vIJJFA6Ja4XhDWD4+GGdftXKHBpnKZqlbD+TjhyzDNbUFNBDgj+caGMrD
fCOmVXIVNGAZ5J+z5c3DOffpaqGtNPgQKNFo4p6LFaT1N1rN0SBwh9rQr4O5
eEzu6O3xBRoITgHlnmYuTlfmTA9ZooGVE6GzhjUX7wr8/SbrLw1ajPKK69Jy
cKmqzt7GtQRU8Svd0G26gxv8HvUlbyEgvljTRUUqGx+5VfJO1YAAldlprbzV
2Vi5x98y15CADu3CtWLjWfhO80wyvzEB3A2i97lLszD3i7mAr2YExPatmprU
y8KVFyPzvKgErOdNHaWWZ+LUQde8YRcCVuprVyylMjAc1EmwiSVAz1Ija894
OtaN98qkxREQ1HcXVEvTcVfI4pFT8QQszcRE8KB0LFlt88YjmYB5MWvOjiNp
+M2qwHqrDAKm/McFTBNv4MG4mud+hQT0K/EpG1JScF4eQ02rkQDjKOlPy63J
2Pne99dPmwgoHdwVX3UtGZvYT3jqthAQft1+Rk4xGcszhh/vaCdAlnK3kpOa
hF2UBCxWMQhw79ZEnfcT8Neki2s4PxLwRtnk+2XfBCxokB117BMB6PLRLIAE
fKviFqW4nwCxQJbVJ4ri8YVLre8NPxNAP3AtTpH1Ku7cv1v84CgB0z+rM6uK
Y3B7g7zzm2kCXhb0U7btjcE5Eo5KizMEJB9jI9J6o3FIjNSQ4E8CdjUdkAti
i8ZD9eu3mM8REJw+UAJ2Ubh5eVX5tV8EcAL7i/bVEbhjJexbwio6fJhT2Ioy
LuJ5otktnIUORYUWl0pUL+JCvsVOT1Y6WPKn7U+yD8dOrKzme1fT4fqoIsOm
LBQ3XQ9ia+Sgwz7RnMaGJ4F486bfPzR46HC8g2X87VgAZtvnOfqdtE8obd2E
YABmZnG8L9hAh9wvkpbrff3wr4a+R7x8dGAtyuqlqp/DAeef73/OTwcRB8of
FydvHM6zLEUI0EGd11HsfIIXjp4ZmGfdRAeajzhxe8oT8/aNX9EVpEPoed3e
19ZumOK6/0S0MB1K+n9vmS13xV+HlzkEROjwyeApTYjPBYemsefcIq3HpTPp
2EHHxoT/07ub6TCr7bEyFHcUz2c880rcQgcrlqkoJZMjuEn1ez2bGB3KWt15
fdipOFPQfJ0P6Q9VTGOuFXP88hC3t5k4HfaMKh7SD9uKGwQsonok6KBq43dx
+Cwn6tTYZ60mSQf3Fu8YkWOqyLbNiCuatG4dEnfTM0Qp9ay7tkvR4YI6cL2v
N0WPs7nuBZMe7MwOkpY9iIanala3kJbek+uaXGSDeB49DqJupUOjn8yAyYwd
qnOzvZFK+mRJHpVl53GUyGp88y1p63hmttZxGuLd3uRsJk0HWUWBY/wUOpKr
LFUIJz3faC00ne2M6lgy31eQTl3puZo/7II6Snf/2SBDB9d0QZOLUadQRdWh
MzqkdXbZrnaQd0dPOhTaHUlzMlJrddpOI+WkeYEI0n2ne89vOu2BPlqMm+aS
7mGL2xwQ5Yl+rtt15gVpbKX864TtWVR7YUNwH+m8rFc9h+W90HXhIv8fpOOn
TlfoL3mha3/2OLHL0sFfd32Saps3CqOwaAqSdowp9hC7eQ6ll8kuSZM2fmd+
gOu0DzphOVK4nbSq7HeFJT1fdLXLf78maaFz8Rxj6/1Q4cdNPf+RXvVy+8ib
fj+0peuXpR7pCZ7OurpSf/ThqX31v/OMY57ZZWEByMrJj+/f+Pum7YNH6IHo
JNe9OBXSEdrbpFiMzqNaXd3TUqSPy0XQCuWDkF59SBkfaU2BgTtWXMHIyP25
3V/yfTaw6g4tTQWj6LkDrmOkJ6ZvbM3pCkH3Bc9/fEW67tNPwrTiAtoYlvqo
hLT5iBwjwDQU5fYsLsT9m++P1j9e1YQiv/LvmS6k5ZgX+aRUwlBGQdeD3aT5
28rUfW+Hode6s5IbSVNe9lu1bghHBpNFK5/J9Zx8zO0tFh6OqNuoBiWke0v+
S/b6GY4sbQyn/Ug/vHWjW6TnIpKdOh6xQu6XzJSGn2eMIlDXGHKvIR0b+3Nj
3eMIFP6785kvaXqAxWG3jEtIgyPs9gC5Hw96Bp97zhWJFtSOqiaQRifvp2wM
iUSNDEJJl7Sg9Zo3Tx2j0G6j4JP/9jub2c45HkYUsuk/lK9AelqfjGqDy6jd
d+BQMxkvrarPrblko1FQfMnsIhlPQVx+PUe/xiCNZGfH7WS8ubDenS89Gos+
VcjwVpDxab3E2LS6IxZpSXxQ20laZUzFpqj0CmK2fKxXEiXjp27k7bLPVeR8
cp/eDJkPOqr5Fw+OXkXyRvUBR0hXl+kL5dnGo+S0CnksRN7fwkIpf0sC2nu4
ZjiIzCc5evfdLSiJaJeMSd/rf/lI+2XQL61EFCimWbuZdMKO3is5ZxPREre5
KH0j+byKa4oWPiei3o2j/03w0oEqTHy73ZCEaAs+su3r6cAxJ3JmOiYFrXy5
LDy6hg6HJZPOdD1PQY/L2VM4SWcfWOvxcDYF6Y8lr1JkJ9c/b8Hj3PFrKNb5
5iMaG5k/bJhnF9WuoxCVtowiCh06n8T5UHpvIGEbjsKyRQJER9h8B7lTUepV
WmzuAgGufEG+L/VTkfAjkZMp8wSwuJ3yi3iQipB6Ao/bLAE7RI0COELTUG6f
tPrsdwJSQyjBG+QykINpp5LvCAFfCv2CZ+wzUO/+Vd+1hglQezsVzEjIQNgo
tnxxiIDW7R9DUpYy0BrrWkOPQQL+DDwJFeq4iXbvPXNL6wMBjgbeERI+mehs
8N9E3S4C+Nl+GqYOZiGf4khv7icEaK2P5NuzkoWm0veNmT8i4JiQcP+oSDaq
jWmaulJJQJ7Sbn/Nw9noVeSRgpUyAjStYwt7GrPReuHvco/J77Vd3lYegQd3
kIhclGEE+T3PMj78LtE3FxX5tavHBhJQbzWaq52ci2qNJGaO+xMwfjTw7GBJ
Lsp/4Gy73ZcA9bNZnGrjuShUjinXeJaAurRJ3U77u4ixvXO2jaw3RiYistdD
HnI8y5upTdYjinGVp2LXFaCsgzVrClQI2NNxybRIrgD1jkzNiisRQOWhKr02
KEABOjO9KfJkfZA4/40vqABdKfVM9JEm4P01zbPpkwXIzLdtgE+EgMuZT/zu
vbqH7pwzomI2cr5LnkU0xd9Ha7cZE0NvyfqO0ZDJyl+CYhXQ0DMfGogrNS7s
USlB88mz44+8aJB1qdEyxLgEfZSdyC3xoMEdrSaWX0ElKKD1o26qKw3uZjaf
mBouQW2xbCLmx2hArXS+MWlfipTlVMoP7KXB8TAXh7fKZShi5yl8dwMNTguf
+f6g6yGqtrNsG7njBOYtJ9PBsQod3KM055DuCEmRdFPDh0+QgNAeuhSfA7BJ
cUTE/qxBoo2XRPl6jsItsVc5H/Vq0a/Mb7lGFnYw8fAGR9HQCyRc8qN/aNwG
hKJ61Wce1CFv6RHXz4esYXFQdGDSpgFJXb1k7LxoBd/va3RFLzWikYnwr4dr
LaG58kVURm0zsp/7o9U5ZwZW+w6+oLu0InbTGk0x9v2AN9nW3tFoR/kqPMEP
JAwBqOqs4fOv0N+XaaPvygB8Rde3CGW8RtO++q7ZD/VgX6KqQlJZJ9rqtMNx
2UQLCt/alXlHdqHCK+KpcVMakP7mzHsZGwZiU2ypFDRQBT7+zCsldgy02t7j
tDvZ/0RbvULaxxmoWofjYpuMKvi/Vswxc2YgB7P5ygIOVaC2jLl5ezNQbLiM
/7Nb24HvGW25Np6BrKoz7p2qVoGYXKrE0WYGYrE9bvqeRRkCvdGJJO1uZLek
VivYIQ9/K7yj+nW7UVHnp3mTR/IQMV9QoLSnG81s22R8NUsergZs/Nq4rxtx
z1G3GHrLQ/aFMY/fh7qR70hhi5ewPDTHJgXQz3SjGyUmA00u22BT7siVXTnd
KGq3/az6RjkoZ14tf8/FRKe+Rn9IuyYNtMpCsZgNTBS03sbCLVQa+K43Rmvz
M1F6xaksczdp8LRZcUjdzESj/pEPTUAaVN6f5qIqMJH2b003wamtUNBv5txl
xETh3KL9v0y2wq0JTsHmcCZ6RbVYl8YrBWZtsuF+kUyU+mpnfeIK2T/f1/8m
G8NEXg4s6zK+SoLd6cC6S4lMhF7KC/c3SILQ9LiHQRYTfd3sJ6R0XhKS5pqb
8TMmWmZLq+gckwDo+aJx5gUTCdgxQ1/1kP19FeX2lgYm0ile0HxfLwEW/lo+
Qe1MxKdRirZmSwDX73xJnT7yepnaFC87sp/vq7sy/omJejOXMr8ZS4BbTf9C
6mcmYvJ/NfDXlIDWYMGOhXEmUpjYtKuGXwICjmto539jogAvDw8fVgnYttsi
lzrDRH8TPTWDvojDO3E3HvY5JhKl8dKUXorD//93oPSOeZPft8XhfwGT92Y=

     "]]}, 
   {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Fv37B3ChohCSpSxRpEhSDyk+jyuh3LJlKftWkX2PCLnve0KyRpZk
J0J4KOHTYkkSck+yVEgLkpIQlX7zPef315zXH3PmzMz1fs91RtrJ2/Q0Oxsb
24ZVbGz/OxJsRGjdTxLrN66Ka6zWgtCPFt7n5kmsI9rDLf9YC7y65FykvpO4
jCdSNL9PCyyutx+P+Uzit4cm1zyY0wI55TXStm9J7D4sKHhDFaDVnvGEs5XE
d8/xo1kMsOpBtJBZAom129Wj/xk6DBfCIyu/y5J4wjtKWEpTB74FtDU4yJBY
tTHZ5r2pDrh4rGvrliSxw1jDxiZXHTCwTh0uEyHx7VaVv/mpOiCuXsrlzE3i
N3srvhl90YGmHz1OrGkWXj8hHrAnXxd+u0uJ/FfLwkZxYduNNh+Fi1Y4IhBY
OGf0cbSbLg3eG/7ZshWxsMbws72n7GlA09a413mQhYfvPNS3Pk8DUcX736T2
s7CZqu5YWhkNav/UOXbKsXB05ErW9AYDmMit0JbiYWGtiDm5zW8N4MSn7LVP
+/vw+Kxzf9NlQ5APuJAg7tGHV8kfqkngMQG9fsM/3zNf4AJBtRNiq80h8PoZ
rg33ejFn/r11qmJWkKr0qyCnowfXePGEv75hDzbT1b5lf55jrpR9IR/+dQbe
Q9d+CR3qwpU6BYc0xM4CL0cwe0daJ+beJPnPyS3uoBA3pr2mpwNP/n72fPiD
N6Rf0WePl32CmXpsM6sd/WBacjTMj96GG8KEOVZ9DgAH35W94w9a8GhlcIzM
i2CQ0dziki32GLdfP1k5dCMU2J8+7B01eoib2g6dmq0Oh7RnsnNrJZqx6633
jR2nIqFtsR2N9Dfg4Nr9sjP1UaBcGPK361g93ktHIi4S0XBAe+d92lIN1r5+
Va7emA51ehN8M1M12Dh9blOhOR1UDEqcE1/X4EnWhbAEKzoomsvyvnxQg10l
BwvtXOiw9ay0gx2zBquM/d3yNpgO3HFia3w31uDKf1Z52efQYaiP2zRtdzWe
tl2/cGqSDsutJOtRSyU25h9MyA9iAEf6JrcrJZUY8TEFnoQygMfNYsUirhJv
5I5KmrjIAAneAflp00ocParJkCEYoGU+HC78rgIbvFzi9ktnAPPD2A53tgqs
fdjhV/hdBgis+XpBSLMcO2YMKWvOM2DzwB6Bka3luMR4u8DKTwbIlPkU3+Is
x6NmRXcbfzNgv+H3XtRVhguLvY13czLBIm1e1s26DM8uqkZNCjIhW+53T3PI
Lcwpxu/UuocJ8nrc28/Wl+CBrCWzn2eY0M62GYSzS7CHfUjYpnNMcL6/y64t
qgTnnUsv3uPJhJzdBte3HS/BjQvWf6z8mbBJKIFndLwYf7jxLiE+ggnsY0Lz
JwWKMXemn7RjOhNeh25t1/coxPKvif57rUwI3b93fMmkEHdY1z/xf8IEkRlg
u6VWiFmtX5MUOplg6uh8cC1HIda3Cryd1MOEp3rFlS0ZBdicGdOvNsSEeiHF
dI0n+fj+7+KPUzNMSKhUc1WSycP+fIsnxjcRoPTj24Hi1Xk4+cAym5soAd3q
ZdySk7l4TS7/s6nNBPC2iZfz3snFmlln77yTIiBueNXMtGYudpS7dK1gJwF8
Atc/WdTm4Kjd7qGuGgQcz14Xoxuag7tSc49UIQKu7AjfpQo5eE5TQOi7FgHr
kJPnpp4bWPv+8yZ3HQLWuCvOsaayMS2Ai3ePIQErrQ9XjGWysOfRBz/n7AjQ
NN6XqzWZibnmKxWXHQgIGy4C5TuZWD+aT/u3EwHLs7H0DSgTv+WIFvpxhoAF
SfN13acysJbm0QM1XgTMnJ/cREtKxxLmMotnwwkYURTcrcOWig27WhTq0gk4
Smx/+6czBR8VyxKQyCDgzphqQv21FDxa12IclUnApTTr2R0KKfjmlN0gukGA
HFtR3TqLZDybrMd1NZ8AD5Ya6i1PxBqFnPSw2wS83K3/9XJQIo5q7uq+VUEA
umyTC5CIf5N5HqxKAiRD2VefqUjAtb/+3txSTYDL8WvxChxXcbt++nBEHQHf
5u7n1FfG4tplu1PpzQQ8Lh1hkz8SixsMdMpjMAEptpzOGYMxWDuxV//8AwJU
nxzfEcYZg1ukM331HxEQnjlaBVYEbrQlzB+3EmBotFqw9isTT0lI8KS3EbCV
c1fAdgYTE80LvK7tBLR6+h9Ye4eB/S6bf195Qr0fWPOoazUdTzsIqLI9I+D1
/K5tKCsab5fi//cu5YoyI0aVcjRmyO9MOtdFgLFQxrFk60v4NatoQ/tzAtI+
KfRZVkfif4689jLuJcA123j/U91IPPKnoWGSsl/+lGLgvQjM5H9Ii3hBQENg
eN1Bvov4AcvmyM0+AnTFC9rbGkLxnfLKqBqSALtu9slXEyFYJvRPlsJLAgIj
ndZPiYRgl76hrXmUC99LG/MFBeO9ZpFuUf0ENKVF+W0tCsIe4lOK05TJo2Op
KmQgniuXtTrxigCOitxBC5UAbA12s8IDBGy2Z/vt6uiPX9pwWPtTVhFwkLyQ
6Ie/n+vc3UXZKVDK+eaMD1bzEeHzHyQgdEcEo1rCB/+Yp215RFmmttmIyPDC
eXF/E9cPERB5QWOwx9wd100fq7tGuWrkl8SPWjfc+Oia80vKb7UbnUQFXTH/
/c4QgWEqP6WhJRo+Z3CEY9viMcqaPAenHbpdcORG5zcXKXv4LCkzFJ2xya+o
XXcoZ5P3Am/FOuI1QqtG3lBO8/0WkPXCHqfLP1xe+5qAH+reK+PxNniWdTNc
ibIp+wyhqH8Kc0VFnTWhXN3pIRC4xgJ/PKd3z4cyf8rnzObHprg5m/S+Qvl1
PXmUZ8UQL87yXC2knKHXZ30j6CgG4ZeCDZQtBnq8lL4CLmYIrjylLNeXyRHR
o4ozr5QbvaKs9UnhxOGobZjrKLF2jLKyZXD0B9916HRRvOwnyh5P/WM32yqj
FqeSW5OUv5ecd/npromG+XDKBGWNFiTlrqmD5LibxscpR6gAz1ArDX2MupIx
THmsNy9su5wJUg/dUtdD+RLXtrlhNzOk1Gqu+pDydq1Ct5QKS9TNvlOignJ7
sOyo/qwV2lcW7ZZG+WxVsQX7P3Yo+a/ZljDK9LmUjzZNDshILF7FjrJ5Apl3
wM4JCY6IV2n87/4UNtkKsbmgXu6FRBHKC+3mot/yTqOxbesHZqjnf32l/2rJ
B1eUcubutWTKbpki+tHEOWTdqMZjT/mg6snV9js90Ihl+6cdlIc9By8Ie3qj
/MeTzyupeejnjN8SQvigXH2vAQ/K2HT30pmTvmgpflRvB+WEGc//Di/7IeMH
QeZJ1Lyd1+BLVn7mj+4tJM5pUXaIrfSWzA5APmGMhWlqXpXlvu5a1gxCqbxz
uw5S7rP1yauOCkGejLbjt6g8lNO6xk65hKLREycLVCjT1eVl2PUuoF/04Pt3
qTypbRrNN+UJR/e/zinWUfkz/LijL4QWiXb6qCeEUfk8+Mb8+/OmSFQTsqZo
nMrvDjJaUEYpCr3xDfTSpcz2eMS0k/8SWnvOQupvDwE1N9JZm/uj0SqG8gZN
qh9yUtvmvPToyF5YYCCK6o+4uLmNLffo6L3nZ6vHVL+4hBiZuWcxkGR9d5Jq
JwEi5mtfNjoQqHW95fBnqq/CeIL7bT7HotBKg4xYqv9cOYoW7tjEoUzpptNx
VD+aL/cJr+6OQ7eGypYIqj+VJpQsK+5cQcyX8RcCGqn5afn46k/gVcQRZMO2
5S4BBZrlHkZsSahtQHUwh+rrzeqPw5YOJKHb6k0xNlSfJ+4fvFLgm4T8FW34
hcup6yusrVh8l4RWP7pbEFZK5UHM+cvNtmSUKnb7j0gBAVzzm72+xaaiwYUz
Jy9T3xcz6WSvFw9S0acNq+ck0gjIO87tXfMjFd2QXlquSqWeZ/Gid4DdNSTv
rmTxNInKhyXp+3NvGqrUX2vyIo6A3ob4QLbBdLTc8khILYKat4ts4fw7spBu
Z8hbe2cC3pcFh89aZ6GQ0txOuiMBe1/NhPclZqE6zol/i+0J6Nzz5mLqchZy
E41++taagN+jDZGi3dmoSPuBn5wZNT/a/vStgTlo70/DGf4jBAhxzulcH8tF
i0cWVU9JE3CAjymotZKLbJcy/45IEmArKjbyaXMeiqflDjmJE1Cs+O95NbM8
VNH2pctGhJof87iy/vY8tFUhs12alwCr4m0bNt3ORw8G/PbOLjIh96jZQFJQ
IYpwHVCqovaXVtNPheophSjzXULPfWq/mbQJ9R2rKkTj2hYVj6n9R8U3d93e
yUJUx5X3vy0ZWjKmNXqti1CrrYd4QQ0TPk7R8/igGAlbDZwrymCCQnzdubj1
pejKvL/SqAsTtLoZtIodpaix7fAI3ZHa7zZYKPZol6KoE7JicnZMuJS08EUw
rBSNF6co21kyYeiamm/mdCmSUP1nZ9ExJlzOaQi+9fwWKt9zRDxxNxPeVzXT
nySUo9kfEUsT3xmQ09eWwyFUhbaRPy9LBTDAU8zr6+0XNajH6uJ2KTc6GD49
mwkO9UjnVdDOPdLRkMx0oenUNKD27Ym87X1RwCnDRY+ba0IJtsy9oiGRcEPy
ecEbzYfo1PTGvI7pcJiqSeeqGH+EZP6DdNqmCyBKDKrM3m5BHquGogTXn4ef
Y+Kj05ZtaDwsu9mRFghfy/e9iFluR/6jYeebGvygo+4RkfWwAxkVC7W7SviA
qa7JIxfXTmRzYVtrTKM7YOGTD/P3dSGnwp89JYZnASxUOC4tPEeSVgqLK17O
ECTO91Q0qwdl/njD+0DDAXSTlHclV/ciz7hxvY/eVlD2yqran/kCpbUU6XRl
mEPmS68hWcs+dKJ7IEEu3gQEhXKuVFn1oeqEmvOrwk0gxvQ5UrfrQ8t3UvdM
eJjA+R6FAoPTfSif/PJtwMAELJ5OuPv796GZdcR2PV7q/GanPw8T+tCf2f4z
JonGEFtosdWmow9tiBJmTmsaQag/OpOszkKR7Gp+6fdp8Pc/f2JEg4UuT62q
LcqjAX2htFRRi4W2pR4Wb79Mg6shGz+367LQsbtCOpqWNMiLmPD+dYKFsmve
LnPM60NHXHKIixcL0YZ3nvi8Tx+ECz9eUS1goUMOjpPv8VGoJa/WDvGQaNqT
lZC/Vhec6sokY/lJZKWSVp/4TQcE09pj1IVINGFb+z15UAd8LFfsr28hURYt
KIBVrgNKQ548FrtIxMEaldY20YHSEYPTL/RIFP5y1PLFzSNwY2qdSMclEt0f
UdtmQNMGg2dyl4KZJJLXYawtUNWG3+WHv8jFkuj0dudTPDLaYOUZ2sJIItGT
PUxB4aXDIPpt0ls7l0Rqr9oCOEsPQ/J8RwduJpGp9rNR4D4M0P9+n9cjEtnI
xpQ2zAN8q2e7KdFGourrcRu13wEYnT8QGNZFIsN3xXmxjQA8v0qkDw6TaL9X
ovZnL4Cm4ZYrk29J5B+X2zljDeDeNLJ4/R2JujXlkzmOAXSGi3QvTpKIvbCi
2mEbQIjdPvWSLySqPHN4tpQfQP5fo0KLWRLpDoRpsa9owYCU+4Y18yRy/qCW
4vFZC/7//wbqvWn25tOAFvwfwE5dPw==
     "]]}, 
   {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk4Vd3bB/ATkjxIMiUZM2RKGgyxHjeVyiyOQtI5u8xknksiU8YiRSJC
ZKyUyhIyPpnOOZQmIWOmEprUu3/X9f61r89f+9prrft732tL07ytTrNRKBS+
NRTK/56xlNjQh99Z2Bsl716bJQah41RvtyUWLmo/whVcIwZeL+UJya8sXLHn
F+eaLjGgZrWaxn9mYcMmlXobti0gr84pfeIDC2uUN2X847UFXpyMaeN4wcIZ
vxiWDw+Lw5qGi4LWKSw8zPuU/bSABIRFRFZ8lWPhO06XhXSXpWDBv6XOSYaF
JwwSkvrWSQPhwd3SLcHCSyerFAI3S4OJ/dW3pSIsbP2ZMj6jKw3i2iVc9PUs
XL5vTXRatDQ8+9ZDY84wsTKvhkiDsAz8dpcUeXCfiRWeiWdPH5SFc3b4fAAw
8eTtVvWo13LwyWx1ixRi4uYntzofzciBsaHu404dJt55e+fV3xR5EFV5siC5
m4lPjm3vv79dHu6vPjzVKc/Eq6dcxgbD5GEyr9xQkoeJ/+qz/eaWVYCjEznr
OgYY2P6kjZZmhCIo+oeliHsw8IBOy0UvmjIYDZitfr3Rh8fPx4vxz6pDQNYZ
rg2Pe7GlScWC26Y9cFXtV0Fuew+eTxP3q7+uDQ4z1T6lq124zHqfUr7hv8C7
L+OX4L6XeMtCyfKdHgPgZQ9ia8/sxJ0xQWcOyhwE5cRhQ86ednzHU936q8QR
uHb5CFuSXBvOvH28w0vNDGYkPob7Rrdgz94YG08tS3Dy+bNztKEZb9lsSr9z
9yjI6G0hcjY34c2Z2x8jLiqwdTzv/Wj+HG8L3f34VtExyPxPbnHd1no8rJxQ
sF7bHlpWWtHQQB0WZst24Uk/AeqFIX9fHq7FEfH2zPN/T4KW4fYnxj9qcNfZ
TpFInlPw8wWL2dhcgX1S6tW9+WnAfk3I9XJxBdbcl/tXUpAGPK7UP9TEClx3
f5tdtwgNtvK+VpyxqsCZ356VyUrSQN/mbYTwSDm+3kZcrVKlwaWxYQV3SjmO
TJEQsTpCg42c82GCemU4O0qWWXKBBopG67c51xbjZ6b1PGaTNGiliIFwTjH2
WFSIkP5MA/oTJceWC8WYly/a/+ssDXJVTbJkTYtx1LT24uVFGggJpvB8HC3C
iupMvsI/NGAbFlw6trEIizo2Vh8XpMO7UKnWIx6FuHp6m/UbPTqE7t45+sOy
EH+OsrNy0KeDyBxQ7moW4q6u9Oq3BnSwOkXXWcdeiCV3uCUzjOjQYVRU0Xy9
AH8QIPLzLOlQK6hyTbftNu7SjlSuJ+iQUqHpoiaTj0Uh5eN8HB3Uvi1oFa3N
x64/dUOOJNKhW7t0vcRUHu4yTWLkJ9GBt0W8jLcqD28rDm88mE6HxLdr5mb0
8rAYkeTqmk0Hvo1ZE9T7uZhy6sI9/nI6/Hnx/I+FTDZeWXil876LDnoWu/L0
p27glClnqa4eOoS/vQPqVTdw7ntmRl0fHX5+SYjegG7g5YnzqnH9dFiWsOHu
Pn4dx4+Jr/56R4e54Ckh47RreJcib5zeZzoMqQioHqBcxb5lXAzZtQQcit32
YbXzCnbTYKxL5CSganhvSm3GFfxiqEFlfh0BUZn2XxSUr2ATTyWDCm4C5Cl3
HnJT0/EZDdvkdfwEeDA1UW9ZKq5d0DaSFyOgX/XIfFxgKpb40qPlsIUAFOeQ
B5CKFR2dBVLECZAIZVt7pjwFtz2aDvssQQBhmpGkzJ6Mqyg3xc/LErCw+CS3
tiIBH+Ud0N6oQkBTyRBFcX8ClhkmQoVUCbhygoN+fTAeW26NzxFWI2Bvm6lC
OEc8nl7cEL1BnYCIGx8rwS4W346p6X+7iwAz87UC9+cvYepqlGjbbgKkOJT8
t8Vcwu6zK9qVewh44emnta4qBhuEEyKBmgRwA2fjy7XRWKU/RuODDgHvlpRk
UfZFHHG+xqlqHwHlpeYxleoXsRZ3o9t5XQIsBK8fTrePwmcM1TcKIgIyJ5QZ
ttWRGOdr5ooAAQfFC1pb6kKxBp+Vb+xBAhy72aZeTYbg8KIp8W1GBARE0v6Z
FgnBd01G6utJF36StuALDML2n0aGJw4RwF6eN0jV8MfsWs9KRYwJEDtJ+e1y
yg+zB32l5JDW2OgkEZbqi7ke+BlvNSGAFiBJvzV3Fk9sOP5M2JSAyDDdwR4b
d/z7/QjnmBkBlUO/tn6774p3vrr13cKcgA+GT2miAi544GT9uzrSejw6M07d
BD40sTMsyoLc37M/1GNU6PhBpPCeEdI5rMcBdxNO4T8fAj8iSwK+aXv/GU1y
wD1lXdzzpK3Y5mJVjhzH7zRs4w2sCKju9NgYwEnFHFVR39NJv6tlHeL5Y4av
mc0WKx0l4LoRw/5m4CFcvb5lwoc09XWPl9o84MA5b5Fa0voTykcNLsjihtWg
A3usCVC3Dbo45sON7A/6GZ4l7dHhlyB2Qh1xLUWol5D+WhxMfHfXQ5xMF573
pHWbkaS73gF0y27tKz4bAs5rAM+bF8bI9JFcqh7p4d788G3ylqijJUfTlfQ2
/ULXK+W2aO3Ie4tHpFuD5D4e+WKHwqQsmwZJO1cWUdn2OKLjvp7SP0hHL14Z
d3jmhPaorPcSohJgk8LK13KkoSjrX8VqpOWVhU4IUgh0v2BLz37Sy602ogv5
p5FJtMGoLek2WibzP0Nn9Fvg8Cdn0ll/BpKLx1xQo8R6hj9p1xsiRy7GuqFf
iifunSOts/fY2pPbPVDMaSm/GNLcjKznOv95op4navLxpN96DoYJe3ojShPR
8j8PcCRtCYk9izjbblnEksZWqj/OHPNBD9vr2y6QLsrrGrDe7ovGgm8qhZBO
mfN8YPDTF13UlQjxJB2sy5eu/p8feqAsdd+RtFNChbdEjj+a2Bj92oT0oddm
pjyeAWjZU3lKk7S6/LzST71ApO/7/ZMkaVH/FK5JviD0hKP7Pw7Sa5p2jPcP
BSHRhpSb4+T6TW/obW6uCkaDc9J2LaQZJ87mV18IQR4ZrmvySZcZvxw+ToSi
/l5/4cD/rbe2ogybURjKX7VOMCLtqBBNK90ejgb9ph2ESGsKfbxtxROBTnlU
Jg2R+8/Prjv6cy4CDUtmChSRnl64JlvQdw6xdzyccCFtNq7ACDGORHOGXdGj
5HnTeW/ztetZJKLu+mCaTVqBdVFARu0CwlZ2ruakKU1DVp38UeiNZt/1e+R5
rrl5jSk2cBFl7MtZ0CHPf+7VlkUvo2hUdmrEoZ+sl8TExU3Nj6NRCE1ByoM0
EWJu7Z4dgzKtuSuSyXoTsVnX/9QpFm3/uLBSTNYrh8mepQ2MWDQ5P6oiR3rB
gC5EGMah8Ibi+lyyvjvVG2x45OPRrjfiS5fI+g/nCRpw+JyA+rdZdikfJsCF
/c5ylUMiepln+zWRzA+bnwzhtd2JqFsSBU+S+aI2qWZbXnUZTfXuv5tJ5tFw
8/ir1YBkdNE5v6bNkIDuJ4LfLSeSUUHT+i/cpJ9UG4gWHUtB9eM3M44YkO83
N1cp3pqK0O41gg36BBTolXmYU9JQUOrs93A9Mp+0m8J/aKUhAepEWAGZj6m7
By8X+KShLqurbq1kfoYrrytfGUlD/jveJ60h85W6mT57qyUdebtrUEz3EsC1
JOa1kHAV+ekoaGqT+W4tne7V13AVXRry0dMm8z/fdL13zber6OnZbzv2kv1B
p2jF298xA4HX1nfySmQe2LJ8vu/MRHP74mmjcgT01iUFUAavIfo7s9oOsv+I
j3MEDvNmIdkVzpdZZH9yFQgPbDLIQr1Ce14TZP9ic3cLir6XhdbJ3BhYFCFg
t7hRCFfkdfQpbt+5WQGyPs9RIvgVslGrUh6/BRcBn0qDIr7YZ6PenJsf5sj+
ufPVXAQjNRtJPVopTyD7a+eO9+eu/sxGt+XSj9axEfD7Y12kaHcOanHe0/31
Nx2cDP2ipQJy0S6uZelXC3QQ5Fg8kDWch75Umbm5DdBBi++SgP6fPBSrViAf
w6LDCdHNQxNi+agxyi40h0GHIpV/gzWt89E5o5nPz7vpoGmTWDrQmo/QUOGm
4VY62BXJbhC6dxsFn6EfO19Lh7xD1q/TAgtRdGDmD50rdHhhNVGofaUQNUZL
3JpOpcOUQ6jPcGUhCvVxX81MpoOGTx73zqlCNBn5cHIsng7N12d0e+3voA+W
wtEOkXQYn47O54MilF0ye6vUgw7KSQ/dEv8pQY6hLAqLnK/0u2OMyxVKkNjh
W5sUyfmLuoGq0mNYgi6+990cQs5nUWnLswLhJejrv5xrBbTo8CZD0+fGTAk6
eONxoqQqHeJy64Ludt1FPxZ6XpUK0+FTZX10W0oZqm1oikueIOdDRksuu2Al
+nu6/PFMJA0kVVpX9NUqUdGIbGZLBA3yYlotzh2qRLRFSbWcUBrc1mpj+xFe
iUb3xl8x8KfBndz2M3NjlYj/gsUJf2caUB+evjZjX4UMWSt7PU1p4HjB5eQr
1WpUuHTSCZPzr+dmr/l7fTVIuDJ1i0bRKTDrcL4BTrVIi/29u2WmE6RfIowP
1NQhYwqHi/GqI3DIcEUnLj5DnMfzZvkeOcBNia6C93rP0bCjkGOcgh1M11zj
Kh9tRGzlEr3XntqCaOygxpd7zWhr6Bu33dI28H1Y/OOMbQvqmIoT8Gy2gvmy
XX3xP1tRy7RuVEyCBbQ/bIzNft6OXC29U34mmoDVQctGwqUTmQ6Ve9rmHQIs
fOz57V0vEa9fTDtv434AqgZ71HIXEj9QzaZqBxAoztchmt2DgiTa9qtt0oOD
aepK6dW96PNYkGF+vSaUvrKr9rvUhxZX7Z0ZvrvgRr/XGzlbBtr6R/jpaPkO
EBDMvVxpx0Bx5sE7N6btgHirLqTtyEAjP34HHPXfAcE9ygUmpxno2/dGEN63
A6gdk+5+fgx0tvdV95UONRCop60+T2GgVdWhzWemVSGhkCrl0M5AzmHMOzL7
VCDUD51J12aigKjTIm+Ft8PfB36xQ7pMtHWQ8k8cZTtEL5eUqOgzUbz0HsqB
aUVIDtn0ufUgE4lRi3vn6hUh//yk96+jTPThwVONNWcUoT0xPYTwYqIC3YZD
YnUKIFw4fnlvARMtC93znXQj75Os5PtveFho4PN9T/NfskB7WCqRwM9CvKH7
W6+Py4JAZmu8tiALmY4Z9S31ycJZ2z8ns7aw0JPUWMZIiSyovfHkoSqxUKnv
vGmKrSyUDJmc7jNioWjiXYbiYxm4Oc0t0h7FQpdV7pTyXyLvz//JRwVdYqF+
/xYU7icNv8sMZuUTWOix0iaV707SYOcZ2hyTxkKMLPFJKfJ+Lbow5W2Yx0L/
FvI/370oBelL7e24noUuKCx2ORBSAAOfdnk1spB/gDxfhxV5f6+l3NrawkIy
j+YpB0AKzIO1AsJfslCQn1K/u4QU8PwqltZ5y0KjgW80Jmsk4dnb5stTH1io
V7Ixty5VEtyfDa1kjbDQ8rzuy7tektAZIdK9MsVCgcefi40rSUKI4y7t4lkW
CuYx2KSxXhIU/zUvpH4hv1fUNDxnQgJeS7pv4Fxiob+BNSDXKgH//z8D+Ysa
m78slID/A0P/4u0=
     "]]}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->True,
  AxesOrigin->{0, 0},
  Frame->True,
  FrameLabel->{
    FormBox["\"Time (\[Mu]s)\"", TraditionalForm], 
    FormBox[
    "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for co-propagating case.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->333910298],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUmnc4Fu4XxqVBUkKpRAOJMipS38idSCqjpBAphUqKSkOTJIoyEpI0NJAd
mWWErOw9373fkoiQfs/vL9f1Xud9nOec+9zP51zXu/KYp7WrqIiIiPYMEZHp
5O8lqhh7/9dmHBbdM1vBJRUFd4w9fw5SIFj3bP3DPS3QSOyTzdiVheIK/coB
CyoyQ9rt8wQtkPqvBI+SP2JJeYyXSjEVqn3DpgNprahf80aBPliIkcDLmjE7
aag3r7kjH9UGSaWZr+4rlOJAX4PeUh4NbvcSKkbftKP1edOuwW/liJhXytBI
ouNmi9qObGoHHv0Xv4q1qBoRe3xEFwQyYGAX+1DavAvPFJ/lTJtRj99SsmdK
Aph4ceX+X1NWN+xkO7sNa5swFDUwKvmWhbs52lIXM3qhVWIZxmS3Qv7enivz
OWwcDy1xbEnqh5q/372Yg50IpevIGe7hQhDTmHL5BAU6S99ut5fuxQLVmgfq
33hQWhiy2fQBFce1np26K0bBEv7pLBV3Adruxzd6R9CQWWmR+7mQiq69iqnZ
ikKYs1wv9d6kI9JU81fkJjqa3X0OLlYWQsklqj/ck4GhxZEnDhQwsO73R8XH
akKozjxywuMoEyI/Nvnv28rCjTMvP8loCaHp9/24gTkLlwbKpXXz2Khbyvx5
XkcIK5GwthuabNx5dsxlhRIXa77J3X+8WYiO8N8SrCk27ilT+h6f52F4ud5r
h61CGKUrXz2bxcFa7+r0WB0+LP9UrFBfJoTZDhHNZGMudomvWDHbhY9K85mJ
i/sE8JiwfOGVz0W08t5bVsF8UE4vMDuQKID7idXya+bzYBC4YIl+Ih+PHMwl
rvkJ0Pn+bPKGHTz0hqsH8PL5iB+9XpJ3SoCTzvReTVsefmzdF8Yt5sPQS/Zu
srMAVRttkveQeI0bDj1DJH7eItsHqSR+jvTvd9vJ+f6FW3YZk/ODlIwlvMj5
0qs2vU0n+Ty/c9/fheQjHycv+R/JZ8cvTi2N5C/iWzNNgeS/zX/v7n+9AjRG
XzVPJ/cdfvzQIoPc94bGXTlJct/5/31mWPxjgxfQkm9wgYdmiV2iTqQ+E01+
eY2knlXr9oe/IfU8U994JprU0+TacP8TUv/aUmOTGlL/he3nZS+S+i9IOKLa
SvoVpbVKd4z0y0xm8dKFpF8nXdgZXaS/pf07vlWR/m7P7SuJIv3ddX3V3G6i
B1qfh2w40YPeyhNm/9eD0/d+B1ein1vDHOobop+36Vzr/+sn5ozBjkNEb39M
/+xIInobd55N3Ub0JvamcPAh0afMLcU1yUSfXTEPjHYTfZo+WO4kldwPzqKq
fhHbTqh3H9h+kuhZVP3nnyai/9+YuzyQ04qiQ5SKfUT/tGnPbj0g85IaNedC
PpmX1XvfBRiSeVESHrogTubLT65Wgja9HgYab2cVkPlSqq+LtiHz6Bv48+wT
uWr0pZuVN95lIEjRwD6QzK/C+WW2p+rKof70MbUvkQ53s5kzSx+3Iefz9hP7
l5bijZzW3l4uDX/StbeXEn/wcE4/IEP8we5V4AJ/4g+J+391pxE/MfVcvnEf
8RO7fJVyReInoVCfG0f8J8+jwnv+7iyoxl/35xL/2bXccZUL8Su5uInxv8Sv
WINfuyaJX4kmxLuxyefPpynmLvdIRdOuJUvsf1Lg7Zo2YmreAqXLsxVyLLNQ
dm3TS2dLKha7THd6JmyBp1BEoi7jI9SbF7lWkP/7RhijPZZO/MJrd8OdsULY
NnjEHjajQX/7ST/P6DZEF0a7aawshdnd8V4JPg179ex3h79rh+ysHUd8W8px
qXlRjnkyHRSF7T2x9A4M7dmif3tZNdZGtk2eCmIgKkwsx8KyC9r/Xh/8Oqce
Qfmz7lsHMvEwqvkNhdMNS/mWbeUNTeDVPqmjvGNh1iHzTRc+9MLDZXb2EmEr
KtMbvq/hscHSW8rUT+3H9h/FrwIciY/NarFKsODi/bS0jcdPUbBu5vEHsxb3
wuau/OXeBh4Uo1pmu4dSoSe1n284h4INu/3yVM8I0JEzylsXSYO3jJRJ0Gcq
cItd95no0MHkSFeJLx2r8i7893wLHQE6js7KRLeTR11OxJ1j4Jx3y1jcJwZK
DPXFXhKdx3yQnhZ7jAnWz7bTTdtYqPxdc2E5mYuZA+5DQZYsLMvam8ssZGNb
Xa6jL5kj/3uH1zK02ZjzZMPFiVVcHNJyCE4gczdt2R6Zo9M4GBWf+SjsEg+R
vJOL3cmcTonrXP6QzcGdePOzjrp8MLk3O1VInsx/iXuHd3CxTXAoqo74gOec
6dIy//eBmkd2+YVcBGU5XpcJ4UM1un+/1TsBFKpeF7nL8LCmhHt8gvjMq367
nCu+xN9OP4532clDUWAG700BH/u/m/wrOilATMV6uT32PIysWy0ZX8KHyOt9
8/KOChDVvTfJksQr+a+KiSfx9k+j2ypJ/EWra29VyfkayqfTGeR8091z9KLJ
+RJmVdVeJJ//ctR3jxMfmzrl2OZJ8ollXbG8SfJX+Cdl8Ibk762i+sOU5G+p
reSvTO7rKrbsjAa5r472uoOu5L41/Q8aikU4qFh7eUHoRR7aXVaccyP1iaor
3y1H6rnN59H7DBUuPEK6u+JJPetezXLNtmChs0hJN6yADbv47XeukfoHpXW8
rXBmIlmjb8t1sLDxmG+cPOmXjK39l9deDNQ5zFooVcSA7sZ/zk9Jfz+6hbX7
3aKDGvYsKX4zHePlT5cqED1subz4lpD4WJP3ynjfIioK2k6dySV5Rgdf8hES
HwtrT96cJE5BX1VljdRpAQLU3e2mnaTgrHO3yGbZXhyo+T6fT3zs/LX2ziLi
Y31bZ/pp2XWCl/9Wi0Z87OHzIuq+zF6MTib7u3Jb4S4emvye+Njg+mcOHOJj
IgnsM7Z1TWh+N8v5JvExsVq9zzuIj43LrtDOJZwwfNJenkl8bOXLwJGrxMcc
7J91LSNcsRpLCvnEx37Lml+NIz42PYTXmEV8TGbfykIB8THKvKCj1cTHjjGt
L3sRH0uv7NKmER+T6JCjlBAf671/5r0U8bFqqaiG28THjvAfmyYRH6vPHHFb
Q3zMfa5p5xLiJ8ERyYWPiI85bbGMbScc9XBaTzKd+Ni+my4uh4hfZdwPt7xE
fEx+gDY1QnwswsEWI1XNUAvqNai+mooy+dJiuSEK0tqS7OIsWqCfsvzMhG0W
5F/uD91nRUXWEscBsx8tkB2ssjhV9BFRPvFdP0uoqNq1b41EViu0ghZU8mYV
IfuuxILmXTTIPb43+OdJG6gJh7eLrinFMYPiqRYBDZKXcexdcjuUf/TS9fvL
YW5vNnU5hY746FXNe9mEx6KqMk+trcZV1uDLmcEMbPl2zj/PugvJS2anKC+t
x7fdimZn7jMxZWi/ZOH3buR/z5jV1NkEmmTI9nvvWVDOnGcSkN+LfNm8ynej
rVi4P1HJ8zsbueNLDQ2z+8FcFB6Qc7ITa0K+u4ZZc3EjUOSpyxkKsq7p7B9e
1QvK58tVN9p46De8Kjr0iArdT9W1y2UpsFzirBNwQYD/FobNFETT4Hpyeffd
ciqm6lgRrUSHZXGaL+l36Bg06jluYkSHwj73O/pEt1fqUuVVLzHgN2Xuyy5n
oCpUeLuQ6HxxXGVT4AkmClYm1heZsZDeX7bJgMyF6pOQpLb9LEScuxN5qpwN
f9zd/ZzM0cnUtNlBG9loVDc5NEebC/HR6ovlZO52SPuJ7RPj4JhRhI2CLw/X
yovKQ8icNsSExhoXcNBs/M12kx4fpwtN2t7KCxGvOEMmi+i96pDax49ufDTm
z42/1SXAtLARXlQpFzTLvZvFHvKh7jb0PO21AIbJzC32i3lQTj1TPpLMh/nf
Yo/GGwLUpThfsbHgIXm2fPGLIj7ShsfkF7gJoHquvVPjCA/f+1M0I8v4WLNu
1tWFTgLs/Te6RpbEUwx2j90n8fFlDo7rSfw737fPixfx0OmmEVxGzte5Ebh1
4U0BOMWVRk0lhA/paywrHvCht01fU+yNAMdqaJzY3SRPule8PcnfSMspbZLk
/6Dr8/hQHgcq6Zfkvm7kI4Y6nLB1qRDSK3vnfJrJwamm8a2PbvBwPUgu1J/U
J7TI9U26DhthPwvtF2hwsaKMnZFP6smVzHvF2sfCw+NfNlqWsiEnGjwtktTf
b6Q6I9SVCQujvw0RO1iQaUjMX0f6dUzCKEzMmwFTunjNrVIGnp57p5JO+mvd
Imvje5uOXf8mN5zdSsfrr92RmkQPO2ZnmIU8piHh4tCxj2R+vs5Uzqsk+qEb
nn8+PZwK58wLsmLzKJhX+MvLzVMAq9tJkW/dKRB20qROK/SiMvKJSEITD5nz
3Vv+S++HeGC4yeSRThyo3Z8124qLR98N3svl9OL705IZv360ImpJaME+PvHr
quVyErxunLyqc7q6qQntO591ZCayMP+UZkcn4YQrovvXvp9bD/G7bdbZhBOO
18+VfES44pumrOwJwhU3yytuuRCuuClhwd9DOMRjgqEU2lwOR5WuX0sJh2gs
+f5iBeGWS2bzFeRXlGLA8+aZFrJ/zTd1XNlAOGe00HPHidFCzHPLK95GOOfK
wxta1wkX/ZPab8BM/wiLT/YyacTHjHxdmvUIRw3fNRowIRx1Xy1710HCUWMf
Wmd0EB/7rq7dqX86Fd9HEx9bEO468WVmf3AN4THNtUbUsFQU+Ubd1f1FwW6v
4NYXVi0w060OnO6WBWf/zpCivVSUDvqYN/8kn0/2ic6r/4j623NNC8qo+Bv/
+tmGnFZEjrpeoyoUIeLIbBMJcxoCxV7Y9z9rQ358nEHwplJESZ4yC/tBQ9b9
B9NOpLdjztqRNcXfy/GE4W5Xn04H3c/1p6SwA3YKmWIOqMbvsexzc0MZSLRj
S0bad0Hjl961yQ31KKO7L0IoE3l62v/p/O7GWrVC6++sJrzeFVe9NZOFT3tG
PMS/9MKr+27venHCg1L20ctG2GjPmbq5s7gfT7sGBpjXOnF2VHaG9SEyJ9+m
SxdeoMC8V8dpSr8XRWpq9m79PLQZrn2t+pSKuZ2FCu+WU+Avkzv3LZnfPYlr
U2nPaPgQxS1bWk9F7IDP0VGiw/vnZzKCgukwNqB2/NxDh9nrKfNjRLc67Ptf
rt5gwCvwaEVaIwOeMUp7WETnHh1Pjt3zZKLKMJb+5AALTgzJn+5kLo5a6qfd
cGQBJ3vlrZvZcA7Vb2gicxTiLUavNWTj25mZRt+3crF1vzBwnMxd7vg0XSVp
DiTnrLGghfLgJP9WqpLMafa+flH/LxzInj/bYP4fH/Vjjw1uywmhsr3S1fwA
F86Jgbd4p/iIdf27a0ObALuuwOxSLRdyzgfFrMP50Nyp5rT9hQCzurj3XJV4
GDe2DLNK46P92QnxvT4C5InfWuZN9scrLbOnRAh3dajelwwm+2O7r3rvjlM8
6B1Q0Buq4JPvv3EJtSf8dgZhc0j8L82NK/rJvtnjX0vPJ/HfTDdfv7mSh3Lf
i/6i5HwXBffgXHJ+uWqKG2q4SFz73oEXxkfRLY/X30g+NwV0p4T9XNy3OfDF
keR/x/Hoh0GSv3fPkyn/Ug6uJDu4vdrMR3TN0NoTi4g/+D5LypzHQW7Wm/bf
wTw0xDc355L6UMb0jUUN2HhzLTzxwn9ceG/baMwj9dylr/nzoT0LUT13KU+/
sTEyk5dZQuo/Neaw9J4HE68Sq69+3cvCUITTGXvSr4aydL19VxmIsw2VjK1l
QEQ/ur2F9PfYjUaKQhAddbpFB86b0mFj88jGkughRmPVOb9YspdsmRaRWkXF
Ks2Rt3Sin+6x8sPcKCqGAj8omC2mYGfQ1fCMywJIPc2vKPWkwPRbSbmGVi/C
kxafbuzkYcHG4PTx3H70Jz+9o+vZCZvotJh1pK/viv8Y3Cnqxcbbfgf6Jlvh
WidYe3+QDbGDyo93DnajXeqaeEJvE1S3m0cuSGVB7Ujpitk2XeiSMDH4uLwe
1OH4HvtgJlReFhh2Eq44Ouv4i22a1eg/cKzBhXBFVdjAs0rCIUm2Nr6JhEM4
qzJ/PiAcIlYtUvCdcMum+A0mPeql0NewVKwj3GLgeW+vJOEc7/yGvD+Ec4Y+
fIpqIZzz58L900aEi36nzvPZSLhoKKUqTkB8/UVRZ+MTwlF1q+JauISjtpeL
V1kRjprvYaPAI9ylzCzer0W4yyxaXDCPcFfTD87Zwrpm3MzaUGCWngqV6ydr
Pw1T4FJYtPKUdQuUuVWBh32yEGlYoZ5pTUXuTF/h/pEWMC+zh7xYH1HK/Ke0
voKKoHvr70Tkt8IxYtLcUr8IbIU/topWNFSJ/MzdkdAGmYWWnQd2l6J7rl2g
4y8aaowTnoh+bEfhiT3x+TMrcEN+9aYL2XQwCluzJEc6UH0sdoaGQzUGhe0v
UiIZMNinf23N8S44zn+RvN+mHqWWRxZNPmYiZiD/0aNpPdCa9nrZx/EmfPGp
ijfIZ2F1wN6jro29MA65MXZmeRtacmcM3J5io/OB/brm+n68sdAo5kd1onOD
p5mhKxeqHyJiUq8Tbq9KiV7q0Iu3dwZ//+Hx8M/+mqv9GyqaXd/cPraegn+a
qtUTwQIEU/P5dm9piFDR3ZvdQ8XVyQ9lasuEOLgrX/VvJB2WC6wClRzoKChP
8nlCdHubORHxI5ABHZG5SdeoDCwViu1TVheCrewWN3mViWN/Xz34d4KFgcLc
L6lkLjrN19xgnyS+ZuMxYsxiw/H0yDZ5XSH23E44t8ycje3pY9IHyRzL6I7v
NPtPCJdf82fvXk72x3Uva1685cFC7WjKYkPCb9+1DtAaOdA9FelatpWP23ZX
ou/MF0Kgetjtv+Nc2K/tsgk9y8epzua1I/XEB75Kz2nu4sLAdXbd0iiyP0pZ
v2x5IsCqsOKUuevJ3vdkwbcNH/gweWy2oPi8ABSZ5dXGbjyw7G6e+lnOxwZh
2THOIQGYH8z2LLrCQ/iKS5vpNXy4VakO8q0Jv30zfZ/nysP89//N/ELi3x4v
zFF1EEC8ieNB0+bh3L6Tog1ZfOS13lXZQbg3TP1g8KZOLk4Oy3IiHvNxuTcw
KDhWAK9Nof+knLlYPXKyuv0MH9ZhmxYLGwRY8TSvfVc9B95/dtQzDPhIFa03
S5MW4p5y3rlFCsTHWqWDb7zk4Zmr9PRZpD5btYYDfM3Y6ONFHrlrwQV70x4N
HVLPoU0N6YtcWajJz1dUobDBub5GdAapv97v0DbZy0yYDbo8znVmgX1E41cU
6ddtx+O/u/0ZoNmGbRd2Ey7bluw7h/T34tWyf+/CCKcY/DmjYUNHumPCOl+i
B55TFXXBKxoeLvqV09VKhYPJgz4pop/YRRd0R54TX7tGLRBVo6D34oWyE3cE
yJRyTIq/TAE77cHtO7t64Tgk/bWPTt4rz6LS2xX9cN+3Irbwbic0BKFaH5y4
6D83w2FOVS+0yj8Ecua34cAML7weY2NlYPUHkfFu5IQlD94XNmHxdc8R7gcW
ymy79Fc7doHV1/1lUL8eUxP2R+aFMyFjfiLlwfcO7LXfxIs0qcZXrc3tS8MY
WGzpzTbOaMde7zGb4p/loE0zizmVQYditkjz0fg27EhZ+HPvf6Worwwe5xNu
8eJdY8cRzumMTswpX16EsEHXURvCORdyhevlhlrweuTKf6yGj/jqxf/LJVxk
vVee3kI4asHQ5RduJ7KwMnrsLIVwlNaWLT1vCHftP6tVtjsiFWnZgTWmhLsS
YnU6Hzc0o3Np9Mux9lSEfX2pVPybguww3XWSB1twXlp9ODGC7JVPx+/gABUK
57x7eH9aYLRt+w3HWbnIV/tIdyfvie/aHS6Wxa2ozPAy0j5ehBQl2wmV/TSs
KvQ4fziZ+Nie4tF/x0qRcmDHa7sxGgp+i0hlfW6HbrvCU6FyBRTU3tEeFNCx
oOHYxsh/HTBxyg2uvlWNS4ueSsnGMWAztUyk3rMLy2M5c3f61iNguoVkfzwT
z/d9PxAzvwfPjnQqtixoRu6hitKaLyxo+eZsnE/rxYtFg8OrDNtwZwc7TCjB
gdvwY7jR+6GR+eXqh4JOxLybLMi+wEXGj51/7gdR8Hntu1+H7/RCubr58LsJ
HkSDglMYWVSU0D3X/jCjgKf1+dLM52RvGtm9IzaThuuahh3VQiq8zfacdyc6
lDi3wuHxSzpamhKFTp50/E1RG6cR3ZrbqqygP2aQObdSZY0ysOzYmyJvovPz
36bV7CL78Zq7jk6PfVlIUXSfL6YthKvMzh93fFjg6k9J/Rbh4MWI4uZrZI6a
Pl75PH6YjaD+0WviXlxs/O+PfwaZu5QNf9XNN3Cw7Laz5doKHubdUHsaSOb0
QPW16n4aB0vfS/WWGvPxZONA3UVxIXTP1x6fvMiFyEI1kSZvPsqr4zwfVJK9
cnzg/gYhF1etqv6Gx/HBLMmzWRUuQCjrdE2fCQ/0lRc21efzcUsuvrL/lADz
MvPkra/ycMtLOuJlLR87ytZtEuwTYLHLbsq6EB6WmTxSim4ie6VqUx5vlwCD
9Q29ST48ND93u3yKxIelXYnaRPztdtItCR9jHtSOztxmS86/NnTuyU13Aba/
UVlhwufiCqtRUfiUD4Vve1pFIwSIz75V40b6dvyk6NHhC3y8K2K35nwVgBcw
43v5AAe+rYor87fz4bo+5nzXbCHeZmbPv6TFwbbUL3bTisleaRO/6Rypz4Yo
RUqSPRtpeY9Mlpzi4vqrof3RpJ46cboeo94sJAo/nHzzh3D8kMbbo6T+oh1j
c54FMHFw6Pg9GdKfzpN6VXziY/+m29uIhzPIe37VeskgA6/8Uk7Ykf4mZf25
dS2OjkS3n181TtCxcmLNxgqihww7946oFBqejK4uKGRSkVSgvc6C6Of6bf2k
wBQq3r8MK+3fSkHB4IkM2SgBKmL4X8JvU7DvYMe6GM9e3KaLU41+8VBcYBrr
0tmPWZLlh8LedUJEJf7i2GkuHC4W09Q7e7HlwYsLPzTacPXtc/ex6Ry4dzMv
vBDrwT2N/zboz2zGHYks7RufWLg5Gazz4EQXivP2Ux8dr0dsRISq9BMmLole
s50a7cCkgWrVSddqbKgS7vkcxcCx5c2vp+WRfaohoiRZsgJZXv3O3TlkD5HR
O5b0ug3d1N/v1liV4lfSmZsHh8lelmibklTQipoFJxvp24tQOZR/j0o4x2Mr
R3Xpb8JdlJh73fyPUKm0Xv2JcJH1+00/pghHWd22dfW8kYVLI9rn5fdTccqp
6PGyb804eVSf+z47FRu88q9OH6EgLoF7TauF7JU8zcgp8TTcjH621vQPBT9i
13a+OtQCEd6n6Igsslfa+S7wsaNiK9Mg7uO/FkxpnR54r5WLHMm69Bt1VNh8
e9n6oLIVL96sT49+XIQYiWGRrXY0xLXllR/80AZvr2cNurdLMf3hmv/eTdEQ
kHxKJKu6HXWhZj80d1fANi15xKyMjmg1hqNQshM8CZkw3bRqzKhHivcbBq7J
lFZ13OqC5bGXJZJ59bjxqeaVcjITrJOv56Yo9+DRx1WPpzY2I+hUwUKdJhZ2
B57+c3esF7bdGRO6rm1IK7lunCvPQZXKFcvov/1I2/rty1ZOJwb2Rysq3uUi
ZplVdWI0BRfGB6R/5PXii7RuD2s+H6vvHs5ZU06FnzCLMepGwXqB1FqLXAFO
Rys3jBXToHnYbwtlBg3PvHZZfiY6/FF7sTc1k47DozM99e/RkXLXh7tNRQgF
j7e7it4x4DEeFfBoARPf19mweonOWQkiR2jPmNA/lh8v/YLMTYbhGR/iY+HV
Faymhyz0Fl+5pK3MwdWEzMBRMkdbFsh+ZHmzIb38U0pvJBe7XW/t0tsihP67
A/zc3Rw4GKoqnxTwMLrLZ4UcyN5UllsiMs5B5p9TqVf2EM6xbP6yeEqAj/vV
PVQecnEzYGjjwHU+hrozpgoKBYipbbfXmMXDZ+eR1azXfEy+WcgdDiB7ZWbO
67NOPOiyV5XYlPGxrnpuhruTAPdNHzzaEslD0dpS6x2tfNg9/jKw11SAY+Ec
W23CheNZ45u3d/Px9/a3uzsMib8dnRdy7REPE5xP8TNJfN3V695vSTxiI9t7
HXk46+5UVl/KJ+/nhqxlRwRwCofR5HQetr2e4byW5GOWta3tx10BSlhH5m0J
5mJBmfE+1jU+HhRWHZ79SQDpI+7+fr852Oz1UNlyNx8i39tbk/4JsKdkKs/Z
lIMMh02OXkwepK4eapokPua4piZ0thcbVp398yUfcHHxaA1rCamnsSItO/0e
C2lGLbwfRDcxUbMjukj9s560LYiLYeLTgYAFMdEs6JkMvj5E+vVznayS6SsG
rqpHyH6bw4Tp57RZn0h/Z3/Jf/7nPR39r5Ztlfalo9Ld//lyogfOK9ryIwU0
qM0xzqJMUFHtt+v5M6IfMf33zhKfqFB9lUR9dIiCJ4uUe8xSybtpzI0dDaPg
1dNpD5Je9oLX11pxU4yP30UHs7b97EeEdkxtdXMn/oyu0Dt3g/BrZt+bU8Je
XPF4UUDd14an5a332DIctOsfmBG3pAcv02Qe3FJphjQjOn5FDQv7XHgpzy51
Ycn+jc9+R9ejxOdEwLsEJuoVv1+9PqMTrPmLtLrDquHQcmgi4DkDmyWupRuX
kb0yhZ19cF0F8g8J/0p9osPu7teafyltWLex7Y+aRynGnyyJ3DBOw4cMMacj
pa1477Ro68NzRXBMdyyJsaHh+cblit4TLTh6LejhHOlcJJ7bbHqrmtTDGI6b
bFtgKN/5vjo2CwlPe75KH6TCzF0hyr2xGZ+lRNsDaamQuiD+zmaUAk/B3sgn
Hc0QMeZ+v2CaBrMV2YrOkxTYLTecvfNoC9qfXm+t78rC5+J8GS9HKjY2dch3
zmrFpXUXJEyO5kJ0tC3Jt4mK138O6lxtaMVjlR173rUUwXRx/LXbTjTM+rtU
zfVzG4zdHI68SyzFn7NqFzxm0ZF3gtdi1NGODU5qMrY+FVgs0znVWEuHxL9/
3q6KnTC54dnrw65G6ZlP1WKZDAj4m1a/edQF/8NxO7mT9biSKXluXh4TTws0
dxnq9+CASsm1cadmmL/4NK2cysIl9ZpMiwV9oG8ejPV93AaG55MSA/Ie35pl
IyWybAD972ZHRq/owqxnmuqMOC7Wnj5QcjSZAplA/x+zxnshdBbe11vLx6jd
oH9EFxVSExvrtEMocLRS/nC8TYA3cZQ3NU00iKaGtPmtpGFAWt9CdbkQl4a5
0e8q6JjXsPvr/iQ67jub3sghunWb8VyK/YkBhRU5Fus3M8GYe8TEaY0Q1oMr
/Ld+ZIKbXFKq85WF7e+ehIutE6JWe/eDvUlkbzG8tKfUgoNW4b7VERuF6OYO
K3iGs7FsQtCYXcbFQx2Z+l4yd+cXHvcdO8mByrfFrkuX8sFavW6dDPGx9REy
mR1yXFRndWTIHeDDU2fmJs2fAlx+kChhlsLFmp7pawR3+Uj7EnRiS5oAiWM9
Aw6reAj98u28eTofHpoR5pOXyb4p7F3ifJNw1BcHyck6PoK2TnyW3ysA58Tr
GS+zeTi619NcdoCPGWMFY3WbBJjvxBnIreTBktYVtpTJB0Nj+aEsbQFeS6+I
a/7AQ3JV4OX6fj6K5hqcU98sAK06pTzjOg9ZKy5TTpPz1603PttLzu9+xHX6
p8TD67qm3ttpfPS+LlGc4yNA7QqHLSpJXPz7vkSREsDH65VK/q/SBZha1Jsq
K8vFtDm0TW37+fA/f2VR35AArXMthy+5cPBS99PiyoV8cPxbnVNIfb50/83Z
EMLG4r1J6nsKuPDgXMZnUs+rXWt9qhNYOO+4LXHAhIMdOWzGOVL/TgkRhdAM
Jrr9En/IfGZhNjJOsYiPTXsgd0Usj0Ee3eUXSrWYeLfF5a8+6a/t0IkD94vp
UA072+H7nA5GlFt9ONED2pdn1NTSIJO490/fIhrEKux3TSf6sXrXYyQk82Rf
e/cd4yYFWpIu917XkPsmJmzckEDB2uaxq3OpvXDa8wvLVvIRFZSiWDp/AOGF
V1+Hzu5CbtuuschHXJyXTc9zFO8Dp6r60CffNtyOitzZuYqDo8cfx3uu68Hu
C6f/aZs3Q5UfEra2m4XbTgKT0ntdOOC3tfROdz1mvKuZtjSTiS3rt9kdWdCJ
ooGae4urqqHhe3dTRjIDnY00KeuGdmiWMdM/Ha7AJ7cnklsr6Zi9z5oSn0v4
T+PItcXhpXgVvC8yaRrZq/N0HwqrW9EYcah5XmoRjpgxZscdosFMJ0J9p2gr
5olVKd/elguertWyPfVUtAv0Dz51bIF1q7T5zpIsXDMMeN1jT4WLb17Qy9Zm
mF7e1rJaMQ0P/3we2j1OgWqDAovX2wyD8H3vT4elwWJWXJ+iCBUGqzqWy5xo
wSXz15LzZn8AwybaWs+ZikUXF4R4SrVi2ynbyRlxxMdqD3vf76AiROOgqEF3
K5aV1TRcXvYJaqpedGk3GprzO+cW1rZhtci++WIdpfgu3lxRK0WHoejmD8/Z
7ejKFdU2yqpA2Vq/tH0ddMR1Slibre/El0WnlF5q1OC7m8mHacUM6OQUfAx/
34WH2bfXL93bgCGfts7+KiZK2uXiimx7ELIo3zYgrBlDhoVBNSOEY1w5K1kb
+1Ddmn2O19AGpc7fW7p2cNCv9+TN5h0DsIoKPl/t0oX6Ze413nlcWM/dpjan
lIKDYyXhnWZ9SLuYeVeG8IvC5tdBfr+oqFIcNdqZT0H8YNLrjj8CTFxWe+XC
pqH0mfuEngkNysq7nV4THQ4XNynQ+ug4H6nva9RIJ/si6NtXCTFD/MXkt04G
HE9YpbofZ5L9JsRkguj8kLC5pbGFCe/UHyV5v4lvidPWZhMf+767ysuvmoVK
4RKFq34cmGdtnWmpJ0RgePe85dlsDPFS3b3GuRAoB219py/Eawmrvbr3OdBf
P/vuOlU+VtVoZGmRc35vrgr++R/ZPzM79WuP8vHy+unQC1QBDs2z3zXZSHhM
Ij9U/REfKZpqzKpnAsTua5/juIcH85r2oLFCPgwjDeR+uwkQltv41OYND983
Ve7808XHniciAe8IX7WsTqCv7uWhLH1VipGA+NuO0fxFqgJEq15yOvudh5tx
y5vthwgHVodUsBUFqOpIL7bu4YE6927MOJ8PNflwvcskXr7S6kNUAg+7Pw1H
upDzf5Rs3uUJAdxeOP7im/FQbmrlrkbyUW11Spt7kvBYz1fW529c0Ae+TSyI
4KN97tWLBmTfV6McqJunx0X3EQn/W0f4kPjRqrueLsCov75XfwAHBzIZJz+r
8OFy2py/fIMQJ4ec2blpbCyKTZAp+8nF3sdncgJJPR87jm/89oUF1+vmQqsr
HEx1WRdqkPpnclV+/frGRHpc9XYLIQvZzp+Hw0mdLR/1aRQ3E95eYTWcZs9E
aPMUt4P09/ikosdjomu/V4YOSmTOFxeHL19G9HD75n0XPSoN2VK/y8y20MAN
22vuS/QTozKh9IJPxYu4uyGP3lPQqxk+9OW7AE9D6a8SiP5SSpPGFmv3QV3b
RSV5Gx/9k9YLwjYN4CbleO9siy7ktdce7knjIvbDC/vH6iTukcdT34I2/Dj3
9/T6rRw4FYm+jzbvQc3B350qN5qxuVnoPULuEWH0rO7oyy68GDKqS9ZoQMaT
naY5pUwYl+eemFrdCcvRm2I2kjU44DPqc5X49cO/frMuDrTj0fZdQ92PKxC0
0O1AZBMdgUvdskvL23Bnru7jys+lEE6miDIl6Di+RFTyTmsr3JrdZbJ+F6FB
TUFk7jEaakKnPy6QaIVLR1uI2bVc/HqSHK3fSoUGN1Z71/EWRPTJqBd+z8LC
rAzbB05U7Biw3tzT1Yw3CV7N7a5p2LDeX270LwXnbsae1KE3Y/5FsaomdhoM
+7psg2ZQ4dNqw1ri2QKNJMtv7G0fUKP6SqXHjQpRW8PXMUtaYfrQ83g6LRdD
McLAtH4qVqk5qP5mtSJDQ5c/cekTYv+d/TzdkwaD/L+j/j1tmPyToMWfW4Z7
jMUVdHk6xO2Xmk+baEdhvd3g25EKTK+983mQQYdvjtPtDrNOdC/5Zf/wZg0i
yl9fC2tgoD3EtVTwtQuGWus3f8xqwKuQ/kd1vUwUb3owHuDTA5+i09tNapvh
Pf+z2725bHh+N+8tOdyHfNGX+noL22FtF9zY40z2iu5unYoLA5BD7LL8nC7o
FI/1r+0iXGKqUjncQ4H+7BM/zr7twzPPXbksLzIHhn8NbObTcMcnOyWZR0FE
bNC2T/JCPJSakTufvDORQtEbl87QMNNZfP2WFUSHtZ11GeN01NS4RtyfouNm
kKgon+hWzW2FUv0YA3zt3ZptUUz4fhad9XGtEJvmqmtMH2XinMZE/w5tNhRM
HSP91gshonRZoe0HCx7tU4XzijlgBBhnaW4ie+LuOxe9+ti4++aYQ4sBD4mp
h4/EGAjRIvthWUMm4c3tMcGuOnxQZy4O8CJ7ytfiDX9rjnPxJj2VWnyWj+yf
AUMf6gUYKD6/sXySi9d7OuS/vOTDT/x+6dr7AtjueoScKzz8t5TOWFTLx+3U
Ao031gLo3eW8b2vhod5dz+Ial48aI5pUszo550KFr9McPr5neRmITPJxKVfj
x+B8AZ4omj+kK/KRILFlm6aoAI7irkOvxQVwEZdOCpHg4+gL++0FE3xEMh78
tJQWgOWAPsVmwl1aWxI4HD50ldwWR68R4POSz0csL/Fw+mN41+4aPmQWmSfk
7RfAfV2cacQfLpTOPrLLesFHvNf5dbHBAmx3fp0xcoQLyaWTr6+c4ePsr4Dw
040kz4tvQoNSOcjZKXp/bD0fzUax1EOkX4YTCkFLO9mY1eluvl2Xh6t2r4x8
SD09em3O6fJYGDRbMTH9IwdGvn7dkqT+p1tKCrb8ZEJRQ1xvYhUblsevth4h
/RJt2p7ZMsSA+QoN7S0PmNgrY6v0iPT3fuaNiMvDdLgdfpd1n/zdVs1NryR6
4F+C4QjZt8Zj4zzeHqfB63d0iBzJ5+D1kaWBEmQPWygSY0mloG/8a6UO0Vvh
EmZRQisFVxaM3f0b0oc2H9aPZ258fLA7ZGjqNoDcfBGqUXwXXnYHZqQ3cPFM
5Vt11L4+eAd8/SAl0o6oZyZ6VvYczMw5zvE/24Obq9RcV+Q1Y3Vbf2vdTDbu
GL260f2pCwVH957MCG2A5N7G4Lw2JnTH2+wT0YkzYpzd8U41EI09P1+hmoGE
da6vhEPtMNI+mB/WVYHk3e/DjQfo+Gd+O/hZaxvGPT/4C0ZKcTt0jpWEHB21
4v/NtKS2wrzJZ89rq09wqy6cmH2aBmdM/Blc0IqvVtLeVmW5aB1Tm3Gqh4r9
xinWjqdbkHog8Ttd9QMy1LirtrhQYTHKWqNJaUb33vt6JZ/ScMuofsNJUSru
fUm6dIPXjNZeU0s9i3QwHt5oeTebisip1JzTV1rgXLOen+f3AWdf2fBOnKHi
Cd/rtMuqVryoEX7I183DtRddvWMsKj7KJat9HmmF5LlW1+q+T1B6f0z7hA8N
84Nm9HQL2+C5wvtSpkUZfCkfj31dTYeSrcVUoHQHMg3iXSaNK2E5zy+hgvRZ
8o6WUN+lE7mLtpQ09NXAyVCZ1khjYEaeiJDN6cJ3TrbvB5lGpLvk3x3/RfZ3
s8m57S96kLZ6w1i8VAtU+xbdX6POhsMiqy4V0u9zXsFOA67tiLy99dil24Sr
RfKs/iQNoJDPEIzKdsPvhvUqk39chL3Xs7GcoMBER/TaBdl+8O5+jB2N42NS
4pJB/hoajHt27pZdSEXD/Qu7bZcKMXjn9qqpZXRcNfxpGvKM7M9HDLo4RIdx
CWUKuxQYGJ7uSr2jS/LuCpROVxUiZGS/o/IyJuR0j040NjNx9+oSVqiGEEd8
Z/HkVrBg84Hzacc5Nt6E2FueI5xwNMD6ZKQCGzyu8cbhWVzcMPLr2LBZiDci
+y9nzeUgbodkg+N9Hox235yWtZXMF7Xl+EIKud+vHyMt2/nYvqvWLWc28dse
2uWcSMJdVudrpW6Rzwv20KvzyLy/rUkf0eYhJjX/bFsWH4NDN/0NLggQPOa2
vDSVB1py7OmqXj7K2jedoG4RoIxvyt9G/Ef6vyMiL4n/eD5Xp3gR/8k+diM+
gfy/mO89UWfnCdC/LUZFa4wPG+1dJy6TPVZyBaMnZ4EAdyJ30D7/IHz3MjmU
YsTH84XC+5ok/le9fWAAiR971FvxRpzsw0/UmYvI+e+0nkirywgw59yCu3fe
8+C12NJnNslnOMlKSNUX4Cg3KuuPBg+Ti58mtWeS/XQy62uEtwCyHZJ2K8K5
+CizZ6TvBh+KFwzLXAoEKJ6vW7SolwPX8KUmt8j/v3hZXv7WHCHsJERrcsQ5
KFDdGWx/m4f7CTWsSFJPpZQXj/YtYkNwqeI/3ykOFl4+pryA1P8UvSw1XZ4F
36aLJtEn2fj3uqJiH+lXo8vcrvuLmTiyRPFASzUTCZsHt3qS/saZflruJcdA
htzUq+VrGRD0y/0MIXp4MttXcdsSOr6FBttZR9Jwq1Lx4Fein1M9HEv7VTSY
8IMfeklSsVU5QLCJ6O1lTtY8z2EKqp5opT+YIO/sdKMiS8LRT45pyVk8G4CE
nsHiH3+7YBUiK+P4m3Cl7NIfhb59WHxJmC5u3Y7q7M9B565yIDiayPaL6oG8
WI9f0t9muIzO1uWsZOO7PJPhOdCFjxu1yg1EG2EwfQPDWsjE5/BK8UiHTiRN
U5D9WFyDRLHhwMJeBlZJbLbjzu5A2gX5RTfUK7GsvOqD+w860W12oS27Dcc9
4xQkN5Xh7Q7hRx1lOkTvBLafGmyFzl3Gu7y8TziYdm1/4kUaNlRMKxJd2QqB
QcmVbXJ5sIltCGTQqVh+UH4px7sFYq9kYXbqA/ROyib/cKciw5EX+5bdjF/M
m825q9Lx9ZfvRKIYFUeVeCZfh5oRztcx8y1JR9q2lLnXpKjItndzmunfglbP
FTrnaz9g0vOKfI83FT9U9Y0aN5A9V2lOknREHiLvBcWeGKTCf+PJH2Gz2iAo
9kmrsf6M/O2HxbcE0HDEYt2SItF2JBret7GIKkPop7kLvPXoyPRqe6a9tgNz
Iv/N1nlWie3rqGe/zWKg0C2u1cu/E/lU6U6b3bUoCHsZXkw4hjOQwr8xrxt3
FJ89mGvTiEsWMqMu81i4f4s19fZbD7LsavcGH25BblVRR5IZm+wjw1/mlPbB
gy/a2V3aDlNmw/XX7zg4cv+rQT17AA+blFZfvdUND7Mgat4aHg4/urB3wXIq
3np8mdYd2o/f2tnbtzXwsdDYV7PbjIaEw9Yd13ZQscvJZLmYghClymf3rzGi
Q/FN7RrvVhoUln7cmbFSiKjNe4MTtzNwcB/fTeM8A2Gr1k8PXS2ExvAh+1oz
JkLyjh4+tIiFzbN2dgRpCuGyxVFUwooFr31WC3OK2PhqJrTw1xFie9HBd5+s
2PAIj21fbc+Fobr26cP/CfEz2buPbsLBfKZxswSdB/lZrQrDhkKI5xXem7WQ
iz9W8x5dsyH+sepi7N+fAjhFmE1m1HGhINjzpyCcj5C3951zyP71xC/JKdyd
h6jClrKjlXww1YMo43YCGKqcEfXj8VDjeDJU4ifZv3L/rk1eLsBbyQ2nYsz4
sH+8UPo04S2jpvjZ/iN8yNuqzxr3I3vdwj1JD5QFuLgpQb6+h3DYhjUnNB/z
MX57dcMw4bbKt9UzdFv4mLr3Pc6axF+KCmk7QOInbRPklxB/cpsc36Szkw9T
NcqvX1ICPOLpSCn/5sPbTubLIw4PloGmsm6DhA8Hzq0KXEE47eT4tIkTxId/
BFD9K/gw+eTwTPmQAF5OByciq7lwP6kYmBnGh5j52b9LXgrQGGRxMUKaC/XH
9FKb/XyE3nry/t4vAcTnv1nwcBsHMrL0bFmyH3+VVWzsJvV8bVwsobGHDV9p
sSeN+7g4qLKvdDupf+dFO+VDu1lYufr4f5o5bCyee/nXCZ3//951tI5vzMSz
I02sACkWyhdHuHmQ/r5Z92A0YCsDi9tnGApOMWDNtZhzjujBveJAiKIB2T+2
+Yjb1tEQmT2nIYLox6/dqkLZhIar9TLXuFuJ3q4kxfOJj1U1jh2cu4QKW4wd
YVztB0PE1uMr6dv7tOGirN4BaCrZyK7x6MbppbFePCUejmoduCid2wdfy6Fo
v4x2XJq7fs/LFxxcEkoz48p70PlOLq/FogVxl5mXrbaz0TpfvGfNrG6oPGfp
Ru5ohGbHry3B4ixsX/91rPpaJ67L1f/N066FYdjXXqdfDJzb63PJU6UDR/3U
vPMDKlEvYd8/T5SB7JVud39PtsHU4OsK/dtlCDZpeO66gQ7BKfHa3mltuHhs
75jshs8Yf/GpmO9HQ1R5nMGwViuWK0zIbLmch/tq7XqZQira73cvHrzVAnXl
7xSRjx/gHr7MNeM8FUapaid3DzbDfJ78S+azdLTpFl4snEuFnEB1+uREM5IG
E5fsXJEBN06q66//c8e7qw51D1vwr2m+roNiNhJZSdJKN6jQvfQpq8CoFWsa
017U/8lDRATLkD5OhTdrU57JkjZc8fI72Nf6GeEZ0oNOETTQ7NbLDi9pR8tR
7R1z2GVYd8MovMKUDhWRmX/zdnbASklN01PkKzKfx+X3yDOga2mdpv62E43f
Ry7JfqnF5f4ZxarSTPx4xRdYb+6Gam5XfHVcI4bp2Ydr17LwXSu5LPhfDy6w
N2bvyW5BYvZ4SsFpNlZ85rqNkHfLoCW2aJdaB5ZvlJsp2cTBHCXaYVs5CsJn
6VoYjHbj4aeV2isdeBDXPlc0aErFt7AzPpflBxD54mDDTjEBLNe/GDzrTvif
u+q81zUqDCak5WuJj80dOlRjfIKOPsd9O95L0zFjUOLlQyWic89cEe8zDLwQ
Ca38/pHsw/1HvgSpCfGUkm/sfIUJzgG9vQ3HWSh+IvsgXksIvWKzn2f8Wajj
iNjQ5nMQXrR8Xo6uEFZ7nQWdQWwwH7T+4GRz4Tj/VGbyFrJvmrdolN3ioGFi
RkW2EuGWwLU5vSR+ctUW/9V7uYjPVDmkc5IPiy9R23w7BMiMbP6rP4eH/OcF
m6Le8rFl9silDH8B1rju3jI/hQdvl1ypzcRHCuaPH0wgnKOx4GboKS0+zhts
60wn92f8jOJsnSZAmPamKouHhLvufpmZvFoA49nV+83aSdz1lLymKj40/Cln
Ncn3zRp+7pcuIhx7acz2Ijl3bLRHtMBIgKx1aiMmH/gw55xv30/iV6jv9p5O
4rU/GOfvIvEeSa/6/3vAh+M3u+mW5PyxgbAfX8j5CrlWhb80+FjpXKOlQ/K5
6Kh9jEny+S3+V0I2mQfTGjHjh8Q371saegcaCCA/6JnVLs7D7kdmH6rfkO+Z
Htj85Y4ABv9F/7ltwcWQbtrnfSf4mFOvZZveSTix9Hxj8XUOxA4MDXxYycc3
F+XWjXpCaDPr8qwD2BjNe26PdC7MhlVXRJH6C2z/xjbfYiEgz6xKbg7htFd3
pr0g9fdtzKqL8Wbi6YrL2wsPs6D3TN4niPTXc8PJWa7EvyQSPc6cymBggStd
9hzRw8srD9jbj9NxKeBcmMEcOjjcWuPLRD9uyC3Lc6Oh9Om7Cp+LVKjNbfTK
IXrLneE8ff12KkzflXX+mj2A4eLe37EiAtC1Q2vGpCl4sW6erwSnG0OrFzIm
bcj95a+eWDXch6rqnp3Z8h2YeuTv9rCWg10Hx996j/Xgv5/ReaPvWnBu6t2/
z25sZK7axi9Y342uknmvrMMb0Xjm3Az11Sw4ntp2T+xFJ9rOOdsXp9ZizZyj
+h2STBg1GB3ftb0DYRfYg4HCSrD+3s+cvYiBO+9nplks/P/vY6dyB9rLMGP1
6E9fYzrKDga6+S9sg6NDi1dxwWcc1xPfWxhKQ/e2T2ZJhq2QY1UpXWHkIdvu
KQrHqFiU83apU0gLLOWdbl+QzEbSW9pnDzJ/Vgeu7xIbbwb/ckJMikwGSujn
rz1aQIWbb8Zl4cwWPF9/9d5Z1wxUtL53GlSgQmZnZnzA0xY0LR7T6bqYDUpJ
kqXsXSpSQsuluva14rbT8dXcU/lwUJE13zSLBjdK49Q1zTas9tYcveRcjD2Z
MzQjX9DwZJdO1zyddpQIxxTtDL/g3tVZR9zt6LhOjWx+7NaBfXlvRctOf0WI
8iv/kHUMsJRqnubXdqIwPvxy1o467J9Txg9Zy8Rmq2PjUa7dKOfvUbzJb0QB
c3XE0z0sLMjckRSysRe07Dk+62Va4VY77XdaOBvXv6zK+aTfj0qr5dvWRXdA
Vs49f+AvBy8PNPJf6VOQoPv7nvBKD8TUd5x5EMqDgeqP0GXE769cmPsxPmMA
C759Mv9jLIB1yKavTQ9psJ0VVsfKoWJafcSF54rEf64PVTwMoyOqez5rug0d
N2+efnZLmewpVTuZnU8ZEI/ZkuAzjYlDX+cFRKsLkVP6ZffEeyZemvWo5n1k
4fHIUFatthDx5nNTjYpY2KrBvL7OgwPJNX1ZImSOfgz/vlBfyYZt0WGRS4t5
sOu8umuBgRCaJzhzmgs5MLwSpFekR/wnsdRmeIkQxz7n+dmGcaG0YHIiluxT
F9SbCj+TfSrgSNmVVVY8qFgxG/Q/8RHm8bfK2FWA7+qHDur84kE0R3ti8Bcf
4XD/Wr6U8EyVy7N1V/jYaxKmsZtwz539XnfXUQjfDfi/ndfNx4vyaWLCbQIo
ZA4dtMvm4+EdMceWhQKEOI+d6LER4Irzp1fhT/j4WLFz52/CYVF5azwjHARY
PPTIIITwkaXH7NUPSHxduffUFxI/1vJcLpPE305RZp3o4oO3LuJ0Djm/+aDF
nARyvlfAYjmHy4TfPBpGRUk+TotDtMNIPr1qSkPTh3hYncyuDyb5Z8vnZJkr
CLBwt1pFjgUPcRX+60uJP76a7PXnkPvenG44Vv2QC97GR+5ypD4F/RdavQpJ
vtQmSZECDpbX1jWuIPW8YNu1uEJeiLBZCRXp5WxUj52aP28hD84bjvPESP3D
LpwSlS9g4e7WCYWCkxwo9NssH94oxIJoiRnJSUzM3yUqmMpiwX0iUuMz6a/o
4/EUgycMxLbcnNr5l4Hy4H27goge5jZU2/x+QEf3r+37O63ocLlTcNmL6Odn
rulR7xAaJL8vkZPPokIj0uttONFbxYwH5xZ5UnEgyMFk0dsBdG5pq8yFADE+
puG9mynQF5m+d6dnDxy6Dw6+DeYhKyymoUOvH/Omy8xPedgBjvTYlbPjHBS1
i2ktXN+LfYt9TM5ItMIn87RV8EM2pj59OLrfuRstP8sVFzAaYabx1znOjIXI
rJykV187of/2QqnPpjrY7OhQTFUj73Fi9zb+MTJXM05qiB75CsdfRZQxTQZM
RO458LXbsTzKT/Sszhe0Gzu+33iQDmOtRsG0tW0I00udt3VvMfH/U8Ht8WRf
q9TK6rRqxaaTOzL/OuRDJe2uTsMMGo7+6HQYe9KCkuEks3mns3F09M3SyTtU
xJptlMmY0YKUbbNlGhwzUHpowFya+FVn+/L3++a3YM0x+5nZqRkIXPt2cqsK
FZOxmg+bE1tgYv/A6FBzNpbUsGw8QqmwTt4U/uFYK9bpVq1fMZCPaSk5j6Rk
/v97NpNnL7a34Y5xyR7/4WIYqLzc7JVOQ9jmvnnWFu3IHJzd8P7JF0Rf9PQf
cKfj9slzKtS7HaB8u2Im1fsVY6HBA4Y7GVDRS18s8asTrKHufafq6/Bt/xZ7
rZ1M9LBpL8cju1Ey9bOKvrUJ9dqrWrgeLCRf6MhdcrYXi7cYrQnwbgWt8XnU
mXw2Ji+rBYbc7Ae3OtnTfk4n7rjNLm/R4GKhIrc75xgFMebKtvUivbgpzC3z
qeShfuewv9Nz4vczK/MmVSnIVw4YekS4pd16W91INg2Krs97tX4RHWn6Sdxc
JsTOuxv3dBfSYXDeUDzyCR1V6//8r4IrjYe6jaLCmyVKJYoUkmypJJE4ikRK
KCUishctEi0oEkqlRUIqyRJJCEkbUYgUg+zMalaJiki9T1/NM9dz7z333HNm
/r+xClMTIPGkes3ZRgYK409WZW9nwiow9+RTLbKXHe2rF9KYOOgTYFYkPQgL
qe23xVYRP7gpzoQ2xsIgzcj7D9mXQ5cknuxdK0Bup9fTNjE2hoPlz3w7y8XW
g8INCSYCtNMrU/sJHnVzZf+8teGhczBYUDLFx4yvRkqvKRwIbcn+KpvIw5ZT
Lk8upfFxsTmXfTKJCyOtA7r/tRE9FqmlvH0TH20iL99/NeFBra9+Sa8UHxZy
mSHWEzzozyzWKSc+rST0SJPaOsIncTPbgwn/qept6CogvFQ+P+XOKcJL39+b
rc8nvNTkUimo9+Gj3lRTq/swHwaqz9W3HufBcZoHK/Q08aMeqlcrQ/gQHhkL
Fg8g/i/xTXbdv+8/zZVedZHzG/cbPv93fs3zCe8EEl9v3F35CIkvuTlvRwWJ
75d+ZmMuuc8pZZ22xeQ+A+K3o0+T+yjcROQbcv/CQ0zJj+T+anfq5PaR+4ua
urxbR/I9KvBQHm7l4Zaanf9Bkq+pWUjqRVIf3xlr34qQ+ijLiVY/IPV50+Nq
EEvqObtXKTqL1DNR7XtMD6nn6/O5I8Gk/rWl9yV3kfrXf3ZJukzq//7tstOx
pF8yi6SuB5B+RR53veNM+tU/8LMljcrECZvIQrrUIDq+5hSKkv5+zX5wvbCB
gekH9eFky4ToxcyKAoIHJ1an0jSCn6a4t3Jrk+ko3hfjGErwI3AzMrUgePs0
Oztx9ggV10a3/DlJ8MZtvu126i4VEnezJY4sHUBL06uNO6L42BrXs53rMYCi
5WMxkn+6US77I8flHRfTPptWWYT3wSx4KmaxRAf6l23yFWhzIDwZIqAH9KBG
lXb+QFArMvZt6r1RPoiIhD2et2904cMgQybSuBkZQcFjIwdZCIpwvRL2jeiK
8By6cH0jpn+fGJWzZGKhgQLb7/wXfDI0Hx5pr8Ubff9jBpYMsNPSZWZtbcfD
P2NpVjersdG1IOq3Px2saEPRVxvaoFkkvm/n0BvILnEy/1xAg9eJ1e7TCZ/c
NfHKPdj1HJcurOy+OZuG2WkdL/cS/onMYH9R/1QC3qnVsQsI/+yxTx0dm0UB
wmSlLB4Vwii2bejPEioCVdKf1ClQIJQfuy/sZyEaEhe2JmtTMVPbc79hGQUb
47hH4laUwn7se2d7MhXj0dZZBcdaMXNm2nsjxwp4HP785o8SDS3FWw583d2G
xsx3Z5wtKnH96i2O/2samgK0bRp82zHP/va+Fz+qUbtXK/1UOB2Rjsq0Izlf
oKrfE7ZlWx1epr+1V3Fj4LRtsX2hQidCytq3b3H6iHVXZMSlPJnYqNp3va6m
C4ZpsRuFrzVDgmdSG3WFBR0BfYFmTg9mb4s//uJLK/w6jn6KpQ7ikPCOgF9V
fThVknfi5tkOqEX4DBrs5eDr9O6cZRcH0OHhLvHrQg+yLXqP8Ka4uBFToDLr
IxUZf49PBIYMwK+66XtjNcHzx+Slp7tpyJYxt527igZ64LFOt8XEJ0YcmUwa
pOPYf6V/OvvpGGj8FXd6qQBenx+25ZG9W5laJ5N1l4k3sxV8WrQFGEv2CWqZ
z8KPubLhyd5Exy/PZFjqCWDyraFaU38Q5r9LEzoIz7JO3Tr50lCAXzMyJW9Z
syF79s3ULS4XjtGJF2dBAAnGUHjWOg5uaBeYiHnw0OxA+aZK5YPN9BoVyHPx
cFL2T3MeD495+8KEIoj/Mil5m9PHxd/AI9LyAh7aJ+Jlfqnxcf2xXX7iBR6y
AxY3y6nzYXivcZpPBw+Cnj1P18gSfhlCiD3RS3MdXb5vSSV6KCbwrt0pPrpT
jee7EV4K2jL/9SXCS1e/CAc2lPPxTb7m6+p4wpsNu+cl2BE9tvj5lhlNpH7M
3N/W1/mguBmLSW7mwchqQlzhOR9it66r25Lzpl9beg/+O+84JNdE4jfcuPo1
lsRP9FoSt5PEV7SsnidN9NujriPWKeQ+lp+9Q7hEvw31TO28dJEHa4UEX39y
//UezjPHvvCwLKp8qr6fi8pg3fZQkm+NT45kKMl34x3BN5sFXAhMmkosHxHd
9XF7oWc44QGhyD0i6zmYePCafZrU8+7swDUxAyS/8ftvjW3YcJCdP24s4OKz
GUtlAal/idTEB+aaQUgKPZq6v4KDjIZvye9Jv7znzQk/pMCCfa17jK4f2aNm
DtZ2pL9as3ekDP9hoOyC/6nCdCbcVSwonQQPOvI/xmvYdLzbeGvNGyodhyS8
D0YR/CwNLDOu6KEhpGvR1NzVNBy4mLnYh+BtV9b8OdlNVDyMXnhh1Umiv/bt
/SH+ng+5m5qpD+MHYKOvn786oQe6L+/GigvxYJntPMKo6YPRUJRB7vkOyH47
tsnCjQPb0KwdL3J7sL03/uvqnlYYp808uIs+iOzHV4Xeve/CWoc7m0MSm7Gx
8rAiO4GFAAXOO9mFnWi1ruxVcf2In31zL0/3YqLmSl/C+YdfsE7kWLqUfR0O
hme9o5P5NTT47lrm1w5xSW4rf7wa3LVB7Ysj6LD48UhAd2pDampRXf7mSkjN
tHo77w0N7I7OQ/FEf8SmXXI0cqmA58xqXsoiGp6e69MVe0aBfc+zUvU1pXil
NW+VXwrx1c+Hg0MVKWhJrqMbTxLdRX3/cK4OFct2a0Tw1Ch4q1ozY3J9Eey3
+4WV61GhIPJGY3U1BfuWf5jTdKEUu3MYKj/vU2Est37akuhWDD+2886rrQBl
uq1JgiYNf9IDvZMC2rAtK6Ba+1IlfBXCHwoaaQj7FhB/PLIddc0uGpO2NaA9
3WURnUCH4+FXgyK1X9C41rxf7kUdklax1B2CGSihXlBcuqETnje0tP/r+wjJ
uh3ScyOYsOY6/qc52oU8t7UmWdRmvHr/qVvhCQvJEipnYvt6sI+TOShk2Ia+
D27Pj4qzccZvSdwBkX48DnZMdRvpwNnHc7TWXORg/J50blDhAKj7L99SndWL
yTU/37xezYMk++BgwC8qrpfXzr1ePYDQjYLHmsICzOwLkmAK0cFRc9q+MpCG
tnvKekbKAvSoLNkjO4eBcUUT5iI1Bi489Ys8pi5A87jgw5HlTIx8jdH35TGJ
f9usz9ERYMff+f/93cbCxuUyiuIvBnF89fu14asFaKTkZFQfGoRcc5qXUDwH
67cVnJizTgBTTXb9zBg2GEnRcU1qPDy5sHCjJJmL+euMluSf4OC1512nMqJj
dHOcd+x5R/yZxqI4c2cuctSfMocreTj+pazSyp34wvBVtXTy/ulZNewoUT5q
7x0Uj/qP/H04z/Df5+7Ki9rHH5iSuXWKcjjwjAeT6uLRu+R94bMM7jYGEv94
SipuFvGZzn9TzVrr+BjLO1x/6SofFYbDi92teeCpeW7LExfgUP/ngPYsPkIs
81jvdXgI/TkqFk50hM8q82NKj/kYOa8nLbSEh3e2Tw3tJASoCV1dJZ3Nh69t
9bUwcj4zyM9hqp6Phx2iXV9JfHlukUS3FQ/S/CTFoP1EvyXxfPwOEX0oN2Vq
SnymnsGhsMNEX4qIrT+5n/irknWHvQ+UEd22yDs8bhkPnvflb3iRPA0ienod
SN4y8ybznVy5uLTFcuZ4FQ+mwZfWDrrxMfvqmQDOaQ7K9iowPoTwEBbl2sQk
+2uRi9t49AWix24rSP9cyoPBjSGEryT881v+dl3QIFYjLvf4NQ6u5lULNEm/
6t/dr+DYk7nPXKq7o2oQsveS5/77fQwpE+U3f1YyIfbhOJS+MfExunZkiuCh
sffA3lPzGPhw+0Z1oibB0Y7Pu2LV/z1fYX3WXJSOsCt1UqlBNFiEn+reSvC2
rGP+54opKhZOffwr3TAA9eNP4g1I3WfQMu6GlgzgZ+CzqoVKvbBzvzvX24iH
tl/WtUOS/TgqrLrnyN8OXLONjw9P4KA48g5BbA8m8kZdH5kTfTSpQNWQZsOv
rnFry3gXhuZy1MJ5zdg14BY47ykLEW/KS95u6kSAi6bKnKGPUC5ghttHMmGR
tU2Z/uELyu3vfrxcR3RIUs8HyVAGtmzccaI6muixQ9atJ5xr4BDa+KH9Gh3q
hom5CYfbcH5wvcS5pErISCs9Ef1EQ5GIzKwnMa2wpEl5eHRWgCWIidqjTXQa
pXu39zsKDHLyRGVTSuGwusok8gEVSho+7S/UKTAyyItJti5CbblM25/VVHhs
fSK6T5eCdVs/ZZdFFMFGauX3vUZUove1tWw/UbBhMs7vb28pfli5Lz2RR8X3
9P6EsButUH5wST1A7wU6lq355aRPg9jjWxe6z7ThwKzAq7qfKhH1q7z8RBcN
8saco/4p7bi21j7ZMqMGG+4/ad2TTseDGy67wxlEl/oUt9xUqYfXym5NiQsM
hH7csk7auxNT695605ybENT5xW37LSbp9wXaiUXdyJa3l/yu0wL3yykx8R9Z
KJU+pGE2pxe04o/tQ9fakCjs6NOgw0aF0pWLCWb9ZG9G/CjY24mhKyHmuqUc
zHUpnLa+dQCDFrZNifG9MDznpCLlw8NqnaVl5xfS0PjutMjGPwNI+hjmL6oo
gI35qNjAEjo2WPtFeGURXMXf2P2figAt2aYpn40YSBaV6//pyYD1lVofl2UC
pL7LvaDszMR8a5Oi1atZqBSp/iNYLsDf1KNDr8+woNz8XXtMkg0Nm6dX7ukT
fPJyLqZmDUI4dZuwEp0D43Wscw7GAshE26LpBRtXt+uNVBjwIKF0WvznAgEG
nixd87qYg2crmurmEj3lYirY5fiID7/9kw0eyVzs9xOm5pD5rlDYfznYgo9j
j1Pa80l+Onam34MUCP9IvDeTYPOQMYHu5fPJHH9/4JDpyMdbidJn55J5iNhs
4/7vdwqdtE/seHyej88qV6Mnd/OgbfDh6ME5AqxxbFgmn8uH8r4/un4ahN/u
pGyL30F8tmz++6bXfEwXLdY3nsHDB7UPc/n+AvxYcFB7E9ENNdtdyvWnkXt1
KLyP3ylA+pjrNrU3fGR2PbCtk+Rh7+ToJUtZAQycDW6VkvjOK1R33SB8NJKn
WDib5KfH6dBLjyE8JrxwfekuHmrdFbvKFfk4X6JQ17KLj502/vsFSTzQVm9O
oB3g4aXcYacu8jpbbfthdRbhLZlVaaZ3uJil/3TKkui2HEr0gOVG4l9LF4sL
nnGg86fQtInoO9nRAL4w+f87by3+vqOKDfGXah7XDXng1uQUhckLkJ8eE/Hn
0SACniXFegg4qDq061Mo6de4pEPqzBgWRK2XKSrOY8Nn7L1nDenvoS2HW6Tc
mWAbBg0/W89Cx6HPCTK6Ajjob9OJBgM5Pq5CyoEMXAzozw8j+Hn56MiJIE06
vpQl7HcivqtS2qZnKcHbKxEN87cqZI8mDAw+mk7FatUf46oEnyVa0hG9XQNo
XXL39YOMXiT9R1N3O0z2lsUr286t/VC16kyWCuok9V+s1vyKQ+Zw75UNhO9Y
u1PjZme1IdBD40ysPhvpnqLDI8u6EZnlv+WQSQvaV75O1G9lYYedVLBIYCdU
lepNr4c0QW++U/dgGhPlQvaeG3lfML7CJ0DZqB7Omyq0Gi4zMKLTemfVvXZo
j4m3eZTVQDzZc+GBTOIrJ47aCaLbwNhOi/00UAm/SqnP4n00vD8s7VN3qxUV
onKB2+xewDkRo65raagIFvL+1kLBcMtxia1jpZDKqL43/TEVN+Jq5PauomD5
3ZkPz9wowh73bTkhxlS8FlGeRjcgekwrd/Pw8yJ8P685Zw+oOBHw/adBFwXJ
K5MV+zXLIHH97HfVYipaiuLuOtxvRaYxsz/7+gu0bN3hNseUhuAkkRXGhEdY
JyzmpsyowhrNoesFLBoW7paSFXnSDo/12/I9BTVYWRWqFPeEjpIHm7Tm/v0C
Rc6hj+IR9bA5qOtWfpuBP98mtILOd+LX64zquIYmuE64vpxbQPRNsNOuK5u6
sVSX1sw+0gKbGYdDRDgsPBUb6R0y68Wy0enMBfQ20La/Pp26jQ1Fj5T8t6H9
eE1p1s192QlD3fR3v7o5WGHseezS9wF4cH4zRyd7YXlRSfrEDR6epR3JnGVI
Q4rg6JZILSrYM8aUswhOqjv9ik6a03F5gdtOrQ4a4mq+vn1FcMWuu8d55soA
v8S3KvsOA2H1Xl91NAQ46uvlcy6KiQNrJl3lg1lYMet0YSfBrass6/2zfBYk
ff0XGu1gw/pBo0j2GgF+Xw6SXvllEJtjRkZq9bh4KeJOP7aezPOxJ83+fDbq
Fj+NH7Yk+sPxl8MKUQGiztZGbRrkoHFIQiGZ+L3hbcU/Gm/wkfPa6ubNz1yk
c6NavAlPmaWatltqE79YMMtzTQYPv3NcN23T5SN/ldFZ14883Hdq46SR+dcd
n4eQA3wccbzgEB9G+I5yVE6aw8df/ReXbW7zwVL1yxlex4PQW8vLsxwFmNe1
FHaEf0pM7DZdJvzjdVbAc70lwLrd6m8C2ki8eUU1HXzCp/wPRuYFAlip9TvO
6iX+dKiOnUTjwvs7T6U8WYBHygy9AXJ+/qO4PBNy/vGz60tv7xZgQmXTBc1K
PhbccHLxl+BBI/TDOjafj/2axq8S0/hIsLE5YED0xsih/cXBLnxY+bsXzA3g
Y/j1Rda+UzxUCjEzxnN46Bhcuc5oJfFdi7Vu1X3gofwLa6HBFy6sJnuu3eaS
PI+KNdhqEF3arHjXY4iD3IqZs/49L7ieXnr5DtGDtUuexEyMsnGnoH5/CNGd
PgN7CxqEBOhyUa4R9A8S/yvqSDHj4uq5YlY26ZeCi76ObykL210QvtyDDe2J
hKcdpL/vhKvYdReZCFI/e8cjkoVFP61/Sqwg+8hv3fwSb6LDOodWnM4jPiTC
/IILwc+Wt4kuxjZ0PN0Y9SqdQUP9ma1iPIK3tBi6hjNo6FZpMjc0oCJz3+Tj
TwSfSseUB2umBoDp9yxFF/Yh9krNaGA6D+ucAptr4/qxY4Wd7IauTtz88VR0
mOBmfu6lKT27XkSs7JXJmmqD29jWZY5OhK819DSbHbrRenz32bHYFlhqOHs4
jrCgIGcsVHG1EyXbA+WqR5rgubLBcVoZmUf1B5PPxDswbH1c9Pq9eqyYdufU
mQwGrmgLuZk9awdJ84Gk5DtcSM+IdyilY467wXyPZKJzdNyjg9WqkEZJyCnh
Ef1jdSXVOacVR3Puaaa8fAG5QoMz2zfSkD6VbW3VT4G+WC5NaVsZAt+uqigu
paLNavEBSWMKZE7ZGrS2F6F7hluQxUYq7DwqVHabUjD9ptSyWkEROluOLU6y
oCL80n6hGjoFIzvj1bYGlOGA8CbnznIqbpddtjzyuBXZq4yyuKwXKLr3wjTJ
kobne/ofBqW3wfPWp8PnzKpQu3XM2f0bDXb1XJOvVe1YL1E8c9WKd9h7ciCz
9SUdhk8fJbvJdcB772pvyU/1kNF7GCufz0D7Mct17fc7MaB6St1c9xO8lgx9
FHvLRBlzg1azbzd+7yzincpvgYw5iuSnDeJPWoVmr38vKIsdWyy02hGu5frK
7QAbuzjB/toP+/FbNbGpVaYLC8dvR/+d4oAlZv+BIUMFf8Py2PNufTi2vrds
+wviT5aa/TC0oyFzpvG+HfZURHy5oKq3UIBTTOk3+vvo0Bk4EFdO9P4MlnzK
PlUB9FrajxmHM7D+nKKU9WcG/M2yOxkEh4tUNi8dz2LCTGRMe9ZjFqamn0x7
SHDr4KDsuYbst2eds47mX2cjkpNy+pKBAP6VF9peCrOR/GLPcOUJLp7++DAj
yESAE27WgUryZH9ekh1Z7sjDsuumv6S/8TFw4M+hwHlcbOnM8f6dy0PIaM/h
xWfIPCc/uT9B9M5nPc7tvnEeZHa39i6dx8eMVPnPF9t5EPdP+15J/NfRHLtQ
XikPrfdbFkRd5uOEpEZaTRjxXXMaI0c9CQ/4Fi2SIfk9ZGTeti3gI2PJU3kf
FR7ynJLMChIE8ItsT+xp4WP9HxurLcNcfJs+e4YkRQDVLYoCB8J/gbkusv+e
y886sd/Gl0v0RW3aOSVy728dv09n1XLhZ6lJe95K6np0dIhGzp+dc+2OSzMX
w9OUrWnXBdjl5C85ROHDVPQsu2uIC5tRExMa8VtuHd7LuE/4eDPLdo3JYh7a
N/WF3iL8Lbx552hDBB/39jQ1GXnwcMak71h9L9GVfQWB2v/0lkpzUn4xyX/e
EYsthHffegUuypzkYcJJrDBgNh/cUHNX90VceE2P2zueT/xj8WIFpdN8WJT/
sruvzMF+lx9wdiK6sya6+APh08O3PjPKiQ8LK2eo+l7kYq/XtGX/nkNmXM/r
1OhnIVgtg2KRyQa9OdOrkfTXVmQi8XQhEz3b7iaMvmJBlf58jEnw8NQkstQ7
loEOOTP1uwMMpL0P0lHWFGAB+6OplD8d466FeXGydHTp8MRTSD/GvWfcOrmH
hqnhaoVV7lRoD7NU/Ag+JedFaSQtpEJ3wKZDN7aP4NRmw5sGHl5N1kqWvupH
yzf785sNupCar3hFVZqLObdUsvXCyf7ukc+k2bQjc9Jhy49QNqizI34UnujG
6GWNgeb6FvRp7SoclRqEe+puc+vCTmTo1nhHuX+C2peTMSsamQixCB+tUu1A
0OHTOYsm6vG0XNursYSBzfHim843tiPIUWjOtJ3voBtQsHlTDR0xJ+QfJea2
4b7s/ZpN7lXIpGyOaxijgSYBF+XSVvRM7g7fv/AlVm1vOTRlQ4OHwIyvx6XA
N9Fsj2RKGWQXnKO4vaKi6fXp4NvmFIz/HLnvN6cYIvqyr6ytqDhqdEz5mQUF
P9ZMxSspFCNHd5nibGsq+roDM7/yKFAb0tm1OKsMqsv0PW69pqJg65UVTc9a
Eeqd5y664iXcqqhH+rfR8MnoadiJx22Qe7awsDGwCteunfaNnaCBMq+lTaWl
Ha9OezyK9n0Hy5JmjkEd8ZXvfJ3ttDqwcOzhcW/ZD9BorGMrVjDgcGifrXpF
J+SsVqh+ivqE5RYC9UUUJk7z1r3RPN8NY8q1TZH9LTBzUrrzbN4gjK261Ycu
9cInKNTDxLcdpW1XekTOsfEgKro+u7kfYat2if9w6oJPu7JAXZEL333l81Zq
UmEYMWtA6Gkfzgz6PDlOcO9a6+n/1Yv48jcXh1ODqHg/r1zkEcFJl9rShskQ
OiILnZ/zteiIq9d25RJcrfsatn9jMgPTFe92lE4yEC17NzGK4HCl5VWz/TVM
lCRv3SzoZeF63eaFzisFME8ScpL/yQJFMWauUj0bDo4cQ4e1AmTnKwcs1GDD
f46c18cSLjpm7dHYakriHLp6r8aYA8a5zikfMp8B7m7bMwbIfOkWtUqbcNEX
Em21+hkP055dqXILJLrJMVPHW4eHoIAPmSJifCQ/qMZSYT5WB7ygh4vw8S5u
68bXtsQ/yu+2rbvPQ7Zf0u+8l3zYm5xNjrjEx+snR3pbbMn7/4vXliY+0fBw
Y1km8Ykn89LKjhGfqPO+qX7WWwFmsxlXc+l8ZC/I0ivv5GJUdHTYcfoQDE8d
kzk0wQfNfoOQ6gsuLv08oaK0aAg3U1omXIQFKM2aOXKqkAs1+0MSjuJD2Cow
Pzt/kvjc5e1iJhVcDH18/Kb/nQBtz9r++8rg4/0S3phwBxd5Ynm0aifCEwmp
4ZeITrN4IH2QIc5DQWrYTlY1H1cyNMcHr/CRdvZvyE0bHmKEQl4qSvGhH5zW
eceej636ZXL8O8S3vuqhmxN/3rDv8HpbST6iYvdZPZ/iwWrD1aySzVyUaV9O
razg4TR90dIUPz7C+uKy5DZzIOdf7rvcm/AmPe5vQjeJZ3Jtlc4aNiptMln1
9Vz8eJixP5n062Lc6/YlIoOYeTHGQbaPTfycrPvdf98773WV+/WZCa+YnaeW
EX0jc6Mu8cG/z9nSNuw7msnACx5zpfUsJtbZyTypJ/ipMs2/XhVFh9Aef7Ev
JnSk2d+bvWKJAEuEXCaEjtDw8PuqIs9oKhTqjqbxCD7dvYrPaa+lYu+CIr10
eh8ifR5OU/rGg9vcj9v28frxYnlqxePzXbgs9/vWuuVc5BeOjotl9mKUPsr1
TWjHgpvKGmY32Hg/Uam8P6UbpUcfpeQKU7DDgp0uWDIIOeb2xLiGTjwXKajd
+OYTnCLrOx37mcib99HR1KgDWQvyYGf1ATcjmyVSaxjouVgNRl87vLpkI+g3
3uHKVrubus10iNsmzTxa3oZ8y7PuozeqsFhJYGMiTMde6pSEWFUrLCeX85cd
fgmB7/5855005OqmuGaMUmDYqJqQ21WGevWKAKEaKk45GTuL2FBQ2RARxN1U
DP2a8VUR26j4H0/0YR8=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJzsmvc31////yWrEpKMIkVpGGnRdPUiEmWWkAqFSJQoIZVKJBmloWFEIXuv
zIyU9Rz2ejztPRoo6nt//xnfcz4/Oed2nufxfDzv99vtcrtcz7HeysnQmp2N
jW0bBxvbYvL3GsU9YFRJw2l2nSXi5xORd0/daWqyG/9X/7/6/9X/r/7/S/3U
ds3uE1U0CGifu7DOOREJC58+vZ/qxpXX3tvfkjrz4oPjfNcS8b1zSXALqWuc
vvboF6nr0O8bt7knImlVd5zIdDds9b+oWH6h4VC8lduH24mYU/j43orUEwKL
I7tJfcYq2frJg0TEnvwnX0DqJWtKKq9V01A4KTmZH5iI3K6IjI3fuyHO8T1s
41cadtPTc/e/JM9x530SQepZ4f1l46QuY8PD2BKdCNfrMd/lf3Qj5+PoKvo3
8v5v3fOCUxIR9GzCvpbUfS+r1tJqaGjYWFZ8rTARwi+/S3v/7EbpodyYsVoa
7GRWLmHWJOJ9VNKo1q9uHNNtbFlfT8PZ2nnRp53kPc96+66f6cbVieQ4hwYa
GNfOvQuYTERqFgfP0tluiIa/a6qm0XDtjuLTp4uT8ElWagPbXDfqUmcOKDNo
OCEvdchSJAmVZ5eqsP3uBoes0OuPTBo+dU33vpZNQoHwxDTnn26s/nYvdn0T
DRstYlsmkASnC0FM3vlu/N0j5xLcTIPvUAp9xCgJpRs2GvEvdGPSK+zRdAsN
0hG9RmtskyCW2uvB/bcbz07KVx9oo2H7w9cjvDeSsHPpy6cTpL6l43agbTsN
Kwf3VGj5JWHg7pHAkn/dyNTs/mHfQYOl8NFxi+dJcJtK7LjORiHDZHCtaicN
ASKJ7L+iksDesyJp+SIK2LA/spvUL0a7xyd9TIJcWqWnF6lzjTVUHu6i4UVS
740jqUnofvLqTwWpb02VanIm9eIDVxwj0pOQ1jCo0kfqXpdK2S1I/eOqL3fD
0pLgBbHFzaR+5WHObgFSH94tfetQUhKOyZwaCyf1SkOR4fvke49FH2cUv0/C
wRP6+SqkbiGa+vYzef+z1opSqq+T0BzZTmWR9xeJYH9GI7+XXYjPQywwCdLF
KpW8pJ412WmSRc5nlXNM2YdbSciw2LBYg5zDHL1T5XorDXGWreIGjknY9yqg
8Dw5tyfsenvWknPe8uBxe/CpJByQzvnPmZy/4uvvcunkvtawOOaaDidhz9iv
1VfJfTGd6kNUGmngr9ws/XJnEqZUnx24RO63wMT8VRXph+uOZwwPSyYhtS7j
gg3ph53zbfImdBq8bAUC1JYloT3E4sY50j+K0/UV30m/rct8y9s3k4h/v94u
XCD99uN7/ZcI0p+mG5sqbvQlwlGBq8id9GfLcyf1c3U0WIQb8+1lkM/7rn72
ivQz31yboQrpc6fQKD3dz4lYUeObUUP6P2HntbGdZC5aNKqqGJmkrpjiLkjq
6+MZtENkjm5x5bMaYxOhzK7sZE/mSNh73+YrZO5im6vfGb9JxNSNYwlMMo9P
38/sziHzK67bL6D9JBGJIa0pRqTe82KHqyipc2Zaj716mAjPJjn7HjLv0l1J
VkGEA/J7exWU7ybCYlK86i6pG/9YOiBB6n9KDAr/epI5tbU23EnqN8ITkgoJ
ZzhNp1Vo1xMhUHzJZpLwp27PGcvLpK6h/2Nl8NVEtD61OJNL6iP8ut/ukvfk
7ng1bvo2EU3/tlawyPvsu9xxJIX8LnuJmozEpEQcklD7lUl+14/Zrxclyfk4
PuK6FlGaiBt3H89nk3M4velsZSs5z6WMXq/s1kTUP0DoBDnPeVlxiVFyLzTF
MFd3ci8qtUNh58i9aF3/xWVO7lfcbOKvhVgSDJTXiK0m93tmXsNjB+mTfxdG
21pUk5DvYR0rSvokcvNdi2uk33QP93BrkH77s/yw1P/6TVM/YIMs6fMVer27
aZFJeKuZN/GX9K0K/elnAxYNHp3FmwLbknC2IqV0aDGFlWsl1wz108CbuW/k
4ppkFPwd+CbNTWF+i1zr0AgNimIjveyWydDxWDv6YSmFRXutgrWmaHi+bWIm
42My7g2pCjvyUSgQ4aiY+UXmZYE3puJ3Mj6JiNIcBCmUS33jZ83T4L9Wa+UD
mRTs1uUVChWm0CGy4c4YOx2FS8zsg/VT8NtI5h1jNYXjdYqT/3joaFiVbPHN
PQVCpivFxSQpPOk8eWGWj474U5alhtEpcF7hdUJHmkJI3+radCE6Who2nFf8
lgIb9b4ow00UBus3qgispuP1bGnojakUVOjL7RSRpfArVnhsaC0dFp7R53ev
TEWW1K7OWwoU8qXv/5WUpiN4razGLcVUmOTG+rtupyAcGT8VKkOHs2bL7yCt
VAyPHtnZu5NC+Otxoe1b6FApC+lMMUuFWNYZwdzdFPx94js6ttKxdE6X+6RN
KpRL5x36lSgsXRc2HiRLR1OW8cVdF1Px2dBd87wyBaUtkzVqpD7+2Ih3lV0q
uBVqTsuTeual0GMz5Pm81wM8VlqkIlhTxeoQeY6s186cnE10LJmmjl7XT8WD
DLfAlF0Ubn8SCAzdQIedR7NlzL5UvP6jJOK5g4Jx0wXGh3V0mK4deWMomQr1
uWnV3G0U1JykU5eK0+G/6F/f/n8p8M+HtIcchR+DK+PahenIXp/usrstBQ9H
TBSbNhN+HknrUltBh9F/WaH/ZaTA7dJ274ENFOQrH2w/s4wOqSf+zEP+KRA9
v2t72ToKUTEfqg046Ti3mEbbaZmCX+ce/vQWp8A8IJONfzSkxcia/lFKwaHv
3wtURCnoH5qKPDRHwwf8V221PAXWBgaJS4UonFtUf9vjOw1VzApdnepkjA5o
5s7xU2gxPJ3/e4zw1tXTp+hmMlxrusLX8FLo+n1kI32QhrGqEW1epWS8dHm5
y5OHQuHF8qwVvTTMBxgt7v+ehB39Q083cFIYP/nqRSHZF+JNdxUKs5MQLN/s
uZqdwsKLHUPthPMjAesUiu8kYbnRPQkLwnkRvPzvEtmnUwPrjX4YJEFj4Bbr
J5nHleciohzIXj6cJDWuuDkJtIxXKS1kfqmvPFkMst+bFyZbJDiSoNWXuZKb
8PmvudqOcMJh3eIvkecIhxsLnkXcIBy+ueb8+TLCk3MlWRp+XxPBmbNxnyzh
xuqznO+UCW+PVP2z4MlKxAkbXuFVhDM6a3t3TRNe5a6+nmZKfOZBef0Zxf/x
djm/niThjJf1oljT0UQ4s/vE08nz36fl/9dJ9oVq67tH/oJJ+HHocUYJeZ+Y
hEHxvYQztp9LxZT+S4Kw4l0DCfK7PMTdDDXJOYynJd0NJj5wZX3c4V+EM/V7
PZLFu2m4/U3we2sB8ZN9Zm/Mybk9EqvXr++jQTOnVXYrbzKCBA+5nuGiwN/v
3X51lAYFf7Wn3heSIcV4P8yzjMzF4nh3kR80OB8LG/xMS0bOHmsTWwHSb8Ln
FMsIN+yvp51K2ZgCn2pny1uEGwce8R27wUXHuhM6K/bbpUA/2ynGUIL0s0r0
FmXSn1/We0hNpqdg49S6w12kP8VO6WeMkD6/aeTaZMKZin1nTx8Wk6eQQv8m
60nmy75jpXi+eSoGlG2bx8j8rvlpt+iLEh2Zermu+3NT0WPj+k0TFG55vlgX
cYgOndVOz26KpYHNec0U2xHiCVf8ez4b0uET553a5pEGZ50P76cMKRiGXxb+
bUEn53N3bUJnGuw/PBsaMyechOvraUc6xL+HBTQiHR9KWx8U2VCg2zjpm3vS
MZ8dlST5Jh1VehPlcpcpzHLfHR7wpSNH0FfC4kc6jmUnjyy4Ubh/syf+v6d0
hHnutjJQz8Ck/l/x2dsUdmVJvRd/S8cvU7N77Q8y4LrtrnbfAwrppqtklN7T
wRcX/3B7cQYODPgEPwug8HxfcrpeAh2VL9M43g5nYI2T+bLuYAqHsy482Z9C
BwfnPaqHMxMty5qeRD6loHVzmUxXKh26HJ1zR1Zk4pLWFteqUOJFavMjm0nd
+KVzmDFvJg5GsJ/TInU5pbbG9Ul0rPC7OHN4JgMipwLfb3pCQSfsygwVS8do
7ePL5bQMzEwlbLkeSOHgB31F/0g6ijMqU/LCMxAsMFGg+5B4o8NTU7MXdGTR
E1m1ZzNwx+icdMtdMtc7PrMFBtARNXaPu0AoA2EDjtzqnhRM4t88vHyHDv39
wbHOxemYer3pWeFVCt82nWg+4UKHls2bxXrW6TjnOdDpa09B1z+D6W9Dh1yg
28oLnOk4Mqc51WRBwa6ziXnehA6bFIbt76g0SIwIxfUZU5jTve6tqE3e86zF
ckXVNLyvO7B4+CgFjwvP+rcfoGNH502dts5UpPwnslZIncIf6R7xWAU6Vskk
cqTfTkVVt4FR0F4KmrIvnlWupyPAwvCH9KZUiMzre91VJBw+JJCWvYoOM/Un
g6Cn4N2kqvYSwuHIZQZVz5aSvtI0n265T/bdZq1lyoS34f9k/11no8NJzfHg
dZB50biqtFqMwpFXLR+sZmgwDGElarOlQE/28GQ22cvzS0Y2mkwQjg0bteQH
JUNfJ27HiuWEn2aLnQ0IP/9NJCmwbUtGiNwC73rCz1auj59A/GHHBK/t01bC
w5+HRTqIPzzxNNMTIv78iNad8jEkCaN0jdl9xDf++alX5hFOCp+SidlqnITv
JQfPyBHvdchcFShOOPlncY1Qk3QSrPL07SIJJ0eHl05JEU4Kzsiucf2diGtB
d6UfEi/Cj9FvV4g/ezsJuIhbJIHLyfNfAnnO92vVkj7Ec97LHikqIz5fN7Oc
+p/Pfyy6TeURzgc6LRYTWSB5qtj4xivCeVm7bxF7CX+SOM8EmVgnw7nBbKGL
+Ez6zlA/uZ8kl22MLaRRybDofiKwdQWFPVs6GnLInpJoCnyrsS8F1Jn5lidk
T8VVr+NcxEuHu2z44dTAFPDWdkXsXk/mjn58qTTxjcW14obzxDe6hvbabSC+
IRXTmi1PfGBs2fWJAMtU2J0MjbD/nw9YzBlvJH1SHbJ54i7pk8YiSe1lpE/O
Pqnj59SnY+Pu0ciCC2k46+L8l92AwuapWycTrelI2Jr7wfxfGr6zuYTsJ/05
+Hxn2ijhhuzKkuZlken4rb4cIYQbH84dzfMNpcMkM5x/19EMcOd6zXXcoXDX
v71mQzIdaprtywz+ZsD4vtWHDjKPcT+civS/kP6Xod4YZ2RibM/XK2rvSY5r
dTZ41UOH5INb27dfzEL4Ev/SghwyLyORNNcFOmobws3ZJLMhVuOhP1hNOFAW
c1hLmAE2PZrYu6/ZOJW1TsesnXDbMYXztjwDCqMrzSQu5SB/ueLbj6MUxK2X
rvBWY+DYtRnlvf9yYKSz6bTTH8I3HwWO4uMM6D5SMBH1ykVu3xqX/3hYcPF+
eq7wHAOtZstHzvbnYtcB6dVfBVmYOsjxZIkTA8XkqkZ25aGiLoMvfzUL6fqz
/UevMWAioH7KyTYP7Et56pmSLOItFM/JGwzMm4fseuKZB0Xzvamz61mQUP0Z
xO3GgNn4c95rV/PgljU0wkvqht2/eZycGVj3dnLw4dE8KE9GS66VYCFryHwk
9wL53nKl9dxL8uAxM/hYR5gF5bLnDTKnGMg+abXqbXwuFs8+21PCy8KCoa62
jDYDmrPjL87sykW465ByLRsLaeL/RuSVGIjg0PF0j8tBaOLe7eXT5H4rs6pL
JBmY9As46bs8B3vX/51h7yFcfaga5c3NgOqMPl//+Wx8jNO/O9tA4WHdrsa/
Y3RcG7k9fiU9Czt8S/qWFFPQaNlXVUung3VNslxvIRN2rpnKUYkUkip0WPdz
SV+9LaLd1swEJdGwcssrChs4ZGUjwglvt51PPheSARfPluifvhTapOxdQ3zo
eDHPbN7Qm47jv104za4TD0/wYXwie+34ol3XbVXS4Tvu4xRG9prauyCpi4Sf
YZYKe2TepUFu/p7wMOHnvRfmATR1Ot4NqTAGVqbhxzupa5e1yHNGSl6LbKdD
c6/KhXfBqSid43qguZ9CQ/Ng72HisbpKweezxVPx3lqT4Uo8trA4Y8aa7P3L
6ypjd2emQKwOcmwbyb4eX0k/z0GHUpN3QZlZCnawHtq3r6FwUyV39RbimenN
dife8aZAw9j1+MxK4htmS/2eEx7qvvkbIP80GZaVqkUHCQ9lTUTOPRyg4b6d
mv62Dcko2e0jE0rykRVXW18T8R81SmUZdyXxugpvxW7iP02mNquNiS9JLnXj
uuSehKzTM2cWEW/8Xaa06xvh0svU9fw8f5OQ9lHs/QfCJaUSnbf8xGM1/u6U
mrucjLsvT1tdI16kTbc7uZlw+2XTa2X7hWTMPbT/8Zhwe0/OCKfZYjr+W+q8
6Z5RCu4Mlg+sI7/ru8cv7SFyDnUx7ByVOSQ3bVZ2MyfnMN+6sUCQ5BqHpaHL
pUmuaeHi3+dAcs02sZpIPuX/ndtghmQ+ySOz4fnXiefcSUuKWa5L9vhkugP/
qTRsSzulGKlH+tBEdmrTBTrkMyoQJpCOW7IXnsxZUqB943p0/j4dZ+xNVk61
pcNYMp55/xqF0IXjKfkx5B4vxDV1FGRArvr5bVXiG69KZlf/rqKD5+p9rvnU
TNAOrw/gJJy5PHdbv26c9G3cu+41uVmw+/7T/jXpWy3hlUbthCeF13Q+xdZl
Y6WIyslSwpP5uHeuD1UZsGnnS3g4lQOtc04Oy39TGElK3Cd9kYGRC8fdvonl
IeDr3IUFERbu85oZjocyYFt4RM1BPR/dYsFlAkosfP1rdXtxMQNce2XaV18o
gLDQg0PRRiyc50u5fnGQAX6ZA/rr7nzCS1agxNLLLAgfex6izMeE42GOFjbf
QtA5bUPDHrLwY/G6+xcVmRhfbVxKuRYhYmrKLDqKBa1X/ZcldZl4cjpp936p
YjT23HS7l81CSFKs1kMbJq5Yl6lvuF6McQxGJFaxMF/SXz/hxkT3H8MbEtnF
cN571+8Vk4XMO5ckKu4xUeV8V/lwdzF8n55QH+tgYcdOn9wCPyZEBldl+U0V
45XiFzV7ioUPKRoNbx8wsZ13s6r8cDHuvJSwHetiYWdTyYEHXky4hK7bFlhd
jCddoo/9WliQeW2PQkcmTgfy1sY/KUbWweN3rtSyoOd6NTjOhIkK9sRGSrMY
apAuHC1koV9i0IDtIHm+AsdWq5oisH14NePxkQXntTca74gzsbe97su5kUJ4
fgt9H/OUhfK7j3k4Zxm472alEj72CSaiFJPNgwVW4/EbgfUMXFEyytzWVoC1
znfMNM6yEDHINcPzgYF2bqGzlnn52Hawdq2wGgtCllWhdp4M9FIfXk4F56Fg
84zn+g0suEYUaUcaMLDcqeOw9YVcuGxfslqAiwXfX/XTNzYxIKd90myPeg5e
rBJiOg1SqPhRVp36l+zHetGB0E3ZEF7wtqz4SmGxVHZ/fxPJBe4fzL6IZSGS
v6TZO4UCW9SjvsB0OvQYyFgmkQn3Y7MvZp9RsPdr0+IJoeOewZ8zLTuJhzcM
TtneorDi6Q2eh1dJLtDMuld+Nh2c/Fsj5+wonMrMMpAlPIxakWplH5kGc8m6
A58ID3/OTJyaBB2T/rU6fbOpSPBxzM/UoNCbUr/oM/EHIUaFwjvrVKx44anK
IP6wbWT8yw1R8nyJX3mO/Sn46bPt4dwWCr5a+4/18RBvHz4judI9BVaF785x
SZLfldci/uUPDWfO/hTtW0t4WN4cXreKArUuWpuapEFg+pCd6PtkfP5Nv72R
73/52v7lEOGe/cod6ae2JOPOMr4VzYR7CovpWfdJHldOVjvZQvL4kQDHfjaS
19piyx8PE19Sez38MHx/Cm68r63NIr7UrxDqws9PBzNIkO97dAqurlXxPSVN
PMRuasiUeK/en2vyWzakIti42E6JeO+J3OM/FAmX9GTu2fMVpKKG6mkNJFx6
MPcveIJ4UVhMz9s1TsTDa1fXfSBe1M8boztM9o7+q8Jvr0meWuVbl5pL9s5y
nTxF+2A6PosHNwZsy0DHygTmrBfx+Rt//Z7k0LHh9qUTI8hEwMzBEq8wCjkv
y5dc6aVD+p3+y3+XszDEPfnLMJfsxzDZbTNCDMikF0W4l2ajgIPf8lIb8X/j
7XItR0i/ta1V1dyRi0UR0xwvyB4/Yhp08q03A1s42A6v+ZSHiLNHV3ltZmHo
bdXRnEIGUig5yzVnC7AcQ175hiwkDtSKaCwwoP/01wppwULwJVi5pHqxcCb/
yd8dZL5eVPa9LK0tQljDxNNwMl9Ltq4/d+kmExmnq/jzK4oBy/LrZc2EJ7K2
Fc8LmDjSnzRhFVUCDc1X2zZz9kBf+uh6zDHxWzs/Rde1FEtXG81VbetBgwO7
1cL2Rtz2rZCJ3FcGt6oD8vEne2D4/FjVSetGuEt77ts9VobLbxPCSjx6YNyy
TGE6uBE8f/Wg7/sZe1itIatf9eCH9ZXUt1mNUO8ecmjmLkdRrOFId0YPBD3l
P6rRGvFcLqH5l2059HdvXzhW1QNqmWQfX28jVjJrJltjyqFjILypntGDKLvB
kw9HGvH+Zh+zq6gcuWUhpoKtPaiP1vW2HmxEW+AFvqmMcli2bctob+qB3JW6
61WtjUiY0J15eb8cbuO2ljq1PQgacbSXLGtEO+tEneHOcsyXJl+M/9QDEwv+
IvaoRmxw2ecrX/wZnwxTx86/78G6xEUS990aobbl876+bZ9RZfRjfL9fD7h+
HgkoP9yIhqn9fBY+ZThmlL51zqYHTWlDD7hWNMLLdMTyX2UpjsaYqN9S7UGz
EvNxPZOJNdJfpEV/l+BhTpwQS7gHefuiH956zsQtXcut59eXQGyzgpTwCAuK
35pYD04SbkeJeEyrFcM4K0VmPeGq0L3CWgMRJi6fGbiiV1mItt6VR9mCiU9+
4NfnbWbAmCUgq87/CQ5smx74nmehLkRekBlG6spPJ72t85G8YP/Gey/ZU8Wh
d15aEK6GdXF61+eC32CpQ6gAC7tK1tQt28pA7Lh+jsiJHGhQbNtUhonPm+67
ljlDB5tb9G62mSw0K/P7dFRQOBypHz1GcoHPPsualzmZeH5MJCuF7GveI1Ff
mBHEH3rd+WvCMmDndRJ1fhRy7xUYuZA8MmUQnlLxJh0DTw3fHyR55HYS35M4
c5K7u+4bxBenIWtG+n2fKeHYR3Tu+I+OMvAZxi5KwxiniPULTQpOCXOvarbQ
cdfl2p2pM6kIl8kR2kS4tydhdZiEMB0VjTWxHI0pSCnbOaRPcnGN1qPxAk46
Bl+8mRM/n4JNVTJqteIU/E8lq2jM0pCGz8+cuVIgzSGieJL43paNPO9myeeP
GM0pF1inYG4/9sySz4cEnG16KEKHq2pE52RXCvj6u8IMCFfn7ZXcF8sTPrMb
+Gq4pkI3oDbtwh6Sd2xe3Z7WpCOwTuziuy1p2KJemhClTeHX5ujNwySvmWi3
Ri5elI7coVf6NiSvbQx9kHzxIR3rlUI5h/6mo3fvX2c+d+LJn0ulJzLoKHDd
HvJMJhP6gY4uE88pHNJ32NTeR36vj8HSDvcs7Mp9tNUwj7x//RI7GwmSp4Tl
u6QXslFj1TdgRhGfTOI+/obkjtXhlbqNibnImC71FlrOgngud8PlCAYMH/7n
dO9RPtxa2ROuHmSBZzn3OpcR4lGBgQN7n30CR/j5n7LOLFxUNdab38+EQ2By
vUFFEfgvFOwrjyd7XzglBcFMLFWWLIpdVoJlQYWfUvtZsFPo/LMwxMRN5Zvp
aqqlGL/paC2wsQc7t75ckX6oEQ67H4qkepTh7dzyi/XnexAsN+XdGN6IArUr
CM/5jCG53Wyd0T2wkUn6cWOuEVanbwsYT5aj0ehxRkdPD0bPWG8K1Gsi3m7q
l7ymEnvPUYmn1/VC0GN64+qIJjzR5VUv31mF79VZo7MmvYitKTq9aKgJF3I8
W49s/wLvXI3I3Y96UfRm+3Pjzc3grahN8VleDZ8bcMnJ6UVFmO3uS+bN4OnZ
pB1XWo2szuYtxzt6sVN/ui39bjPC7s2OH9T5iguW5xPHZ3sR8V5oG8ebZlxc
nsam8e4rzMyE1uYu7cMvtSOzqR+akcuxN8q26it+xF++uk+wD5LNqeM675ph
cHQHa03uV0QvMeeX5u/DBe5V7kuDmlEUfap/47Wv+HpL/VnYoj4Yb9sa6+PY
jMmogJGXi76CT/XGS97hXnht/4UXaAbfuv+O2ZypRsW6gCKBL73Q/pX97DNH
Mxxuq08wgr9gz1XhuJzwXrQe8MmMKmpC5tvkQ5ciq+Bml24r5dQLx+RU0fkr
TeCIr1W0eVKJVr6ZO4F7erFsmvFsQaIJKhORq/SdKtD+fNLgwUIPiqwmip+W
N0Kj951u1/5ybNjVmHu+qAf7mNqSNPtGvNstUPcf22c4Z40pvLrVA+/s4oUM
/kZ8kuELsysrBc82yyUh6EHCp6vnRjKZeGCoJKLgXwLtY6F3r7P14Pix/P6l
Z5ko3mqZsuJ0MRRDnsdfKGMh7/qpyvO8TPgMO50w9ChEnafwPUM/FqyiJ/b9
IvvU1tlXrNqiAN/kLTgHyD599G/ihfd1Btxf/VFrccqD1+d9bsnrSH6vfcG8
T/L1numJwY6POeBKs/7N/p2C4yLr1G3zdNS0J2zaIJyN7RvPrllcTaF8bMct
P5JTFIYSmkaTMpGg/vFCVgzJd9e3n7R5RcceU5fYfy4ZOP9m0HDhPoX/8pdX
2bqQfHQtvvSrdTqyAxe7h9pT2O3zw22bER23U0znir3SEKa1LvCAEfHDUI3o
fcRz5rR0qw2I53QGNsQ9I56z3Z2RNStJx/zF6vSg1amQWK+qoEJy7uYgbv9m
XjqsnyfufRSagvasj2I16ylYjuuLe4rTYR5nlK3PngrxqRst1XIUlO+8v2Kx
i45jWo2GHrGpyL/LcSP0IIXWWrHWEAM6RN0O7Pe/mgZV+w9Bqw0pXDp8Sa6J
vP9gabEH7UI6eArelvWQ9x9LeR/64y0d2lbTx/MCMlC1zm/5TV8K5x+W7nhV
T/h56XDksoFM8IqG7bL6SLg0fC7QcSkD3MK1NOUb2YjUY27hYlD4QfvJ/HOU
gVUnDTOFtHLJfkiR/sbOgs1sQYLfCwaSEs/GBJzIx+DOc1/6lFlQun7kjvwY
A4M3X8crR32C75uDW62usvCN/WpZgzYTvZvP2xQKF2N3UvjaHZksbGhcQWel
MBF49eCWxBsliD9S3zc2z8K/lnwvt7WN2MGek1D8qxS2X0v1po/04J1YVNft
kEbwyXm6qj78DPkT+9u9iM8kZA76aC1rQkOGmL6aQgXOOxrfs5zswel3My+L
fJpwZ8QkJqytEvZHqKObDvci+iW/dD17M8ye74ri8f8CB3P+SZO3vVg96ujZ
4tmMpb9ZsnY7v6Kd72ayxA9S1w0P559uxm8jJz32r9+gSGnoe2n24YDv1J6i
sy3Y6Su24KRVi797D3x/+qQPeSpPDHjLWmDl8I5RHFkHXduyLWdb+jC180XT
CbFWcCkFrh+0qcf3585Di4X7ca0wst3IohW2u5ubTrLqYbYzvWbwcD/6Hhvd
6gltxV3ltwluaEDEc1HPgEv9CH2oEHA1pxWOQpzLgz0a0NnmuNB0vx9/r49W
iVa2wtz73g/u0Ab0nw5ekArqh7beLbE9Ja0odS3MqnvYgBWSZz0WPerHEm9D
R4kPrQh88vKUw+kGlHgJMmNv9IPbd9vxFzdaEbvyQ6kmXwNuS30fjDfth6Lg
qoyava3oynqsZB5eD7WPKk+Ycv1gs3KtrR1qwd2S9VOHhOqx7n5s9esffQh8
ZqpZ7t+CTfc/bXhA1YIrCHH30/rA93NJtaRUC7yeeQVsdK7BoamLdRoX+nA2
/7g0I7kZKUd2aqf0fsUdOX7alEgfxGyNf95RboZJovK0plo1gnzLcy3Leol3
bRyazW/CtE22eMrTKpxTv6MX6EDuVz9GdwpNEI08v82yrwJ7q09/P7eqF8PF
smEZhIeVlYr8ugfKoaTIIe5BeJiv66p9Ua8Rx83fLZ6NKMPPOSFhU4ceSB01
laA6mbh22qTqjVgpaBbcf1UlepB1KOKSkysTSobqhpPxxSiYofw30lkQ8Hr2
ZJ0QE9E6qz+uSS1Eh4fWZMljFuQE1Avf5DPQaLfh2P0jBeDNTBAM0Gdh3jz2
5mYHBt7yrPLpW5eH3kke7kxRFiY4K9tqNjJwb8c1zufKOdjQaTKjNkByX4ZS
mf4gHZ6Vp39N+mehWt7957ICCoXfuYcUSc6lzdULXV+didkOgaZMknPFhI7K
jt+ng6GyaF9SVzqWyIU87r9G4Rrn8deNZ0letvIbKW5Mwx2XHfzrzSnox9V6
bVSlI7cpodX4dyredHxc2UbybGbVhMMqGTpcyoY2rNRIxbZgvW6/nRSiLLPn
TQgP7auUmjZ8SkWHaNDCR8LDH3LTyl+MiTfuYkZ/fZ6Ge9E7z34+QWGtfsOh
3TfpMMvzC+V4l45unaOq5cQzaxPreMM/0jHhoHKxoS8D7OdVe88FU/hb5LFp
eQ/JibznXY7bZuFjsEezSQ6FL48ze203MHC7S9S2Qz4HzdPOVof7KeT1+f3w
ucwAv2CgmRby0FwZLFq5hoWvWomvN1QxwCvD3RAdUYDqgLZeM1MW7JWWeL6V
ZSLxqMvwzeNFiCjwfnIonHApxPTWildMlPiusquVL4GOyge3F2MsnLhaVm4p
3IhimZ8N4a2l+Fx5aV7tEMk723Z51bxuRHLh9R0rkj7jxNbLA/lRPWgvuRUi
Ld+EYnHnNwvvKuDX/aFWjqcX/5RrVs6XN2HCvPHinewqTB+VzH9xtReP+Zhi
q62bcVL2lhmjm/hMbzT3pZ5e3KMmOiu4W6CyOO6Mj3AN5EK22ZWc6EN47Xsj
9Y8t0Hmy/NVSvTo83u5R8qGqD2obd0eJHW2F/4Nbx+SK6pH136ObqXv7Iej9
sSCsvxXVgunX6782YMe7e/TD7/tRPfu3Wvl6Gy7zzqxSq6Th2Djt9fCyAfxa
FblE7ncbuCf8U7/H05ERE13z3XYAk9zXl7I5tOPL7rXaneS8Y16yZ3zPHsC8
k9HN1C/t6Jqg36lYycTMo5Cxb3MD0LqDVkeBDqi6uXwrf8zEKym6xT3ZQZg5
vsySUelAwzLme3UyZ0/77OdidAbB/JKRF2nQAYPBr7lSbI2ImCvvNzYdBId7
+SJB7Q40/fzDtTBNclvBCxeu44MY0wnZ1bqpAzWta8S8spl4af1mbm7/IHSU
j/ssHW3H2fgbe27pMVF4eaxscsUgoq6V35F+0Y7oEBv2N58YcIuREJ5rHMD6
mot6HQrtMIw+0hfMReaVertr/tEAZJRzigXS23Bj24iowTY6FPdymfzePYDF
Bzz+m97UBrttU6svHaThTu3K1bsY/Wj0vfnHNrgVdzyiXRKVCVejqv/Z2Pfj
0IRpeP90CzruRVgJbajHvIV4LdufPgjqTbRL6beAVbipTkawFouu6h167duH
yIcypWkJzXDzg09Ny1e8T1MNK1zVh3p/NfrLZc34byaU+TzuC2Iz6pf6RPfi
7dqF8hSnJhg6mH276F+Jj3Ni+dNKvZjPXHXPuK0RJivfjD94UA4Ol5dKySR3
TwSV7jLSb4Ruv/vNtdFlcBTcJDRPuLdihsOHq54Js+gkh199Jcgfrb5ZL0jy
++PXmvqnmNDNusCxWr8Yb953Fn4pZqFhA1vdg2kGNvUGcDhXfoK9Q8C+jddZ
qNFwaS0MJRxrqV8rpZYP3x+rbCd2s7ApWHo++hADMitGFoT4cvFu4mLhxDyF
5PCz74L/Ev7gkmaWTDbMdthWJX+loPdKyrq9lI4Dbg1Rzg8ysZb/5KbcSApf
z2pTYUF0HBb8wz66JQMvXLylbL0oiDPeslXb0PE375KzKHc6pnSdoxZb/u//
c75y2xyi49J3nQdDImlYX2Ii3qxF8mCk71Q24VXMVb1bRoRXCndW7c8hvJIx
CuD57UWH7a4HPgbJ6WCuc3Nd7Exhf2Z4gUIK4eoRxWcPOTOxzaw14MVTCixl
emnECB2RCYdzf0dl4b7B2OTZQpJ/C/zEIncwcGLTufQvQTkoKbp4TXOSQlCo
M7+ZDwPdOQl7BJvykL4nulxCloW3k4WR3QMMsJVTOWY3P+Etl/7DWCcWqlrS
NDaYMEFTS9MV1CjGDr1X/IGFLPR6uY+8aSIe7tp+x5ytFFPmscdlRHswfyQv
+6pNI2Y1hcMEpsrA82zzZj/PHsictKj05miCd92ERqZwBZbcVOMMH+mBz92F
eHpKEw6zb1k5fqkK/st9OfPO98LK8bxrt10zXt5/u9xpqhp698Mkqvp7sc6O
ra9dvgXHykKTZ8JqcHS9A+P+5T6IynXajMy1oCubfktLsR5X9+S9nPjXB46K
Q4tDqluRVr5yleCrBsTn/Z1+EtKPHw/cu3Ret6Emsh153HTwus0Uzm0cQMaE
5s04+3bkdJkkP3RkoOKywQ92wplbMUmVU4odeHJXQfJYJRMB12IaTqsNItar
2/3pcAdoa7TVBZc2QST1uAbz8yDW7Vubnh/SCcGKl8VXFIhHJA3qLt4/hEed
E9t/bOjC2+sfi5PkWqAluU2tMnIIL2gbz1m86cJk+8EPAn9bIJjxLsru1xBG
h2+rWc52IVXJJVzndSvORI2NnFEahpWin9oHsW6svjxUX8zeBl1FabYvZ4fB
Z+unqSPTjWfn9oxnKrThsHr864Arw+j7fdvu+fpubG/d639qbRsWWaY5TdkP
w9Snsv3Lsm5ETpWM+dGIf/WH9eocHcbX5xss1n3tQuCczrvXx1rR0fxgKkh4
GDxB+nFFZ7ugrrxMcSikBRJTKs/Evg7hv8uvwkebO3F94UObZ2wzOpfZ85k4
DCHmvw1Lj+3rxD22+weSnzbh09+2t+3zgyj9Fie68KADBVc9q2PONMJOz+nz
w1uDOGL0wn++oh0V0UviV/ATrxm1HumbGcBan56e3D9tGNCKvvohkXhBk+DF
ZXYDOGwyXPlraxu8r5gbJKjRoJZos9SosR/xIf/ij5m2YtKSU2N9Yz2+Xg9d
PKfWj9RmW53XD1vg+FHkgldHLZ6NZ01mpPZh0eLJ8IelZA82Dywu2/gNvMtn
wkU39kG55i9rA8nLymklT+ICv6Cd++lFLZKXVRdiqjINmrBM4OrxrdKVOKU+
Ft+9nuzNF+NhixIbMX9VU8S+/zMifd4flEwivrflMt8WkUY8umlNO95RiofP
PJbVkT1+/ItkypsgJvYrTJ9zXVICea3zLPSzoK9oJ3pdjIkdpjfT9jcW4hPb
+5PeIcQfhPOMdFMZZL+kn61fVICjY4cFdI+wkMqX/1fnJOlXN2ZNbWAufspU
fVy2lAWh0lV+L0jOqv2G0lPu2Yjdwhkv/b+cNbrOiLuajm9mSQ5HczPBfW6y
tPQ98TSm1KmjT+lIF3ue80o9A+b+fBH/blPQ0FsiveYCHR2scMX/BNJxVf72
k0nCN5spm8wH7nT8vnEm+HwQyYMqsY49jhQ+fXf/1pFAR93j89ru4+Q5VWZD
6iEU3l5JoVkP05HXzDJzCMvCkVOXX3p/ohAy80SwcBcD84H+kp7hOXB0mo0r
naIw+DN48lEAA1l30o5KL8nHj/FHM3KKLHBWP3qq9Yvk97bgNY+oT9AaF3Wr
usHCbfGZF0cvM2G4QPEKvSzGVvU9bn51LCS7cg2UzzORst5vWcidUhjsir+q
vqMH1QfEdI8Rj9I3qLxklPAZzy5O1FkSj4p6eWO9kF4TBBXu5C1eXQnmqXBl
7nW9sJAbFZ4UIlzaO0bxV3+Bx/eJqVUfe8H1k3Np4mgzNoXFGGvlfEOuxSrH
TLU+/N0p8vY8owXNxhnVKzrr4D7J2xrY14dmT+xu/tKKrIXXHHUvG/CrTvT0
CsKldG1anPOXNvTHaHTsJ/tBs/eJVabGAH4kXWG21rbjdnzFTJE4E3+MNoRe
WhggOTvpZRyzA8FKJSHpfY1YoEnXrs8ahJ+cgpMBmceQ7PdcTh+a0TbbNj98
cQjyCrqag/Vd2Jl3piruZCvW3tjNE7l6GKU9S1TbzLvxfp8z29XRNuy0VNVG
IeFDXcRR44puzOr7cf53qgNshyJP3jUcQf+d3/TVUhReZ343ORvWCTPnqfHb
9BGwK0vl5V+iUMLWIHomsgs6Gn0cdQdHkXxpVuQ76a+c2Zn2rbu6sbZILn7/
41FMtkRXr/pG4eUJnysFLt2oGAt0dywdxdY/k04y7RS2iqnu/RjUjXvvio4u
bhlF7JnafZ6NFA4G6GU0+HTDYMfjNt6GUZj+m3c/l09B0kwsJONkNxaymux/
xY9i39EgwQx/Cgwj621fObqRM1d2acJ2FK07Td6Hkz384vOLnwbruhD/qMs7
Zsko0mdfzBr+6Eabed9iuT8dYH+f9t+mJyNwXPFSVji4G+MmS5tWRrXj20qL
gjjuEdhG39nkSbi6U/J+ybxEGz790ZT8Sri6b3up7lGDLpzbmsX+5UYLXEou
RU8VD8FaZz4807ATR/RzGyWLSH8dF9/OwUf2QkOntOyxDvxZYy5oMctEqU9W
907jQaxdIRnurNkOhXs6Mk+2MWC6Pkg78M0AlGouOZxXb4PV5ZisjZdo0Doa
uNVroB8vj904/lyrFfFntlsL5tajdE550z7lfrRV59p2mbZAaYemD/uuWri9
373cJbAPCRedJiXcm+Fy3M1ncMtXSF62WLJjuhel8gsP/D82QSyyVTDoVBU2
slXnLrYkfNPg/fB0ohGyI+/CRmvKUd00qTHUTrzO+z7ti2YjnMtEE394l+FF
Ywy0bHrwLVFn5EgqE/L+Gz+u9ChBz5y/mdICC+ZfWEFPFZjgy8nTE7YrwiF5
qdOmkSzct3174H9+nOCUm2Z/soDkMOPHPwxY2CtdpmZ8moEDj4/9rM/NhZvG
WlttPhYueGuzNHkZmNx14BuvTzYWj4usNWRSsPapL6mroiMoc8MtZkomYrpa
vgzEUKCtNjAwCKZj0Y6Clm6FDBRVPzMbIP727udBx9NRdChZ/xq4HJMBd4dH
t1gPKWzvWjM92kVHX+3rFc8NsuDIYXVVJotCAPXikKIsA+1/XxYtOZ0Di0yB
vGUjhJ8GB09LE7/y/Xu5PpSZh5wthcdntrIQ/6xG7RvxVVrhdjHdL5/wevKa
8Qniq0fdZnb/cmaiY1L7hHFUMULW59+90MDCVpvGY0d5GnFKq2Q6Jq4UJe02
XKf39UB0fyBNNaMRbvrtvm/+fYZn/bk1yuk9oJbUzgZdb4KU63beuveVsF15
q8DjQC8cN2hc9TBsxsEx23tCEdVoTjP4bdzYC4HVYjG1h1qwVqzSvmS4BsKL
gn7F3O5D7Yz9m5Vk389Ws753Ftfj0K3lCpb7+tG14tGxuQttUNm1nH4ziYa1
Tsq0gUUDWOP6T6w0tB1HahdfvJHLAN1Vufook9Q3Wl3nrevAR6/YjztbG1G2
07TVI3UQf38k3fPhJ/zZYRvtQPIli523MztkCPYKE+b9m7vR+PFEerlyG4oc
P2kpuw5jS3DMlG9lNxqiEk9fPNsB2w7dMzuOj8DpyGGXZRYU1Fwn1n2+0gVR
lZ/GwVtHkcT3oXp0nIKc/yJ5/dRuXP9urGT7fRTfYwuPPzrBgrJ75zhlSu5v
doeygfgYTptbSbvEsuC+3ydZuIuCAGfo8t1rx9CmcaGBOcqCzdktV34eZaFe
c3zdZ8kxtLh6P363rgdiTSmnt0ewELXuucv0ujEc+O28+5RaDySPuXKfaWRh
zTD7/uz1Y9BuET4jbNCDCocz+5eMsxDq57dzudQYHKINR/YdJTl+4L9T+8m+
d99d2jpJPi8e8GJi2a4erPuqKmtRxMKDljU550j9nZD/Ie0lPYjbGO6T6M6C
p7LAdnvyvVg+d5q7hkX6ia26VYyFWGOvO0vJe57qfBiqfIcF2zuN1LIIConj
ziv0JcbgEWDuM7iJhZn0Qt0AAQoXtp5t11wzhiJzK4fMOHJuJczfv/Z0w3Dp
hlviIaMkF2nxxa+iIGXD6Sju1IlT/pWmHKUj6H3sZ/rhRjfiHsUpPNdvxx7J
ufjc/mFkNSf7JKR1YWCJxlVR6VaM3I5xseQcRktx/467lzthGn3t1dR0E9oK
xI1/SQ0h4bOH/OcdHfC+k8XvVs3ETsOEVzHqg3h7WnT9yn9tcNS4/fNGOvHz
cOE+64sDKJT2ENnY2orHdgp+MlkN2Oq6TdznTT8i7vvO3atsAa/9XaNjqXXY
pZ727m57HwQUc0bGvzRjX8VKm+v4BuvunkfaW/vwQWKES6anCQti8r9GxL9A
wmuyW8S3Fw7BnAmdK5uwg1tMc+3RCth+cLa2/9WDs1Phn1TNG/GHs5LnZU0Z
omwfSJ1x7YFLrMW+lHwmFs8lfToYXoLx41+v3ufogYV8yXCfIhM/uJQ5d98o
wsmLjyx+R7EwbP7D5XkeA+z8I2ut1Qqw5RUKGHosuFlw5f0yJnwbmPh8MyAX
1bHGhXVLWDA51HyPm4OBpVP2DilHs+EzY7XPp47C6KWlGTVFxKNEWlZuc86E
amfjiifhFERGXleerKEju9HJ3LQ+E6dUHwiIkHvVOrbRiEeEASnHRaWt9dnY
NVOkTpH9ymrpoEtfYUB007Vz/up52HV6xmS3OOlr514N3k4GxFUE3i/s+QQ2
9xMcxRdYYBiYFm+zYOIFr7IAr2UxOq9xeSp9ZmHts3bTrDkm0jo+a45dK8Ue
7Vtl4oo90E+5dDAqoREvOnSure37DMeAUOX2xB6YjKixUt2bUHmtbltKaiUO
9W2OSFIh51/uz/X1fDPe/Dp8tqSrGlzqV1129/RCd65e5MDFFvzle1BkdbkW
FQc20z+86kNvwtbubwGtMHOXcLiwvQFqdgP7Om37ka00c7qoug2f5yNMvEzo
SJN3UQrXHICmbqysvmQHhLLvycXEMvHM6NSrud2DUFy9/t8e3078ex5vIive
DI9T/1Qjdg5hr3lTuQRbN7qNgmem41qxZ/h+ec/+YRQzeT08i7vxUbTRflCz
Azsk1/w+oj2CAKm6jX/vUNhQ8Sa+YaALLj3SW46YjYLKaTc7voMFM4m4zzrr
KQi3tiXeJXMXbyF0RSiXhXw7f8uaOTJ/whdXPSP8qbL1+2uh3APFkK6veeR8
M3YFb71OOJC2XCFpKo746WV/Zg3J1U9HJMpXbhiD+k+BycLlveiXTLHcLNGL
h17dSmYyY5iMSlLcaNELjnflc48ie+EDebH9m8dw9Zm20ce3vWTPPrVk5+pD
usfWhQ9bxtCenMVzu7IX8ZP5c68P94FNR+fws61j0P8WXOHf0gueE7ZvXp3v
Q2bt5hf/SH3WPa9SkNEL9tHOsPpTfRjlmvjQRer9n15Jn8vuhbtYlX2ufB8G
RM1V9pB6wtIImuW9XixjvzBV3tYLb9GsJ3zke324dJSPk32l5XR4nu1CL5TE
JwXtN40hbFR1OIgiPIxwM5RrJLw84mJpsnEMLFutRwHXyN47vuL5/q09xDcq
WgYIV+flBH+u+MvClV0p99+TfrVn25e1+X985vpL3fJgQdR9hWT7MwqWpzTS
FQgP957JPdA6SOHkx/y9Je+7IXhvlVjn8Cgc/qPVnd9MQeiPGZtKSidkFjf9
PNk+grfiI3Y/bbrx6fUmraf87WDop7o4fxtG+80wowP6Xcjw710zeb0Fewby
b+4gvkd7m2Hu29mBcJ3n9ZI/GxHt75RzumAQXCmHjrh7tcMk9u3g3yAG/J/r
yU5+HkBpVt2g8a42nPy9z2vOkIa3r7S6h9r7oXLG3uriYtLnw478Nar10O+u
or3m6sehWXuTtrFmRF989+JcwTcEHe7o9VPvQ8WJwZy7P5pg/10tRc/0Cxz4
N5gffdqL4+wc15+LNEHTJj2E37QCQZHXuHnmemAtqUadNm5EpK7X/LrcMth9
GRTdf6UHnKI8U/rJTNDoQpHKLiUQ5Dl4lf6HhfE1LVt71xFP/SJ9m1pShLUs
f6e85ywYLiq8ORrLgMu9sf/uVeYj/PGLaTt1Ft4x57BEgwELwXijWoFcuEws
U1JaoMCzev+/lmk6tmmMse9hZuHRwp2wq2UUrsjVPVr1mw7d90vt73NnQ2Bu
rte3isIH162/HPQZyLsg3MlhkQv9sHO2ypwsGB8V9eQiXN2n/bPFRaUAMjxT
zY6Eqzq48CB5LxO2e3h6DbOKUDUfdGlTHAtPnh7JUqcxUXhpa3zRWAmGI5+e
OCfUg4K7nLLHfBrR7P+7r+HsZ3LehZ4jIT1YeyD3xlYT4uuNebfe7K3EfOjp
HfYyvdAb2y45cqQZQTvdq456V+PV6ZxthvW9CBSTzYkwb0FKwsze5wdrwbT7
U3wuuA/bDHmYH4Na0SyroG+jRHh1ur+MZdcP7RWP1tf1teFDhWmb/wM6bAUV
1kabDkDGzGl6sVkHtlQpXszia4TqhU1H9p8dhG/Zqk6B4U7kcusxtCua0VrK
ueW82xB6Z+SGBI50437QM/bID21YtHRy4lLUMDjYOfcukaGQZeSwbFlsJ14k
zz7kbhnBXqljvrt5WOg7JuOj2dGNseocxynhMfC520vtTyH+kP8mLpR4rY4I
/xUrwiVjtelioRM9aD7NPXr1Bwu9jO3eG8jcmWuvsUv73oNLcrNDx8jfFF/N
7aVkTr1uaftfIXt1pu2c51EWmWsvv8MyZN6XP8684cpPOMKQXrM/vw/Hi5bs
3yc3hp5Hrvfl7vfh22/jT6fd+tF56K7ykMIYpO/ptt3o74PEK3XxDKEB8Cgl
Ca7fPoZNVORjZ8V+PLO8vPax/wDe+niU1+8YIx6cwD1l0Y8XZqM5bi0D6Ja8
WTWycwxlQkN+sdf68SnMUPf0PMnP3s337XeNgatkeUjO5X7MbWiSpk8P4NEB
na7DpD7qHvfkhl4/crrOnrzwaQDFZ5a03CfPkZ78I/tzZT8EDEITK08PQP/d
zjtbyfeuHL296H1RH0oidvsZNPZDtebFDRXFMayWLVl65EQfVg/0b3WQ7ceF
ft5PDfJjyDgeEFTc1As5G8vqXMs+mHTsWPeTcHIPbY2+vnYvlM/e2nXDqxdb
yxxS8gkPbSwN906l9GBP70sTXt8e8PaEvj5A+B91d6OgHH8P1A7mjq+7R3JF
1PS9R4R7/q5+WXWEg3FuadpMNwph4jVRJcR7aU+Krm7+QGH55qh3D0gex6aY
eB+Sx988KNSNJHn/W7dku4Z5Bz6P+lSMkrxf3HH19JbWLqw+l7dQbNuKYcuC
5VLrh6ExmBqTub8TrQMnDkg9b0JB2Q7+1oVBhMneLpjKaodAmxGP/HcGqnSd
X4ePDkCuKWiyXK8Npjw2MQneNNxYpFmwfbIfUmG3DxTytOKKqmAqn3Y9Nl+3
fm+2tB+Nxuo7e1nNWG70vP2/Z9/A2lrKxtzfR/ZE+U63ziZw/J4Iec/7BWne
Izy1ZK+obHqmG/O7EXZfmctsf5Qj9eBHkZTeHhhbJmVE725ESi5f+onDZfBo
5fPdb9aDvrJSw+gAJnr6XCok/hUjToS3enMvC0LVTeYibEzwlDdYl24shPyD
csHE2yw8/ua/dtdDBjQtMxTap/IQbNJRRZP/3/yE9SluYcDHasOujXo5OLTC
+Xj0EAWJ7W0naDIM7CyceROvkgMbcSWe3wMUYloMPJv9GGDcDO8+M5GHLFN5
qxDyHE/3+v/m2ZlQ+aet1rO3ENGrJaoyvVl4uKVi5nooE7rrLp05sboESs5F
s7FDLGT6Suo/O9SIE3t1RY95lMF964ndBed7UPy+/agG8VizPzzjPNoVmJTr
Cfv7k+ST4coNahzN0PXYZsAf9AW81u5/zMN78TFc5PqEWAtu7/T/+PFEDZb3
sm7es+rDkbRlXY9OtOLHbqmMsLp6HOv1Kzmh2g8+yVHT/1eRecfV9P9xPBQy
KpW0tCgppFApeiWjhCirokFWIaNSoZAWUkhFkQipLyJUGtpDe932uN09zo2S
rOL3+f37uefxOedzzvv9fD9fjxuT04Nj1R6vNE1a4f9E+Z/Wai5GCsRfZaMP
JRfU5P/Qafiz+7xs0VYe+LlPlnwQ9qPWQPOxNvHx4nDP6BuBfORX9u0b2kd4
ZV1has7vge9QxPaRAgFiWrpVOdsH4Xz43P3k1QPwXP3w5IAcBfacnMkea8j3
0Z0c7ms4CA3ju26fiEdNOyT7tIfMpbBXE0mKhxlg3DKqVyH1r/RLnZdYwAQV
8e3K50Qm1tyTeXWZ9Ivz0Wkb7p5nYaFmULVEHQtZLjwXGvEiMVnjM+cM2ZBv
LrvVN8xGufzOV2KkT53sLZxl+9gYm2gQJkhw4XfIb7mA9LXbzHVpo4RT7W/k
LaTEeHjKURjyJ9zYYePO+yvGRciP4r1Punl4XBXSe9tEhJSRfbvuneHigbVr
ZVQMH65Kk/5qmYmwgXE16EAVF6F6fTioJMB3l4TUeWtEGFtqo9z/jwuxEUnv
hb4CHFjN2nJgrQgq662eXlMiHpEeJOPxUIDYUX+VH2TdtrEwbb8cDyryoz3n
Ysn1O5tkWsn6nNOc87kiLibp/l05vkeAszLjHj/I/vLNv9Rq0rmI37uosJ3P
x5P5z4e9zEV4JW8fabmZi44lP+h5dnzsf9YbZbJahI+977XQyIFf87LL767z
YM8+HH7KmOzvHWw7FxwkNg3IyaZycaT3nIEO4aTRR97tqw/YMPQV/e4jOS1R
88fJMwYieONHngrFgmzmzEzvEDYk1B9Rx/VFyNZ14n8xZMH+XP1Du70sXGl1
PbmUcM/S/pPZobNMZF06LbyxgInU2lu3Gsnc+XHiVU3uWwZ+XV86+Fs0CO3N
XguPkzl1WUvm7zwyt9ZWZbc9z6DjjmLsXfEhCo4m4Wt3fKXjt/yL+6tFfZih
NSYdelMIB5v+706T6Fh0ZMkli9fd5Dm0jVPWCojf5qyGVT+eGw5oXX5CvGks
fMPZyXwYldeuq03txZtSwTC9uQ3ZOmxFvQEuOueenNih14PK5N2zo9a1wHbQ
LayfxoHwvkOxZAfJp8obL23gNmJx2v2i41w2PCYN9WzM6MT5AXM31+ZaLGG7
ms2QZ2P21RwThdQOrLZ0ttGxqMYxlzfCOftYqKl4OOxT1I4kj4u0GJ0KmEkf
0FHIZ4LnuvfZpgkaDrWVfLK/Woqh0/O/PDQi9Z727mOyE8nVbNF+Y9tiNBi/
m3G/iIF6jax8G/LcRnMY+qb0Any9YBld5caAcunGMJkDbdjBMiwtbP2Itm+z
5vBlGGi/HmP6yr4NB5cxLHKPfYTxlc0XFacyMNN+uwezmPB9qP2ngXcBVl+R
Sl63i3BMaZL1LxsaDhuvctopUwwtH73ZnHcMXOCvsokV0aB4K+V27tZScPos
58YtYkLG5o/Psax2vGRdYxr9KseYBaUmfMtEsoZ5eXViB0JG41StNasx+CBZ
c81uFnQr93xuSO+EwRlsK26sxf5BxvVsOTa+Vp3cYcDoguYAp2XKtCa0QH/9
ui9saG30TXXc2IMTV4t9bpxugdjpX7l9PA5+/pmh397ai2F3aW9PbRqM/jzl
iEgfvz/RHn30Zj/SHDvpS7U7odpqHrvBhI8DSy5FfzKh42LDs9xDx3tgLxsk
kL8uAFuoaDFhNgj/qt2reF/7kVq/x+HCmBCBp8RqVxBePb3v9UKX8Gr9UvGt
hYRXOU8vrZQh8/pz1hfd0asMaMY5MG4QXkXNHTkkzWXi0tzEhWIDTIR+f30m
gHgUy9F32b1iFixz10WErmHDdrbC75PEE9yr/pNTSSC+/2/RxaVxHFQsm9Vv
T/pr2c/XnXmHOYiVzNygN8iFrJpr3jTCpV4n54KiRVys3eDszFHkI6s1dqqv
qQiSL8JNFnRy4RB3+ZndSgH8l1/0DiR88MmoH15whocyXj+tbb4QHFKSnoQP
2Yd0E3qYPHzY/3qxwgYhXnt73hCfLsL1Seeb/c35WIE5B7YdEGKN64+ccjoF
06NZo6f8+Cj2OKH/xFcIy1kvneoqKSy5GWK58hYf/vr2ZjFBQjTcVo5oyKOw
/mTMovfXyT6RhhkfLwgREpHuvLGQQif/xYxth/m4+Oy/ZMtTQuKzU/5NbaDg
tUrdVk+Tj6sqlqIIRyG6trjsvklRWLhmFu93EQ9T/hbtUDclz5nguGmeogi0
o6H245Y8DPz61VreK8Cg57mdfRaES7HROzuSufDICz9Jbkb68sosfXLezjMl
35u4HKzqjLu0NIsHhQIG/y/h3mtB2AFpTQ6Sz/l9bzvLhUvq0Z/niAfm9WZd
09vORqH5avME8vs3KcHU1/+fI4lDgYr+xIdLf1InKlmImuklWULmjm3bA9bz
h0wcOxTVMtuTiS0/Tk6vWyCC4NXRf32VDODxqsOj0gw8iBm5wSF8i416q2//
ZRBTvE0//H1LB5WZajf6jcLvSXcnbAfp0CkYZ0/k9mG8fK3S0QAhHoTKBD6t
GgAnXb/3pnU39BL6lNXkBeBm7lf/MdKHw1LVb58rdmD5Ve3RjzU8CKp+doxa
90KRdj7TyKgN/7xO5yeT92Ik/fTe9Opu9G7Vol7EN6MpYHtk7S1y/jRNrTif
LvT+cjD1utmASwcdS8MesxGfZJZ/l+SjpOJ5LhpXahCo7REwl+SjIu+esTLr
DlyZv84xTqwKxosPn2Yqs8BZd/5M5fF2KDzkn4idUo4k9ZnsTZeZSBtKyd+a
RQOqGa8TgkvQbmVoSU0wUDupQr1wHg2/5RJaVtd8wlnfY7lbbjPg+iJr9MI9
khOdvcyX7c7H848K2r0mDNhElopPDmxD75Uuav35PCgV6g8XaDLQlDh5uQ/x
1AFbU+mO+kKERTam1fgzIO3e4uFwjYa0ZR++zPtajKxQhQj1QQaqHR85plm0
Q0eON5JxhORlflL6LXfi45LG7GiSr9l7aRXDjpVgnX4yaTLJ15WqsRkf5nXC
tn3dsXetn3Hn1qOn01+xMKS1cUqMVReG13x59YVRD06/+tE5l9i4ZLtXXS2p
G1FiEctu2TRj/rVWG7MzHLxMH8E/rV5Yd5yM+DLcivNyzlOfhXLRE3e2mtbd
hwO7dH6+HWrHgbGjvuUfeQjW2upwqHQA8cEen05YdMNLiXb8pIwA8Q4Tp08L
6bCREp3c1NsH0+oNmhnhQmz9IKLYkgwEjObvMabTEZFx39heSYSCYpfDT4lv
Xs65LNtmzcD7DWeD36qLIM6re9vWQubPAprnpU9MnNuff3Ay4VXe2eSNjSUs
7BkxdwmwYKNX8+EcP8IrXlajICmLjRDzabquJRy4aAS6jxBepdbPXGaYQnJc
9mkxJfBwt1NasH+VCLpB5k4GYVwYRHVenZrJh2Z0tn0c8aV3syI+u+7nwbXK
/V35dCHGklIXBkGEYfOcFOfZfEwzSkun7IVYenDY++R3CvOcvFL10viw6tp1
1SRMCJG2vHjYGwp2QVGcAR0BvJM3ddZnCvF7Xu45O38KYtN9otIjBdAMA8ez
SYgtG055XtpCQf9iOu/9ZwEuLjPMVOYIIasnlbxvGYX+vLj1ljzCzSo1c9uv
QsjUPb35UoPCsw2RGvOYApybUpRxe0gIo2Os4+NaFNLeb9+RmEc87MpC6zmD
QpzPM+tSX0Wh0n2OidRpAbor7deuqhbCu+nblbA9FGrYjuKbJQRQ3/7MMfGp
EJvWhJQ4hxPuPVA+VxFEOCUhmerpL8RjxuvrMmUU1MzjaYZ9PPzZ9HpP3zoh
IkqrcsVmitC39r1tiAYPFh/1L8e/EOCz5ocadcI9323TVvE2kDqK9nldZM1H
7hV7QzXie1K2c71p+zlYO0NCcaCFC42ePY2txOv+lnV4fD7JxiYea26NAwfd
z2/kuZOcbuOf6DQviAXxycdmSJM+l/MbncoifJP1NjplGsPE+MDv7j574iWF
4Y3+hG8HQh3iz71g4Am7PVl5YBDn2wdU/v//yw1nFUPqwyBeTh6JW2FHx+jN
TVHWqRTu1/y60PGAjtqLdUmjNb0oPtz0xkBRCLcr5vuLDAewwMLjgIj0U3ah
qXxFBh+3xrM7evb2IT59p9/YjHZMfGy2ynHh4UgTO+Xxqx5oejbZ9Wu3Yq78
i2e6RlzkOu/QjFzRjftdk6N97zZBab/D4pO6HDg3Jd/w53Viwe3/Dj9Lr4O8
6tiiYrBxy3Yx5/vnDtjdG+/eVVENsU/ycw6dY2FySnnXUVo77h5LpnHOVmCz
svrg1RomzDc1/bdwWjuCG26yHz8rxaCGjeXN1UxcF8x7vGIfDRT90JHs7cXI
6ap98KGYAVs5wx336ttw/V9gQ0xlARYovG8wcGHAV8si51VSG8S0aZmHj+cj
dbEkXdmM9K1Uo5GsBg2Td0sYLBUvglPmrH6dBAbEpdfFLCmlocHa4HzthxLc
9a5xkpdkYqbGP7iGE95SLVtnu5cjc5da8I87TLzMPhWpcaYDmys6M7xuVUHZ
ztjouwkLO2xlO33DO7GB7hPUvKsWFkVc7f7fLOx/t89ao6YLnDK3Lpe8Rvja
vUlx7GcjxtA/2Bs9OKd9rczqSAv0ftFvfWBxEMCl9Szi9cJC1FNWSDwxK1Xr
/SppHhaIWPXTK/oxlmkZww3rRIrsUICLK+nnC5u/UV50nDgtUeE2vxerHu8W
SLQIIDG017DpxiD2mGrKj4vT4XYhbFThGIV8zoNG6TsMxEnbeqvmD8I9Is0t
az6pfxXe88pQJnS0StvmrmNi2GhbjxmpQynhH5FGCAs6ajaSizpZeNA2emLS
YhFMXZf1ccLY8A0aWXAtkIMNhZP9RaTOh+7V76i9wYG8/FqhgxoPqsUrBtjE
r+ROKzvtjebC1z70v4JCPjYaO5TUEF751bl/OBHKw51/zvPXLxRiJqs2uoJ4
wrntnQMz9vJRJMU6eMmL+MyV6A1ebRSuL8lUYSoIUHp8ZFJghhAGj79PCwim
8E515k3OJwG0eoKWXmYI4WoXOGy0gsKLX7NbntoKke51eVhpDoXRc5bK90YJ
z0M7To18IB52RGEXYyUFSw/DwrBywi1ext+cCSEuP3hyvHkrBUm7uiOuhCu+
tbt+TSHcagmy2L7OkYKh+q3fYnFCMFQXtgarEJ8KcPUuIjy6Y3ziwLQEIdxj
I6dfJ7zbJWG/5YQNBY0IwdBG8rxb/eJ1g1OEUJ1VV5e3lIJrvdMmrQYhlH9s
ve6wVAiputA6h2kUYrPreXmTKDj8Cdz6OVEAKxeupl+7EBnF7Q3u6ymsefrw
Zx/FR2vAv89+DwgP34ubbrlNYbeMEl1Zl4+uHMq101mIrJ63J87wKSiWtVc+
3M4Dp664YNOoAONSYtlGZC40JqnOi9zJxQuJPdJw44PdmX7dh/Dt4IVT/u+2
c6Dql+JcUciFdOGgXgTh2wlL9amizWzkDmXU6CtxUFfeciaG+JvqtgSDudYs
SPJ/rbUJZEHMYRvtBcmnW/vDY3u2MDEjMlfvCZuBlml7Xg9pihAQL5ivt5+B
5uRF7lcPDcJcYVGbv6oIb4ZSBxdbD6I7m25ooTIAu7Vnte6R91H05uFgsT4d
Fku8Z2Wt68G1KW/mmwUKMNqhWffSoR8Jk32CZIo6wHndOz5B5tynAYfe1Cu9
yO83vx4c3wb3tHDtxVVcUB9Xt46yujH+/Qx9pLoZJ2Wctqk/40DCya/3/IUu
VNJuZNFfNEDFP/a5bBobsp1bdG5adUJ2Bc/j9bEavNC79X5hLQtW9yWcHE06
0NnVeepCVSWo2wPznKRZ2FWieom5ux0BU/WP+ueUgS5bMpd9mokm97I6+n3C
H2XT9ozFJQifnbyzlGJAdHD/+/G/bVA9Fxgpr/YJxWyZ45xLDFR4z6pY+LEN
CvohEjtNC/B3vqdxkx0DCzZ+3DNrEw1bDjYM60wtxufpYW86SM7PT0r9+HiE
hsdL9wxvcy2F2t/qNi19JkLsPSbulrVDXMHiP+HKCjgsiZo9UcgEfdHEyJvC
DmiXS+zKSKyGoO3vnfKTLHw9nhprxe5E8sGRkODkOpSpvdO/tJbkxHkmxo7E
k7S9t1xel9aEG+La96cu5yBi99+e4LoenGIoeUXua8XmYMmcLmsuTJWrj724
3YeRYrm3fqfawbzjf2ZPOA/VVSnCjOgBLP75IyyI1QW5uqrVcqSOe+/+6viP
+LlV3ZV3dnl9CBouW/OF+HnyaKCxhRwDGr6RcPpCx+28WVYNymRumnrqxk5j
wjkt8Z+Q+Khsrucyd5ITvYT21xVmsvAuWWEJU5GFa81z3tvqiKDlFVinoszG
M/3IqL11bJR6sg4ELBGBXXtqtjY5R8pt3YQ5N7jwkteb1Ej487A0tDzJhoud
KNfO2sZHQ49t7QrSF9/6l7akkznZzPe52zlDCA236DehpI/ivx3paLbjY439
qGfJUSGGkhQdlDopdMhKYGC5ALeIOCx4R85jIz/YepaCqlTg9Ym/AmyMLQoY
+CFEQZxbykUFClXb3o18ItcFGoUc1yFc+ns3YFlIhRCR6622u9hS2CGtl+R+
hALNbmTO9BByn+iq1/s+UVCPOsaUukmh0D5YfI6dEB+y73kdmiXCrLzie/Jp
FKbjrJ+KPvG+oLoVTuR8QUWfGQXvKIRUiByVlYXQq5nBKyb8drk6OHEti8L+
3oep2SpCtEkUDv+eJCIeF09KjMLbhkvxFQZCCAYeCL1fUSjXmznNK4JCXKrT
vOe7hZihxi9dRrgbzklLeOZKkT6f/ckrSoglcgf0VhMuqhzaHZCqR/JYborb
5hYh7JziObV9Aux4YFBQTxH+dlfF7NOmkJ7ILCmaKYDlqUDd0udCGEdKnPK7
SuG0z4+eyYv4KLVb+vc84ZudjPrAEOHbDonX5osMeDjkHD9JrZh44vk76/yI
v3lKP/aRU+IicdX7WTsn8bEfvYfUSK7v3hyq/UmMg8khe5bwLMhcysp2yTMU
Ifz1g2QPIQvR5f79m66wEbxYJ++ovgint3+vkupn4ugb+43Xmphw0vjCXU98
/tjGOxpjvQzMVCg19V3BAGVtEHSU+H/O1xdtw8TbmNlc4w0JdJx9+/2DYz8F
rcd/rvyXSUf4858zvWf1YWOJQvNzIyH4+q1PTVaSvjBcUWxq3YWsKmffKy/5
uC4XMT3Msg/4y6QfYNAQHbVSecc2HqT8WjtYoT3Y23PMX3KgBQ86Rg0i5nIR
46O2V0+sG1c3qj5aaN6EFD2B005xDlRqPT3CMzuxbJaG8DGzFpbR7kvz57HR
do4W/D2mA+KjmRpP/lRBxWfUJ2UbC4nffOpNH7bjod2T/eGZ5WhcEOYwLZWJ
9l93unNbaFB7byax90sJenLS0z/IMxGZIaHRrk9Du8IaltieInQd2P36+CMG
lm8LXuvW3AbOeO77NnoBVmu+d+twYyBPv3ts92EaAhZHKI6eLUbGfOOvbVUM
LE3RxmPldmT2Vvof5pdicofJJlgzMZLK3LFyrB3Hsp6u/M6qgO1umtjtQSbC
ean2GhMd6Al8N9fK/zPG2VMrnRJZaKFPVhhd0QWej2629pt6iA/ufVbvy8Ye
1nKzv8nd0FDTNdi2vRlbdrTe+ObDwcrqHw8lrEh+XKWzeHBRGxJGfon5JHLx
yFolR0u9H2yngzd8DndgjH90VgWfB5kupbdPVOiIO9Pv8UyyB8GbeevuHBRA
bdbHfws3ku++NrfEVH4AjK4/CSXixE+yOgdeHmPgZ2/HjocBg5COvNBRTObd
sO7ULhcvJnYeiFVKU2AiMV4/P0VLBEfN2v9WXGTB8fvO1Y8bWKisM2nvJ3lh
UTT/0s5ENha2HlB2TuTgZ5BH+iGSE/0dVFQlijlw8zLzW3OWh9rwwHQFYxEW
LGx18eWR+qYGF4fbkZzU4f6ic40IMwIHCqLHeZBTiS1z2Epy31hh1bdxCp9K
JARFv/nYvtbwi8JjIayWm0rJ3aBwwqdotZlAgEfU09ER4jXVQ5KMz+oU7k43
1Wkl3rSGVuDduZrCg+V+p3sKhYh+ctOnJpTkvGuyXr2BFBhv39n0EC7GHO5P
kSJ9o+zYaWKXSdZDorKkNIT4qJ7B6U4hfF2sWRRPuBly1jf+HsmNCbUvtjwZ
FaHZJG4wfJQCW5iwRKZMgKixAM35akOIu9/ye99kET48kxo5/0aAjD6Xq1kq
Q1huOpJ5k3Araf3Q3FtvBUgan7GpUCSCuazqFrMRCu4OU7k6leR65/WKmXEi
KIY1y/URv/xlbFV1X0T2d3/7/dVcss55eWZpBoWor1sdRnSE6GGuXCs4Q2HX
uJzYbR/Cne37VHecFmKbZ2tZ52shLjqJloUakffi8WX2+yohWFeLn9xtFsAs
dSE9j0fmxd62O22Ef0mPruq50fnIePREdss9ISTvdFiz4inM/iYKaqPz8OX+
ojdy64W4H1zw2U1ShNTPOZKsai4uHR1xaFQRII970UeDfEdv8w9376dwcLGs
6FMxeMj/5rjFbZUIUdcVY6wvsEH12//yP8ZBeOj8wEzC999KlZs2u7IQ+Ofu
jlvJLOjqFmI5qSvdn76tinZMNE5aa2rOZ6D6T2vRH+Jpuh9d/ecT79g7dW7M
122D2DAh1a5N6tYm4poea8EgZk8azo1L6cfjbRJVU4ifRoXse2TyZwDTOLZ3
zB53wy4238vFVIBlSz9lL+P3wXq31cqn0zrg3WLW1lXGA3WtbOS4bC+CY3rv
zKe1Yuqb/M9/A7gwM1B5WOTXjZcLtiXFT2vGWP6VjrE9HOgm7WxaI9OF/dzT
TiMr6nHONezFu31snNkwUJfT3wGbicb8q7M/Y03t2fzfoSw0Rtfvyu5tR8tl
qX3boypwQm1a4PNGJlZM/jh+UKIdTyYiF4Q/KkX+E/dV9qZMfI35WdW3k4Z/
UYutVhoXI1+0s+NmPgP/A4kd5VA=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for counter-propagating case.", \
"MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->11522122],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUl3k4lV0bxSVJUqHSJIUGZcoYhSWVRplLekOGSKmUSkrJlEIl0YQURUiU
DCWZM4djns/IOc85DSiK9O3vL5dz7Ws/e9/3utdeP3nnU1ZuwkJCQuoiQkLT
yd/z9JmD1p+bcVh4zyxZ11d4H7z11I/vA1AV3TCLtoeGRU3ufbf2vMF/s7cp
Se6joyHrsLqDgIYre57GLXidC/0nR/4++ERHrqPz/K+vW+AwcvGK0fgHZLYf
vbp/JwPuBWE68fdb0XrSwrZWvgR3zUcm1lMMrPp4aEg+tQ1Zxc3bL7SWQ7sk
wu5NGhPn0+7L3mK142w0VjXKV8O3XH1kwQ0WBLyjX2LNOzFr3rfPkGyAhIV0
m34YG2L/tvCreV2QGTo3LkNrgqfuhzS9lxy8eXzAQjS3B9eKTN9E/2iB8T77
tX+oQdxB+JMtWX1YqZrzvfJIB34XxS8uM+dCyzi868DxATgvvB1Ck+uB9Gpr
tbhmHtYFmCT3RdHhNfKbGTRvAGOVZ/c+Os3H0aZnPzViGVDhF98rLqFD12/G
1ZrlAgxFjW1aF8REi3FXtL8RE2Onok5qKAqQdDz68VUfFg59ykszLmUhoWYz
PVtJAMtb71gFbmy0iDMS2raTc8eNvtZQE0DNYtuQlBUHUqy9hdElgwjLmT91
T0uA5xJfI/q1BnH2epPlERUu/vZfrHqvJ8CONyt83swYwrVzv/UC/Xnw+rLN
MshQgMbZZRKT+UOYsKiVrdGh4PcvO1p/mQBTbtT+K7u5iIz1WmRxlELWK5FL
s7r4MNs28flIMRd6VXflEyMpTFkqyuk/56POnOtyeBEPt6Olq5+mUZgVn40t
V/go1tr78vpeHpp9P5z5r5DC3vlzek4d5WP4+tO/fg48OK/d3GdXSsGp8tda
Nwc+9s0uyMsh6xv71148TtZfikrKOETWl4/qaAWQ/TsYxa6vyP4xkadTNMj+
ybUX7YvIeS5XuAh9IudZ3rn5+Txynrvx2ps+k/PLBda7eZDzzy3PoA118tEW
nSYjXjCEhZNbaxvIfStln+7SIvftNQrZIS46BLmTN2znXeFBXKXZMoTU50Dd
xQRd7UFUP+fpCkg9e6jH5YWkngt6FcL/I/Xvm12QMrt0EFbxKdmxpP634g5M
1z3KxmO/gdkJphz4FFoGa5N+BatwJ8pJf2cfeqaQRfp7x3z5+bekv6NStrRN
RA/5G5d3PiR6GP9l3Pp/PbSfansDop+wf7yUNqKfRUNaX/6vn7dpObsrid5i
3AIjDxK9bZc7Le1L9Ba08LazNdHnusduE2VEn9HFFpwYok/Nj+E6T4iexQSa
L485d0BkaWSfiAUXnuN7JAyJ/i/+3tE7TPT/4seSJyv5g3hTI+ALyLwEaZRF
2ZJ5+UeZjVuSeRlYZ3q3k8xXmWfJ97VSDRDSzivxIPP1YNY5eTsyj2Z3Sk8s
IPNYKT0q/C2MBUlP/wXPUtrQuYNR8p5WjiKd/mt2ZH6fBfreBJn34pMLH4es
LIHvA921XB4DE3zF82+JP7y8rtP24tcHnJG5baZK/KG9Zm7cFuInHi/Rb5aZ
C7tVy4aCiZ+wV32b20z8pyePKxVG/Ecl2tl3HvGfIFdK/Djxq70Hn3EPu73C
t5Bnb6b9GMDm/+JX8JubMScgM8hlRib++zwvbNHvAewu/xieak/D8brvRu/f
vEHHAzMZfzs6Ls4Js1YSaoHPbPnSUo087JoMflxfR0dsqXyH/+cW2FbV/5SN
K4RZj0wW246BeVaR6n05rYj0+jYccr0EaxaWW7z/xwDd5e6tRXVtCLc/FxFk
VQG3j3oq42VMpLUz9SwkO2D3R0JsoqAaejxFbmsKC+rRcq7mwZ34K3L5Yczn
BpgEjjrueMWGrfTPrlfrunFKNNP9tHEzhGeY9h1v5WBbzYHq3UK9kNE6Y/zu
TCsmVJ5Zqqwcgq7s6nMyM/sRO7KDXjzeAaX14iXVEVwo2WiveBQ/gAPJk2cf
1veg56/wji1LKCxN07a7UEvHKvWjw6lnB8AfX112u4SPzUb+FYaVDFTPbh0d
nsuARVgviyEngLj7wUyFAiYEzTucdGOYMLnv4HVilQDDUnEIzWIhTUo95o0C
Gyf1V2pIrhfAOSqC15jChlG+dZVoFgd7EOXyVl2A2W5nxeUecfAoxsd6v84Q
9rwwPq+vI8Au9kLzp9cGYSn03NbiJRf1i3PvBmwS4FPvh6ef7YZgQEvp/ydM
QeLXqQ0eEOBMsewn3kwufkezrslaUFj95u1Uzxgf2ZVXJdfFcxFu1r+Hfo3M
+5wdD4Xe8XFe3LloiQzxpaHEbh3iJybSQkbNxE9MbrhMczjFQ3Kot9+fzxRy
90ucbdnPR6WI7abfz3kI3KqmuqGLwpu9GhWHjfj4FXNF/nI+DweDTl38b4BC
6oPfRdK6fJROCJU7vuBhWPWTgxVZv2r8v1Z1sr7RdHPqd7L/HZWJI8pVFOzd
mZ/ukv0z3PLUlhF/+5k/lhNOzvPmH2/IgZxnavLp3e0JXExcWK5iHEjOn/xC
8VoOH5yNHyVHxbg4KD084UPu+/Rjv/xRcl/xfQeTHeyH8LLBgxY5g8LPr8UX
vEl9rpxofGMTNIi4xZ6M2RlcrDj04upNUs8pY5E9nY854J/cEyinN4TozvlR
W0n9F38cmap5ycaLBk+u1lsORIbmCIpIvx7RmJv3vmHB4GurcMRqNtbI3b+5
lPT3WYn1iaz3TEjzek+9u0/eadqDK+eIHprkfZ5//MzA5Y6wwkNSDIh3rntO
Ef1c0Z5ujHo68uVyk0vOD0BdN/e+ZDkfN1ao/XfwyQBY6/JyMmg9OHboI//d
Mgo8+wixD+L9CG5JdJL51wHpiAeqB29z8UE/Oe7K9F5oSXBzTH1b0ZGrEXBC
YQgrly1fGqjSjb6lKRmHtjfjl6jDgEc7B4y3S7J/hXbCqmp9+5fGBnw57FK7
6jUbPqZhIprSHWiUeOcTWlyNmqqwEKWXLORs/td4tL4NR5w8jkodqEA872st
s5yJM0fERObktqLvjfbMpPASlGZVrb4txETPhQXKd6uIb8QHViQkFSL52zpW
ykEGPC50nFGc1oK5WoZ7YvTy4ONuueQKuf+G5ADzW4do2Pg+1XA8/w2ovDNR
cgdJXrrtfOETrRmRa71N+iUzMQ2lkhnEr+wuXDLa1tcMw5GIw+pJmVhy4Hu0
5DQ6Gvf/bVQ+RoOSoVfKy0VvccWse2OWMx2R87f9viHdgjMzris9ys6D6n2V
6vxOOtQaVdVu9hG/fTDT+pjBR+zqDbm2+BgDnw51BV9qIvdytQiYSZVAqv77
s7b5TPxQrPPe+q0NVcu7tZvrKrDv8SytrB4m9PfMnSa7uQOjYZVW9ftqsDKt
4hO3goXYtc1qfXmdONxo1tfv9wV5XRVPgprYuOk0clnVvRsfeM9sHNKbsb8k
KjVZaBD9+4SsuTt7wd+6TPX391Z8MH/4Q8d6CCPVozGTh/rx1asi1SGiE0a7
VN/7VHEx3jC64WPDADKOnH3p69uLrTqHMq0cSC4IZnIqpjPAu7hy/HbrADzd
H69/JynAtoXvbXR+MnDL4rbvMXsGek2uTo2uEKBuBr2DJWDi22W26ASX+Njr
QOvE1SRfFfomaVAsnK41uPMrgI3d0edijyoL0HCn18tjiI3gaq3ihkWDSGcK
H1TREMBqYV9H6AAHo9YJKhdeDEG6ZpNji64AKs0duvH1g0hK3apwVJEHW/Ut
IgYGAsy5/PuketIQktqUVoaoUTD/sirrL5mXyovC/2bZEp+WZtu3HKMw0nJ8
lkUrH4nfWcN8ARf3lBXXNsYR35PTbG66w4fhkeWO7cd4ML5jXqhQSUFEcYv2
voN8vP8Yq2FbwYPdxMzdz1kUZL+/huUGPg46LdI48JeH9llrnlqNkf2rU9r0
F/Fx1TOl0FWSwryDKute/aUgROt/mzWXj1UFap+GyXrfLSUBoWR9u8B1zagM
Hw4BN7v2VfLA090bPk72v/7941G6Oh9rJnOyTx/nwbG/Y3M6OY+8/ygt1o7k
NA+Ge903LrwzJ2edjqfw4+EB0YnbfGSaKrz+s5+LfX4fJy96UqCrOod4t/BR
MuNab/LzIZzftln0gDqFrh6RHOb/c3JikF5U4yCsvbxpq5R4mDSwNDYj9fSR
3OwZw+RAeLtIuFP6EByGzXQ5pP5NXSLapRQb+zT8RjcsH4Rr5F8OSL+6bku+
OviVhRlZLV1ioUSXfSrCF0l/BTvVwxu/M/Fk97/DGV+ZCDk53zGb6GHSdPEc
8XEGUn7NYP90YCBtZDxoxkqyT5Lonx0zGTA6FeH3snsAj5I4wUkLBTCT3LdW
tnkAhddX3dMI7oWLePOreS4U1p+YZfrcuR8ir1JeDN/vRE/7+zqFei6SnQo1
e/f1Qv393CqriVYohW787npgCKzvA8KXTnQjrNfhTWxOM27FnProIDKIxO13
1hYUdmLTRLxxafgXCPnc1xS0sBFV6dHPM+qA8LoSl9n/1WDO/ifs2CoWPJ1l
Jw2G2zBmlnpyfXsFTmj89vzcx0QKt915UUsrzqhfm1gyWgIPsS0zMhYyITlr
d3XzQAty9eR19+z9CP22IMe3ngz4Cdr9Qhe0oCtG/rPnpzx0GR5Qluum495E
Zwfbk4Z6GfUf6YpvoWldS+e40KEdsP1leX8zTDpawqXzM+HVIF0sJ0xHyKV5
llbcZgyI+un9NHgN7gLFmFYxOjjM6astLtDQuVD8k4jfW1zr8X6SeIKOrsqM
JWdXtcDid4idslo+tn+uNjHn0FFwxXbGv9EWbIqxl3jQ8RF5vK+dA74MtHlb
bP1P0IqWlWOGv/eUQiLa0PPkWibQyRkPlWqHdN/j9vGtlSibVUOVjzLxKH2v
Y51rB+qrV8+t7K9Bs8Kno7pMFi6YSaXL8DpxidHLLFnQiJjvk3u+jLJxwvNS
2/ykbpgZP3kSPJ+GgHN9dR/XD0JJRv1S0u1e1F3OYg0fb4MzQ3QVFTwERqXl
+vTMftwv+/pEXrYLiXNMmu8I83Bvjo3Q/akByFoHMPrk+rBzttP2mKeEh3ht
oSOq5L08+nHIZCkdjK3ZKz0Jp/h2GsR/V2CC5ririZlE+mG4n/GP6PCPm8+A
iTwLqQ5KF4IMWAgUN1hWt4bMxVvrmRar2Phx91tGYQ8bmYfZX9+qCPD9rXbD
rrUcFAc4l7RdHkSN7GXLx5qEO941f5NcPYjLYq+7YxdwMbzhmIMr4Z2SG9YH
oxeRXEFJzTB4xMMqxYWpFOEjm39U32reEP7z/bta3ZTCE+8RRa0ZAqypOLZl
SSIXZo4N8j0kt7yRW5fw+i0fVjNVboUa8FDlvk5FNI9CVc+/Q4+9+HBRqqRs
PpB5npVyzZxOwVolFXXafJycceTWxGIKVjV3PG4K8cFI13zWLs5HxNMfGget
KCQ8uPoqfT4fNWHCl1b9oGAcqqfHd6NwMi88X3MpyWHXP4c7DlEwVJaMXW1N
oS5Ts+0bWf/1Rye36jsFD/livvVSCom3xPCX7K8bY33IkOy/rWxt38WPPAht
rbkjyqBwZ7aKVZsWHyvn3127BDw8tjKoo5Pzq+wv2Odzgo/Y4E63vmdclFvn
xFUFUVihrsP3fkO47LhCTKRgCDOq97Vb7iDfidwenzFdALsAkaevlg0hw0Ty
Oi2Rh5knrj+cbiTA3d0BwgfWDeLEvPj3Psu4COCfNPcn9b93dvgJR5mD8SqG
kHHwIM6ElBrkkn6tWmy1+aMSGzVRg56dTDaSt+0sryf9Dc+VGD+1moU+akxT
fysLtVMX/FhED7tT952eWsPEF5c5Fu5pDKzMXhS+SJ7k9vlbHd5oMNCYoRSw
YyUdxU8CJq8Svb3fd/ba2el0dNvufVip3oe6lIi7nqkUTs/ptl+c34/npv6B
ISpd2CAi07ZhFuH5EL0Tyx/0on+eoPW1Xxv+VNZoDtwk93QuinmR1o2U25/v
vV5Jw1xVY0fJDYM4Gd6xaOx7J5Ii19XmrmzE100fbib/ZkPYXXHC0bMDsbNZ
19aP1OCkudNH+UEWjskULBSTaUes47uiZ9aVKBnVOfBtjImipQ/P7vjRirE9
u2oeHixFyYTnBfX1TEyMnwxzHm+BafTl0HXfPyLo3dYIk0sM5L1yfXtobQta
nvpMuJnkw/8Yddd+iA6VtkVf6y7SoBn24YZl+FuM+t9a53SSjvXKbyO8qWbo
XhW5dtH+NXYvsHW0FqfjxaMvPeKjzbih0HtsYTPxsZzjfg6SdMxlPOwRDaEh
ujU8wK3zLWKje/5uPU9y1+cktSadFhRz5/n/fJGPrdMipwcP08m7e1K1QrwV
cop6PTNPF2GjnJWXWhgDdn/r41zE2hDalCw09rIU6sESHl6bmBjqNa8r0mxH
xL7Vty7nVcLc9dPV5RIsWIUn+epGduDEPhEtixO1KB64+Sn+HwsvvZ67VSzt
QotSjo77sUaI933YLLqIg7+rjZ4r9nZjvcX+Cl9fGkL1LxlGWA/C03iakEZL
L+TKD5evYrZhy0ePlUveER+7+ailfqofaq6WMhdSuiDcaljE2MSDl3x/4y8V
OureVycrFPfh0vjQzXIyN1NuIsdEbBk4KNsUPpPk2t05v5bvkxVg+n+2hlvM
mch/tffiIoqBqctvrwkrCDDa3fdZzJrco7hf6XIEC+cn5GO+rhWg/NqKjymH
2PC1OWCUqsOBaVEj95eqAJFJKdk6rhy0ntcULugbRN3vbd1TWgLEbm9yu+A+
iDan9BTTq1y86H5CH9QXYO6gmJ++4xBCuhTy7OdQaLoxUhdJ+GilvuE2phoX
obG6x5YdphCV2BPizuHjcMuXi/VDXLzRKv+y9DGFaXHL/lseTfLPLebZlDAe
btdaah1rpLBtQ+PBgD3EryokjbeIU8gMfy77dIJC93HV96el+Jj8UyQ8RfLc
hlI3+VvL+Og0XkCL4FA4X3FdND2ZglzAIsMVJD8p5B05sbWOgt6grkRRPoW5
JppjjTp8HG89snp7GYX/GtxNkp8T3+FNHDxD1ruEmJXTain066WrvzpOYZnf
Fd5yWT7S94am1rIJB/dKruBIUDhwKbolcJLkQ7UD/lskSa6j+iX6wnlolKwP
utREQfiFgDZvN/HX3iPfbfhchBRnLNpJcibn4tfHYVF8NKv8ilDS4sJ+4vff
6yRnb70R8cGfRXw0QqjVyZVwo4pL5LOFFMw8CwbSST1DzSuPdJ0YRIlI0N6v
1wlvurpaziS8WRkdrPnnGMlp+9/s/zs4iIRJpeCV2sRnutIjjY6w4TRDbn2S
EQcqAsmwRWrkvet79veQHQvBhy6cE49hYW9Me+ocJcKbM60ee9kw8Stu2mH3
EQaWLCx4s5LoJ40p69hCeKsnQ2as1ImO20Y5Wp5Ebwf/vV61QYsOu2Adp8+t
fWBd1VIKpijotC+2PDJjAI0y2/4ZFxIf+2U/tGsrD+d6lSJ/9/UiL7spgfWz
DaabXLe/KhwCTyr8RzWnG2s25I3gBg0nnm12tbEfRJRYiO5VxS7yMjjoRvs2
YlrlRzWl5Rx0bPe197jXgWSxrdttQ2rhmzrTKEOEjafOG+1f6LWjuew9X6Su
Esoyza1bJVno+L0s99qcNtwZutdU+qEUZ14cUhI1Ij42a+Ym5XmtyG5U9n5y
qwi9R4No28MZOLPM7niUfguSv9r0zC7JR/9JamDNTzpaw69n6oTRkBAWHRj2
7S3+Pe9JCfClY9fO904ffjUDC6ZHXhl7jZ1SHx1NpOk4nn4vxmmqGatrjfyp
DVkwL7egni6iI/vf3nGjuzTcsZ58a6uTgw1evU63rtIhWDvx/pZpCy5O0uVd
lhWgb0jlx44pOgoPBBWXrGhFbpnd67/TPiH28Tqbr7EMjF66rX1aoQ27C9TL
I0TKkN9MW1e4lwkL+u0/JVbtuFsSO9aw5jNqsr2U4hVY+H7850OlnA4Y55oI
ikZqsfu2Xs/kUjbmzz+VkrmrC6FylyXH3zdim8O8C1MbOaj54VyzcGEPphtO
yX7qJPdO857q9RuE6O7JcUOZPug0OQ9O2rbjqpH412DmEKzOfNg1bc0Adq2z
Tc5R7YZmtnT8am8exLZdEUomPrXnQOW/K4Q7ezUUWXfk+ZAvKot74cfA3dOb
Z16NoePk5h2f1i0XoDref/ePi0ySp6q+vFJngmf57ekE0WGX8dtlfwJZGD9y
YCKokwXex2NOousEWOB58dXPO2x4Gbr4moVzcPpn+j9VdQHkLpQ4MRI4WPrs
nNQ/gyH0nV6701ZHAP/BkGmeKYRbZjSkzeBwkfIuc8HhzQKIvbsxMDOB8HF9
rky9CoV/vBWde4lP5t+4Ur7Am4uuGXk71c5SiAuTH/1UxYdRQojyFzUe3ksu
0Dv7hkKR6E+f4rN8iNyw0hxt4sE1YlFRF8lJbX+Vy16u52PvNIn3hvspFO+O
nRpbQHxpg8iso9+IHyyNTJwguSfLKEP+DvGlga/iiCO+JKQV5cYboWCfZH4j
Yhcfol1Cb0tJTnhotyjwghgfiz2k/xy14CN/Xm9B5BMKk7Wb7kj8pPAs5OFe
AVmfyj6VY0zWt0/qfv9dQGGTaMi+Tbp8UOvuJ+aVkvv9mKt+4CCFn5mH7wsR
/jTy1YgS/kph54WRxcWtPCjNv9ghxyPnOCNq/0uJjxcXQpxnavHg3SLv3f2W
cJdPaEiPNx/vrlQnKp7n4nULa2GfD4W8aRe6L1USLv4XfDeY8Pj+ONfgp4TH
5Q+WhrcTHh8/27mx8dUgXm8LbDL7zoVw7T6vQFL/4lwV2ZznHFDzbX6P7BiC
2M5tC/xJvx4cdL34+D4bq7peVE3EcJBp7FRrQ/o7dlR91sEbLDQ/LfMqJlwx
EBt6S5noQU22x0shgAmP7TOzEvXJe1jWVL6CcO7z2SNipwIYKHCqSalOoONb
kvjVPURvyVuuX196hI7YWvmqM+f64X7cyWGuCh8eOSbLFVQHcCjg29Erpt2w
O56ZuP4SD6HGvnErFPvQ6GX32PlEO3Y+8Qu/yx9CQ11JwZOVPYhNdtb5IqAB
E1yJP4GDKBdbcXiRTRf2tjibStU34qGOibE5OGAV3IumFXag6laHFVOqDqvX
zj+yQJ6NjuLznd8OtiP3xXuZSnxGBE+1NXUtC3HLip89V2rDyGb3YcWlZUj/
aLN5iSUTp+4+ypVe3YpVqUXzxtZ8wtveeFraIwas/36rk95D+M6Dfa12UwF6
N+Sf9pnGwJ2Fy9/Mi6Xh9ceC4j7zHCRc628xCKTDUfzQkZhpNNxTM5intyML
f8QCqxhL6FhyOFdymxgNt6WuFGafy0JappR0jBzhxIDAMlYCDWrcG3v3RuZg
U9Wcb95hdNS6Xvpyd38L5rro91TeLECyu2/IjVkMeFlOD2vVasWVjolTiZGf
MJX5KEH8OQPcU58dD20m9zo+KKV9qAy86Q8C4cBEg5bknCPe7aDNLBHdE/UZ
i/dtv6mgx8IDyz0yxzo7EO29L2PXuTqst/mipazDxvSmPdKR57tguz6ufUKs
CR/EDxteP8DBmuijyfd398Bxjd2fz7otaHjTMembOAiDNesFHrZ9iCrZRWsq
a8elK3mzefO48M+L/0ztHkDXw2kHF2R2Y3GS6YlZz3mQdq0v/S+YDpmX5Yrz
vvfj8/lNLfGH+aj4za1+lsBA7bvMkxZf6Fho8rxkgujq7sQSmdJnTFw/uE/O
xJsJfrh+K5fo0F145FZjFgtrct3+rFNkY1NKHUNqvQCmEU01VBkb1Yytw2q9
HHx3HvY4sEGAgcEn8/60cRB9ymrhivtknmaeTIrTFUBE4el/4axBLC7opxnu
5EGBE9BWYkB8sltr59bOIYwlKmZGGpM5vSKSWiYhgGHWhv6DWVwcX6MduyOM
wonug2nuGYSzYo575hOf/tmSe7isigKvcTSq0pbko9T6zcKEE3lnl27bSDhu
2PaMzY7ZfDjbFUn0JBAu/aHhqK7Kx77VFrG9DRRM3js5BgnzIbuyL89zHx99
tOgbes9IrlKpeJYMPvJWJdjUO/PxqOB8ZmsoBX1n1SPPbfj4bt9k03CMD6Ff
OYMn/Cl8CZpGo4z50Ew/cXqTC8lDoqNLtpL1vycYetUifMxuYX1SMSe56s+N
Pi3C9R89NlAO5DvnX7HlDqnxEb9WnL27nkLaJee/NrKEkxeP70+dRvzTXOLa
gVl8NDxyX3/nPA9FP1bXONWQ/Jdft+6xNR8lDj1VcrlcPKgSW6J9k+S3s8HC
zS/5+MW8EBzaP4SWOzMtk00oTOSEePycJUDMjpqsbmoQuTl3Faesebhz/VQI
n9RfLyZe6lMfB9dZob2PiP9NszWbqCb9OuT382RoLRtWZdqpR7kcHFKLqg4i
/T3sp24qn89C5ZWdXJ4aG7v9/0YbED1YxEe/6HvJxOP2zSavL5O8oj5v/3zi
nyGm7j57yNw8+Kp5aHoXHcdCFicoyAmgKGiK+hFBxxtP6U0jogOYUXv/3StS
V9tblxxkrAcgfal8l19NN2Ktq/4FZfHAXp7koe7ah6//nG8G9rbDbMPksb1L
uahZku3QdqAHLNnkG1/MWuAaRROtejmI8b1JCy8FdsE7Une4YHkTahyannId
OZjjs/WlB7MDS0q2+M99UIfxsXlLNA3YUE7Jjn53sR2cLTl1JpmfsXvPZrO/
hiwscooZjTBpw+eO3Yv1fMowU3+4xsyFid8lF0z/6LfCs7C9yD7/E5L0mT8P
vWSgeompy+dDLVj/enHLn8wCHBlaJK05h4G9yiHJO5JoaL79u6U+PQe1/K6l
18PpqFC+deb7bBq4J/tEjG5nQWLfmol18nR8STh+LUmKhmcFD17Qc7PgML7i
hPJqOiSbKq7Q0winud1ckD6QA9fI5PS+O3RohpY9KXZrwbbEqiN2owVI5UgE
aS9gQHDb4lyPaSucBsbS/4gV48jL7T+PvWGgpK3Yd9yqDa7cMymWr8rwUuak
VMdJJiqGP2i53WrHhj9JKzR/fcbN/UdWXN/LwuhEsOm7yQ7cDmlKEfteh1v2
67/+NmPj19n6E5JPu7Dmo9jcQasmtE7kq3ic48Bewi9xl38PwNm4QXCrBZcL
leYsLSf6u5y3eksU6WO7VWS/cgdCVo9t+a3PhZj19XssL6KDfYvts9f2oC6z
JE2jjYexJVLCrRl0UGZ9hm5GA2CU9HsExJI5U7tB5RczYCLIYy8QZWB3/ZnX
pURXwlKnFh2vZiIrdEGX42smHrSa+NQSHeJsX8mmHhZm9G50pzzYWOzqumWe
sgD3WCk56qNsSFvMPf9h/SAOrNaS8dYQoPdM5eElEoO4dFXI+SJ5LyPL5V82
bxTgsaHo1lNyQzi46NrOLcRnXxvHvZ5vJIC+z4SKvRQXjQuX/N1iTcEgPYjx
bIRw4ozln00IT/le2jbLhPBUblld0R3CU4uXhS6bn01ooUO2j9lLoav0YJyr
Ph8tOkfm7ben0LDzR4wtyTkvfwo53xFQsJPdtj+OSWFL5ZaHstv42N8elyGZ
RUHDQEFRmuQnEU9j5WE3UpeOw6fiAin8uvcqzeY6H6bNx43e+fFx5vroZN5R
Clf173FL4vhYG3DAq+saHwmP7R/JEd7957iRKgzjQ2yww0n1Eh+N7d4PZMh6
//EY5n3CtVNpEYHVRwk3bruheOkayYnFr7z9BymcUZiqcN/Oh5mSU5l1JoW9
Qcv2yDsS7nzW3vp1ER/S/IMxnoSzrF5ttLqYywPX+1ZdVj/5f//BI79Jvrv+
6/TxtGEudvuuaXQlPq3Zwld/c4uco3kde99i8ntdypdoWwpusytWhHznQ+tb
YcOdNUPQuhjwyfIND18lbihuJfVP9DBqzFswiL/xYdet/gzhyqOJnyJ6AtTW
W69+PsnG1OWIfCs9wml5H84+I/1NPN1zyoXFwlTwDZuZ59kQcRzpMyJ6OGp2
oetgExNiTx/myxUy4X7ty6ffRD8Gj61L11UxMHEuynuWNPEzN1nZr0RvlevL
Lx7LpaPFK+n4HPMBmJjseDGWxMfc3bqPJs8P4F/qy1GLHT34e7N34jeDB5V8
56r8p304st/c/drODoxKUBIR27mQ5V5NmRvRg2HT946PU1uw93Ka26WGQZyU
LnOxz+zCnbAFa4U9m+Bxw0f205X/58oWGfbMTugu5Z39JlMP3V1zXrTZsiGx
qulT8f123KCP3SyUqcIi63+FS61Z8Ko4Mn/2oTY0XPis7lpdhj/+pVeDfZjY
17lAtsisFbOlvYuGVhaj7X6WpHEeA35vNdLuHm/B7mPcKzTZ9+jMPfZ+z2IG
5AxvCCpf05AjHvsoX/gddpo8emB+j46ZxWe63i+kwcGL1mdLy0LVYrfA2Up0
fD3ie99zKQ2fuAdGBSNZUFqa82a/Mh0euto6y3JpMDSzC/mo9g5VtjfsSh/Q
cdr63L6xsy2gi2xdqXXgPURvcRs15BgQlmM6vrJrBWuO4fxvpuSceyc8vxUx
cJN1IXTBsTYE73Lbqv2nDLtm2E93vsLE6fXPO26/bEd3xtOENJsqiF91ohIc
WfCcGBUvWd6JFavVlEac66HwaVW4lhsbxcaL5vVWdcFU+PT+pQ+aIK3p3+UU
xUGduHV4UUYPFLfw+k/TW1BnL3vahz2IO/GKvdur+7Cz21ndNLIDJ0d2Stod
4cJnrCUw8dYAHpql6Yc+7EGDtXeGtgiFviz7pnfNdFxdJuS0JWAAX+oZZ4pq
+dhkdb7jyQADETs+9+/XZ2BKL7/38goBVv1luTwUMHHj4UD1NS4Tx2+uepyw
mvBIVNzLbhE2RhXCyzTT2GhgaByeJLrV9foz116eg9kVzB97zw4i2Fo/w1eT
vL8eo/ENhoM4Y8iwPGBA+PFYe8komQuRHWXUQ5shLBlyWr1rkgde/v16cwiw
bn96fgvRo0S1/pxSVwqvXp/QW9nDxwIM3jdfxUOxbd/EMJnzDh15fx9f4jfh
VnJ2fB4kePdfpvygsOpT5PJ2OT58d/fbOj+gwCi6FCWqzMenmQOG5U0UUn00
tPmKfOzUm9Nz6yAfGUtPDBhHUxhwO1srFU7ymGfK8VHiP3sfz9ec7UbWt9Dm
OdfwYeG+9IwU8c21rLlDr3ZSePx4DlNrgPCnp7uy3QNSR+HN5weNKKwz2vXf
IKlrKEdnWzRZ3ye9NeDfDgqOq5xzv0QS//pY4993mY+RNW8LG10oHBIpMFlJ
eLFUUuHNT3s+7HX66x2iKBx80hF7P57C3b9bVcoIX3n9Hvtx8gu5n+TOjM3D
PFRM2+WaQHj3hMvlD1qyfPzXUxplqsyDU5vk7e3ZFOJXxubZnuOjQ9Ogys2M
i6k/QcI73Sko7TE8XtjBR2SpY8rZw0Pg/rWPuCZOIeLGKZ8gUv+2M+fPqewY
JLwtOumyh4vCsIzjyvqkv+crZtxZz8HtXRduLCGcprLdxiuT9Hdo4P2e0jls
6P19z7qaz0aasrX5BhUBQv/mTxr/YmJbu+DZsTEmmMdclzcR/dxc+vl18RAD
BmoC7aOmDEhvDDPLIHpTolQ3KffSseN2cdrpuwOwjFjT793Fx6v1ylE3Hgxg
zcH9hZMfepCjPK9RQZpCQE111abuPlzdMvPvlYwOPNrWRfvlxUX+rA9S3YU9
+F6+z9znbwsODIdqfv4+iK87PpgebO+C1YHFgl3ZTejiis+8/ZgDi43SJyfX
deJ6ldzJy5H10Nv1zqLOi40dk4PXmt+2gyt65b2dbxU8uji/Wo6ykPdDoo3v
3Yam14YWvxaXY+7wlOvDYCaCy67P13FqRWzGk3tyR4ox/t/CTZvKGbD8JNti
7dcCnkjDYe+g91iL8kNpCgy4JdSGnf1Ag1UBVvCs34E+qDgjOI6ODT3Wawbk
aEhdvuroD+lshL0y+OerRsce2yWZgQo0fNbPXaevko2Yi58nRDXomHVi1rhP
MQ2T9Etu78+/g5i/WqJYIh1nNvltkr7WgoN7yvbbvXkP5asfs9zXMnBVQuTo
0mOtsFeOHJgTUAz71/nFfjUkx9i+en3evw1dNsd0ZLaUo09G3fVdBBNuo99U
H5e2I8dbuLIkvQr7fyn063mz0NMf7b/RoJPkXdVhel09RrTaHeP82BBddO9T
hKALzrSJYWZ7E4To7ifXpXPwQ3Hmg8sdPTi1wcjkqmorAk29wjVFhnBKLOv0
4GQfZogvnJg92IHhu1+CnoZwserMx9zajAGYudnbnxLuxeL4sqg4NZIfCvbq
Jfykg809dnikcADhb+OTv0zyMZ5x5vuMKQbSjI/pRnswsKdW5rTSSgGagred
+z6XBSHFm9vmr2BhbxJb9cgaASZcZ53es54NzcXb9Q9y2Ph8bmNHG9GtqUHa
5bHdHGg5mIivzyU+tqfkxnEtAXb+baIeHR8EpzZtuoCcr/HX9FlCmwQQi1Ty
OBA0BK+EA8kcRQo+BoPVW8h6z/KJNarnuVieMmZC96Gg+3bt/QuVfMg9Ytz6
cYAHocVpzeuLKah3b+yyOsJHYkna/e8KFBqnvfXumc6HzcBQ2hFRPjbsP21w
g/hWmJtPzEIj4g9eV+PW5RPO9BZSUXLk44p/eJK5Fx/iih9P5vlSqKn7/LLr
M/GL77q39O/wEWBc9v3LLsJ3lvfDFcQEsGs7uPblc5L/Mm3zp6tSeGHLU7Ag
OWLp9GS/ua+IzzlLrV9A7lHQoNNcTLjt9O2PZloviM92/VyxW4Wsf32aVUX8
cOl4aqEW8betn1LarhI/LNnx510S4U/R2dMsGk4S/wybs//deQqhtdG9S9op
qAVzUr8TrtVT5julvyP5cvHRtcbrKKj6d20Ym0HuW1DOjiT3/up1Xc3VkYeI
fbeeviilkJzY8HryMPmejdv87VdIjn3mqHHvAgWvZ30O7aXE5y9MVXSED2HR
b9vCwjUUOM9ibc6oC/Bcf2VW/DmSX57Q04Rjubiy2v7cJtIvRuvW7TQbDupF
e+dOqxzEj7oY6eekX7+UDye1arHx9cCcda9+Eh2bCoLnqgqIL1/YuHExCx7D
8zr+qLIQMDrd8j7Rj2KYpnWRKBNhVaKzYs8z8MTZ0uYQ0dvtkldnWoVILliS
nXK2cQA5bPuAaAkB7oT/FDqWN4BLh+IT7Nb2YqNalESYIeHj0TnTV0v2w7Hd
VC9ArBPvfiiarI0m7/gWF7ESbg++upvphOwh/LQm2NRWcghvJzWrJP924WSZ
jlHfcBO+bkwVkcrloLr+qvbBXZ14eMhVJeJPPSqjq2e0B7FBOxUdl1zfjlP3
3i9RbK5Cmf7p+D++LIQs5879HdqGn5mFSWudy2EwqrjHNZoJf7tPSzS8W/Hb
ZfFLtbhi6Ck5Sq5vZID33m0x53oLgoV741ro71G3UkJWW4UBY+3OvRsqaRg2
/C/qfsI7bBTJoM9LpuN5QePxXWtp4JgmbvI2yybvesF+Z206vO5qxdLW0TC1
WHLBMsdsOKeo7lTWpWPS/u3Al2oaFjbfra3JewfrjcM1j1/Qsd163g5eRAvk
Om3/5Yl8wMPec8/fqzOwGfFhwxcI//bTsjPeFiNTbcF1bgsDR2V+bmTcbkPO
qUs7V10rR42GbXDKQ/L+PBY8MehsR/qsjfD5U4Vt0rQ7K6+xsPLx+m8fD3TC
bXNr+kOVBohp/pc1GsnG06S3Fm/mduPUV8HcUKlm2Aj0Vc+VchChfuf1NKFe
LMgxWKN7phUN0a4/xlcM4YPdorMRyv34Dx3Ka/Q68eGFZNWxF1yk3dZ/LFE1
gOl6FzfqHOmF/4HoU5QNhbjywuOeJMc/WbHsp8jXAWwOn3myeinhxKATQvcW
k/ekN6XBMJqBYlrqsbL/6+rzHJ85RH9zzZz9zpmzcDMuk5JcK8Dce8fXLtvL
RousUmSGLAdW6fOV44huhds/FEWc5mC4PaggYngQ39de7zfVJu/s8Y15v+4N
QvXQyRSnKi5c715z/0HmYrLmYvaX9CHc8LsU4qZBYcZksctKeQEcJMLutDzl
YsaZwl+ngijUhomJcN/wEc6/p3QnlIcS1TfZuSSX/JobuO70Xj6E+3MPbSb3
C9V0vLB3AR8nY2p8936n8IgnpaBA5vyh/aqju835SHscMUviKYV5FivuPL3H
h7VnwutVV/m4v2PqQakTBZknnLsFU3z48U/RQp4Rf9DlfNtEzsWjv1EdIDkl
QUPvDfJJjrrE/Sa+gEL07ceVjvvJvHqbOxR/Ir5QcSP51ywKUzK7rKO3CGD8
yq6hkaz3jGP93TGfwo2+I0qN0wRYkP/tfCThpbja+yUd6sQnAwq/2j3k40BV
uXleAB8rH15489yBQmxj49Z/4nw8MQubNLLko+uYTNhxwos/ennmbMLLVu+2
HAohvNx4+KO2BeHl933m/3ne4iF2aErctpn40hT3PrWTD6kLYqcPp3Hh2Rl5
e2coheoDjRoyr/mgdYq5VOUMwb3f2sNFm6yXlbm4bLkAD6zo54OeDKJHcHaa
TScXe3Ys+622WYAlY+/URvw4CNG3CDGZPoQNi8Kjgkh/P54KX662n/iYVYR+
jwoHHDb/ZxvRA/PkdptOXRb0TtR/0yQcov08Y9Fuop+7RiZytfJMLNXcaSzx
jAGvJH+N30RvkcMJL1cuY+DS2w5bkckBXBwu2j5J9Ol34VCVMW0As1NN1ZXD
erH/ruq0dJLTs513ivWiHxYfbtzzPdQJvWGDhqwckjtbLG4aSvfi7teUXbyo
Vkged7hdrTIEweXzXOkV3VgtKtH1T7UZSuZSn8fqOeCPicomunVCMXSnCv2/
Bvx+Wvgw9z4bd8dCZvNZ7QjcdrlGRrEaR1WejO2/wYLjmsUpww/b8Dv0w3vF
5HJ8vyq29X0iE77X5AcCAlrhUbE1xKupGHLDW/j8LgbKf4VIKtxrQfHjZTqU
7gec+Lx/d702AxsfaM/s+0LDXePQsUH6Oxzz0dnSm0a42jxiQ58aDae+6csp
B2YjU7PGJlefjp17Zjpv30BDtIvZDkF4Ng5NpVa+2UTHlw3n/5vTTMOR1eYL
l/54h6lEuf+OZtDRdfVsud39FpQ/WCe+3ewDyaNxV+ZtZODF3kTLGSGtODn3
2jRFOvGxG8OZS/oY2GTbPnNZYhvmztoYEllQDuNsBaW5z5kYlF3uvl7Qjp8/
310sQTWOdSxdo3CbhUzfua//nOpE8V+704yABuQ655z9m8CGTfDPOrpyN1ye
rBjdtq0ZfyxEN463cVA8GKVer9CLwiEW411mKwqqtDd56Q1hjUeCSrxNP5I5
fT8jrnbibc18A9MyLhJNlj8SHxjAcNv90qScXsif/VWcTN53lUU1I81rGGDv
dbX+MpeOwyE+YcbLBPhP5ELTiDoTbbteKdTlM6CyZidtD/GTK3NHX97awULg
OtcTs/1YCMrHo3SiwzPVsut6j7GxVOhS1OW9HAwMdLbuUiO88JI2PZFw8JKv
57dnrx3Clfo4zkwdASwPtYv8VzAIzZcfx7qEedBa7valgszFxS3vNp74MgR7
/1dJ28n7GvCOo6EiJUCY9a6PhsTvBmxqJXGHQs5NhbK3T/no/xvx+t5rHq5F
Ljjg2kuh3PPst3mb+ODaVys9vErB9q7wk1IFPiZt/vT39VCY69vnEarJh7T/
47NeDnysYX9blxtB4drLttr0Mj7cQ9XOttwi+erosqzXeyh8XV55/S+5R/fW
vToJxDe1vWr8Hi+jMKKRZDx4WoBP8YtXP6ziY7qontSCKR4m93WqZl4XEM4M
fKTRyEeNwKipf4SHTS5RSulnSH7b+L1dvZqPy5ry8bv+8lD17N5FbcJhPUuP
JmW95eOC7vL69UspZFwvMIom+0b++bLsAsmBLccvw5/kwNM+ajOf6vGxPXtu
+HknPkw08mT/3KBQJv8jJ5z4UUfz6vz5q4lPzrOVKe2k4H86UqE0j4froivO
yg1Q8FX0kj6qS7g2r8levomL9Z46fB3Cz4xe+q78eMLVlQ7vyjuG0OSd6uti
TKF98bn/Jkn+kT3THHagfBATBy/uDljAw+r4k4MzDATwT92WdS6Ogzhfkdol
+kOYelcvv4P0t677fPthHzZ8fdqu/3eYA3trUfnrpI7jKyXcKixZkJa/HOVz
k4VV8p06g0Q/njH8Z3f0mUh/tG/SsIrklXXP+UFEb4zY1YwhkheeWq4567Gc
jsLE+FvniD5Hw9Z9z6MGkOB/cS56e2F6737i3OsUOhWTfGqO9SNrevlSx+RO
1A9udFBq5uJS3tZjX3R6sfaswvfSL63gHxkzqd4+hOUMV6MRg27srNAwGD7S
jHudv5eOMTg4p/d7xYUrnRDObHM1eduAnI1BVcov2VAbWElz+N2O3uNToZqe
1egQ9xfNvc/C46Ht9vFpbTByb522pK8cK5Mv/TidwYTuuby8kUiSMyoyejWE
SmCQnhTrxGLAnz+veSCB+JhQypUX1z7gpeWPCHsDBpxEjUYOd9BQ++OszYzl
ubCf/yeoLYsO+fOO/4Xq0GDc9tX/QlY2Nv7nKu5qRIdaektUGfl9mlqJhvyb
bOxXnDPvNvnd7VLG5vmdNAz4OSgOy+dCcrU53zabjkXfmqMNElsgvjJz+ZLw
D3C4rPZznyEDjSGWpuvutGJF839RAzNLsKnUQeorm4FVHvGZgldtKGJ8m/WE
W46fJy8pVWQyUaO70HH1VDtWc9wZ9X7VOF92zkjqMQvT3FOEnwZ3ou6ji1d2
VQN+HukqDHjFRkKQ+0DRtm6Uj81aGnCqGUfrdVK9hzj4E3p3qbdxLxr6xvRJ
uIeQy9XFJmZD6ClYOHj/Qj/277jb6FDYibCNGrnd3YQf9BN/XxwdwA/3ky/e
TpB+jvQscCD6vXJxYZS2HgM73ukmFK6nY0W1z/hzohPmssr33VuZ2G7Q2fG5
g4Fdpgv+fSK6yni14NlKB+JjLxSmmyew8ADhVupKAiQvmduiRXJ3lcWzNs1z
HBi5yOX2Et1auF01q37FQUGA0f3vNkPIsVlinEF0/vVZqZ9dxyAy4q/rJ2vz
0H7X+rkfmYvOh0rqHwVDME2dkXdkB8lPcT923Z9O3v2dZ7S+D3GxZJq+65rH
FCYNbtfPieZDSFfywZVmHuRPjrHEuBTWTL0qPb6ejzlTQRsCkyl87hhNkFLn
I/u/ijzbOgq/z78QUTrIR7DiYUfz43z0pFclul+iEGNcXfmW4sP5W9uAahwf
CaOLHxXrU1j+uipvnp0A55W6PCyK+Xg8PE9Bh+Qrs7N3Xic8In5VHn42sI0P
2DZnuVA8NFc9DXmaLcDlPlemWh8fpU4jDxfQeRhWCzM7FScAvSvEZXk7H4qb
BDejeTzMM32v6HhIgKNjN4WOl/CRdHadf8FM8r4IVrz69J3ksEaT7B7iLx6B
Uy3+GylU2vUbeRP+9X1VPc2D8O+a9vlvYgn/PuKyX6enE98uUJx9ToPwssoM
i5XVFFitIsuoLh4Ef2LEOigKgcmqz5+v4eOF+5mgxcNcsFy2KGmTPIeamMgR
4t9JXVjjMDaE3Oj5efd3U7j39N6k6T8+DmU8b05hDuK69X8GjaY8CNvGvCgk
/WJdPrJoJJ9wZdvsrQNHh6Cdon5UQPp70/7NxZm32NAoTFj6IJQDiehLbFnC
pzMvFOunerDQ1rpnwabXLPidn1N5gugnf90f3wozJoaVDPe8G2KgwcGp8zfR
29b5Qt13tzAgo68qVEPyR8wDdnIP0adPquhYoBAdz1JV0yNX92HnTenqnaTf
N027pp2I7Ifv1nERa0Yn+M8XLtKiuNgZb6Iwy6YXm0/4f7IQacPJabM8Zx4a
gmvirEHb/d34aVP/fOGtZijEm59sGOXgpOeN0ajoTmS+EAp5MdmAJ29/Dgvl
s5EIKf0i8Q5sLJ2vGveiGqJ+C3KoJBaEH8vMrcxvg3rHyzLbeRWwVpE+4ZrL
RPJOPTunh614KX1Tkb+2BPvGpkt48BlgWX5xmJbaAuc/zcLyJR+wWuzz23IT
BhQsk0Ri+2lYsyrwyibzXKwQOnaI+44Oi8s20aqbaYTfJ4ur2rMRmReodNiE
jh8nsh5v2USDQ11WgmNTNjxkXSzzttCR8UzKv6mPhn1OMc+Zu3Jh5cXd7Ej2
MVnWeflaSgsafQQPUj5+gApNg+ZJvttCl1yynZxzdW6+SyQ5Z0xfPduGnPOK
uF39poI2+Bm4faIkKzBYu/piLrmXqNzEnJkSHdh3gpYxP70aC+aYf2lOZqHp
YZF2YAzJsQs36bpO/4I8tzX5hwvYCPOOcZE62I3X1cm9rXebIad4Z9b7Xxzc
0316P82uFy27X30/LNGGQY5s1E6HIdwXutiteq8f0WdHSqW/duJOalPH8Dcu
0s9tqVCZQYdSu9uCCp0+BLDam9vSyPu1wt3Aw5SBHO75lbfI/R9e3No1TnTi
P3xLdoUNE/oZFkbcYQYYTU+G5BTIvAUrdN45zUKAUPzCbx9YSBuvEDwiOhQu
Mr3BIbm7b9VmF59YDn45nr62n+iW92BHRXU5B1XVTvnsi0PI+7bVX1NXAGXH
grkpPwbhY6t51ewwD/G0I/vnGgoQzhpZc1WUi/kNiiZJ5hT4r68zro7zIbpr
wCZpOskVjJyCOUSvvJr09EXX+Uhc9um80DceivRW3Lw5TCHr0harF8tJbrL2
LkgupXB523ldOX3iJ6vG4lqLKGg5a0Vm+xLuOrojk3aOD7nPBtmmXhT0u90V
j5Dc4Zs9GDA/hY8rKu4CWWUK6S1yCTEXBXCujzG6UktyVLHs2Q1/eDBY9Soz
rVCAnCrhab10Pu4ejfuq0MNDU29Qci9NgOAnKv4PuXwcc7iys6iJh5OWAWuD
iwTQjuOz/BjEf6+ub9rXTc5tFTXt12UBjn3Pu5JQR3JgiLX2q3GS64J0nUNJ
DnVqnFtRk8qHeL5vfYMS8ZWgj+uXEe6VZD9bPnaBD4bhTGN3T/IesfaZjxLf
etSnvP/WZj7U6qatvv2B8OyQ+4cHYzykiupu9/hJYTz76KO6JcS/27O3Tkjw
oHt0jqNyCgWlB3oyQ4GEYy1OWVpJcmHjXfOPa0Xhxe6SRUtG+TjFMwjZ8HcQ
28zbmW2neHA+QUuzJP3KVeirV23koDMr7LdmxBBqzbaP+ZD+rpy5MmHkGRsr
p6t900nloOX533+xRA9+DQf8LC6xcCtk3gbtehYaBi1SO4l+YrQvyBk5MMGr
vbxdZToTnuKVvw8SvSn+l3R/3JyB7N7do5QFHZb7OGkbZEm95kzXOSdFxzrL
XR8uOfXh4toX75YWUviTbGF5Lq0fpS+5N74s6MLRhnN7H//j4lfo8qVpJ3rx
PP2ms6J6G4S0XsbtPzGEMOdPRSLHu3F688jw7DfN+GqX9vbA9EHoBZa/KCN5
LmlGs6G33hfsyey/JlPOxqPN/F3sxR3g5/01pLVX48bvjWJ9r1i4/HRTxr7y
NgynFDl6b6yAn2lY5NUiJkIXi/lmPmuFioMjfcfOEiS3x2waJvNUuNXZ6vTr
FkRNK2LQRj/gQ13z8qkdDJwWHRk9z6bhq2O/3nLfXHhY6Mye/Z740rJKwWfQ
oCJlvKxuLBuDpzdZPtxOR9XO7NZPhjRYVnSy0rjZeDKqXKO8jfj9rkexO5k0
BIlYN/7wyIXYX1p8YD4dWnrP5JVetYC/3oE5yvoAl/kxN13I/PfO5CYeTGzF
jvVHXFWMS9Az27ls3w8GYk0rzk8vbUMOc8rpgnoFDu/U72YUMiEY1+1olOnA
H///su43VmPcUJHmnsFCXL6lVOKzTqwMOyc+TeMLThfRU2NK2RjvLYzr9uiG
9O89Wrszm6H6ftdo87RBJJScv3T5OHlfkpePyKi2wZTr+jTw+BBMEo1DnEkf
S2Rm/a+C+46n6g/jAI5fUSlSSSWzZGeE0Hg0lB1CSVQoRCo0SJJRJIqKyk6D
QmWTLbNBxs3mTtc95yJFpfB7+tc9uMf3831/P8/rdY++XFzHdbNXV8fgOmro
z4nLraDCi6PFXkPOg6Azu2FapIKADNXvlLNWNCj7bT607yD2VFa3rh7mpOjA
Qu3q43QI4mRytwjQYTGFN9kdc2Wxrv0HNYgBk2cLGePtDJD963xlDHPYyTB3
+vWCCYz37cr73rCAHtFqXIC5XSiu8vMpzsH3m947xMez4WNRa95jzPnt5U7N
pgvZsPEbc89AIAfOHVo3E4z7YsEWyy1Fa0eh0dkgXdCOAEm7HnnGOAnV9gXZ
Dms4YGYn+WAa/X0b6WLTehX36zVRM6mFBBTXRX/j/Cbg3YobxytWYh8xy9Lm
7yVA289Th2NAgosmn9TRAgJ2C3oOK8SScG2Zpu1f/P74UZ8yS2cCbquyZMvk
sFeusfO4+ZoE4frX/TVSBNyVtO18cI8L25M5o4qd+HU9fv9bYxywGGyUWfGV
i+dc9tpXHPz5Mm4FFm04J/ZVvfAY44LgkHqj7yQJ5Vk/snvqObB5aeDMRDcX
5kbcmkyw94VW3N18uZUD3+hsD54ELqS5Xbhr3kWCPs9IJh+XAwZLrPPGlLjw
5wu7ac9bdLfDethLgoCY7pWLnieQ0O6WZrQpmARtd9MI92Po/YecTC8qAXu/
zk+d2ENCAP2ru+BbApb+iaV9WYa91PKm75e/BCz5Jj34VZiEJz0BW9pkOKAS
7V8nkUuAbNvj8Th/ErY+/Oz/YsMoTD618jhqT8BHQ8bQWXy/jnf6Nv9azgbJ
9tPNKXc4YG/gua4e1+ugxnFCGecwZ8VTJeJZbHjbmPRrANeXfbm5Vz6fCW2u
6vM7a1lQu3tT7BTmIWPsl05dJAMitG0FPBkMmG1Vm1FV5IKOSpv0/Gk61Prf
3fZSDOeWR27uTzFvR0d3y0s60MBOV6ur05kKf6MsS85jPoWbQyPvSVLBz/Wu
+rqYQXiY8xqiPhNgMZ1CjFUPAX/igmD6tl7QGsifPSXMgXcSahWl1wYgSCSo
Zr8lBRLyvVeU47l6+VK9LP+VPpjLvKA1/KkdrjqLuSYI4fna3BsrktcDF19G
qRWeaoXHBRO65z4x4aiyV0D3hm6I3BynOzLbDGuKUjbeLWQA22cPTf8TBfz6
DqVdtquHpNNJxPv3dHhkN7eamtUFEUKW4QdO1MC1qbkdvL/+PbdsJq5e2Amb
p74JtK0vB3+JhOBFZjSAmyHVfJwOiOmZtn6XUATpkk9+ba+gAlf07KJDezog
XmZb3e3leWCVnPx8rREVPEXb0iwMOuB644Ixvz9vIWmx4d+f6JtBFfN6NKsD
pDVoYbnXisDzOq31M3o48/2chOnbTkizr19UxlsOPEVOn02NafAnw2JPxLMu
iKaUFmpY18Ci6WrZ7z9ooBO4RO58EwWWLOMotRvWA3fnrgtuNXR46fWyoVCy
G2K4SScFyWYIFhFV+PGWAY6mpxt0s3tgfKHXxuPWrdDr77HbppkJWa+Mo9z9
+sDTKfH6sdp2cLo/IfFt8Qj8etxjZeA/AE0zkd8XGlJg0TYPXbULmKMslfLU
siHQclwgQ6j3wt00l/afSzgw2xXITROngmFK/fLe0EE40d8cfaoF81tsJRds
TwMNZeOMbcepYOukaOSOOfGta7n9x4MOdIVMxcWr6aD5NfhqCuYqWCOv8DDm
UKErZaSKzoD4w6m3/31OO9M+IaMIc9s9cMxjYx0LWrrPtf/C3DYV3/vxho5z
h+R0y+1XbLDuEfj677njyZuV4c9WssGls3KcuMeBBeYiZZ24Lyw6lI2r5Efh
69f5jtIjBCglMf0eY6/R4fd6flWeA6x8XV++NwSwChtbBLCPDGs9DdonSsDN
6J+E+TwBTy2/tQYvJcF0v8axNThHOV+8H5W4jwQnx26TomwCJjxrti7MQAcu
aa3+FkqCYHaXtSX+Hu6fgjB9XS6ETp0YzCskYcgu/uclMfShrebGnec4Hx8K
67jaS4L/i3j9JSwOlCYyPO04XHA5qEoX+0aCSLGEYE4jB56tLqA18o7B2O/t
W0exRzqP3nNVqeCAS65v+VYS+151smsJXr9sv/bprgYO8MrmZs1lcSG5+tXc
kz4SOkNcjwczONATW7fgIv49ChJPx5wvxn65wHRICu8zbvFXtagsEnx+i81I
3CCh4fMnVddDBLRr185GYB+dfn7s9WpjnDeHTfhPZBHgu2J/3wJJAiISVzno
8pGwe6mOQPwiEr7rHmDPqXNgOsNtWDUfvX/NeVvvQ8LeEp+xCo1RqDXxFxF2
IoBXJVJNmkmCqt3tmyek2PDppv6thuccOFgZqL12Jxd+Fs2f3D/OwuseLlGu
ZEP6b71LSlvR9w1zdlOVTIjxb8nV7mKBtGOcj746F743nRw1us+AcwWUpQen
GHBK+omzJ+an0k0qwciPDp2HJeXjN9EhTMw8sRfzNtc+m7XNhQZ7BALbBs9S
wejrm1XpmE96p+MGaQUqXL8hoHHg9SBkGjt7/+wjoO2A8xmTL0NAsuLO2xzu
hbCQpv9Y6ziQdGn344fRA5BFPKs66U6BOeGZF1dC2fA4g2Lx6kYf9I4HZkrR
2mH7K8GEhtUjELMdDla964GNTWJXHCNawXvSM3lHJxNCVIxCWpW7IS/McvDR
2hbwnf2loYhzyVaXfMWSDgqsY9tlLj5TD36jqwJtmulAqjVOrX/dBW0bnw6E
+NaAe1ctJ/cPDZ7PwQan0k54eaCfj6ZXDm0j/BG/LGjgPNVZYsntgHKhPTNF
uUWw64/kzTtVVHBKj9DkGnaA7AP15bdk80B6xQg/YUyFhSP7bizb3QEVJEXo
kUAeRKmki2jup0Kr/KNHTewOyH4o4qV5pwhWWsVuPl5OBdPff+MkCjphXQZ/
7hHRcigf6InZb0oDlx/rN4igt19bso8FOtWA2MfdYmd/0mBWs/ZSx0cK3Eqy
5BGxrQc+uWU7AtHn63mulWIbu2Flr7te3VwzBHhbJZaj5//VngiqQ/8PJJew
pTxaQQLIvVz03+945sf9gX1wJqX4qnBbOwS2Pb3gLzwCsfdO+qWHDEBNoeuw
jS0FRO4cq2u4wobmg9for+uH4HxCboD83l6QucFrUrmCA0/yBWJXy1Lh45Tu
TcvHg3Ah58q3gA4CEnt2sWadaFAsN20i5EEF/hl5mwjMSVnR+ZS95+hwSkn2
qqw0rsehpSp1mKvBjjiFy3cZoHn7R47GOAOqD5hI2mIOv8QffVzwjgkLqrsK
/rSy4HBV4UV5zK3FhFNULMkCGxDQaStlw28u7dk6zLnb58ZMdwk2VA4/OZKY
ge9PUjh/Ge6L+CteQqa4j6Tcc2vZjgScJ82fH8R9NLPM7lujBgdu56VwzuG+
SwpJT/fEfcf3Uqx7lzQBlu9jvH/iPrXPjLJ5IEAC4+vur3nTBAjdWCUZYELC
af3jN0JxflLRW3tBAftWE0/+3lmcS08q+BoN2xAQ5UbGfNyLfczn8zy9FOe7
kjpjiggBqmvXGPnmc0HpF1urZZCEDeULvu0Z5sDpySNSXj+5YDJ9ivSbIiH6
0bETbTUccLhlFjQmNAabPzTSTWdJyP3aJW9UzAHzuLvF5r/R7w3l4aLT2COL
HdN+VXPgVfOxd7QiPAec+wPGh0hIedI+WTrIAc2g328XmXBhfYMG68k7EihT
PuyrwgR0ixqovEZnRRrM3ZVukTC9pf3TdysCnJx51m6cw7mxzvjylBn69qzk
lyrO3xXhKkt5FQk4oR0mR1uI87KvqfLL/0i4LmWwwGQbB16IhiQnFREQnCWl
rOhNgh/DNsRk2yhQ1i433HkCvz7vtKBnmAS9JPP3cops0LevK71UxAHRHJaW
Na5XglIDQ+EXC1jLXDlnP7Khm+Vk6oTruzurUOJHAxNcljgaCWFfi/t6X9wD
89Cw4oWhRyIDfPzkTBp4mCC0OvX3fcxPp0WJV1wAHVa98Cp8o06HGRlLi/l/
z11GOAmVudNAU7kuKO8yFZYZe2yswXwa/M16Fr+ZCjcXrMttqh+Eu4LqgsuY
BOiI7Gc59A/BRM/m1fc8eyFg8pl7jiwH4s4FVs/ED4Dct//OFV2mQGPH+dGV
t9gwt8sqNSqmD2jdf658GW+HsHzjnAPrR2CLUmy3SW0PLBcKXiyd2gppLbvU
v3YzIXv14fWaGt3g4p/KOqjSAmPXzMQmKxmwnnJSSrybAl6PgwpMAuvB/69n
kcdHOjx08PN8ntcFe81r77Zeq4EQs0dGynM08Dq8WkSjvBN+vSklw83LITRj
afIPSxoECNtvuD3eAS4PPGV2VBZBTT+vtEwNFUJ13hzO3t8BjBDu5OvNeaBg
XGYsZ0qF9Os1H+Wwp7W7Z9nrCOdBiEPK0p/o2BFR8VebsdflLrKqJR8WwYvN
SykO2OtK9YpcadgDw+wP8GTKlMON9N5P4dgDhe6XSRi96gIditZC9VM18GRV
R+ws9sagE0ci4lopcPp7GDXZqR5WJ64/erqBDoOjz/MuynfDHa+u9YFLWkD8
y/214iUMsGMZkn1FPXBwLLnR8VIrLLzSIPG5jQnyPG4/ta73wWAy1Sqtux1O
lcm3j68YgXvesk+vRQzA9i9EfcQxCgQfng1lXWPD/HZRjcSPQ5BwgtdMzbIX
7rAnVBPFOPC75epl6U1UeO53hu6QOQjblQN1FXoIqNo6fsvLmQaFYWoCcd5U
8HnFdUjCnKzanb9IE8/Hq/76o+fxfPwdlCX273ycCVfdTOB52m5mWX9oGtfv
0RPRs5hDM9awdl41E6D44CWebhZsv/U1fi/mtr4wVWP9JAtyM+YfFNey4fPS
jbP6mHMzz37t4A1sPM9dJE/mcECZN8VAA/eF81Le+7B1FIKpvXJMnJfo1mYv
M2kkDC5f36mpi/PnxrMN9wsJ2JVanBJ1loT3i5QS18kTkDLmPga4T9d/V10T
toCEp09/aI/NEsAU4Aum476eyKev34f72ix85nxJEQkG11wGQ9CBmQHr6UB0
IOoSbSzNjAu5K5+6BZeTcO7gFRsbIQJKG02G/N9xof1xqsMlKgmFjEeBr/o5
oL1kWiJ2Hq9/l62jgr3rwPJ5c6VKDmxPW24rITYGCXcvXOTn4UJk7ZlXyfno
mOdY9HnsafPaumc+4vU3NQtEDmJP6zpmMMCq5IKpd1FrIt6n6OZDD2X7OGDU
7xXbY8UF8cUiG3ZW4lx39FPYrCABnTqOyfoVJPwKYl/NvU3Cjmzh8DgL7J0s
pUF7vH9DaZW/Rw+QwGPhJ/I9jYA8t8DADjUCCtRiIhWwh2W/lnmfyEOCVMEc
J2cXB1qmhOX+PdeuS9lpbOZJwsZir9Stu0ZBL/ezmq4LAV6Vs/Ya6PfOwYWk
lhobai6J8Wihv8TAhdgLuF7SJ/04L2dZsKni4xnjLjYkv993LgjXd5yIlBr9
wAQnWQe9hRwW2N0JX3wD89AqISLQmcoAlsnxtUMCTHDeU1qdi/kpEVShXgqi
QzTN9tB3HTocyrgsuHoDF5bZnZeR8cJzdvCDiFIQ7sO1//F0YT5Lop4tTNCk
graE5EhexyDICmtzsznYy2u+J2rTMf8sT8vAS71g/Udt/F+Pn4aJ2aakAahW
jk78HEKBsYm/fgoxbAg5eKfk9L0+mMgT7zX+1Q4Xt6RtKpcagdv59YN2DT0g
YrOyXjOnFV7u1LJ63ceEd4++Hbih1Q1Cqs0nR7a2gD9zmt+4hgG3w7cu/9JL
gZC9sn3F4fUgMTnkafWZDhLz8iVdBV0Qs3vkuvvNGlhrf82xYJ4G4VkD58cr
OkE9vsznuT3Od8IKtputca50l6aQEx2wd+UtyfbGIrivZ8m7thYdM2Btqzbq
gGdKoaWbdfJAPd9QbQQdu7/xwodadMx5y/vtASvzQOztcpeTOG8eyLwg9xMd
oyxWFjmWUgT9qePv2OiYzze3hqGiTpBp5TW4pVAO3cyNtK3mNPjrHa0dnt0F
DRuH84JO41zpLXim/zcN1GP54sS/UOClnvOLHy71MPBgV0JQIx1+XXEfOqzY
DSLiW/oWibTAxyP6M2dKGbCdP/C4XGkP6L6Szra61gohavb3PdqZMJlzrv5H
aB8oUoYE3QfaYXOFw8XBVSN4nmoH1UcNQI7Dtji9kxQYLOl33BLChqvuSukX
24ZgS+suNYZdLzx9v1PRCnt1j2hf+HHs4ao+eqvV3gyC+fawMat+AlYkZ7bb
utLAdK2R0tPzVIgKOxb6AnOiq/go6cRFOtSIKc//UKRDg65jDwsdk31NNLkm
MCCQ/PvBaoYB/NkON69iDvkUToVcrmNCTe+Ckgv9LBCKlW+ywdz6fpQ9rz7F
Ah+t1lUvG9kgmOE4ZYY5lz98ZAdtExum1urEd+ZxIFK2YW4v7ouljQZvo/VH
wWXFuPn8cQIC9A4lqqIfFXqmSrXYH5r+BOW+x/4QteP2oe9n/v2fwxxHlhIB
JUeq/obyYw87rFPVhr3MaNkJ4QleEj6/JxL0LEhYQA+LCHhCAM9oYRy7jITL
25afZEeRYPzc6XnSAQIMTueaT1tywVA0234SnTAI3GfrspSAfAG+Y5wqLoS8
eGQ/ic7srl1pl9vLgZjICzUiC8ZgScbV+OzfJNQuPkfKlXPgmM2qmifiY6Dp
neIdwcuF2mxjuYS3HBDXEdw7sXAMXmlcVzCbIcHj4uboA+84YDdo632wjgvb
5HiDRBkklLk3a8n3cEBL+/5WRTsupGbnqORWkbBfoUZUeAkBx4f5HV1qcC6c
SIsRiSHh6kP30EIzAuZSXn6wXkzCk7UX1r2x/Pcc9f5A5VScow0SxB5swR6n
I6ztga9PXsn7SWJvm/twVlzTkANC8gG2nFICzrbd5in1+Pf5f54p/72jYH5/
x2kLVwLObFwW966fhMNT8UGRmmzIfTzcHV3Pgf5joryRuF5VE3KX3/KMgIdd
OSHXy4Zoh/tr7uL6qobca0//jP1lxjDNdYwFF5MuEQ8wD5rTJVcMnjCA7vB6
vk6QCWZthcxyzE/UOauBx8F0eHr0sYazPh0SQnJDZdGxyyciAufO0OB+ssJS
xetUCKsYoA5hPvdXHVvQpEUFq4exFVZ9g/AkaJV/DRf79+0TZ6ZYQzC5tViV
N6gXdvgqXpdW4kB8hyt3KnUAqBrKojYRFAgsYX1wucuGZ16d51fF94HI6EU1
4m872Ejz7kuUGQGpzRVjt5t6oL43VZ9e0AoFj3o37RhgwjG1hpJDOt0QMbvp
q97OFshw2iJ1t5YBej3Nbab96Njp9O/9t+phiLcpyaGVDlLnFlXxF3VBkxpN
LzqqBnZP1Vfc4qHDjh6iiFbZCQZPnjvtPl4Oj99LWfSgYysr/nCzv3XAfpmc
9Us+FcFj/lS+NHTsdZG4i51xB0gTUgJ79PPgj111kaUZFSRFYg4L7u0Ao99K
HT6ieRD5wfv4Q3SsKlki/yDRAev5nr2npRVBx3+rmxQrqbBGTCPRprgTctfp
fCpSLocy7SNzkehYgYXbTrGcLpBlatwM8KqB03dDhPfM0IBv4Re3NnRsgrE9
2ONUPZw4IfB6Fh3b2FpySUepG9KcnpwXXNUC1QevFC8uYwD7nMsKzbIeoCja
L/0V0goX4z55bupgQppKqtXW8D7gV300+HCoHZau+bGpRnQESnad5THEeZ9x
9YVLpxsFEt7dZhngvH+3VFRUv30I3nUlbZiy7wVj1imfGHHM6/nRODdFKlw5
KUipyR+ECu+w3LoBAvYpzPzWOkkD6/i/hUt8qdCklf8oG3PycudI+PFLdFje
fy02RpkOfY8Fskh0LK7o+crwhwzge3uOR+YvA1p3da0NwxzOfZw3fveeCQcX
89kFDrLAKJK14Sjm1ph/r2L8NAveKCtT2M1s+PNngYQt5lxpJqTstAIbBCSX
apsWcuDw7KFv5v+e45Nbkbt0+yhoPt278BrONVXP7AVCcK6JykzXdNrBgR/v
j4taFBMgGOBbrY+OPbwjrZqsgvOUa5rVapwnT4ovUlyKjunz97+txPnJddXL
wQ507NaxGcNX6QSMU6p8PmDfWjNW7BmJfSaoOsj6PfaZXGKd+ag1F7gG+dUP
sf+Izds2hWL/6Xv8mMqu4ULwVe+EJDoJNS8/pzWjM12b0ltX849BAHXVf/bo
UoJQqNFOdEnN4Mi+LIkxiKObHtbm40L0nGVP7hu8XqZT5rvAGBg26/b+xOtn
ui0Y7mUcKLYpDTev50JMWeLuSnSMM2MasLebA0rTF8tFD2M/bU07bV1NglcB
5azmYgK2zKUxd9SRQMqrfHqNjilt1iaHTQmQeJp+SkyQhBVlPIv3W5Gwsu1P
8fEUAljPPvoaaBNQmeFT8hMdKy8sDFFFx1IV2Qk1+zjwwdc4+mwZvv7TcRE/
Orb9m3gRYTgKw9/7i5vRsdDCakIUHfONVaHwabGhofGmDNmI95m1KzEW1+vV
keIvAnwjUGNn/8e0nw0vYyJZCbi+rx/zOXS1MqHg61Sl9QQLvDO3jSVhHpLm
qLzWGQxYs6zN/8oyJpyZnJepw/ykf7DIjLqO+0O5fBVzGx1WFH7nUUDHeP/s
NGrzpsGIT4hMQAgVSuK2v2RgPls6SdVKbSp8YMbVZg0OQo/k0BXxcTzf9mn/
fsQeggDvVSf7g3shb0mKiJEyB6SX8yXZpw/AwJHosMpbFLD4vbjBMZYN5bc2
mO1M6IMdnxVWfJtrh3NnwhO9ZEfArtHlV2hzD/ge4prsLGkF49aqeg46ZmHC
TJbd2g0prlan/hi0gI/qz2LJOgZYP/z0dgIdK5hpOrAuuh4GFUuutqJjVTO/
90ahY1+SZ0WORNdAlr4RdQQda9vnomtW1QmVqdby0i7lkCec5bfhIA3WezhI
8Ex2wKIHJplmrUVg8Gabfy865ifJZ56AjnmIG1/j354HYYf/2gahYx9eSJlJ
omM9dufSp9ExhUilvGfo2I+UC+890bEd700VbqUXwcHWQ3n66NjABqUvPujY
tOoxToRKObimDOqlomMpAsIft6NjZ6+bSs6iY+o+q/0c0TGTRxOv59Cx5aFJ
55e41UNG2n86kk108CKmh73RMZ6v/kmt6JjTromjGujYTr+fiy6iYyGZWi6M
0FZY0VKgZoeOuS7Ito1Ax17Wf3snN9wOlfr7xWbQsachUTVP0bGde2ypAe4U
WMFJ0QxDx7ovrlF+iY4VBVbxlxzphZzQXt0BdOzKtajgTHTslr54akbBIOwr
2zYpOUiA+a7BUk90TCc9NcfZ999zlro9OZgThqt6Xgo6Vlly6+IkOmaxbWjl
GDp2P9d0pgUd07ojbxmLjj1MbHgbjjn0+yQntLieCZ3cfqPf6BiUVI46Ym45
Q5RqAh2b8Pnl4NPCBtnNkcsPYc4d7dNmG9GxnLSiZVR0bO3ZVBFL3BfdCdx1
bujYqdgPKsno2OX23DB7dIw4GTZSiY75vd9g642OMXxczgijY1KtR0L+PQ/E
o1FwXhcdOxKYZzmIPWxGJrNbEedLRtG6xz/RsTxnXsMr6FhcsU7ov7nMQFj9
wr+5TO1Tw91/c5n2gv/2ORzEOfGzZ20lOnY1VbzUEh1zU3uSfrSWC3/DSPW6
f44ZvK5/gI7VOGeqRKFj3jXctmvo0ukvy+SXoGO3py/LSEiOwYNH7TMO6Fjh
M6HJAHRsnDt1/OSiMUjzOvpd4g8JwwEphdro2DhfzH8V6Jjiidvn6OjY3OIH
N1egY3cvVnpfR8cK2PdtLqJjeynH1fnQsXUfHGlP0THdjevl2tGxzzqdTXno
2NBHzYHL6NjchiORbuhYw8gmIW10TKFGLT8RHdO03bxp9RISbHJK0xegY/fS
TZVW7+fAokMSNVHomKbKf3LD7iQ0a8kd1ds3Csr3MpPo6NhqIQ/Z730kPHc1
uWyFjnVV8vufbuLAEwPFU/dwvW5XRsZboGMxJ5e8qUDHyiOjQh/h+t6Pb/Vc
1cYEgyzFlSXoWDzLyCkF86D0UTUzEh3rDXpG70THyoLqT73H/Jw2ebW1HB0L
3uG/bst2Orjus1+viI4xZU5umkHHzN8lnKpAx3za7qUwMZ89QPs0ho5Nlvf0
WA8NAuXdn85j6FgpzzpDEh379t0v0PN6L4jfO8K+jo7NaayLT0HHDsdp++pE
UcBAw9YgBh0b2y4UeQkds+hLTbCZbwffrMqu++iYumHNmnx0rGHYUIWGjj1W
LWIIDjJB91yLkDE61l3zZOX1XS3A8wPK9dAxB/bOdOEBCrzVs6GHo2PjmvHb
mOhYxo3zzRno2Jm18jav0bHaMZ/1v9Exn/tjQcfQMSGPXJ3n6FhOfiGPBjom
IrhbQRgd8w6Z31eIjt388FqQiY7lLtcfeYKO/WjiqB9Cx9oiAq/eQMf+B49o
g5I=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUmnc4Vu8fx6UyEiEpolKaZlRm3soqIiQRLUqR0tJGEmmJrxFKRbKy98re
KzzDHs/G89BSRON3fn91XXfnOse5z/15vV9vFwUXL9sz/Hx8fGqL+PgWEv/2
lzU7JLHJsIrWYHVe+whSok1K60U63EY/PHnkR8HYka5LEh1VmFVvXoV+Otbk
z/PCdanY/fyPr69DLZ42fz6cd4yBxGOHzePlehAzmcaI8GiACb9G8H+/GRBe
7BJQs60Xr0scrnxb0YL67LOKnqVMxKXm9L1174PDghUf2jw60FEe1RYUy8I1
z0oz7aF+eJ29Z+BX1gX7Xx+PZr1hI/DKOfqGR4PQKnD8GvyODMeTu55fbONA
qDSs4b3XMP5jFL269LUHIty6oqPrx/Ey51n3k32jCOIc0+x+P4CgOyFDufET
uOUvvND1Og3q0qqp3pUjWN2VNTy7nwfv1cn9c8/pOPxFbE1dEQ3TAwd1kuQn
kTR08unpCAZ0uc/tVY4y8GSd5L/IDZMQf2y/XyOFicBjX+RsVrAg/nI2amTr
JI4+W/+V2siC3Z+Q0tsMNrQXHDG7qD6JuNFKYaspNn7L+rvGlo8hjjHdqKg1
Cdsi7xpL6TE8CT3PUI+ewLnAL3rM3ZNYdoi34p3iOJpXithkO3Kx19R2878J
Hqx0aAlN6ybwWmbrSH0GF0tZxguFb/MwUbLbSk6Ui2wbA3bEby5+L5TQ2irO
wygnqqicwUWof9CZzcY8/NfFp8SfzcWPTI2dta95YAV+iw68zwPbL+m9tjMX
gppkAT2dSTj17zsnVMiD3C4d0cUrubh0dcadlDmJBjmZ8xji4cTfrdb29AmU
j+9TaZmfhOy/5trxnzxwY3f4DlRO4OnPmwrya6YQGdM958Q/iYL3Yt9uZ0/A
iRlzsEpqCm/K9+Xr/+Nh/MBcUXr+BNi3n57JG5mETkkz+ckkD+XfqqcvtU2g
7h9p5c97kyjdq8o33c5DeuRyD/rPCfw1DRZYMs9Ds4yvikU8D2XSR9/TNLhY
METOKLLhgfrT9xD5HLEvr7bXl/tyIXq1QmDHYy7KLOemLTbx8OXhVNyaXi46
A7OUT6dO4LZ56rdDA1wY1Pu3UvR5WHiz4/jxgnH4bWye+v6Ii1s0qV1b0ni4
HxD6zSl/DMoO3w2wgwvxR1WiB4hzkqFwKywuigPZvzeXCbWOg2JtJjKvO4k/
MZ+Ebl5k4/q+sI4dnzm4feJNqe6OSYQzVE6fNWdBsYPn9kWGjfJ/P/T+U5mE
1Ctzsq0aE4wbJ6NWH2LiuFGM8prNk0jnWswkKjAg+8nne0c8Hb3BFNvZdZPw
3bP8Yq0iHcuC/Cv8RGgoUSH771g9iX/aZo3GX0YRveDzR4nJIdwSDfp+9RkX
yWQVreK4EYydYDun/u3D+8XJzsk/x5F8bvG2wcghLJh4sqHuOhVRxiW+5o/G
cKni2M7xpgH0qYsOHzhMQsiW2kY7Ew7Sni1+2bmzHyvtC9o8oztxNJL6WXAb
G6fueJ++09eLY6F77B55tyEozUJCeycLgn7X1IWze/CUlvhT5XwTQrdnFCmd
ZmLpQMCC/wqoaH4UulxjUT3OdexZoZjPgO1FhyULWRQIVk2t/6paA6GHRkdD
iff3Pf1Y7rQOBcOCh46b5ldC38/P81sKHSUb5D/fyidDNm2x8NDKctBr1W8G
W9CxsrSrVRcUvP/R2kgbrMR+szOcpRl0rFtz0ePXGAXuMQuiivVrIPZgk7Gj
IgNTGsez5QupYLo87lopUI996tOGQcTP43Hn5Ft86IEqR3NN8NEmmB9feqrj
JBMpTYprYtt6sWyLnXrlvjb83WFfsE2ZhRsbu4ub5fvBt/afZNLFThSqCglt
JL7zFruARsmEAThrLP9QL0GCzr0lG4S3cSB/avbbPachLHGkjx6QoOJwSL+Y
2ckxvP1xOPO0+Qh4k52RjRf6QGN9P7yyfBzFvSfmlhaN4iw9InbVpiHUHFqX
K7CbiyWm/dcE6TT0V6SIMGNHsWvyQLMpjQd/S9uPy/vo6KRcebBLhY4Qncku
67WT2O65pdSUxAB5ETl+VyUDCRa6vxdtnISQUYjGjl4m1BEacdWFhbd+QrUz
2ybhUNfhZcVgwSHOzeXVMg6Yt3XCxbZPYo9qwFTTZzbmllhvm68Ywzp5tfMq
BN8KR7+vuTzLwefWWqld5yagcOPjj50E327tX9p4cWwM/C9/FL8y4WIRK7x/
ZvEkgiT/PPhYMQ7ac5Xfy4nzGpm18MyP9zzcFcw2cvSfQFIO7fGvdi6Cux9t
b7Ai5vjeC/GxbVyExDQ+eyDAw2vhE78/8fMw662bzy3k4s/5rqs7d/KwV8RS
QrqOi02c+fzbCjxUM5kmFQ48ZJUbyzhGcNGfaPJD+SwPVz5qqf/24mGy0qh5
rTfB186Sv+pBPDRJJM0dIjgr5q+QonuWiwOu4fURPjwU13Inr93gwTA6YqP0
eS6qVOXCHCx56E7qUDhB3G/d2gyF3HtcbPm13MFyhosdi5jvMsx5+EmptDJI
5uLKqh+LS324MF7+vGf9eh60/yx+WDDEBS0tqkeUOYH+updfGFNcZIjmMJ8R
/3/Jf4kVv9oEXk16mDzI5cIj3ONp6lUeZGvPJgm5jiPDSX6530WCSzcp/CKf
eDCpZuQkBY7BE/LdHxS5+K7txtTWIPafGq57M5CDflH+uDtZ49ASFpmPInj1
9xb/BefbbBy68cvCmn8Mvh0lCvcIXh2Y/P6i8gILyR/cHUpt2cgOP+F/UnUS
Y/NtV/qJOc7sfegjn8qE97fl4fZbiHPynU1ec5pBzLPIZNxSBj7pW5jdXT+J
jYGuN5550XFNn7YqLYCGEDObuTE5IgdjAs7znGj49nCVuZfrCNblBjk3KPLA
Z1nkVKg3imST6wrbbw3gY+a9ypTnE3hgXtwW6TGM1JKne9+N9cA64RKzdc04
vKIPk3TCBzE6U7RbsoCMc0alyoEkDmjsceaBr/3YI6Pk4j7cBbUyR722DDaC
Ajq+9gT0oUogXvdnfQdWGWhc+J7OgkqswT+Rfb1Q59q9b7nTgr1z5KsLPjHR
ca/b+rRuD9y2BlYs727AvjkrIx8JJiZSRAbsj1DxRH9ly/3yWryK85WauMzA
pQXtdvtjKbCWUDkirVSNcp3+FpFJOtRcZReW/CVDN3y0fLdcBai1tJ5CPzr0
hvaOnA8gY03x9+LsmlJ8CdgaLLaV2K+YqXNOfBTsXKmY+nJzBYbnWliD9+hI
7Y+M2h5Dwev4uCf7N1cjxC9ezYxHR8R7nQUsGyq2ZL8uDU+tRdDX0BvSFxmI
ON0Z8EK1B2HnqIIiqQ1oX+2yS0OYCflSL7tVmr04rG1XMKXRgvvbX3wyq2Li
ptnQrySXPnQdSHV+bNuB2bp/aW8iWfhWVyWnWdUPjXHPSeFHXVB6mS5m/oSN
Iz2GzP8sB2HIWyA+o0fGWVnzc2EJHNy7sIctKjKMyeE+0Ud7e7CF/5ZgysAY
Ti+1Dlg2O4JzfsV3P77sB/Slbm7cReT+OatlG4RpSDHs031qNIwAhfcPzxHe
cqrRx+ifAh3Hrs9PiArSEGXw01mRyDv/Ost9KgsZyC5NFRy4RIdEQEuAKZGP
hYurDPimGCg/pL908wQDz4vOfn9L8E1Q3CXq+DAT1vwKcU6eLBz4E1yxWmkS
CgZCu35+YmH5qMKjh1/YyLk9lxFH+ButYOiYTAUb1jYSxzZ5jWHTXPJVkV2T
eDb/umf7Ow5i5UU3GoyMg5dPuWasN4nAQ0Pv+W6OQTx9e9KadVw8ch3Qttee
RJiP2odlm8ehHVxg5HeUC/kaofXj4zwE68RuCq0ch9TVGJ2jBPd+8qkKvSC4
t1RS492N3RNIX7QxzL6Ii6RF5KNqF3j4/cghdE8c4Ys3Bn6Z9XDBU6t9ZrKX
hyJGWdrQwASGlfq5W3hcSAYendMmfOd36e7R1JkJLN5f//vCD8LnZnbw6mR4
iNAQdmr/PIFN0qFDHd+4kHXMeGguz0PtuKng/roJXMT8oAWTi8FNMy7N6gRn
mpzEqq5PoFThQc2lFi7EvjsWBB7ioQC/hiE8AU8Fdj3vPRfqOttkIx4Q78VJ
CBr1Hcd4vIBQ0w0umrXelYbV8PAi+sAYnfj+338ZJF3Yw8UEva0uSmQSqu9j
9yXJjcHqy6iIa8IEDmzJNBY2mMT7tn6fBgMONuUNRLJ2j+N6w6Vzc8R+npMW
cV5/mA0dz3aFew0cHNfbNJqkOQmDUxo2NadZUD2RSNlnzIbjUhkRZYJX1x/Y
F4hcZcJpsmkdt5KJUytJbqkErzIEjmjnPGDgm8WJM98NGTgQrHNcl/B81dMm
h3Lj6Hh7W3J5RzsNJgcPmP4kfG88VfzpwWQaduWejmvdMYojwU9efwwhvlew
7978kFH803nIbokZxI+U5ovWi7iYLdzN6ZceQe1dQyUlqT6Iexq/Gn4xjmxD
VckygyG0aEq8NBmhgC96aLfYgTFUHdtTVxY1AFvXn3Jif7vxhHl3WHw9B/eD
kvW71vTjSu6FPZcudaIt+b7eMOEVuhtm9stRe2GhNML95N6GKamtN/s0WGib
Q7dUaQ++rBgrkAtpQgr7lLTeeSa8PjOePG+kIigqKaV6bz2Oby3nNFUx8OCo
f9OxeQrEqvMqMu7WYPtJTSfT7Qys+LxLzcmGgluGt5JvqVTh3o8UrZYSOm6f
diu5UU9G5geJ28Ih5WBGajy9dYQOm/LvWgmHyGjToibaXS/BDffAFzcF6ag9
E71XrpYMy+GPFxN9yrHC1vBC12E6Qr8vvnnbgoLMcJ64sEwVfJIWZKcU0HHd
38nS5AsFcceFpVfZ1yA7wVr49lYGnCvyC5QIb5zxvu/QwV+PXfnq6oN5DNjx
hXwKj+sBr08r6c+2Jhh78qdrHGHi1RFym0t6L/w9Ftwq6m3Fw38a54KI3vaZ
X3TLLmYfvuoc/P5oSSdi+vnGM76w4Hn3RlOW6QBopv7So1e6YdV1nNExzoZG
VHimGHkQG99sz2ndSMF1pYjXKxaMoeJyyrX2J8PIP6rXfXp9L3b59zoq7hqH
yCa+Kt7OUeitrGCJnxlAWKecUtDDCZy0t1k4pEVD3MlNl4XZw+gre3xPmpg/
Lw1O1WNtOsZr4leZKdEg5XP5czLBt5Ydkl3TwgwYTX95WnmHDrPnrlIXCb4p
T/1MtRxlwPNl2DdFMgMb5qb5bQi+uRjxnyktYoKvve6ViSrxPp6Rerr/97fl
u26IPWWh+c27HM8ANuzv7XaRUJvE2nVVDlYObCQ++VUX3cqBoduESwkxR8en
ltlmr+Tgqjz76qp/Y5h4c/CANDF3+64H+F+q54A+PlRmJD2BP/vUDi7VJ+bo
q6Juo/MYJP0z/T2FCf/6tCnID5OISow+JtoxhsRlZe869bkg5x8+2SwxCbvi
F0EnNozj1WW+88ZEz1XkZK4O5fKw5bMkR8ZpHKfbR0f6CK9qu1bSFN3NwyJR
4cNNV4mcj1nEkbrGxbrwdesfNxK+pqdxPM1zHJW8C4cKLnMRtFHxRGkLDxW5
asnVJuPYGH0qp+w0F9ErDtVuGeTh4M0rKQ/4xhG4W46WaEl40UHfJypEnzx9
IT6z6fUYDBJsXURVuPA/WHHz5yZinw+uPB+x+v8e5bb4w9sJ3NdzE1hIcEmS
I6n24RYHQhl3EwJfjWM0VV3OlvCoLUvGSAdq2VhbmJbkf2MMJ6SkOrYSecE5
7Sbj/oeFo4f2hD7T4eButw03ifDngca3ESIqRA5RaJF1Eyw8dohlsZUn8ebl
/OdseybCy59bOv/HRP+nZ7yFBK9m9nF9t/gxkMIH+WXaDAhH7ZCUJXh18daw
f0IaHWdrbMkviB7wZoFe0541k1AftZKVbKMBHhGChddG0bhSzcKd4PADQ2b/
nupR6MeebIzaT/S/+zLuJyy4iLolv3pnyAiqXObTsxl9MBlM9qziErn1VSlv
unIIuhub3vyopOLC6G2n0SQiD8/NmMuvHkTb4tZeXSYJo1fDm2T9OOA3DX+k
Hk9410g5Y82hLlirHK/w9WZD/vDjrPW2fehewE2SlenAf02q8wsfs3Ax5oq+
skov3qUnPrNf04Lu4ZZ9a8qZsAvvjFui3oNnj+8ErshsQPjqZgGtJUxcfGMS
P0541+Fn0+r+FbV4Ky6mb3OFAXpvbce3eApky1stykyq4cLNsL/4jY55A7kP
15ZQsLtl5WTPhQqMU5V6fzyk43SDqsqnZ2TcjA+f/bykDFE8ygMndTosJb+q
mm8k4zFvl97CHcVgBnh6stk0RK6dOFH0kIwHJmnpz0dLEay9ynS5Mh0Dc60F
8oSnnYPBk6mNFfjn2hGcQ3ja2AohjZdhBN/DOr+zl1ZD7bCt6Dc2HX92+KZ7
gQqNDfcjXN1rceTG1WvypxhI/mJBj13ag/u3nnzu12hAF99Rm4NfGQj2dPqQ
Nk/42/r6MtUrzSiO2K50KIYJ24/l2pNifZDXtj/iqtYOj3vTbY1HWfi77tJ4
l1k/au29N5QVEXmR2382axcbshsVzzxPGsCmT/zt/8mQcMPp9Bl1FQ5K3lG2
Zm0bgrttUaxHOQUPv+bcmdk9hv1b6OrO3cMIrNu2ZHlcL4rqBwXLzo7j5gch
t64Do9DIsZbIyB9A+FTfovzkCQgsW/BucDcN4qdWBLDmhkE637UgcI6LwPaN
sjxin9zDPqa8XEX42/SRtacJvq2IoPSITdARvMlT1m8fHebW6dw8op/qhCt2
KKQwEOot/oB5iwGHtM/bhRUnUXdLIcnblfBTN59do0lMzFa0XLIi5sLTjZub
uJIF5QcST081sTBj0/zXnZgjW4U/H7yrWKB1P9R408OGc8ajnUaE17k2kw/l
O7LxvJPztaedA4Vbq55WE9yTOVIotXWE2Kdf9zRMEseQ7v7nTBsxv7szKt6Z
W3Jw5ECBm/bhcSRb8dYe1JmE7OeIy4vjOXgVVL2tamAcMR+y6rUID0w7P7//
Qw8HRX9Tp59pTmDX28jc6wQnbS8tWPnpM+HFFTIqR44S+6X1K3wh0YttQ8jp
+WMcsH87+kxaTcBCIWttP3H9Vv/YvOM1HOy4pbPtsMQEZIu1z8wR918pLkPe
7cvBufyp4OF346gfX9HmSfCnll9mYO0aDr6dOhXpJTwOZpjDgB7B7aD+VwfL
E4n3r/AknzEdQ2TD6os3dk5iAeuXXccKNpKgNFF5kgMHcpj5TqInnjimuKLn
GsEleqXd2uNEvw+LYj4iPGp52baM7Q1MHPznXx1gwsK93LnkECJfXn5to9uI
MRHdHHRXag0TjoM3Qo8R/NT1KoeKDQNXd879VZki8o0sWSJK9MHo7uzGBeF0
tKar7Ywvp8GQ1swoIvxq1xnZSIF6GizfjWy/fm4UUt77de8X8zCu3fyX0z6K
V82i+8K9hzCftZ5/8zEuagKafknWjyCi6UyStFE/DI0P8ltLTmB9gz61iugd
cZeeq1QZ9eDo3fbmjYNjcKtWaV98bRAHCu7qdPmSMSb6fPWLjxwMSaZfpPIN
wHCXPy786sINjx9ZRcVETi5YEhaY14eg2W0tNec/YdTWI827g4XjLrNXBZ8S
3lWhfEPjXCvO26U0Nf1lIso5IvPDox689BwUr2M14o6U4rKd+5nw9bl29moa
FcFHBdY/HKrDoJDC9UPpDIjPe30e5lIgNFKj3mpaA5WUGXeXTQy88JlP8yS8
yCx8QrJvVRUu1Hz7/ZrwovcG90/2E97136htTFFoOVZVVNEqCO9y2au66McR
MhyaXA67RZRgn8WC6/eX0KFauNwkZpaEu3Eh0ep/CvHfnS3xPo00dHwxPXXZ
igzT5IQMXdsS9IyGfeheSEeYlPnlK0VkVO4KOxikXI7O1rs/X1vSUX1rmZLd
Lgrm2KtWz72uxIIMkndrEnH/B3Yvue0UpPjMOCcOV4Pxe1v5YQliXg3Z1pR7
VLTck5ptP1CHc2+kU5Y/ZxC53i1mYdODJVbs7UUKjZiNGUyJVGBC7rbxd6s9
vUg1OTvkdLoFj3MtJU1amGDPWQitI/Kib/uopwSRF5nx7fL8RF5IScWxeQH9
OLD9+7T+ui48dpp7PHmSjeKbhlcsqQN4XZD2PtKTBA3GE9UKKw4OhFi4ppgN
4dRk6ObWKQpeObBc7GzH8DzpZvxj8jBmDyxeNPy2F6tExe8buY9Dq/yLmqv+
KDgCc+sf3xmAdK1c5svQCbA2dz27sZI4nys9TU55D0Pi4Kclz+q4yBPYtzZz
hgblkucGj6qIc8ryTC/4x4PG+zcbzibQ0XhiyegxCtFrJV5+lCByuUJ5fWKS
CQOWWvnqqQN0nO8x925RINaf/EpKoTPgK6LeNNnDgNg0X83x/3udy/W5Cm8m
pPP9OvbUMaERvWJrCcG925ToRswzUX4ywaMmloUxE/P9dUSf/ThfZ+TrxYKf
/aPFwURP0qzalO1BzG+NQmDNGaLnRoc6XH7zmY2x1z9cYgkeFt4ZDdu3io1F
rS4/Sk9zYLL3T6URwYE1qjPLuszYWLZD8ohsDgdqyVc3OxKc1JjUCKp2ZuO8
4FG5ym4OHmkpOZGI9Sfqlyuu27Ox2Oen0Lsm4vqphIRMYl3o2hr56R1sRB7U
Dm39j4NMXpIEl7j/zb3yqXd+sRDKuilroMmB4J2wf88JLzq/POj62/csWDFM
ze+nE88PqH6VRPiqe5uJU7UeC6uayjec5WcjZrawQl9lEsludy+uJXqdoOVO
jc26LExHH3c9Q3Bp6tHtpCYNJhyGZvrTHJh4mrX3uMbmSXA37B8MjmXg7nWN
lyKnGdA2lO0pITxK5+72sD1zdBzsVCwPdCHm6g3fNUnCt4WWTdm6EX3lZVjt
UKIjDd0pro7WcpP40HvfghJCg9mYh4X+klF8CyYlHvbk4c20hXdU9ijRC3qW
v1k2BNENHhJfNbl4J3ztm0/uCN544Hrj+n6sfqRUbLh4AirjsxHWq4ZRH3jH
54VjD37O/u39xRyD9dP7TS0vBnH+sHIF/0fCU479Ky2lcnCynLo8ZMcAFp11
9nA81A0Hz1VJ4kNsKMfaspS/9uFty4MjUgqd+Cs5erSF2N9txo9T2zt60bHE
nelm3YanHb/qCwnvPDr/o/50ew9Ser7ImnQ1Yb1jRmX7TSYiOB//HuFRMbVy
03xaTT2E/trQE/oZmIugD41vpSJ07a0rT9bUgv9bu+wfgu+BgW1WvAAKeoPW
tNsMVeF9V6Sa3RAd3V3R6mqzZPQ/33Kpbuojtnq8u76G6DFzxwddBgLI0D6m
ZVFcXwrzyUKO81Y69lcr6G9WJENVxLBgtXIxnGrXfpUhvIuVIHqro52ERNPy
wf9IBdDmL7/jkUqDR2z64pcryVhRXS7QQy6Cwqkbx/YN0XCx3Vpt5DJxnzNu
lxP2lYLnqipQIkeHIH/4ry/DZGyZ8DHcgY94pr236qQ7HR05yd44RYF27vRE
+ekqqK+Pv/yjjo6+1ccFhYhebM739FHAnRpgq5X0EqIXm4jc59uRSQXXpO2/
8Ik6nK91i/iZSfhn8L3Ju3d7cFfcwZdX1IhFF2TxFYSndVfLTrv1gnojNtOY
0wIxXYVtpUwm3BPFfasu9OHxc+E3G251YPrDtiLPOBaC1lxvehjaj5IF6gmb
d3WB+vLnhWZ3NmYbx0Qn2gfQoxw1/u8YCXyqzNnefRzMV1SHf14/hE2O/zK/
ZlLw+CntTKD2GJTNX7L+Ef30QqFzUDnRT/eEarabEf20wzrVXZt/FClZVHHj
nH602Gxh9RpMoMK2JpFaMwo+M2UP6YNDGCO1uEYTPclK8stdlwc0WC3RENvw
ZQTTG5bR3h/jYc4j1F9zBx33mn3iLRVpaG1Rjw0hvC4+arp/aRkdRfyHKDO/
adj+UDUynuBeg+xx12M6DFCDyYncRmJ/zZ5X3ye4t6jyx7t/Hxj4/LeXI3uP
gcUGb2vWEr5nq9Ea1bqMCf2XyY5X1xE5caVS2Y3wikvVm6dXuzCxUW+4IT+R
ibHHB5+bEjxM2f2fReJbJlSat5aqCLMg+0/5Xt7WScybvU1xbWYi2ydGIMmc
4ENOmWU8wYcvnrWh+weY2P1h4ejZsywEG7RWCxP8VNHKv9tCITxn8Y2V4cdZ
WBYokTlOXN+md85+opiJF1rdP1XUWSiZObN1D7EerNJ1pSKQibstHtI/hwg+
/2cRJE08d3rL7hfxu5lwKjJ8u8qDiT3OD9IvE/xRk1n0NI7g/G8xhy8DBOcb
3bf7/5/zMetXhfneYEDAS7anQokB1p1jDpOELx348fY28y8dH0ve1c8S57Xe
k3JfheCSh0XLSsm7dHzPsF/S+IKGROkQIQ3Co5yofntDxmk4qHdVfy55FItP
aSkOEP36H//3dZNbaHicWiS8KncYms9/ha0c4mLsAd+OfWdHsYNeqpIvPogL
Dx6T2G0TuBS1KLbWegTe5WTrgZt9GNc6GhpWNY7a7eH5fcNDOLIyAxk/qDBx
+8CIKh+D6Gjtr/98B7Ht4x7q1jAy7q/1DFxQz8Fvwz/pjgSvYu88t/xr243R
l/+6uINs1FBuDZov7EfGtZH7EYadMFyjOxMowMarzMjDLyeJ83p+BV9gWRtu
5guMORuxkK/t9dBsugeveF7HfR2acTxWU2x9BBPaqz/sMV7ZgxLKGu2pIw3w
35n8tH2WgW0xR48ttaci4872wMXFtTiuVtqx4DIDARsPfF6XRcGv9QLZoVer
IXCGXpAzT4eifoFCwjoKmnWgKy1UicYmL4GnL+jot93anZFChtQludOd9WUI
rv/H3m1Eh1B0pj7JmIyIia8f7JeVoPCIlKH4HxrWjzNzM76RQItr5S4kFyLH
2+2mXS0Nit89jmq+J6F8f9K7rSX5CDuxNWv0KQ32iasf/8cgoTDCc8O0RyHu
pkq/KCymIWaZ/NMBNTLyx4W77/sUYzpGrunQFA2Cep+aBZ8S/PQ/3RT6txQh
avE3VqvRYd0uUrBxjowp1bmz539/JHza6p0fcT7CNMqDVt2lYLmVUZlMTRVy
NAzHSD106D5S3+uznIrFHz0KQztroMp79ER3LwOvVz4tbaqmInBIQeGDaj1s
S16Gl5QzEH7kqgPtIeHTveu1H480Ykzy7udvZkwIhYgs4pzpxdps0udXjBZ8
CyCJ/GEwQT6lEv7UqQ8HHk9+pep04B5rR0Z8KAu7/my5k3K2H5Z2Mw3Snzux
6Z5E4TJLNu7l3zMufjiAOFsPq++Mbpy+vvZ1wEoOjJeXO+YUD+L2ymXWWj/J
OKHzU6N/koODPUvJ8T+HCJ/I7hNY24PsjldZlu1jeCSytPuX3gisXn9TLrTr
g0uTnvOPnHGI7o53vLhnFGF/gmSlng3AWa07NPfFBB5/Fpy7SR+FcaSgyKqP
Q1CseBO+7DYX9IGKr4d8aHiwxHQkumcEXuW6oaWHePjJ537ggigdrKlNc3xs
gpdBpdbpspOQW+Bmqn6RjjSalsgtfxpcay4uohGeYDCuouZeQ8ftU788W4WI
fa/e+LiN4OEttSj9QUEGeju9PE7dpONrL7v3FDHX7z4eno/WJ/rvOlMn+XY6
pCln30QSnHT2rc+cOk54tFH7D7NFDGQ80eQ7TvDBavPZ3JkLDOSLmOy5JMfA
cOrKygJiXdD8X4OBOwOzm58N9EkxsOFbt1ossV5oJSreZM1A9N+fHk8m6ZBJ
eOohQqy31H1w993IQIqIlvnfZDqYWePNYsRzLUOoax+O0RGqeqJY2JSOZbIx
f9KInv4o5IfKy5dELxELMLjSQkPNedXlEwR/opbbfVm5hw7Hl3/8F+nQEF/+
rKePyIWQiMeXlhHXvX3grKR1eRTadw6NRFby8Fe4eVGNJg0GAZ+SanqGIbi1
T9OGx8Vc3Wzo88hRjPbEjCXkDGLq+93S76JcPP46q1DNGsGXOe0N43f6cfXa
T7LZ1gnErHlbmPd6GJHf3hnsMerFcE56qafROCjd1ZoHnYk8c93ulydJRcNE
28Lek2PIzI0Z/bVhELs4tyzffSdhd4yC0uFADrRWHTYNmSO4JJe2yn+qCw7B
y70t8wm/MrE5X8/ow3vq/ql64f///cPJjONfWFCk+0iB3osYhczUhRFtWNfk
MX2S8NSjq/i8e2Z6kLe69zntdDOYvZ0zCVFMeGncveG6sQeD50pnhB81IO6D
u1MpPxPie0eSej2oyNaZCHDgq8Olu2X1b/wYeLs8t6q+kQKxI9aORs3VqJjf
ErdQlAG5/vviHF0K7EVuRjdXVGKDPf0kfxrhrX+UVyTXkPE2ftUt79vl2C5W
JelH+OvNyz+GLxwj/OfYjm3epSWo/7Pk31ExOk45LH+nJEzGq4SD3MuXikAu
T9+5gUSD3MnGcwO1hGfwbHafDCnAaNjxU54JNCRkGr2S8yPh9erbC/Zm50E0
6UnN6is02LywPVuXSwLdZcWFBysLwKbFRLhH0ZBxa/+Gr19JiDqQ6MvsKERU
48tvn2poeK+t7mhiQEYFZffKaloxfolqL/SepaHtRyrjWgwZ01cdn3x1KkNS
rITME206ElppHWKLKdg3OKFhua8CdZGRKdse0OG5fk3kufsUKKx5cE+0twoz
cwbZRoN0/Ho6G1dIfG+BP0Nfh9pr8PCb+JfMPQzsuLzHu6iQCr4IpyeqQvUo
ust/6Fs+A6ul0j48uNiD0DSmpsPDRqyzqO5cu4uJLxG04CGdXixmdg3cMm+B
ov8ET7ieideFfcdaV/ZhzGg0Q8eqHXEVxvsWnmLBk1nSqSPQD423+VqZJp24
FnSvIlKIjaVuT8Lf8Q9gwjlM9PnvLlg4VzfNl7Ah1aeRXSs8iPujkavEG0jY
dO6EyvgVDr7YV4v8kx7CeTN/TbVYClSPHtVXUB/DNqWSO3c2DiNasTn87qUe
SO+jfNedGsNvinn4rNoIgqYG4qnoA9/DZ1cDU8fB4uzZJbNqFG/dml47/OlH
6JJZ35hjE3CRdP4lGToK6jeqb8jrQdxyuXF2twAX6161ufN+j8K+ReXycplh
qOxwTdr9hgv7LzPLk5xomFeJyLjtMoI5iYq7roo8xC33TSwnfDxvp0bwQh1i
rt1piZv+4yFnyWj/AhYNpfLhSRJvRzHw+9+F6ywezq35qHRMhMhVQQvPbIK7
h/vCTN8S/NznqupRvpLg6gsfy7Cfo3A0Trw9RqzXtEhL1yynw0CXqqDyZRS3
tNKMuoh102S7947zNBx18e2eaBiFTee7/cOLJuF75+viJwRn/I/vXSp2ZRS3
owIjjap4kPEO6OsNpOFVyhK69o8R6FX9kM4/wcOq3qIGTTUamDNyK7mNw4gR
Oz42zuJiuXZ7oknzKGIsM1u8zwyB4pRw5Z09F5s2bn/+zH4U5+5wrz2kDsBB
z0PUtWACT8jfZ/bnj0DD7701Z2M/Ll35J/BAYALOQsUPL2YOI1HxXUvs8V4M
fr7ZddtqHFouB3eqxA8hUvGz9eXHVEwEnw0zCBvD0QtuZ5/9Nwj7bRZX2Hlk
PBAp/itC4qDjU8j+DiIfWw+XvZBhdmPgPmdlOJGPS0L/ZLgF9qPy3sSn9vVd
WHSpcunMKTY8vM0ljz7vA7XumPH8ZAfqvpP+ChewoN/+bG15Si+MWmlKi9ta
wc997f9DkujbEVeeFZF6YHnXwWEvpwlvK2Mvw4cJH/L39xSJHgR9tvRaYtKA
H34KWr+nGcj6EeDR4EqFR5O2bzWnFlMtIoHJtxngHlvkda+ZAvL9pdWmn6rR
aCtdrivGQPmYxfL3eyk4euC2bcJ0JbQj9zpdzSJ6n8VekS0dZKQf0bp8o6Uc
6m9SuyOO0bFn23RMiQcZ1kF7qZPSpXjw9KZyHnE+Ap8JZgkSve+SyosD1M4i
rDM61zk6SMOh0jj7Y10kfNBrGbDhFeBurGrSxAcaPgnsVlwWTULvev2u2mP5
0JL4YpYYQHzvcN+r407E9Uda5K+U5eJ6pseb40S/r2pICUwLJBG9XaeyZygP
S7OfLSy6TsPWx+cflRaT8Kv26PM5wwK4UnK3xsbSoP02I/P8TxI8rONfL5kq
hH66ZdWPehoCXWVXrDEkgy0izI2eKsZY6b491b8ID/Qr8lv+goxtAuf3uVqU
obFv4NPwLjrErdtdT/wmY0dH1z2WSAXE1awXifvSoTS6PHHuEgUPfPzMLr+s
QqHc4paFnXRINi/c6PeDAo/ZNaeMz9Xg5Dm9/ZtUGHB59JDNR5ynKzURMTme
dYgpMgsNjGRgj0ngsLlqD+Lyw/34UhogsPqww28holclPtGLpPVg7pK41u2V
zUQf2KXxN4iJK5yAa9sTetG+4nGESUErFDZqBDuLsTDspRS94mIfQkOPPLe4
TZyr0x+CUojeqpT2Kf/VXiKPb/aIZmR2gt273UNAk/C6/u2lonID2L9T0rdy
Szck2StO9raysbN3x1qfnwNYcahS62ki4b+jZXLHznAwNdS+NqN9EF0Kp07m
yVJAnyl6FPObA7/K19Ihr4bQ7JWtfu4+FYNVK5b9ezaGED3n88bHCR76yLpo
E+d3hwEtdYP0OEy2SAb8Fh3Br+Ej/1Uu6sMTvnfTCWHjaDhz+sxI0gis/U4G
hov1o6n/jrL0n3E8PMrT9ZIcRe5dzrGk8X4MJy8+8e7wBN7Le53S3TuKoYaH
r/qeD6Cv9svRrugJiPE+9Ow7NYqAzQICffMD8Fn3Nftm3QQEt59d1npxFDsV
dKjd2wbxeqdXgnfPBI4MGSUe8RhFjfi/Zw6rB/G7y1BkR9cE1Ey5r74fGsV3
/ZTkO0S/38qcni/NmUC4wPZmb+VRGLgt37DZeAC0lzvdtG9P4NzB4juk8REI
z07f+3O/H/NrFc8pKk/AvdIlu/rYCNZL1dy5Qsx9wR4z5bzmceStu6m3qGQY
Dzj2evyXe1H+MUuHe3gcr8M9kPhvCIuUsTKHOBfb2G6pCaQxpP3YGfJu1xDY
iSVtml0U8PMNOR03HcMLVcqLda6DMOd86790iozTTRZWRTkctNN2/kl9NACN
+pQCO043XlO552mrOMhVGefJZ/Xjov/X9fbnu/BpWvHRPj823gjH2xf39MHB
eDLu3fgnvNLWvcrmsOC7EBuWC/bh14L+oyuk2iEwlLXS6DALPo68a+cNe8H8
zao1PtWCzq4mtfdEn89b6jOmH9QD4RSrbeS+Rvz3+dWVVlMmDLX2BJn2U/He
J30lNaAekzYCYl/aGXBW3aBUv5uKhYxOz2jXWtz8j5r39QQD8tGH601zKFAe
ulIsdKcaUj2rFXf8oWPN6JRK7Q4K0liUvSsiKlE7oZCY856OK+MXJSYbybjr
Yhew/k05VMI8BzQd6aCm54HrTobhxMQHW4lSlAW/3bie4NXgkI13pgwZgu7b
15oxiuCRqDL0cZiGS9NzNzdSSfirtTUuXLQQW442zZtmEflaPK/5OY4Ea071
5bdB+Vh6b8yx/iENYptc8nK9SNAuMwoUM8mD6h//YNOzNPyMD47k0ydB4Poe
ywdDOdi2QtL7614aPjbzuTU5k+DU4pF7rzoXQgNzB+cJvomGG3gNPyBBbizm
8IHePASl6ERsJvhmuTjzn0UBcR/L+TNyWwtgPhNZpB5Ng/PdeMuNn0kILFHi
XS4rRJ/7ov7eKhqs9NT93DTJmM8cjtgUVYzC5XwaXV9ocKtWtePcJ8NzkwBL
urIU+46KnMrZQkfJ0+o6j2EyOrdFDITofYS15uQFfneit94IDXI3Jfa5L/if
h2AVHkQkq8rk0hH/NqbzWykFEgkXxD+8qsar0A92fETvKZFZ7TaoR8UWvceV
0861SHFNVo8lelH272ZOcBMVx9UvtCqa1mNqg+mWm9UMpJ86I5d0ogde40dE
3h1qxGi8f1C6EhOFv9eLxP7rwdVEZeqQXzM8v13YuvIVE5vvKAraJPVC+nWL
+avaVgTFW7rtlWBBJIvSNWzdB+czFefzpTqw1OzEsXWPWDDcOvVN7Xcfeu7P
jevs6ISm4Y24hwvYOCtxvetLYj/sVf+FJDp2YcfJ6HcKN9ko5Sb82WI2gCJm
HyX3ajfSBf9JKk6wcX9Zzl2hkQHMUB811t4hYanP1J9RO4KHUXccG84N4ntq
fMLe82TYcZe6ZRVwYFB51/HF6CAWDfTkRulR8Hj72Xym8BjsrIs8LY2GUFsy
EqzNoSA3y7zR+OAY1Iv+C9wUMgTVZ3/8nd2pMNyzwG0kYAySx8y2lFcMocXn
igb1IxUWJr9zFyWNYTl/1lQzaQiDq84/v0yn4oH9w+zO/DHc/rbn9Ye2ITw4
fGCpBJWKI/L53z5ljeHvC/Ve91SCz3ImabXRVJyp2/RY6MUYPG/dz7Y/P4TA
wnl9ijIVWF8uce78GF5f6xqRlhqC9XjSfoVIChwfnNSRVh1D4pKXD9YlDSI/
OPn8ZwoZicpNA+2jHHTa7vYhKw6CEzd8bu0PEhTi0z5NEX1NoVT567HwAag8
EU3QnO2Gscl1pby1HJQr8cLSfvTjue3+Yj52F1x7FlQOZRO+7S24tuJgP3ZN
Rrz3r++E/Ee9fkN9Nn62/3dV6X0fyvKzNPt1PkFoV6D3iToWplKOttX+6kXI
Uf6bbaw2DOh9PjlmwcLfJRn5vda90KyNdjwd24IC1uJMdQoTpbYKB/UzerD8
V8ySy6eaMLNwhq7pwkT/YIXpTcKjlkYNltcbNSCPkv+ilPCovEP5P3z9qNg3
7XJp8746lG8KFtkQwoBhf6JB5iwFm/huDdhfrUF035uNrmoMRDj+N/XHhwLu
47qCnKYqHIlTEdvaR8d/5m+Fh5ZRkBR8SPZaeAUOrNvWWvOEjli72x3GmWQk
2c02ZvPKIGCzPU7JjI6Z0fL6GQcy9jrI/LzwsgR5ssY22oSXe3/6udRiGRkh
T4o3C74swuVdk+2XemhITx9qdu8kIT9A/08eqwAvY0m3QfjVj6NB5T4vSRBx
aziR4J2P3RKmdaJBhH/vT2u8TPBK4bA3n4VRHnFO/3JWEbwS2zl8VcuChANa
WW12ZrkIOt3+KcGShpJaV83mtSRcUF1iaCqTA3mdlGY5wstLsu8qJmiT8OnX
L2nphhxYWggcCjekQVMiHYuOkPBxKH27W0wual/TBiYP07B59pYrkZBINyx6
8SE6DyNhgaElXjQ0Bu7PeJ5MQtaN+6kRzfnwDK8/9yiEBhnPXwv3D5Cwhywk
Z7O9EA7OL54zcmlof1MZ+JDwTNJVi3MHyUUwzZRO1R2iYVXK+fBhZzKMv2x4
HlpYgrS8G/t/itLxOjQqKPUDGQ4CD1nP+8vQonAi0d6EDpL/32ffF1LgpRm7
/aVhBZxU6yJdA+jY95Sm9uoMBVOveOZjV6vQPZJsLtBEx+dYbpJSJwXJC6If
3WBXw7H9c+SEJAPtp1ud4/dSsavZdJnftVoohIevd3ZloMFxu1dDGRW3DOrr
62XqcV7lzpV7xQxcGzNuFdTtgUfOD77uzgZU3ezX15dgYh1j0Fi1rAeSjxZ7
fQ5rwoTwQSafJ+GBZsu0WPq96H4asmfh4RbIOkxJKTUyce1TZkVyeS9M771h
m0u0Yfbb2H8/1rEg3UcXv6bVh+NFSldsytsh6x3jaHSDhR0FqcVuaX2I7n3i
LXLgE7KPGBcubWIht/bhqgTJfnyQch43dOpEBA8SVhJs+J6OVTO70I/ZGJrF
4GwnNIpk+/ht2Lgk37pxqojoUf5zq1Jvd0E07bbe7UA21qRs7r33pR9aTs+i
BYa60L/oU7d+BhvKwgW5qisGsPr7gkXtct1IVLoqt6iRjZIxT4mFGwewOHrt
X1vtbtSp1m9R7GYjNsfi6f21Axi24E5Xq3bjsep/+qYdbPz+17Etf9EAVGV0
FDbxdaMm5tk+rzI2FExWN0RT+mH+64+MQWYXNnELOw/FsvFwkNbqFd4Pu8XR
Jjv1urC39bod+Twbed2zDGnDfki1vNtsntYJXeujDw23s9H/wMtcfrgPDQ5R
oqP/PqHlVf/EaR4LsqoKY+NefUg4Mb4q5V4H1jiqpX59zYL97qcx12d7ccCK
0mRCa8PdGeEdf81ZWHC2I7j9di9+HXi0yUKZyKnBE1cyvjHhuL931btfPcjd
Ivp17flmwlv5+dkvmDi3OVlm4EYP/tacJ3UmN0Kz4w0lS5+J2MjDp2dnqLju
JbNPhluPfLPVpR10BsaP/+aTv0uF5IN0udP6dTjRr3a55gkD63YrGe0QoKIr
JpB+LKEGC12WmTO1GehtPeJf9IICZsdYw6b11Whmrr+xm0tHlY/E+qztRL7f
N76e7lsJzsXdrQ/f0dHV46RAJRM97nbkNG+2HJecA7JNXei4pX986z1/Mu7x
H5ywKyhFyOjA9/zNdJQ2LBhJ1iJj7ueblZV5xZAyS+3q+E6DWRtTbM0MCVcC
IncyvhXidMsL+asNNMiZtJBOVpLwYj6iX8erANs4k09N3xA9UaRsouM5Cfq2
Y9dPKebjUnVYc48PDXE7vawazpIgluim+V00DxKOvdP5p2j4XbFU2NuUhIs3
t3TobsqFolSbr7k5DfkuBnvFlEg4KDwSnXw2BxqGn7yEtGhQmmwxey1IwoSH
ZZH65Ww4mm8MWbeGBu51hx3pMiRw3ySSqqey8Xb8MLNzGw2JtbX3K9VIeNvq
vtM8OAcNo9ey7XRp2Lsan93NSdjMXXupck8uLifLnJAkOLmLr0PNyIPgXrJI
suHaPLDfC4Zec6XhhtDrUQrxXosONI+EEe+1l8HKGCTei5rxcWd0GQkaka80
xu0KoLmppTXuFQ0v6/O405Mk2J9wn1HOK0SF+odJfsLr8vOcNVU3k6Fw+XDw
1j3F8Eh6Hq07RsM9bVGuxVkypsIYr1f8K8G2z1vszFfQEXno9oZdRL4oi6HO
nMiXHUkbrBSIfDmppugVOU+GdOvIxDmBCvTNPJG670Os71m7LcuKgu6ceD41
xSo4HNh8Z7yIjpcysQ7xSRTQsu22LbSvxhqHVVnFP+j4beMnb8ZPRa3S+6DC
iBocfHZvUGEXcd5Cfh5fdJIKazPRxdn9hM/zubgsvMlAZq/Wx80VVFDEF7xc
ur4eXxr3pSuXMjD8XU58SLaHyMkT+y+dbkBCwoc8u3kGCq2+PflxtQeVI7Ej
RrGNeKpiVfFNh4n8mtX6Do09uPHft7X65U3Itbl4/tk1Jh7vkCr9ItmL5A0Z
7+RrmxG7j/wsM5UJ3ovFI6l2vTCosjibltwC2+E1l0d6mKCayGjXP+4FxZdv
vMu1FVqH/K3Zf5jYlRbxsDKvF+Jiek9svrXC2KhmYZ4swQG9ZsV9Hb1oLtgZ
FWXVBtctLp8dVFhQeL3CLLOvF4/7us10r7eh2OMJ2WknC7djX2+KofQiY8MQ
U/BcG9g9Q5Y+GixYqc3qidX0wqqv6aqkYhvSS7M1qxVZEHt9OrzpTS82xCmf
Y6a3oks/fD5tKQse2ZFF2V69GLROcE9a3Iql+jZSwxP/5397r4JmL9wX5LUv
02zBLlWWn1UVE5J/8ptnuD1gTgnrv9BrRn6ofIp5CBNPQ0Ptv77swZoT1y5Y
bWxCRW186FJ7wotqN1VomfQgnWpmUjLTgKRsYVEZGSYuBodV/xun4kR1ZHpA
aT0eMxME//Qy0GL31h9PqXB51lznd60Ol90kzsq8YMAy3rhhmSoVhWRr9Vnl
WiQzcj05dgx4/hXu30v01dVuVy/vnaiGkY3bp8zlDDQdl7x1+gYFt65vyarI
qYJEVlRWIJk4V6y5vF4FCqhCf3SCxCvhss/sgFs0HX36xedzuojzPM4yEmeU
o/xnlILESTr0gxU3ZT4k45hJ2f2Do6Xov6LVslSZuM/WLlF7YzLiDP4T+iJS
At7EDpPi30T/uq99niVIxioDcZnIs0U4NJT2ZXc3DStLqlQduknYRR/yXv+9
AGe7pr/GphPz5WgT9+QdCUZy6/5LyshH2zWb0cInBH/yHQQUCJ8ZfvZ2OCQi
D4ulddUOEj4zvqvZ7J0DCa9fNOanJ+aiyU/pqcQRGkIlqWJxeiQEJfyQ7ezP
geLPE/c/EH1wJlSb5b2BBGm30nyyRg4azacncrbT8FS753f0MhKEzDMjslKy
sbnil3r5BhpMpsd4Zd+7seTODvfW9ixYRazi2yxOQ8USf29NPhLGthSHxu7O
Bq1WSWRiFQ37+rY+uUzcR9Bto2FccjZEB7VvviXus/dOSkK/Agl5a6c9Uzbn
YM2AES1UnYa74a8te7RIUH7V6BRelQMpYbO6RYTXOVbc39FoQ8IgjXtk5lou
qlfxO8OWBh3pd2XzhE/+O7jz2hKzPGQdvDh4i/BJntt+m4r/SGB+1znTqp2P
tIWqNI4fDe6K227pl5Jwcup90XWLAnR93X429SUNqu+LL91hk2D8ePOQul8h
Fm83kq8ppaFT6flVj///XnHXDe1AUhHaut/pbiJ8L0Elu6ftABmLyytG2k1L
sPFXltwHfjpWZ58MVQgi46+KmsUjSimCN/SK/9xGR1Kirm9bDRlXG8pSbt0p
B19I7LGYw3SkTOLSQn4KnAd6KtZpVkBkdduYwH06jn98O5S6lwK+iIB3tdOV
eOezoeR6FpGD9tfjIgIoYGVf7V83WAXrj9PPpIcIz9cuzr5XS8HelDRjj9Jq
2Hh/PrNwCQNzC8yTeHxUDG97nb8gtAbdbhHOqjsZsNFcIuKmS4V47Ncvw0dq
MVBQKx1+jIFntEdlPhep+MuVN14sWgdh6vpnavcZKCWR9OteUvFWHE3X0+pg
0Eu6vSCBAeOFs9IC1VQw7ErNBJTrwfA1alIvZ4C5Jj1Ke4iKpJw5G6mQeqyr
6l/E38lAgbXa5NXPVLxU+NF2u70eHYJMk+5BBg7+RoUB4RvRh5fmho/V416G
qeEBwjf6a6s9naepuPFnjc7T4Xroy3seNRll4OdGftEuNhU8j9ywK1n1mKww
vVJFZSBSau3yNZ+oyGZqcoSO1UPEflnAqgYGppZ/cmdmUKF8K6bDd7wO3LN9
iRWZDNTwlvxc/oB4romQv7RDHXapH7rsFMbAe/u/Uj9sqRA80TdkklGLTxrP
sygXGUgIXalfvpqK+gfbnu6erIHgov1bBfYRXl0aqMYZoaBdv2ytinwNUrrz
VX7JM+CXmOYx/5aCUqEZvhN7q7HAXetm1Vc6iidkabYnKbg5t1U76FQVxIN1
lQ/W0SFWNBVzYi0FIr1/RQ/9q8AL1S8OqVF0SC++/8dlhAxfc11ty70fsV+j
l5btTseDkyVRF+LJyKHNX3YJL0NzQqrtRgPCi7K3PrzmRkb5QdcYvV8lyAo1
/p4rRUdLwrEPO9TIsCtK05i7WYx3WYF+w5M0OE0ZUbf/JsFVUlBCU7oIt3PX
xi1qoaFjaj+5qZ2ELSUBr86TCrCozP6BWyoNii9mO9YnEvPlRpWryckHK1Fs
g8JTGv7rGaLo+5Gw6WDbuvU5eTjTffWcxhUa6uvfJ/09ToJjnPgXeicxv/t7
zB450bDnbfL7TUYkeMurGOgvy4V9rtj7GTPiem/Kd1fCo/79r13zfsfyf/84
MguFrN5GhCgZ2YoTKUql7FBEoayyScNqCSUjpaKMqHvZMyI7677pXYpcd4U3
CRXJyPf0Z3yP4/Pr47iO63qN83yezyd3M2/64hka/FBsKTBFH7V3RmrktCh+
96369NQQFZ5808nRUSLglOa2w42cDAjnYmk08KZCd5vxs6uSBNw0i3AX/kOH
bYJ62pt4qWAYoBH+nxDqiViH2LYvdLh9cEBZb5YMey0/lWtxEMA64Prb+Bsd
8l5x3XpzmgLjVknvv64lgMsmYkJhjg4RfiJXfacoICphxDMgQMDHBNd1m9gY
kBx5oop+gApV5104jDYRkJJUKuyygQFdAZk2AmQq/DcafdZMjgCbPaFimqu6
F35nq+wWGozORvX/g7r38M3gq05NBpjs7EkLfI55dtejg0wDAg7VXo53wlxc
d+tur6U5+j2emB016Pc0q4feLpxiwN5mG9WYhSL4NXVS6qULAQnKb76Soxhw
/Ke2vVxDMYhyw5nxQFznuN9zn2wGSF/o8Rt5VAKfPWb3690k4GLIqRTe1/j+
dCWdsqRS2HtVaDrxCeoka2GF/n8M4K2I2nwwuQzOjOi6U2tQzw0GSHc29MGB
X6F9I0/LgfVFvbPdOwL2wSO9RL0+qB+XyJ2tr4C/adpP5GYJOKF0nRzq3gfk
sbKtQV8qIfX3Na8MQSYU9BmPxif0gUdQqKgETzVo/BI2UFZjgpMcq9ufsj6Q
XPP82G6lGvjeFknsP8SEPZ9OaDQP9UHmwZKGtYa1sEvPnmqC9R+5XVaBjb0f
ROoViliMX0L0udv/+mKODsvYYVwn3w+JZvGC+dvroKhPUVTuARMevvjjt35P
P/A7v+G++rsOdGIU/3mJumqQ5E3a7tQPFzh86u5b1kPV7U2c1HomtJqKnPT0
xb7eZX+JLakepjZnXr/SyQSbE2WxyuH9cLjw1O3p8noIZeXXaO7H9Z/a1al8
qR825mQV2bTVA//pub/73zPh8SFdN+PIfviQVtyd31CP9bb/8fS/TCh6v36b
b2A/nHHetfzzaT10eLVK1vQyYcPwdjf2U/1QLrhR+YRfPTQ1viePNjPBpSmm
zh99ctcj/3CrLfWgLHHovxr0ya6LKzIWGv2goiXyefBGHbiwcDgW5DAh+m5l
srdQP2g+mO5Ue/ES7JegyiSRCVmbv+pkTPVBSiJPJV9xLZCSakuEg5lwU2CA
1tHaB1J0zkGV3BqQlrOw6jnGBGH1d5dXHvdBHanI6tyNavgqxcctZ8CEYTmX
/I0hfVAhrr117HQViFb/a0aWZsL3Hb+YCxZ98CQmM1fcGP2Pe0yCKM7HOve/
AdGyfZivT+4gba6AZYkUrR9fCOBufdfmtMAA/dGycV+echBf2G1S1Yr9e1L1
snwfzmVJocHClVKw5jmh9IlEwECD/s9jVAaIyVfKlHPiHC94/a0shQB+3g6f
w5h3Xjtp93zeXALOEccvXMS8U0va2Gp4ngFHZRV39VoWg1ns9lFnLwJu1Pw5
sdcOfdGH7HztlCLQv2dS6mmL79F8rOxqyAAbzZ9rOb/T4LqNW0SmKa7zlpX5
ZSUGaN1n1PU40+DJP1rc01roZ36LzYWiLnG2pST5fkJd8l6xNUVdipyjlwhz
M0BIxfyIfxAVxuzULwZh7stpF/WUW6SDbvnlBO9NVMjxtBx0Eiag7t+mAZdp
OkixFcytf0yBs0/Sr7fzEaD2m/VA3Cgdmj6+8hjbQgGm8cE7d7gIMNz2fSvp
HR0S00YUfW3J4B5zuEN2eRjkq2Z2xA/S4dXnaHmZDDJo8GjHJLIQsNnc5cSl
z3Rgy8sO+TJBBlfFx5y17AQUbeFvI43TQeTn+aC3lhS4uvl6WxsP6mF66EYT
9Hud/LZJyi0UYHGoON67fvXve5rXXZfp0KV7r3BOiQqPWq/OTYoQ0HDmc4Ui
DwOMfn7lHLtAhaADY01a0gSMC2wRKhdBn1n6iVdtgArOFj+aahQJyI1h3yKp
wIC+kchm8700+LWz3CJJA/PsppeNzugDr/Z2SkAtDeznduaSgYC/rv9o+mP+
FTGwF/6C+Zc+KSokgnr4VerL9d0ueP6j92zv0IugPWWqqQTni7KSnlZyMAOe
ubw/MOpbDJ9mXmp7ehPA/vmKikYC1smQg7eBYAlkqi9dYoskQOrH1oSeXAaU
bSic9qstATNxlW2WCXhuDZfNF18yIMfU+3GoTykQ17eprjwiIIaFqwC9EIys
5SvbLlEGfrZHrtZT0X/etuiQmGHAk58mBdJtZVAm8LZUv4GAx8FqqSvcfcDt
FXsV/MuBahQM7AzU59SEJjvpPnhx8jJn1toKkF6/WF/OJGBZkePyXQ3sRy7X
Wy7pFXDb1IQ+PU1AZVnTZ4W9fZA9tiMsU6AS3B371losEyDkfrgww7oP5iI5
FcVDKiEj8GFKABcTVp5GuMWe6IPXlrmanA2VQPsuWiu1ngkOY5MyCaf74AhT
Zc+PH5UgsK7CagP6hOe7ROTivPpA/6rL+ntcVTAjuy5UQYQJ81xC7raY9zWL
msLtMe+rvW9bPIJ5v+HrdNfKSdTtL85LBgOVECWWanBHgAln1b01yh36QCWE
/9OLjEqIfJg6tXYdE7afK6JVoT7oiGarO0ElCB7kPTfOyoTgQxmyXrv6gDHc
kdffWQEaI0PF5+dwjnxYuA2KfXDSa+h1mnkFgJFrxcIYARqzpqaVgn2g+KpR
6HNROfR4beIceE+AL3mC5ewiA76t7TRo2lAOl+5rbg9rI0AiNNPjPyYD/mqM
tDt5lAFnXF05VBBwIORZb20bA2xZKTsPlZdCRCtdPCmPgHO8/SKhqDM9ewra
o7hKIeF6kGcH6swX03S15HSs29dlbSccS+AjOyXkYAzWp0/W9zD0P10Dd8Re
FxVD0CRHrjP6H4d/Y2xuemE+8nl5bZ9QMUx621UaumG/CKV1rLdmgIyEfcGX
i0Ug2tVsoWBNQHsT25ndwIAoCtdr1l80IN5J7NHZi/M6LOSbxg4GXH4yH5YW
QgMldoO6m7oE0PQefOOQZED65/92ruekgUlyf8n2HQS48NRJ0PgZMP19adTt
CRUK5Tbqi2P+Ckm06t+OvkUmkhZw2IIKPtPf4w6ibyHHzB1y/k0H7YT5KCkW
5J5p4cWCBMCnnmnZ73Qw4XpJ/36ZAqymukwdXgLcC7KSXEfo4GA3kcGykQJd
N3r7GzkJKPlG0fn2iQ513HmvdavIEHGIM0GfjQBdlYCyhwN06I/iVfU6hx1t
c73l8t9hWIm5FtDcQwcrRuaDuFES1B99pJ36exgEpl+W+jDocFz2vowrLxn0
5k1Hz/8ZhrvckY0Fb+nQERIh66NHhnPRO5IrFodhjSsPIxnfn0/JrurxJ8N7
gZjNYfh+5/LDvw1wPXfMYbaeSoafD9uE61kJGJHWDqxDH6h2KyzfbpkM3pt8
KI/QB0bnsXgpTtCBVHlB9IodBQpUvX9Low98Y++x6/oPOryzmjsvVEuBlVH+
+sOoh6HPBj3GFugQtNPRqF2MCj/2LNLUUc+t0/Z/3M/OgNOeiprcjlTQPaUW
2vYPAVNtVoPP8F4klLXjlfBeMrkV/ITwXs6kzVnPizNgQ1WwCWOaCu94zp3i
3E6A42NlsgTqpIPYQMZe1MnOrnt/ElEn9VVlCn7tZMBWwUCDjEc0EFt/tDN1
N/p5t04rWyMGrI0mXXq6SAPuLQR1CetndprFiO0wA2aNLijWOxaB0vnWHRmW
BJj5HJ2qdmKA5cu3CVpV6M8l5J8YHsP65GsZNzjDgKIO3vitYsVAXXt9ugbr
luWMRaZ2CAO2HeErPhGAuiq5+GoAdXXp16XH9tEMsIif6K5sRv+/oP/XNYiA
9c7hDtaot4XPfkpKCpVAxPSouDjqrWqUtubHNAZYNZqL+tqWwKcNzKQ30ehj
afNXaI/w+Wi79tH4EqgLPD126DoBRtoi2x+s/i5ELFuTq7QE2h7JVgVj7nC1
DT/n9YwBv2JN9MO6SyDEIqleJgnnyMvDvCyFDAhzFJCMHyiBHTWWeka3Mb9M
jhTaFuD52MXIjPeXgMHDmxGt+PzSzdsXzuYx4Ga9YNzDVyWQ1nv2WDXqf5Yp
oeeI/rnboF3RA/1z8FyGtTL651NOHE5m99GH+GsXa/iWwNZvJVkacQQsJPFy
nL6Dz89HDp9RLYGpy64as5dQx5Y3Dc9fZUDAdKX85EgxhBzVZ3kSSkBa1y4b
0wuYa8S8vGJTiyFSSGHF058Ai6zfxvf8GGAnNqLgZlAMOh1XuK544FxYmeM3
O8kA36DR843DRXD3kSyb3HEC/iT/zc9APbk+phn+NKoIZml5qtdQT4Je6MgM
7WWAo8+gqYws3m/FtP/wfrzHQfFjDroMsP9ndGDjaxp8HJgNdjEi4P5u8Wpj
zF+bPr9N4cP8laOWk6mM+UtDa39LpxQDPHQHs84L0oD1w2dhHxWcp/EJVnJC
OK/br3LYvaIC/1/VYT0FAlYKpNedRP9zPO/HvgshVGjw6fIvQP8TK+9jlP6X
DjFsUOS5kwqi4Tz2raIETB5x2Nc9S4fsnu2nC8cpIFm981wm5iw11mUHbtSf
oqWf45GXKBDt90BdHvVHLjFhuwH6Io1Xf3YvS1PAboJKnEBf5GNkVOhC0DFf
bI737CJDa9zzB7CGAIN9lOwTH+nw49375DfXybCg1m5evTIMV9SGVJXQR9lz
sF8yPkyGM94x65qXhqElLES4oI8O8+D2721JMmR+FzM+sjAMM4fSzrb20sFX
Xmf8xiwJfobtiT0wPwypBvZNrR10zEVytuJPSPC1rRyEfg2DuW5AMncnHaqn
jMvDi0lQzaXK9gv5o8XTvklddBDK0g0sayWBlWxhCefcMMTPshz1RD0U41o8
5sgkwen4Ekcr1MOJj7mP7tPpcKXFvnuWhQxPSmdgCL978O/U0M5+Olzb+cqf
T54M244WitJwnVbKDpK6uK+/U1tkBSzJcOLK/hs9uK8Co8hk2gc6PO8Odjh9
mQwvvHieGeM5nOXPef4UddKVLTTPrIwMpyxO3+ZC3XYsKuvlR5083W9bV/uT
DBe1RW/Jok5+V67WmRmjw9B69nSyDgXeacjb3+FGXRqpLDDF+7riueVrYxQF
arniUi3xvhzvVm5eQj/J+qA+yLyXAh8nnaRtNhDwykvzPy7Uz8OvwqaoglQ4
GFw8cXcjAZ5fqxqtWRgwoRUBFwyxTm4n17GI4/yNSdFezftqbvNSq3m/35+c
vpr3rReSbHT5GGB4f/6swj0q1JoWeG+QJSDw5K5PyVif1GMRTLvXVAhN0Ui+
hvVpUzvlt/r/lyXXLd6N36kQkhTD17tt9e+uttKu0gwQyD58zluEBtqza6bp
WOdVH0P9bshh3hd+zHNUnwbuwXvvBO7EeZEh/3kN5oKbVrnxIcdoQJ9gsczA
XMAdayJBU2ZAnqQWiTuQBvmdrt0qOK+f2am2hqgygMOT4nbkKg2uZEjfldEn
YK7mK5uhOupSo1AYOZkGyeT6mJO7CDitGre4gHxZ90FdTzoN1KuOWY8gJy4U
LOcjN5Q5cSsplQYvhm6sPEf+y2SwcK8aA+7fGzKeiqeB1t33f4rw/eIeEzIE
+gebSMPNFhdowL+eiFj9Pb7hVlPyzW0MeDURfWHjKRpscHeae65NAFs2e4gj
zh3ys2azn/toEGm65XQVzp0upyaL8zIMuEucfdMhR4PDZ/Lf7VMjoEPnydLk
PwxQN6oxDvpLhQfxOXMeygTMl/FlzgmjPgeeD5vto8K/zmVRWuj/WX5umKGt
x/0275M9XkAF30VKVSfOwRtbI01MMEdEFDs9zYikwm7LjAozzBEd2n573qBv
WUlf0Su0pEL0A/99tehbHF53DPov0cHzi/wHny1UaO4XpptiHtE61sNrPkcH
Ny0JZ/0Z9CdlHFYzqCdmjpcWfTBnNfPU3WnGnLWt5WYDA3PWwbmOEzOYg9Sc
v9yKtqbAhxuu+/9gDlruurqT+ZUOcaxSo7J8FLgyd43TG31OaEr3RXPUmV9G
bzXkO8kg+Gu/lSrqzNy0kLgi5q/BqgPTL++SwdQpdtgc89cD06ePr7ynA6Vy
5Om4KxmERQPPlmNek2k0umWJfkbiQwzEaZIhxunBtnD0M64kknYi+h9mlJPS
Tn4yzBvrB95A/3PTJidKE/XHu380+sokCdR53W4zUR+YfMHR+t10MMo228FG
J4HYqaKZS6gnB4OyXqWi/syIi9+RryaBadDyLvvZYQjp5Rnb9YYOa+KC3js+
IwFV5d22U6hL47d7Xs230oG3+AL/QgQJ/ixp6Yj/GIbi6LXP/drowBiRVXGL
IoGXY4mwD/I2Jc2Gv8gDWfKCtG+Q4FC+u2Mv8h+R74tetNOBVjX3vSAZv5uf
lmHxcxhKd/44FIk62ZkaXzTzkAR+g9+iBpHfTN0kfB7XE9bNFmf4nAS5Y3Dz
Bq5nxdd4KQHXf/jRnvDKKhI873nbdBTX/2btn2f9qJ/b9HRcr70hQfvI1w26
uN8kVvbK/aifl5s0Sl8Ok6D1uW6iAZ5PSJix5Tie291w8+Mnf6MO6xy1c0P9
NBv4VluG58w16TJ6egMZvCzXT+XiOfMdkKp4gbr6NuuL9YvtZPhhm1TFifcy
EOnu2/IvHSSLSp7PmJPhjVKOXRTq6m2F1wKs6D/FHnId+upJhjmqI1UA/Wfg
PWEVK5w7uTn/ukjj3Alti75ehHprmfFhD3UI9f/F7Qm+AjJ0eXFcdkZfKtli
eHAD1lXS/clE0XYy2HvMMbiwrirdyzw9ML/7dl+WTR8ng5S9lOoLzO8rF6cC
c7A+dRbm17XyUMDa8FI2YH1+bV0arMH5aMb64sKkAgXerv2UVYHzsX8Xp96T
/+gQcSOv+KAxBYoSO2v5sM4NFy0lzdD31lWvNdjuQAETNr9bWuh7OU2PnMr6
hufcRlqePEuBP8cTtBXXESC8NsEjZ5IOb86WP+cPp8DBbrWfQ8j7nw7XHkD9
DxH/FSAWTYGaPzs/WKP+n5txEE9C3hzQtL87jgLLqWwjMcitP5We8Ue+aUzj
pkgsBWZ5BLJ9kcu2GP6YwPc/jRb+OBNJge/C+bsEkLckCCbyIC9V5+zIOUeB
MqcA6QD87vF10qZduH7L/RPKMS4UCP7Yfz0F1x+j8PmvCfb17tFxTp4DFMha
t1h9Cfc7U7H/bSDOL82O6ttDahRwb6rU1cP5xdyVJOODuYaoGL+Rjbnmfuel
3x14nn/VT37Rwzm4zvIic+McGYTM6nqNcA76Cym5T+B9tYSM86/0Y77Y59+V
jfelKm2snYDzlIPPx3h9KRn25xa2/Mb7nT6Z/14Z9SGA9fla1hQyUAVv6hxE
ffD/Ys/9FuvHKoeSGhpIhu+LKc75WD8mS0efJ+Mct/tdXL1kTYbiHPqODagb
ESrDj71RN/xuqLev0yYDZ43cyC2szwcP6xo90bc4lXLsYd9EhrryEQdZ9AMR
B1Tfx6N/WC/0xl4R/QNH14EhBtZ/2xU75Q/YL/NtiSO5YyTweHav5Sn2y9GT
v6XtUU9O+k9p3WaQgKwlx38X+8tsX1D8Cvbjcc/5DV/rSRDCPJmajf2o3pl1
iYH9y9f8+Ww6FX1Rd1xJF/Zv5Q/VmB7sd+YpS/Y49EVX01OoYsgvRQ3c/4n6
YML00Y9NI4HCAKv/RdSBJaXCIT3kL/fWk31ukaBXL+frAupJqZxg8GPUGVvd
gD7uWBKc2Njnkog8d2pdwmbk0X6GqVsukqDzyqiKFvL+UZ/iwhasW+ez7gwv
3Ffosr/KDK5Hx4u1EfnmdJUQ+bMkcNYcjAXk1wJfFw8j1xXquNHgTYIvPwh3
G+T6Jx/Hs6MeHjscKlHqS4Ii4aYUX+Qk0fKjqsj5dlwW4T6H6/8nMyceufTV
hJcnkS/KOF1qCiCBZ6yQMAV591Yl30zkio3e9bPBJHh1Str63erzvvvHPiEP
aMjzyAongf32PfVcuH62EPtYZdwXa6oqVzvuq3muN90A+bW8PLNo5LJFaxYC
oknAOmowFI58vX4MH4F8bcRDo4xrJLC8WR1egzxQv9rJHM9T4eNeHe0EEuxN
O7ORA8/ZRvWpRjlyDatkrt13SRC7aLFohbzBbdxNGe/LnaWc934GCT4+3WSf
i/xdQqZLHvI1Ex+H9LNI8DRuVnAReRz7bpYteO+j/eu8WfJJ4Nb3scAK7zc1
2Hnl8SpXbxTvIJFgn45qTOGqH647PbEJ66fwlthkWAnOC2GjURasn0gq58fb
yCsHywIJ1Pn6vT/arZF3+yZwrtabk7DNu0Gst+y9Czqr9WZ3+v4zN9T/SRGP
SrNmEgg0fDUYRc6fb8laiXz0g137fDsJVvyOTm7Buq0+otmygjzZyXpXbxcJ
BM83Ftoid4woWtHEOlcP6I8r7SUBc5uG4AXk7AtLM3bIeda4lyVg/de/Y0wm
Ix9mFtWcQi4kwpp4qI8Ej8PhcSbytF7y7HHkFpra5lP4fLzlxw/pyPeYXn1h
glz+TkttIM7lX1qPyLHIx9ITmELIw3qkxse6SaDW7PLGHTlr6fhbOq7zost1
OVeca4GzvsLayK/41btGIZ84f57zZwsJOI6O9i3hfsU2FC/LILcqdtB63UCC
jVzT7ZXI3yfZrinHc2OZ8lD6VUOCcMuYB37IKw0arfcg36yVuFxYRoKMaddD
kshb1gkOteF9BRL7owSwf4988pxuwfvKoXnrHkI+dEuFYlFAAsPN87bnkCv0
F25d7Ws/RfN1V7Cvtxw3Obfa13kPnm20RS6q81685wH2Y0bn9Cuskzq6IPcQ
1tuNzeflHVJJkCp1c68fcqO5v3Qf5F/YDweqJ5HAOMW2VGq1rmr/DLIhH+DJ
uu+PvmLTl1SDPqxn0n/BstlY5zu01JQ2ow4cevYgIQn5RUruQXPkCtPaEQcv
kyD/iI/UUeQeKkNPV/3M8dhJ33n0M7/nlWRX/Uzoj3mpIuSf3/DGbQnF/GXj
kTyK/djrwYwPQn43lJOrI5AEOnlTFjXIedfqewHyD2SboVHs96VkuZ9pyMca
loQFkU8prgs+74d6lftbLBT5uYDFpQnUE6+Ww1ddfLDflwOtnJF7aaZZvUHO
/yF3fT7qT/cldYF9yBNXdA4VIW94JCJpcIYEYRkxLRrIQwiuUWvkx9kseCRO
kaAqdo//zPT/+P/4//j/+P8f/n9Q59w2
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell[TextData[{
 "case II (",
 Cell[BoxData[
  FormBox[
   RowBox[{"f", "=", "0"}], TraditionalForm]], "None",
  FormatType->"TraditionalForm"],
 ".5)"
}], "Subsection"],

Cell[BoxData[
 RowBox[{
  RowBox[{"params", "=", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"\[Gamma]t", "\[Rule]", 
      RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",", 
     RowBox[{"c", "\[Rule]", 
      RowBox[{"3.", " ", 
       SuperscriptBox["10", "8"]}]}], ",", 
     RowBox[{"\[Eta]", "\[Rule]", 
      RowBox[{"2", " ", "3.", " ", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"794.7", " ", 
          SuperscriptBox["10", 
           RowBox[{"-", "9"}]]}], ")"}], "2"], 
       SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ", 
       RowBox[{
        SuperscriptBox["10", "6"], "/", 
        RowBox[{"(", 
         RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",", 
     RowBox[{"t0", "\[Rule]", 
      RowBox[{
       RowBox[{"-", "15."}], " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{"tp", "\[Rule]", 
      RowBox[{"4.", " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", 
      RowBox[{"3.", " ", "2", "\[Pi]", "  ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]", 
      RowBox[{"1.", " ", "2", "\[Pi]", " ", 
       SuperscriptBox["10", "3"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]", 
      RowBox[{"6.", " ", "2", "\[Pi]", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]", 
      RowBox[{".5", " ", "1.", " ", "2", "\[Pi]", "  ", 
       SuperscriptBox["10", "3"]}]}], ",", 
     RowBox[{"h", "\[Rule]", 
      RowBox[{"1.5", " ", 
       RowBox[{
        SuperscriptBox["10", 
         RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"alleqs1", "=", 
   RowBox[{"Expand", "[", 
    RowBox[{"alleqs", "/.", "params"}], "]"}]}], ";"}], "\n", 
 RowBox[{
  RowBox[{"sol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"alleqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "15."}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"15.", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"TableForm", "[", 
   RowBox[{"allcountereqs1", "=", 
    RowBox[{"Expand", "[", 
     RowBox[{"allcountereqs", "/.", "params"}], "]"}]}], "]"}], ";"}], "\n", 
 RowBox[{
  RowBox[{"countersol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"allcountereqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "15."}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"15.", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[TextData[{
 "Time dependence before and after the cell. ",
 " Black is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse before the medium, blue is  ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse after the medium, red is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]]],
 " pulse after the medium. Solid lines are co-propagating, dashed lines are \
fields 1 and 2 forward propagating, fields 3 and 4 backward propagating. "
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->10341135],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"sol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}], ",", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"countersol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{
      RowBox[{"-", "5."}], " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}], ",", 
     RowBox[{"5.", " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}]}], "}"}], ",", 
   RowBox[{"PlotStyle", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"Black", ",", "Blue", ",", "Red", ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Blue", ",", "Dashed"}], "]"}], ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",", 
   RowBox[{"FrameLabel", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Time (\[Mu]s)\>\"", ",", 
      "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {}, 
   {GrayLevel[0], LineBox[CompressedData["
1:eJwt2Hk0Vd/7B/AbMoVKFFKkDElSKdzYeZIhQySuMmeoZJ4yJfceIkOmZCYz
mYcU0kYiJMKl6CNpEFISKZp+57vW76+zXmudtc5ZZz/v997r7LBzN3ZkoVAo
69dQKP+7RlAiAut/MrHf7bXRx/ypEDhFc7/0nYltGq5z6yRSwa1XykHsGxPv
jE/+bVdOBVpqp0HkJyYuHc+8NPqGClIK7DusXpM+fKi/W/cIPLa59oTtMROf
4zLoa5dQhTUtoQImcUxcnEjjufxODYKC6ZXfJJl4Tcv1WtNhdfjq09FoK8HE
vOWXDsZPqYODC3dH33Ym1hGgUEd/qIO+RdKr0i1MvK2ibTVZBEBUpYTTnouJ
j7KnqT6yBWhe6rcbmhvCnC++n52YB/jtLLblbt0QLv1ure0prAFXzXGILwzh
bwtTk1MZmvD+5J+t4mgIjzRP+eRWaYKehmpDD3UI89JLai61a4KQXNNXMcUh
3Hj3gcbuT5pQ96f+XI/UEB4+oBFpdkQLpnMqNMR4hvBVk+ykq6+14PTHTI7u
kUGcORObKaWgAzI+QXGiLoP4orqctQ2LHmiPnPzzLX0AJxqI8j0rNALf1POc
6xue4xDbULfZUhNIkv+Vn93Vj8dd/ZMiOM+C5VyNZ+mfZ3iZzyorJsAaeI/c
+iVwpBdz6C7tP6ZtB7ysfixdyT14j+U4jdvLEfZET2qw93fhRgPvfpMjTpAS
o8tyQ/IJLgzKTYvid4W57W+ueIV14JJodtfXUR5g6/l3/7uWdqxxIqXtHtML
JNS2OmQKP8KCYZanlrh8gaW79fkbw1Zst+Bkq+rnB8lPJRc5tj3EM7filwxH
AqDjRyeaGGnEIXjE59CfIFAoCPjXe+Iebg7v94o5cBWUNXY36a3UYrfqQxzu
6+hQrz3N92W2FpuVpwifWk+HA/rF9vH/1eId7Gt2799EBzlTSd7hllrMvuhz
+JMIHcQv7LC1Dq/FbBpVz7Vk6cAVLczuuakW99VOyKTr0GFskMs4eW8Ndokx
yMoLpcPqY+ZQW3slXrwxEPL4Gx1YUwSdYoorsetSw5O1y3TgcaL9pUVX4meO
tlnHV+iwjfelzJxxJT7M5Jpt+kcHddNXwZvfVuBPRMxAJA8Dwj9MSjtTKrDI
Nm3xKkkGbGSfDxJQK8PCKjbL3DQGiLzct3FCvAzrOI18Xj3DAIlSj6I7bGW4
Oveo+7QFAxRPfnuOektxm5wPV/M5BtCSv0s6WZTijyz6bpquDMiU+t3/MOAO
zrzKmjgRygAZba5dF+4VY5r+9c1SVQzopIjA5sxifL0t/1RKDQPsm2StOxjF
eOcPKVX2uwzI3qufutOgGEvFG4iMNzBAUCCO5827IsxbH/3C7REDWCYFvp/Z
WITNW62oO4YZ8F+geKeuSwHmq0l70fCTAYGK+9+tnCrAH8xaYsdXGbDlC1Du
KBVgPWvlZ/9+M8D4nD2Vg7UAr/JRX6muIaBbu6iyPS0fxyvLCKdxEXBPQC5F
9UkeLlkxXzcqTEBcpdJFeYlcrGjWftpNmQD5pa/KRWtz8bjB9PBFKgF9KqVc
22dysGTN1DFbVQJ4O0TLeKtz8EN9jxea6gREv1rzZU4tB7/d/Lr1kzYBfBtT
P9LqsvG6FX+dXBoBBpnckVqB2TgCpXY4nSEgRjpY9jBkY5PxccF95gRwIztX
wf4sXHKDXbbaigB2Z7nFodlM3Dwj+jPagYC/j1v/Gklk4CpW8ekSTwLUjA7m
qM+k438rWbNq3gRceVUICtXpeGb0Q22/DwGrC1Fh61E6/vZiOX3Gj4Dl7abc
fWfT8CBVq345mIAv/jOCegkpOO5PymXfSAIm5Pj3alKSMP3zRz9KNgE6Ebte
/+m5iaNiRR2EbxNQPXk47t6tm/hN0V6PfTkEEMkWC9J7buLxxukPxnkESFEK
67lpiTjd/Z+KXxEBLkNK6HlZPN5YiIUOVRIwvFd3/vrleCw8ebVLrIoAdN0y
ByAeS9/3jeeoJmB7IMva8xVx+N6Y4oW+GgIcDG7d2MMai/d+stqpUk/A18Wm
7HuVUTjwXZ038YCARyUTFJnjUTjPP80TNRNw04rNPm00ErdNNNJ/kD78xED6
Clsktn/IOmCLCQhOf1MF5hF4ZtxAfkMbAScN1/LXzYfjMfeU0rukxdlkfXZd
C8cby18r0h4R8NjVW5mj+hq2ucr0jG8n1wfY23rXhmGp09eJyQ4C/vsuuxNl
hOJo6gd7t04CKkoNr1UphOJkQ3mjn6SNBNJOJFoQ2MWIS4e1i4Dkj3sGzWro
WNy9uPR7NwEXM40Uu7XoOKtecvRSDwFeebNyvg0hOK+pdP046Ubf4Hoq31Us
42V/s+EpAVqi+Z0djYF4pGz+k94zAqz7WGZeTAdg3buDRDFpX7rdutktAfjJ
kUpVSh8BBe93GPFd9sOsw/xCd0g3JzO8xAsv49Xof8orpJk6k0kHmL74CU95
kFY/AawVOaO0Az64fIzf8SVpERvK74vnvHH8v0Prtj0n4MBG2+1B8V74ePbs
gDVpO18x+9tfPHDjrsmWUdKB0iHXarZ54GDRhCn+AQIk6h4aRqS5YefKSrkT
pOlBqqP9ps44cUlwcwXpqolf25bqnHDO8mDDGOnXGg/shPgv4nH59wFrB8n8
lAQWq3qcx/PTbGf3klbjoc7Z9jlgQeEFU2PSLh4rCtfk7PFZS0cPH9KZzAbf
O1HncPPP7SU3SSd7fvXJGLDBtuOvfleRXlJx//vuhiVuyjN36yZtzPIlQk73
LG6KMv89Qbqmx2WjLzsNr9AzihZJb7j5Kf3hI2P8WeS1C9sQud73mDo8f09i
vtR3J/lJp2kPWmRd1sHsb131t5Gmvex3k58H/CbmqKMkaanBdNaQ/sN4/4ut
abKk1T/uOX2MsRPrlnZ+lCOtYOYX+sGTG51PZzv1P7t0e0eJWCmgvql0pgzp
b8X+Dj+d1dCmQEMvCdKq7UjMWU0THZqd3i1MOuQA8Iw91kPd/vK/eEhPPs+9
skvqFFLaNP3hD/n+BOfOxVdOJkihzeTzJ9K71AucblaYoX13k3e8IN3pJ/lG
d8EcRd/qDWshfaGqiMZyyBpxGLBvKSQdtnhzyrLZFok7mLyMIG0ax8xVtrZD
HOxdXRdIS+0RtBKgOKC0f17Tx0kvd5oKfc11RGYtF5TESKf+HYkt/nARGXoH
2T8l19cpfYtuaMQl5O3ySD2LNPXwmbU2u10Q/VC+gQvpV66jQZtd3VHd/sjl
NaRH2G5sDYjwQFm+DxK7yPnCxntXzp/xRLOlk9YxpOO+uN49tuqF7FcvRawj
7a/Kl6jw1BspKlDed5LzaxtV6b490wdlx372CCGtIDUvu6p2GVnOHhGdJud/
0Mojt4YRgKrtGh6kkPkp0+udPOsQiNTie9sUSYepyEiwaAehDTK/A/p6CVAS
fJNnzBOMChON1vwk83hySnowQI+OBla8PXaSeaWOm3571kxHTeysPEVkvqWZ
ofwS8gzUvoXbQpI05dGEcc8GAuWJHBUQIfugNitlSGQkFO0Rq/j5iuyT7KSO
RTftMLS31vrQcdLR0Yub2hvC0LYoUek7j8k+DDA0cc64huLupMg6kX20xZRj
+IFtBLIruHe/rZXsfx6/EctPUajw7ZPtw01kv7AWLldbRqM8nZInnKRNVwc3
r+2LRl3cDrtVGsn9bVrerKI6BgU1hgjF3yfnp33qxR/fWBTUtVy++S4B+Wpl
LoaUBGQ8vX8+vJzsA5VHV1aUE5B+R7V2eBkB8YqjMfmeCYgr6b4VUUo+fw9H
xY+3CcjErqjdo4TMg7D959sdiWgsgkqXKiCA87uI29eoJLSpOptzOZ0Akx2J
bgMtSchP/JTISBoBuQZc7rVLSejUfVHzulTyexb9cPexvoUqvZQcHZPJfJgx
PX/uT0a5JjK1xQkEPG+84UsZTUFpZ8LcCiPIebtKCd4gnYH8NCr7I8j98X2p
X/CCRQYK5/qjzedBwP4XX4IH4zPQZWn7lQQ3Anr2jV9NWs1AoeUUrgRnAn6/
aaQL9WWiyo/eU66O5PxoeIeJ+2YjuwrJ2HxyvxZgW9RMncxB1ZMh0ZxqBCjz
hfOr/81Bygkbdmw8QoCVkPDER5FctCmiKH2zCgFFckf9lUxy0VutAiR0iJwf
0+jSkc5cRPOxdF6WI8C8aOd6wfI8tPV0raOYKAE5OiYvEy4XoIpfup5y5Pnm
sfHHApWbBWhkLvDt0HcGzFgGek5WFaDMTh4b/0UGHPDM4d4/U4CMma4hDV8Y
0J42p/rcohD9Yv1CF/zAgKnZsFw+KELrbZSKNQYYsOdG/aXodSXoa7p7fkAx
A9T7rulVSJcgK26jqoEC8ny3nibXr1GCPG1OckvnMYBIWP7Mf6UEZd/Atd2Z
DBi7peSZPleCpCbQwpcEBlzPbvS78+wOes3+93hTEAPeVz0MexJXhtZdbrW3
MiDPd4Md2awCVcj4Ojtt+wwdXIXd5ssHatHStI9TsyAdTnZfSAfbe8jnNrdQ
366rkBjuoKdZ24iMLsUGJQlcATYJzrDoxWZUYbKjquVbAGRtf5Y/rtaKBvga
1a/H+8FsbQpnxbs21C0R/mvZ2BeEIkYPLJS3oxv38xYyP3vBz0nRN3NmHYjh
cvbp1nYPmC87OBC52ol+7Z0rSAhwha76toiM1i4kXqgt/9HCCYy1TrU5XOxB
5/LdgiQHHAFvPtOad7AX8anSD7Gb2gHQDrASy88QFns/wIi3hsuifN1CGf3I
uuclIyPyLGglKMgm1jxHwgp7/1j3mEDpC/Ma7/ABNHSllYvy2wjSh93GJM0G
0bx9ogwjVQ/4BbJjqswH0Vrv3a+FQvQg0vgZUrEeRG/nlba2O+qBf/+efH3H
QTT8K57L8KAe0Lqnnb29B9FSkFqXRr8u8D+0+9MaN4gSVTvOpHHrQlQBTdyy
i7z/5cVTjbE6EOiNzieqDCHesUcKSz2a8O+ud8SE6hDS4uC5a3xfE8KWS0rk
1IeQ38WmsJZ8TYgN2PSpU2sIpeadWWy/ogm5IdPuv04PoZ15J0747dOErujE
AAe3ISQ7+4WNSDkOmwumYg7nDyE56Ttr2Lw0oI4ZWzfGw0TPvA0X9hsC2NWX
bo/awESZst/DeNUA+JM7I1UEmKjPzaHvpyyAh9lfm9StTIRX7C3+sgPIj7ny
0GSZyGyRXf9xizqUTOg7DmgzUcVPebaDiuqQNcu9pYtgIuN1bv3VRgj0n0oR
fuFMJOt5d2afAoLfZcc+S0Ux0ePYVc7e9QjMXQPbryUw0R3EWGfRrwZCX2fc
NXKYSH7ppcCgoRokfu/qwg+ZqLtX59smmirAyPuDbm1MpHhSNcdcSRW+3qPc
3tbBRPNNVNmHQqpg6K/se6WXidZ3rIscfnUEeH4V76C+YqJ+iwtep+yPQPOr
9piZ1+T7/TdL8dU8As7NEz9S3zJRCU4crZM+Aj3BW/p+zDBR9Phr8dA5KgRY
H1Qp/sxEneMWzpv6qSBz1LCAtsBE5Z2V93ENFV6KOa9n/85E5yWGF8OSqPD/
/zfQQ7Mh3vN+VPg/C4lOCQ==
     "]]}, 
   {RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwt2Hk0Vf33B3AhSahEhFQKGZM8GeKTnZChSFxPkmTKPM9DSWbinkvmZMqY
mZ6IT0WGigz3JkOFlChJpkrR73zX+v111uuPc9YZ9t7vvc4+a3djO2YmJiaR
DUxM/ztGM0UHNfxk4IQ7vdU2i6cgaIri7rTMwFeO7A5e26ILbt3itnsWGPhr
08mC8gO6QEnvOB37hYFFzquoa1F0QVyebd/Fdwxs4354xq1JF55eiuxkfcrA
ZzL8G4ui9GDDoxu8JkkMPOGo9GRNzgCCQ8MqF8QYuCWA8n5DqyHM+7Q3WomS
10NyXdnvDcHWhaP9pQgDDz1aLCzdYAQGF1JGy/gZWLotoiZW1AiEVUrYbTYz
MH/8w7fztkbQvNRrTZ+l42jt2C7rWSP447yHv76Ojr2vtN/eymYMV83xNV+g
4/a302bO9ibw4cya0F5Ex5NOt1YEA01AX1PtwXNVOqYF34kZijcBAZmm+T2K
dKz5izUvtMYE6tYaLj8Xp2MHtzZzjzUTmM6t0NzDScfZVmY1a2mmcO5T9qZn
gwNYKO7UhqnXFDjoE5wk7DKAK1e2+16KOA86g2fWFjL78d09HNU+QZfAN92e
feuDPtwsnvSYP9EGUuR+F+R09eLDrp1v9tRfAYvZGs+ytR585xz3CckJF+A6
dus377FuTF82a0039QQuFn/mrtTnOPvqDDu3uQ9Ix09osvV24Ytcx062rvhD
WoIe802xTlwtp933Ji8YZkXGQ7wi2nGu216/H/7XwMpz/fDkozb83uBube/s
dRBVF7LN3tWKF/U0lsI5IoD52eO+ccPHOEjraly6ZRSkvhBb3LS7BYt90pIX
L4qB9h8daGywEZfVlEL9gziQLwz82617HzPniH5nHkkAZU3JJv1ftfiUUvhF
xcpEaNCZ5p77XItpI90FjQ2JoGBQbEN9U4uRl8GBYy2JIGMqxvXqUS1eUHJp
U+hOhL1X9llZRtViXtsGtqWZRNgcv4vNc0ct3ifqs/HhgSQYGdhsnCpbg4mj
X5lRWhKsPmXQn7RV4t8iDVnpSlRgSeNzTCiuxF4ZT3XaVKnA6UhZp8RXYk1H
j4Iv6lTYzTV0cNa4Er8vHb/8z0kqaJiOhu58X4Fl0za13zOiQtTHCQlnpgrs
8vMfH0lHKmxn+xbMq16OzwvG959Op4Lg0KHtY3vLMWXHx0vSWVQQLfMoKmUt
xwGdPMlsOVRQPLPQh7rLsEVQ+URDARUoqctijhfK8KSYwtKPSipki//pbQks
xV+48mns7VQ4qLP5wJX7xdgzUuKT0TcqdDAJws7sYhy+Zf+h+u9UsGmSsmy/
Xow1DCyO8y1RIUfWIH3/6WLMuiWrru8nFfh4kzjHJ4twS89YlwwzAcwTvMv/
bi/CoclqKQG8BLwJ2tuh51KImYSGZChKBAQpHp78dbYQK4g27/FQIYB/DphK
lQqxE++O+uhjBBhftlHdxFKIPSzMmquOE/BMp6iyLaMAz8atSU7qEHCfVyZN
rTMfH38h5DloRkBSpZKDnGgeVlwbCp3yJUBuaV65aGMe5vozuzjkT8BLlbLN
IjO5WD7pr09XIAFc7cLlXNW52FXkLC0nlID40Q1zs+q52NBKeLtEJAHc29M/
UepysBzPlrfFyQSczuaI1Q7KwVejmChOtwhIkAiVOgo5OLJmvVUyjQAOZO3K
13sbG425et/JJIDNWWaR/jkbZ6uVstnnEbD+9PG6kWgWNhoxarGsJEDd6Eiu
xkwm5k5L7P1WRUDI6F2Qr87E+UWvekNrCFj9HhexFWVirYXVImo9ASsiphwv
z2fg+eHHmUQTAXMBM3z6RBp+e/n+4t92AsZkeGS1mFLwyRQ2j9gRAk5FH3i3
9jwZvztUmVAwSkD1xNGk+7eScUI759emNwSEp174LiGdjE886/GbeEeAONPd
Bg4KDQsMZdzhmiTAha6E+sqp+KvSkYGJzwS8ktX7FuNHxf0CVV96vxCAYixy
Aag4YbZQ4+EsASJBzBvtK5Jw6WvWrNg5AmxP37opzZKIS8s/smxcIGB+sSnn
fmUcvn6gSdXvJwGtJWNMB0/GYU2J9/1KvwhIvshqkzEci6UqprJXSB/tPC0R
whqLvbnqu51/ExCaOV4F5tG4yOtFlOI6AWcMN/LUfYvCkq6oeoz0XlYpnwOR
UVhg/5/NMX8JeOrqrbypOhIbbcsy6GOiAQewPeneGIEpYM18nIUGb5al9qOs
G5hvel8+nXRFmWFklfwNfPJBm5sdKw2MeDN0aRfCsdn4xpthG2mQ+kl6wKwm
DMtIbh9I2UQDh2wjxWfaYbjBwamHh50GXvmfZXwfXMMiU/YLN0k3+oY2qHJf
xVWZ9/8L3kwDbeGCjvbGIDw01Hfgny00sHzJPPN6OhDXfrlsnUnaN8x6y2f+
QBxnPPH+D+nCD/uMuP38cQdoljdy0qA59brX3rt+ONbee2EHFw0YpyZSFBi+
2EtANtiZNEtF7jBFwQffOTBmyMNNA8FLTH8cLnvjZQ6prMukFbZbiQRTvfBq
aoF4JWlr3z02d+Y8sHLsyz9oKw2CJK5F1uz2wMWer7VvkBatazGMznDDNFbc
+5R0WLDacK+pM5ZlH8k+vo0GVWO/dy/VOeKSH87jAaTfaT60FuBxwJlJKZer
SHOXBBWredjjpTsseydJq3Oqzlq9tMUaGY5CvNtp4OLxSz5SxgY/S/A/d4J0
NuOBb2ncZfxOZqzTlfSSivv65E0L/PdypG0zaWPmuWgZvfPYPlwqYYx0zXOX
7b5sFOxtvzL3l/S25C+ZLa3G2Gn6dsJuHvL73mec4lw/g7siBm2VSWfoDFy4
7XcKO5pT/I1IU4Z63eS+AX4hxWizIy0+kMlyrfcoVjHfpBdAWuOT9LkT1/fj
jfPFm2NIy5v53/joyYFqU92Yb5F2eeYdJ3hRHilm8yreIb1QHGD701kdCS6c
yykirdaG9jira6GXsp80yklfUwDOkaf66GFMrFAF6Ym+vJAD4mdR3PiK7D3S
4ez7F0cdTdB2voygEtIHNAodkyvM0Ov2N1z5pDv8xcb1vpsjxb2OM+mkr1QV
UZj/sUR3+Ay5bpKOWEyesmi2QpcVcwOvkjZNYuQpW1qjxGI3Odf/PZ8030Ve
Jlv0+2iP9HnSKx2mAvN5duiQTq/nCdKd1qn0F5pX0MXhGCZJ0unrg4nFHx3Q
2XjuIU7Sjpn8ejeinZBjmu/Pr+T7Vj3678ZLki6IxqBf7ibNMZD+WPWFK5K6
f5y3hPSo63DwTld3tMmgb+t10oOsN4UCoz2Q3YnbJmaksbHsL/t/PRFjAr+X
Ip0051p/YtULtejbjj4j6yVAjZsm/8Ib4Xoh7VukreIq3UWyfdAzlqTVi6Tl
xb9Jrar7obfa/PCJrE8BnyT2aW5/FNZkSy8mvaH10NSrMX9kuGOsyo70wEWP
vJrrgShBYkBnmKz/cv3uifO2QSiR3SY1hnSEykFRZp1gxDq/Uq9IWolvPN+Y
MxRtSOixvkH21zYWtcnVuVCUoWy3IEb683za/oL+q6h0tNS4nezPM1MSA4H6
YeiS8tfIVbJ/Vd+aLvQ0hyH5Ip3zVNISjBs8onLXUYUX27ooaabWMePn28LR
wT7PZsRBg9rbaXTBwRuoTsebx4icHzkp7YtuOhGIx8vSr5ucN/HxizvaHkQg
k/1aFVqkbQMNTZyzItGuvPEUOTYa8JtuevXQKhrJlV47O0LOsxBO/0GLL3Eo
yCKzPoOcjw4sd1eqLeKRbmWdzeQaAaarAzs3voxHTk/SZiRJy03LmVVUJyAJ
tf6gCnLeTrRNvV7zTUSxFVVNieS8LlAvdzFkIhBlcNN843cCBFVaQ34pEyhw
KUq2f54AquJwQoEngZKafbU/fiPzTHpTxY/3BGLJn97CSuYBZZfN1zvtNHQs
H80JkXnCvizoNh+XgqZ5jlk0TBBgso/m1v8oBT3UCfGvGCcg7/Rm99qlFFS5
Sh/JHyNAteiHu4/lLXR6cDUo8i2ZT2YMz5+HU5HS+QZJqWEC+hpv+jINpyHD
H9bR33sJEJ5i9ZvgSkftRu66+CUBjjwhfq0n0tGVirJ/Y3rI/cTZyT/iXjr6
6c5hxfuCAEVhnUD2sAz0lJVPmLODgPSrTKHbJLLQZ4GM9KCHBHwo8w/9fiEL
ffxYbCZM5u/h13OhA9QsZPDjtuPDBwQ8P/T2aspqFvJtbov+3kDAn/HGMIGX
2cjAvu4/9WoCrDS9I/b65qDk7Q6vKIUE8LIuaqVP5CLn4Lb4W3EEKHNH8Wis
56J55muCj2IIuCiwa+yTYB763exe+jGKgCKZ4wFKJnnIwuNst+QNApRM48sG
O/LQ7bXxk4nBBJgX7d/Kdy8f+W3p/NXlTEDuKZMhwq8QSRhFmXPpkXlo/KlQ
JbkQ1aEQoWFyf5qxCPKcqCpEy1GLTPlaBCh45nIcnilEaIcQkgYC2jJm1fou
3EX0SJt8IWUCpj5H5HFDEVLZF7/bV4wA6ZsNTvFbSpDGZ79zO9bJ/fVlpH6F
RAk6f9jtC/Gb3De3UmR6NUvQvf2PPnH9okI4sfKVJ6QEWf2W5FlfpMLILSXP
zNkS9EXM1vDRDBVichr9S3tK0YT+Hv8OBhU+VLVEdCaVo5gzjYvfSsh9c6A9
h4W3Cq1tZElb1qXCHpmOHxpyVchUiTHJqUOF3MgOo6unqtCbwj9HRcl9Ol+5
k/lXSBVy+ji6rI2ocDeny37uYxV6VZv5J0CBvL8Gu7TZC9WovvKtbZggFSyv
O1x6LVuD2JLKWwwGksB1l9u3e/21qFCipU6VOQnOPLuSCVb3kZ3JV6/5HTeB
FmWrr1XbiB6mClrrC8UDqyh7RPxiM1K4N1VO3xYLt0V6Ct6qP0a1OwuzWzqj
4HNtGnvF5BP034co3eXcCBCIHlb4fq8N/SrqnhU/Fw4/J4THZ83akZPxkQ/H
1cPgW/mR/tjVDrRgPxurmhwCXQ1PorMedyH50ZJ6n8wAMNY++8TW4TkKcij9
eUPOF/DOfx/nH+lGKtMsti96PQEoCizhKz3oZhH/6sp/ruAnzP1MIKsXGeu8
luAYdgBtQl6KVtOH3LqPygYgWyh7bV7jHdWP2uWI6coEK8h85TYiZjaAdtYs
n3KZNgce3pyEKvMB9N3sbXxTrznEGvcgFcsB1Pmm+z/B/8whoFe6wMBuAD22
2l+2LcocKM+mnb29B1DKe3/egQPk+S3Wa4+TBlCrbfJ4gd15iCuk7LXoGkD+
tmLRektmEOSN7GkqdDSxtdhyXNMU/tZ7R4+p0VHP7K7NnfKmELFSUiKjQUe2
jNj4h7tNITFwx5cObTrS+5a23vPDBPKuTbv/PkdH/kVCM2n3TKArnhZo60ZH
X9uPoyYBE9hZOJVwtICO+qOadu/6bQx1jMS6EU4GGuRNrOmaMgLrhjKRuG0M
5MDEnSnyygh4UjtiVXgZ6MNh3Uc32ozAw2z9UroQAyVrb80MzjUCuRFXTooU
A93jsIvZe8EISsYM7Pp1GOjt1TcibkWGcPszB39XOAOd8le9WJ59GgxeiIf7
RzEQ0zl5CebQ0/Cn/MRX8TgG+pdPeJfvxdNg7hrUFkkwUGielUyVyGkQmJ9x
18xlIKra2E6vfAOgLXd14RYGanJ31txfpQ8w+OGI2xMG6nJ5IqxI6MP8faY7
u9sZKGRF+e8lb30wDFD2DelmIMlqnM6urA+cv4v3qY4yUN7RpUNZrXrQPNqW
MPOOgabGftiE39UD5+axH+nvGag6U4Y3IkYPnofyv/wxw0AuJnIFg2f0INDy
iErxVwbSonBfklDQg4PHDQsp3xlo3U3rLI1PD4b2OG9lW2YgpUxXB/5fuvD/
/3NQmpNE8v03uvB/kXSoow==
     "]]}, 
   {RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwt2Hk0Vd0bB/D7oqgMJSKFIhSSVKbYeSi8hgxxlZAMpUyZkinTPck8NJgi
U4jMkaItRKZU994MKUNEJIlQlH7nXev311mfP85a+5zzfL97r7PTzt3UkYVC
oWz6h0L57xpBifCv/snEme8YW5kdh8F/nOp+cYGJrdtjIX38MLh1STqIzjGx
TvdQnx+LGlBTWg0jvzBxYrRIfJCqGkjKr91pPcjEqTe7C7OK1eD5GeIF23Mm
3jCYssUuSR3+aQjnM4tnYsrWR6uKnkcgICikdE6CiR3N9j6SbwCY9W55bCvG
xM1HN2sUvwFwcFnf0i3CxHxR4nWHxgAMTt8cKBJgYlHj76X+6zRhu0ohh/06
Jq5eVc5qMdOE+h+v7BjTDKyrW6PvNKMJv51FBR5WMXBJrG2IpNxRuGqJg32A
gde0ZXThEW0YO/5n2w7EwAY7a0+zLGmDvpZabYcqAwf4nZajcuqAoOyTWdGD
DNz6owHLKelA1Z/qsx2SDPzxSL97XqwOfM4q0RLlZOAyaRHF++q6cGLiDnt7
Dx0fvHWn0KToX9jtHRC/3YWOK2RF06YfGUB5o8JkrxMdT4z1SPzzxgBUeKY0
bzjS8Rr3QSOpKQPQKzq5uO4MHT93jcks3G4ILsOHrJdM6Fh6xY4tJMwQyg1m
pelKdLxyZnjsuslxUJZwbI1gpePF2xuw6h8j0Ok5/mcu7Q0emvLqdW81AZ+U
cxw8ta9xAxwym5Omwk25ldzMtlf4QK9QsuyiJVhNV3gU/XmJbwS6ZnIH2gLX
4VsrfIe7sDyn6JTLe3vgYvVlabvdgdezO1XlOp4HmegRrbWv2rAE7UXB43xn
SI7RY4mVeIH/6mXwlq+6w7TIcKAnrQX3i/vp1ut4gq3H6v7RhmacKMp19Me4
N4ipb3O4s7UJX/vxqUrByxdY2p+9HjZ6hk/uDlWMPeYPtzsl5tmFn2L+0UPb
FriCoGWpFQ31PMb1bVbdHWnBIJ/n97fr3xp8Zx9O4toRCspae57o/6rEpRzm
96W1w2D5OZPR2FyK2fWj3ps5hANrMv+FmIJSTHnw8biTUzhwXqCuUqNLscD3
B8J+LuEgzNW3e9q0FE+/XW1N8g4HDfOBoC0fS3Crrs+afFo4XPs0IuVMKcG1
33i36uWFw6a13wL41Itx7BaDx1dGwmG3zrpd52sK8JyHRr/TCRq0UoRgy50C
bHbrbmMclQb2T6RtWkILsNIYC2/lKRpk7jVIETcswE+bL43NnqEBP1885/Bo
PnZdPiRu5EIDlhG+hZOb8nHiGD03hkaD9/47WvVc8nBRpUQmpYoG/gf3j/4y
ycMjI8Ler6tpIDADlPtKeXj4VWJwRi0NTM/aq7Kz5mHPqSr5fZgG7Tr5pc2p
uTiWz+m1fDsNavhkk9Ve5OAcbsHi4kEaxJcqOcmJZWMxmxoeH3YC5H7MKuev
ycaxArbHhdcT0K1StE5kMgu/KLDb0MRJAFfL9mKu8ixc/6LjJ4WXgOiBf2am
1bPw8NVHzmbbCeDelDJBrcrEm3wxh7E8AavPn60ai6Xjp0HqyzHmBKgbH8jS
mEzDUb/yrRstCAgcuAfy5WmYpry8Y+4UAcvfo2g8KA1bE6xDujYELIqYr+8+
lYq1dRcEO88RMHNlkl8/MRl//tocudOXgCFZ3r3HKDfxau/mWu5bBOhG7Br8
03EDewsoXy+/TUD5iGJ8za0b2GpUe6tRCgFht09/l5K5gbezd/qHpRMgSblX
vZ6ahC1Td+1qyibAhaGEXhcnYLOroifzSgh4u1fv2/XLCbgudpqxqYwAdN0q
CyABJzYmsAaWEyDiz7LmXEk81nVXCNCuIsDB8FasDGscdhx8WV1VS8Ds/JPM
mtIo7BB8qmimiYCmwiHK7qNR+Kv45Bqp5wTcsGazT+2PxCc/z3FYtRCg+MJQ
KpAtEh/l9GWpf0FAUNpwGVhG4OOV/qUnughYD2sbu9bQcHRuvvYIk4D3C9Li
KD0cq4vlNY6+JaCkyIgokw/HthP+fR97CDDmS/036XQYrqOO9/T0EXB7QoZu
URGCgwbVWW+/J0B7e25ry2N/HMhWF3JplACbbpbJ3s9+WK9axk15jACfELsN
UwJ+2BK1c/8hnTe205j7si++9pTvfOA4AawlWf1UBW/889CA3YlJAoTOUH47
nfXCHx3S+yhTBChsshUJSPDEMhvLfheRtvMRtb87cwnPr/U0XPhCQEiAWv8r
c2fs3rhEsZshoGxoRfhH1QVcwTLc94P0oFadnSCvE55S8rCkfSPnh1N12rbb
AfNr65xMnSXgh4r76misFWYI/5JLnyPAlGUmQlbvFM5asTy6eZ6Aig6XTT5r
qTjj+dRqBOn3NUxdztXjWJzhcPb8DwI0JmROaIaKY3aDnK4/CwTIW/iGf/JY
jyKLDH9bLpLz0O4VJWQtjzgE33c9JK3WjESd1Y+h+l3Rx22WCAhWAM53z/UR
h3zOagnpkdfZgbskTdAe8UjDZdK7NPIu3CixQEKV+oPXfxLQ6isxrPfdEjWX
RMl3kj5flk9lOWSDqMIZB9f/IoA2f2Pcqt4WbfQMmDpG2jyema1sY4dc34uY
XiUtKcNvzUdxQKIGoc5VpBdbzQVnsx0R96UMxU+kU1Z74go+OaH9Bt9H0DIB
F9IE9MIjLiIeEbGmc6RVFU+uObPHBfn2rp6IJr2envJMtdMVcY0SyQ9ID7j2
B2xxdUfRF2tiOkj3sMVu84u4hJ5SEw58Io1N9/46d9IDBRvxxfwmnZ/1ssds
jycqrdO6vXGFgPgZ14eay55ItnGH6U7SV9S4k+Q7vdDQ0dIGOdK2UaXuIne8
UerUt0Fl0rp9xw05XX2QNP9U2RHS8pLfpJfVLyO98WwFLdKC3vEcn7l90V0k
fP4//9O0b/ztkC+qeGpnqEF6iud1c3P5FTTe6PdJhTTd+lJ2RagfCnW6uE+e
dLF+18gpB3902jNu8r/10FR2i7HoBCDTL3MNPKRtpGh2RXsCkfeee5W/yOdR
4h/OMeUMQuzRVY1DpDeyqo0uzwSh2Mt7vzaSnppNFs99cxWVW4ofyiLdPDhv
r/8wGB0rzU/1J318XIrupx+Cjsy2C5n8974/mM+9rA9BeQVZteKkpZjhvGJy
oSjW/ojXHPm9+DorFC7fDUXb6ur0npKmNA2ZdmwMQ56GskdopKdrubxEwsJQ
UWOhsQ7p/rLDNzznw1B367/Ba0lXZiQzhHrCUdr5swf9yHnKvNky76ZDQ13X
uetkSUdHz29urqWhxWOGZ96T8+jgZ2TmnE4glYUlijxpk0tB3g2c15BGcc4q
g5xvdL745uar1xArYSXkTVrAnP1tnW0E0gq59qCQzAebwaEFHnoE2pqrLq5O
elbTnt9B6zoymk6sfUnmqUO+wZxTMhL90Ck+MkrmLZDTt8fqSxSqE+N8PvSd
ACfWe4vlVtFoh+bGg+akzZfpW9Z0RyPVxdXmVjLPcp/lLErKY5CwLfVoJpn3
kebx3j8+cehWEeoS+UruR0/4fppMxKFND0Y0fKYJeFKhKZh/Mh75EKs9L8g+
6TAyki0QTkB+kyFOZ8m+yVUvdjGiJKIJsWHJcxNkP6k0Bf5STkTIJqwkg+yv
hIP9MbkeiSjQ393izSdyvTLsJUsfE1GhteSWvWTfUbfaf73bkoQEwndp1wwT
wLEg5DYbdRP1fil5wNNPgNnOJLc3DTfRqWb/PdvIfs02XOde+eMmeg2bDcV7
ye+fv+TubXMLcfwujNxD9rOLBdPj5/7bqNPx7hDXGwJeP471ofQno+F7bIcV
2wjYPs52eYQrBa1TsD7KSfb/Bd7Ay02aKehV7sefg+T+wOJ80Zf2IAUFPyxw
8G8m4OB2HT+OkFRUbVdqFInJ/F+lBG2USkfEwb4n7A8JGCvyDfp+Oh31NeXc
KawkYH/vTBA9IR2pizTJaVeQ72vfh6s3l9MRj4WDo28pAb+HH4cIdt9BEdMS
kpWFZF61vGg7fDJRrLDrcOQdcl7Z5o+ljGShuEdSnztDCVDmvsarsZqFSmUu
BwwGE2AtuHVoQigbqZ5oMv4aRPaD7JErSmbZaI/XXMtfPzJf5tFFPa3ZaCH5
8MqSBwGW+eI8/A9y0Fbp8hTFswRk6Zr1JV7OQ/vjA9gX1Ah4bjqRp3IjDxn4
7N+dpErApJW/x0hZHgpVjqqQUSb3F4+s9fsn89C7AgVWswNkHlOn1V6fvoek
Reda/PYQMD5Fy+aGfNQg4f9ZiJ8Amdjqi9EbChH3xEhr/SQNNLoJ/RKpQpTy
IfTJ4jgNqDxU2Vdaheh6UKDt3jEahCUufuUNLEQDicVtCeR56d0tJY+06UJ0
+pW6nDyDBtczH/vef3kfKehOetLraDBW9pT2Ir4YBdzyly2NIs979JZMVr4y
dOYD0PlEaSAq27qkIVeGrtzlZ3m+jQZZRKvxVd0ypKHbX3RJkAY5yi9YfgWW
IRe9ANemTTS4l9l2buZTGbLS0BnVYSPXV+2YPH26HP1W7Jkb+BwONqFOZ3r3
VqD3kIMPlIeD61a3bw/eVCJcXV27ohQOx9vPp4FtDSruZ0td2RIGSdcc9I9V
Pkb3MhrjVKdDgE2MgxY9X4+sbmx93H8+GDJEXuZ+UH+GiM4cJYP8QJiqTOYo
GW1EMxWeqUsc/iAY0a/w/UEz4uSWaJBV8oWfI9uHpy1aEPfPVJOr97zhW/GB
N5HLrQhdkSr0UvWEturGiPRnbUhHImKzVpg7mGqbNDo4dSDXIXO0T8UZ8JaT
z3IOdCHtGNcu1pVzAFQF1rDFl8h0mfdiBLKHy9u52wXTXyERwy6OWxK2oJ0o
L51U8RrJ5rXP/HWyhKJeywqva2+QnAyt6F2ROaS9dXsnYUFHzZ1mCsIlJsDL
lxlTZklH069C6bszTCDS9CVSsaEj7fTFuiOxJnDllUyugSMdRXaVWcS7mgC1
/bOzlxcdtdjJ7K2WI+9/avfnWTwd1d17KClQZQxRedQdVm10JOwmxid53Qj8
vdC5JBUGap9129m4wQD+PvSKGFJjIOOJmEM/5/SBtlhYKKvBQPOzVcMa7/Qh
zm/zl1ZtBlJgd/yw9r4+ZAd/dl85wUCJlTapDjr60Bad5OfgxkBawv1uthF6
sCVvPEYxl4HiiNPvpfn+hSpmXNU7TiaaN7bvUzyjDXbVRSJRG5ko4qKYwn5d
beC93RqpwsdEFuJRc2i/NlyyWD2Tso2JZArY/W6yaoPcO1dOqjQTJRDepyTv
H4PCIQPHNzpMVB/Tf2pg6ShkTK0XaAtjIuHvafmquVpg0CkZ5nuNiRD9Xkl0
nBb8Ltb8KhnFRJb+s2Uzflpg6Uq2UCITGXO+9Jsy1gLB2Ul3rSwmKp+Qmn70
VxOSFtra8FMmKp5MzM2y1QToGTvg1shEJavC8pyGmjBbQ7kr3MJEk1OV7JEq
mmB0RdknsIuJRFkuutTwagLnSsFO1QEmWvP3z8BgC0D9QHPM5CATbZwuSGBU
AjjXDy2lfGSiobK7Kv13ATqCBLqXJpmIS+CsuoA/gJ/NAZWCr0yUK1QYZnQe
YPcRozzqd9LVSokpZgB9os48axeYyKzTwmYOAP7//wM5fT0xZLUP4H9WCmIt

     "]]}, 
   {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Vfv7B/CTua5OKlSaVQiJNFE+edLNlCFxFBlCpcwkc2TMfDYyJ1PG
JMQl+pR5qExnZ+peEhlKhoQQ/fZ3rd9fe73+2Guvvfbzeb+ftfea2elcZ6PR
aFvW0Gj/uwbRgtxLf5GYz3bF5H29CriPMOxuz5E4RJ7Bf6ZfBWzfiVjs/kFi
V5o1d/28CjDiGzSCv5G4tUWmb72YKohIc+016icx7R0OiAlVhTqTgEaOOhIf
nGKl+DDUYM1rP37dSBJbeD1dPvhbHTy8fJ79OEBi7dC0LO9gLZi+U19hKkxi
oV8mrqO5WmBhva6+dReJfZXDmm+3aMEFw5iPeVtILLHoIfiZUxt2yOXwmK8l
8d3JWyODytpQ9bPNjDXBwuc11WJ8W7Xht9XuLS9KWPimjEC738hFuGeAvZ2B
hbvrZSBISReGNVe270EsvNw7FruToQvqSqfLW+RZWJ3btaXaUhe2Sr6c3n2U
hcMXuEZkI3ShZKX0WosIC/cnuuS/7tWFsdQCpd28LOxZq6nv4aQHl0aTuZu7
OnGmdFJacREDxO54RO6w7sT+/UI2jw2ugHKX5sqPxA5ceJonhkvVBJzjb/Bs
KG/HoZrr9lrZmUOM1HJGSlMbjmzMeLMm8iZcnShyyFt5jzPqaybMSq1h/amH
y/yn3uE6L9n5N6cdYD27C1tTbAseVjqlBugOSIQOKnG1NWH3t8UxdV0uEBem
xhZ+oBG3yZY0DXh5wMSuT56O/vWY/meGf1zbG0wdVmWGXtfi2vJL0Xe674Ow
wnaL5G01+Fw8cc5g1g/Ymt+0f9J6g38F04t4lQMh9u2BWe6dr3Dgv25VZeEP
oH6hAQ10VWCPdY/+fZoSAtKZbn/eqZbhNSY/T+99HQYnlQ6+VF8sxmvHRo7J
RUdAqfIYffJrMd5Y47JcmRgBRy5kmzP/LcaNelYD8ukRIKl3YP2H18V4vf2/
05JFEbDn5l5T48BinBUVggdbI2Bt6DYuh83FWK1mi1jo2kjo61yrE3uoCOvV
JfKPekTCUh3Jqq59hs9/8a3nEGcCe5zArbDsZ/hP9VKWzCEm8N5irDJCn+Hc
MXPtq9JM2Lm+R2xC5xnenjcym3ecCYp6H70EPxfgEtYb9UNKTAj8MihqRSvA
povcz+sMmbCRa8qDXyEf+1Q++CQTygShnsMbB/bk41Q1Ti3+CCYI59ln5XLk
4+ya2gs/mUw4qvmjHb3Lw7Y5a6aexjKBETt34JZhHia87R/R0pmQLPK77ZVb
Lg6ceigkXc4EMeW1+2+WZeMhNkGrjM9MaKAJgWByNrYYNzTj+cIE85fixvX3
s/FR4+drrUaZkHLoQvw+jWx87Pec2cEJJgjwR/J+GsrC9Wd4hUPmmMA2yD93
eWMWLtn8sqSfm4B/3fc0qFln4njioHaHOAHuR2WGFi9mYu88rqYJSQK2TAIt
90Qmtld4PsZ5mACda+by3OyZWAvf3iMjS0Czctaz2oQMHCSWpmF1ioAyfsm4
043peINacLWNOgGRz05YSgmn4WX1jpOZtwiQ+jl9MoszDT8Ynq5MsCKgVS5v
7a7xVJyyf/VKmA0B6+t35K9/noqlUvg+WzoQEPpxzeSEQip+HHSf9seVAPrG
+FFGSQru+M5lnRJEgEbyuuDz7im4PbCDfj2YgDBRL/HjkIJVDSIrxEIJWIfM
bATaHuHOstPC2REEcFlJzrK+JuNjxLfdPg8JWK17s6otnIQv2Z14m5ZOgIK2
bKrieCLe/3HM7GQmAZ4fn4D080R8jTg1/fYJAUszIf4bUCLuM1AZHc8hYH6X
3rrWKwl4w/bXomsKCZh0HRdQJ+LwzQXHpaSXBAxIbjr0Ny0GP5AO1fJoI0Al
aH//Sks0vq6heyyxnYDng8cjyx5GYz1ZJqOsgwDfWMMZUYlo7HiAS2WERYAI
7UnpOkYUXr/g3b6/hwBr1gnUns/E39WM/2z/RMCHQ2pTD+4ycYiquBZ9kAD0
4GoqABOr3nTpWKG8y52N80ZBJI4I/GBFDhFgofEwXII9AqsYB38zGSVgevZl
StmzECzJLls+9Z2AmpwBmti5EMxdsfj7xSQB0UYc5gm9wbj2fKSNyxQBxxs1
RD05gvFxVaJ9dpoAr8RPhWAQhB08VqNaZgnQ1OLcVDIViItGzkm4/SRgD4f4
nf0BgbhHUHFi/xwBdTZOJ7mfB2D1S+SI0zz1fYCr+h2nP35iLPhi6hc1j3Pi
+1CSH6bZpgYFLRJQkKcVUCjthw0Lp3x2LBGgzZ+gGmXoi98UOg4pLBMQOyrR
qV/kg/XDzxobrxBgmax9tPm8Dza1OMgYoOyY/lXSudwbFxbzORitElDh7FUq
T7+H2feF0i/+IeD8joyG+gp3XCiz2i+wJgqMW9nGu8fccGNobbcXZWcfs7++
bnHDav+ErR+inDm8V5t+1wXbc61IPWGLgqrY+457ntzFxat0ITb2KCBVBmOO
kM74u8OS4lXK7AWpvYwjd3DVNXng4YgCIRPab8trTrgRr24zoHxko+kuD6Yj
5rnseSiXspnzbvPHk/ZYYT6Y/QxnFLiLegcU7bTHfhMR9QGUhUteaQUl2OLl
NSeqmyn7eJzubdOzwrK3r1mockVB4cDyzp8lt/ChOqO/Aij3K1Wabd1kiXde
mPn6irICr/yEaasFVv3VoyPKHQXW9ovSAZLm+Cl62qdPOZksd84NuYZzFvgT
Ayj/lLNbHQq/isP4nuIeyjpsk0GSaldwXLHxvlXKRS3WG525GLhevRDv4YkC
vuhvia9qdPCt+GtMRcr/lpEqvKuaOGFRLt6IcoJyp+GjuyrYxHnlgwtlRk+b
rdQU4P/KHFQjKYt0JrJ7tx3Hd+lGPzIoK45KXDp7fx9edAhsL6Usre/i98Vh
HWr2LB2qo2zd7BQiZCSN1tgXS3RQ/pHtavHLSgGlHDmf00f5dC3abaXwNyq6
KH9lkLL3EeDtq1NHd2lX0BfKg+1pnvtFLiLmVhv9Ecq+PPtmP97SRTuFzmYO
U96vmHkrukAf/ZDI3P+JcoPLgU9qMwaodLtpTw/lm4VZDLZjxohurPS6lbL/
bPTI1SpT1Erf0VtNWS+STDtpbIY2zJQfKP7f+0kIGPHTLJC93XjmY8rzDXpb
p9OuowPJXowQyo1msay3SjeRrMx5eUfK8atdEdlfLFE0k19bn/KtxC1qfkG3
0aW6l3FylOWPX+Y0OWiN3t37a+M2yus649/Iv7VBVUJ9lXPU9/lo0+shaGOH
7iUtxbVR7uII3+4WZI8OFsCTLMpY59DijcsOqCTTf8idcuSkzYuzS46INcL4
IUTZ9TQ9SvqtE9I6GFMzQs2Pacgzu13Jd1ArHKwtpCwtMiW+pHAXiUhhXTnK
W+9E8ozRXZCbssOXRWo+19QcHvkw4II21nx+8g/lTiP7tKL7biiwzLZUnHK+
+rvBKxbu6HF0clgvNf/+cmLCbMoeSLTRcXMA5RMCn9J1eL1QZ5XV4U7qPGmO
iHa6qfsgk0SerHPU+ZP/T+/H+yof5PpA52gvdT5FSb9NwlL3USThmXebMq1m
QKeFzxcF9Epr+dOioPhRHEuoyw/9EQz0jqLyICWmftZW2R/d2X1Ch045NHR2
c225P9J8dZUeROWHhZuWrlVSAOreOKBk95vqQz3uD5WmQYiXrT9XiMojT16X
rqvfQpClo+bD/6i8s2R/Mv/8aiiaqbguJEZZb6lTkLM1FM3/Kg6zo/JRakxK
v+B5GKJZL8vNzRAwWDvSveIcgVKb6/BHKm8zFPKttWgEyrL/UCgwRoCQXI3n
4kkCnVe+fPAwldfMo71hGQ4Esu5Ojvl7hHq+BHfBwmcClWblwq1hAhjbzL8/
ro9C22NLVkOpfuCZE7KdDolBipNimmeo/tDdG2Xb8ToGbX7V1yLfTUCaxlq7
4p8xSDB6Nl22iwD5rAW7O8YP0Wx+wI2dJNU3+qTDL5lYJCzuqdRB9Vd7Rbgz
rTcOcXeJJbxsICD+Hs2LTzQJqerB/MNiAobzXLxmDJPQySGap0IRATLdk16d
zCRU1Zl+8zPVjy2H/7sXs5SEWqo5HPcXEPD7U4XP1tZkxHk03Sg4mwBTJSf/
Pc4p6M+C/JeuJAL4OWb/jh9MRRzZpp5+vgScpAduUlxNRWBREffChwCjrdsG
RoXS0PO4ypLP9wjIkjzjekI3Db2wWpw65kHACb3QvK6GNPRWXsKw3IkAg6x9
GwSepqPv5DFOSQsCUlV0e4i7maiGVfdXz1mqn3RGM+WiM9HkyL3RXEUCxq+6
OwwWZqINLaf6XREBRxxS18mMZ6Lr7I+E6fIE1CZMnG43fILkJY5LC8oQMPLV
P40OWajgpUneo10ESISX3g79KwfFVzRHxyxQ+2RrgHqBaA4q36IXtpXaxxgb
GJJtSjmoxHNyLOEHE3yJ+e+bPHOQ2uRWMuY7E/oennBInMhBO3g5kqyGmPAg
pcIl930uEiu/ciSllQnDha/8GyPzkYLIzw97M6j9r7M+hZ2/EEmqkiIz55iw
W7JhQVGqEF2+YaBNP8uE1IAG7XsqhcjqJJ/7wTNMSD/ZyLboWYhMlkRZV+SY
8CSl6cbkl0JEEAOv06n9mFF6PW7C8Dm6Fzyc3iXABOP7libdh4rQiegmicfN
kWCzzXbqaUcxoq1xZEtZigDN5puJYFqGPsgMC8SuD4eoQAv1v4srUBJbu4/r
llDgEObxD52tQp8reeixG4Lh0a73Gf8pvEEhfhpHZRsD4WtxHE/BUDWib9FT
/pbqD1uDeo/MPK1FE6UpUv66vvBrcMenCf165GM23Wx0xgem8mU7gpcakPxF
l6XKeE9oKq0OSnrThMo1hwTqH7uCzvmL1RaWLahGq1JF7agzYMHLb9Jl3yG6
7aTqdLcDAOMIu+/8e/TSuz/crd4G7u6gN29NakOJ5t/73g1ZwnlCWjyqqB19
hGGLX6oWkNdtUOQU2IE4Pxi23o81hcQPtn0H9DvR58nXHkeXDGATf0pYoUEn
cp7hFncdNIBgnfdIzrgTJe6VTXrfZACubRIZF653ouBnI+kFcQbAaB6zcnKi
rGpeCcep+1+ZrbyJ7ERCavfvV969AiGZjD1XmzqR2eP+8dccl8HdCd2IkmMh
2/CEPYqX9ODPC6eggdMsVBtZ4L1bUQ/853NyJBVZKJ1PsJr3kB5EuG3+1nCe
hYyOvmjn49aDNO8xu+VLLHRsitMaV+pCU2iUm4UtCz0Z5/svV1QXBDNHwo5n
sFB8ME9C1NpLUEJGlPTxkkhVMemX+E9tMCvN2xXCRyIb3W7/u5+1YVNsQ7Ac
P4lYIR+UO9q1wV5/1SR+O4muS8xpvCjQBqk+G16GOImWLzGMD1tqQ87Ahesd
yiRyrZ63HHqtBY++rtvS5EsiU6sNNR0vNODCWxFfl0ASXdj8aHTzQw34nX/2
u0gIiare0886OmuAgY17bQBBoop9/Vp+xzVg6/S4nVIqic4oeXfMVVyAqLmm
JvyKRE85Y8PpDeoAXcOyttUkglOXNq7PUYfpMtrjnfUkOmxuXicSog5aried
Pd+RaGL7ddt8TXXgXc7eK/+RRDufb3i/0KMGVR9rw8b7SZQuptHwvlINrKoG
FuI/k+iI0H1DnKIGLV5bWhfGSfT18T98UxZq4GYsK5f9nUSzs0q8h1XUQOyM
ViZjhkTvFfoMgiXUoGe31QauORINu1/6ukJXg///v4J+FzFzwn6owv8Bpg5/
Pg==
     "]]}, 
   {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0Vd8XAPDnmSJRUlQilIhM9TXFyeYrIpRvXqIkVMqUhAgZ3n1CyJAh
JS8SypxSOJHMEd5LSWWoTMkQIoXfba3fX3d91rn33LPO2mfvfa+Ug4flKSqF
QhHioFD+XsMp4f5l82xMjX7znripA/6DNI9zs2ycEGR4hvJEB9xfyTpJ/mBj
G8O3PfEsHaCl1JtFfGPjnlf/lC8L6IKsCo/U8U9sfGDo0/uFYF14eYJo4HrJ
xn1M65owNwQcz8NEDsey8SxD/XKWoh5cDgwu+LGNjYsoMqyAvfowebHuqb00
G1eVfj3kYqkPTq78dW0SbOzpnyd57pQ+HLBN7MkTZWO0UqojJUofxLVyVjjy
sfE3p4G8inf6UDnz2oE1xsKKlBm0xccA/rhIij4qZWGuvc+686v+hSAbfMUb
WPhXVGrBhlAj+GK+uGkLYmG628vAvmQjMDXQKW/WZmFbWZ2KJ/lGIKb4bFJy
Nwufz3rOTO42gtLFspPNsiwc6SBNlVAzhuGMfANJARb+VKyge2DQGP4busXb
1NWJtUvt9zvbmoDcxcux4q6dOMTn6+nz/mZg1GW++ONmB9b1Zd4p17IE75TT
K4TK2/FKL0E5rlIaJCr9zkxvfI2zUkwEziXawrGxYs+8xVbsOPVTz/OdPaza
c+O3yJ5XuETDTG5snxOs4vSlNiY14y7PHTP1H8+AQlS/Ac/rRuwml8OwUnSF
5Gsm1OhtDbihScdE3Pg8jEn0BVyg1+GGLwki/kkXwN5zSfXz81oskpNv90Xb
G6R1Nznd2vACI19id3mzL1Cbqtv7LKpxt+eHXRx3/SGpZds07+YqrEsRS1V3
C4S6uXrU2/UU82/tSIv8dQVUsvyWX+1/jP8wE1QjzENA00D+memvEjytKR62
fCEUFl6yWTW1BXhs3id4OjoMOJPXnb12vwBvZ/0U+h0XBgJnaUu0qAIsu/oZ
DyUpDDaveic3ZlmAv57nk6Kmh4GeVU/g+oF8vGegpWkwPwwYX/u3u1DycSXn
+Rnl1jBYwzNxWUT3AS67xLtYzEcHOSO+rWce38eqsxVS8350qKdshPW37uP4
h7lSQoF0cHy2w64u5D7WrHJzlAmmQ/rOAykyZvext4vTPQMGHdaJxAr0fc7G
uYlnfjnE04HaLzJrvSYbf37lvyiRR4cP/lvqTVyzcMM1yW3hb+ngv1v1869D
WXhrcuV3w/d0EB0HSq5GFtb7tvkLx0c6WJ501OblzMIYNll5DtChySi7oDY1
E5/8mrZV6TsdHosoJus03MUx81L2ElQCYgs0nJWkmdhZxS+pXZ4ApZlJzWxu
Jt5aNz58SpGANq08PomRDEylllTMKRGwqk78waqiDJy3Z7Fn9W4Cono4xsd0
M/Dv9M4PYogAwTUpQ7TSdKzKMo8KOkTA0svqpYPSaTjyeYJ0kjcBugd3ZeiN
3MQVdtEJ5b4EBPTcA5Wim7gsXd7qrR8BC1ORdCFEju+OfMkXRMBPCSv+tqOp
2GauR0GfQcD4pZF1pnHJmP8Uf+/yDQJ6FYV3GlISsRrnXtF7JQQYh2/9tNic
gBXPeNeqPSKgqF899vGNBMzrWiFcVUZAaJLt1HaFBLw4LJPUUE6ALOVeGT8t
HkuW5/g9wgS4sjRQ+4PrWFWdiJtoIuDNTpOJqz7X8UNXWT7jFgLQ1WMZANdx
7rOenbdfESDhT+U+nR+LB3rGL+u+JsDJ7Ea0AmcMrrTtEqOxCZicfpb+uCAS
B8yubRr8SMCLnF6K3L+ReCFcuZ6vl4CE41yOqd0RWMzv9Gn5PgLUG8y2B3BF
4MCwF9F2AwQE3uwrBJtwPDjCPJMxSIC5Bbdw6QQDX/nA4ZYzRMAWrh0XtxIM
7DDfuDp/mICXbl6avEUEPsYJqg9HCeAHnppX3HScmzpVFzJOwIfZHTIoLQwz
y9IL3CcIyM+zIApVwvCWeGVV60kCDoqk7o+3DcU7LzRxSP0gIGlIofNIcTB+
YZNZEzFLwD7xzPq6p/5YRjDn3ye/CbBro468HfbD1BKz5bN/CPAOdlg5KuqH
y1lxbhsWCcj6InVQ0McX2w2tcXRfIoAzP6ObpnYRHw/py5qkMGDjCcof55Ne
+JyK08RVDgaorbGXuHz9Al7D0zmymcoAB29Jxzvj5/HAlztjupwMCL6s0/3a
ygWXjCVvpnEzoLD39+aZ0rN4Wf73exbpTwYVDmLCzvi6du2/5jwM0BXQHrNv
c8KP97Ru0uJlgOv5XyqEoiNWrlC/mkv6FrvcOzfyJN6tePjO+hUMmNHyWPoc
fQz77qK+GiRtSR0PVzQ5incfrO7bz8eA4mbXNd48NDzvEp2eS/rDY7axwJI5
/jP6ZO0JfgakGnXa3vYxxqvYxs2PSNPevXZXmgBs2mghx7uSAXpDCv/ph8jg
mW3K3UzSKkd8w7568iMjcVAYJe3a5BW58bgKEtDUkVEWYIBOLZJ00TVEjgfO
chaSvqIGAu9fmqKCvvejI6T725kBW2UPIavORz5SqxiwVS/rbEL+ERTqIO/P
IF3vu63PZMoGHS7lmyolfaYwm0b9xw4l13/k/0SaPp0weKzSHnnZmTRwCTLA
KpbN1LRzQGIcs9vkSMsqrDsuQnFCS/Nhssakf9ZbiU0yTyFpq/RGJ9INDkms
FoMzyGjk28og0ilLXTH3vzojdfN1kwmkz94UNQkLP4d+9NdezCatrW7NfULe
FXE2MlPLSPN3plRrt7ihwpGjdjWke9y6L69380CaP5NfNJHu4ore5Bd+Hok6
rqhvI40td/46be2JDF2tndtJZ2e0dh2Wv4DOi6jn/h2PHXd7pL9wAWlvO3j1
7/OXdATjVVq8UIgyjfvv/PaRBR4Sty6i6Kh5yb/vN35nbibg5o1OHh1+e4+0
iuzEjgVdH/Q9+K3i3/WLXYxdMSzoiw6WXJIIJM3xQnnwTa8v2nD6ykNH0qNC
7bW1RZdQyMc7XftIdx4/zywO8UNF0rG3ZEk/MH3Vf9TJH6m7m7Uv/91vLTlp
qtFlJOccy/2GtN12ukOefAB6d2V+TzZpjXV9dy0FAtE+nZ1eXqRXc+p8XhgP
RDE6rDwd0qOTyTKZHUFIQzNugIO0+eD2Tj/TYPQ1botVMBkP2h+tfrRWBiOF
o4fvaZHezg4TllYKQWGivQITZHxRXvRaNq8ORetPTkubkx4rX+UlERqKWn3+
dMyR8dpduCfhwnQoMkqxTb1NuuR2MmtjVxj64yV74SMZ7+mJddPuRnQkt7SB
7ks6Kmp6bW05HeXu8ipcRdrJz+KwSxqBUm56/qdEnh9RK943FfbhKGog8Z0e
eR65DvwzK9QZjoTE7lVVkOd1Ut9xnZPBVaRa6oLVSDerPLcSkI1ASxRrkXVc
DAgQ8O069i0SZVdGbHxA5gdnzns/i45FoYRC6UEe0lYLneu526KQRyBXux2Z
T5SGlY7kF11DfUeWl6nLBPTXDr5d9I5BQwsJ78XJ/NT2TGT+0FAM0o1VunuU
zF/PivXFsq1j0fjnr5HxCwQ0W1go3t98HUlJyNXMzxOQqfvA1YIShxgzGS1J
ZP7bqPUi4JdmHNKPqM5+NEPA9d3d1zI949CakTXZbdNkPVPgzZ8biEPbuoaE
56YIoG1w/H6nLh49zRsp2kDm3xWzG90nIxNR4Ma+49lfCTgsFe/e8TwRFS2q
cN/8QgDTjM+jZCYRPZDfR4v8TIB29pzHRbsbyL8M5uz7yfp0hO05r5qEFnL3
7R38QED702hvSncy6vQx1zvEIkB8kMunf1UKMtn0q0Sok4CzwgE+L/RT0OHQ
jjfN7QRQXc750h+moFs+1Ts12gjYLW7ktyI4FTkdKFUbbiQgJYgSuHp7Gvoz
YTTzoIqAL3m+gVO2aWir1PX0fyoJUH07Hth5PQ3xf1GhVD4j90v5Y1DiQhpy
3HDyG35CwJ++p8FibbcQ39Kw++1iAuwNvOhbvNPRnRaPlKosAkS4pg1T+jPQ
z4XdK2OuEqApyBDWW8pAubMnbcLJ+n5cbEPv0EYmmhVJ6w+gE5CtuPeSxmEm
cs0TSTsWTICGVVReVz0TUTTEFsfJ/sEmW0Zo3cO7iOet4wWH0wRkGB9+F+eT
hUzY13fF6JH10HIoSyshCx1zk7cTJvuTkWP+nv2FWag4OW4+fg8Bap4Z/Koj
Wcj4dlhohDoBtaljOu229xDVeln4ANn/DI7SmYKQjWY+nj0rJ0qAQnTZuaiV
OYjZkqloPEoHvTbCNH97DhKJ9Ww9N0QHmhBN8bVBDqo8Za8Y+YUOoXE/vwsH
5KB4A/sdzz/R4f0NDc+bYzlobO0+CyqLDlfTn/rmtuail5MlIePP6PClsIre
EPsAbTUK7HS+SvaLnXXpnCKFSPRiS7HGRjpIKtbP6SkVIsHH13jZ6+mQQdQf
DDIuRJ6ql3vc1tLhrmYD9VdAIbodFMd1U4AO99IbT49/LUSJKtGR7KUwoJWd
Sh6zLUJ7dXs+sgbCwC7E+cTbncVoyCbenTc3DNw2uE887ChBdygv9JlKYWDe
dOYm2D9G3y3uOnnyhUI8w8nUsOQp0n7YdH59TzBwSa+gR01XIpu4Kx0T6Arc
lmjN/KhbjUqNhlu7LgXAaEnyivzPNagqsFdQo9sPxMK71aYe1qKplvxUDx5f
mO8X7xs7UodOKv/47/vFizDxYFdHxEI9cqxfe7qa/wI0ltWEp1U3oqRHm208
ZT3Act+hGifnZjSjeYJRPXAO8Hrr6ru7XiFlHLTDOf80AE2NM/RnKzL3N+MT
mnMAH3HBJrG018hmzC6Tu+kE7ItT2RFf3I4+jb+p0fp1FPLe2hR7MTqQbuno
xnX7reDmG/f32450ovByfGzU+hAIi6RfK7TpRE0PTXIU9x+CCMtWpGXXiWgf
P6301zoEl14rZB44Rd5/bZ5bfeMhoDUNu3h5daI7hQ4xah8OgnCVw2J1bCca
OOi7HRwOQmQWbcuxxk5k97pGacd3c/D3QqfjtVioGpDvUqApLD/yCu/VYaF/
6jw5kk+ZAv1nTo6iHgtN/tggAGamEOO39lv9PhZi9hSGNombAvPKsMfv/1iI
/4CfyINKE2iMivdzcmchMTZuyl3eD+uzBq+pZ7KQjZQhv1W8MZSyY0rfC7BR
UoX36hPDhuBQlicRuZqNtGIVsp50GIJwUn2ElggbVfTucJKpMITzR5ZOpGxi
o0DdfWh3jCEovXcToO1gIyHmFhXtfwwhp/fAqQ4jNuK86/uslfEv3B7lF20M
ZaOALHGrJg0DONAiG+rLYCP3Zt3PF2TI7+UH+t9lI9lo97tIUyUhA7Bx868l
4tgoNXAq+P2gPohNjngYZLBRUHFHPW+yPsTPNjbiKjbab/vo8cMFAOj6ssu9
ho1q+kedPYYAJh9T7myuY6PEYaq5ARvA4pKmd8ArNkq/bR0qUQAg8Pu+lHYP
G8FxfQumA0BlT+21kU9sJJ2w4vCYBYBLZe9cygAb+fBoKhvrAjQHirbNjbCR
auectpoYgJ/dLq3739nIk7h/uJobQG6vRRZtio1K5ZfXn5jWg3eSLkI8s+R8
imk+gv168P//GyhxzWbntjY9+B81OBkx
     "]]}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->True,
  AxesOrigin->{0, 1.*^7},
  Frame->True,
  FrameLabel->{
    FormBox["\"Time (\[Mu]s)\"", TraditionalForm], 
    FormBox[
    "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for co-propagating case.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->382278729],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUWXc4lm0c1ZLyIaNBUmQ1zJB9lCSrNERIJS0tIyWkRJGRUkkDTYnI3mSv
JLz2fvdrvA0hUfru/urquW739XvO75zznIO08/k9x+by8PCozOfhmUf+1Yma
XehU04I3BjzcRJcUTKo/i5j6NgjrHVWhVasomHsmjWbMnw7Dm7GHM5SoGDcw
HxQIpqA2JlHjKjsTqilJ5WmXqFBcwK/ydUEr/ptHX/7tQC7kufWTvU1U/B0K
WSEa24qd64P0V3oV4qVbMv8yPRp8JFW62Tvb4POsRHpcthSneJz3COfRUOlo
V2Gzqh1SGy4mfRorh/uxUzNyZnSYPz4TI7a4A6+qjPxF11eTeT3Eb32lo8b+
/bw1yzqxOq6vUrWxDkWZ38JGkhmQMIbzzS1dMPtl42478AkzW7VO2/ozEeqb
NVYV1g3xH4VyNKVmnDmdd8P9OAsBW1c9GRrrQUPkryP74ij41H83pcuZDccx
i617Pfsw7xbU8nTbcWdz/LwF7hywKyY3evININuzT2P1TCd0mzXbSyKGkFqr
1713/yBe54fXlrT14OIK/W/C2cNI25N7UWsjFSMrNny4UdwPsWsSG3KoI6jP
NHyrP5eGpQWfdBktgzhz2/B0uCAXi7srvWriaOg4Y28f9pkKS3riw9+ruBg9
MI9fWZ2O2RPTew8X0cBskKLYSXPhc5tZIltIx46ZYhu3GDpCWRfkvGW5KN+S
dVZDiwGWRfHvdU4MyI/tstmuwIUim3oiP56BhBMme7MWMlFQ6SCXuo6LcEOv
9boTDHS7dXsvvcvE1FxX2ecbuNAU7cg4r8FE+Jh1+qtJJlKu8/KJKHFRlOf7
QNSBie/nlDYVaLDQ+Uj51g/y/PEnrsaCk0xEnlpictOMhfvMG6JQ5uJQSbzL
N3smqoM8EgPIeeePjYVj5Lz7DdGD/+7f5xuk8O/+pj/CvP/uPzFjvvQImWef
rQPPPjLPMr1bC1+QeXxijydWkvnVPS6eqCbzNwbwnvg3/2GDqzbTmgyEvTV4
3XCQgakok7km5H2bpP6LnC6gQzLxaMRGgs90t5HKJYKPU5HH7lUET7PO9Asm
BM+mW4Hu//D0++4bVE/wh/uE8R2C/8uWa2//4R+9+pvofbKvI8926vhRBpHn
omGxUIiLX+Lnjc+T/X4/8cXYoqQfi853zOGljWB+k/QlC8KHharL454TPmTu
0ZHnJXw4IWBRbEv4Y6nx6NrX6U5ci2FFJBP+HAk4cEmZ8M1Cy1Dbm/Dtv9V0
hRE3DtQZTT9YhJ9idT2Vuwg/FfvlmzoIP3nsB67+Inyu3s9fq6fcjOO/KaUP
CJ+3Kj/f8YHw3yHVbteqwU9INY87eZXwnzliO2c10Uu4lf9WJaKXDN7D7cNE
L3xro+J4ib5sbE4xaOuq4ZjF2H6V6OtmbnKbLtGjs8XvBW5Ej4cELgmKEj1u
KDv0lEL0e3+/ZkkK0e+F0xEr5hH9Hmm7dEqc6L1+p+J6U6L33wbCfhJE74qn
8zVniT9s/Wv4yM4+F4ZtpjfZxB/ehnVdEyF+IrlF6Wg88ZMiIdV5WcRP6LWf
3xQQ/0n4+XTD1OJ07LUayk8i/nORupC9l/jVwbkWiySJXxUEGZ//TvwqyuoT
9VJjC8bi9nw7V5MC/xUnFScnBiEo41bTIU+BrLBPj715OlwaLbxFNKg4np5/
NDiKgo/L1Q9bbc7CPtm728uuUtHremLCSqwVPFtsU6jFufCWE/aY7KZCtp+x
h57aimpOwJa/3woxORCy4IkpDScPxq6qcmmDxOZ5Lr/dSuHxa83a8zWER28O
VAxtbsd1pVAr3V0VKIiIZlMc6HhpabtMeH0HfAzXvN75qBqpZ1IF5/MyYHfx
da6mfidEE0ynnu2ph4bF5eL31QwYFu7uPnGuC7q7tZ6e8m3Eyqbb+2mxTEzM
bPfaWNqNZeGhDrMhzWiWvnDEJIwF3lM/mAEqvfgj1iOctrAVDqWa1PMRbEz2
f/XLyOtD6c8lGfsz22G9YNK5+jkH4cu6E1fYDmBUvJnZF9gFnnXGvfOrhrC9
+Ejk2euDWN7ebyZxvhdbw2d+C/4Yxt9ylXtSB6nYImD/5eGJAbQy5mVekB+F
duEWJ76NNPDnLCpTWk7FnNVmX5xWcrFMJF+7s44GrkuBaLEYDTEBFqM/pbhQ
/+hsGnuYjvKmb40zvHQo2a9vPiHDheTaFYJZo3To3bqzS5hDx33v4sOP5Lj4
+mXV0buuDGxfHstrmcFAkEzj6CVFLvicBdI92hm4fvPigeeHmNiumRPIXc+F
0Q97Wq8SE9t+Nw6KjTKhOiqePLKRix3vBAaunyP/D9wkMb6XhWWb50+4EF9K
O6PgyxvNxPsLUSLu91ho6G2NtFDhYk8yl2fLSyZ6m5+ZZCSysCM/tiKGPH/8
Ok9j4AET4peZP9XI+c+i8Unm5LmhhuPVy+T+bV2Ri5nk/tF7u0r+3f+G8+bt
JJlH/sh/loZkHvugsC2jZB5L44cqx8n8LyYfb4n4N797ge6/+RU3UrLUyfuO
aZ1hZaYzMKuMSi/yvirW4S9cCD7fHM5m3WXT4WRjePchwWfjBn++UwTP6Fua
fW8IniF7tj47TvDMdljztYDg76yvtOA2wX+Px6Et//AXy7j3SpXsixnYffEc
2df7bfu6DpF9Fe+yeahK9ishzbnfTvbLyzO24DbZ7+vzB8aUCR+U3kVEGJ3r
Rchig+mcsWHI1Befubt/AEL7PpaPXe+Cby6t6XXlEMblhDQ3Eb7df3Xt6OWM
dmQFJX85Q/g2rKgTqkr42Tgj9FSG8NP/g3GmFuGnzubbP8UJn7kvBjX6CZ/L
7MOctQmfh9cl8x4i/G+Tdho2J/wvee4p00v4f256cciYXieGDh6wyd1dj/CA
UzeuEb1MMkwpVes64BGcMbojphoP6NHrPi8g3wPjzuqnRI/cSp5o5Z0VEHM1
bIglepyS1vkVQvQrWp+CDUS/J+Wc+7cR/QpcuRpQTfRee35XqxbR+9bo+Mqb
RO83QyI0DIg/bCvNVzxL/OGbcXPyMPEHkU86s27ET67eXf80XSsLZ7t5bqUT
P3n6ca1sDvGfK/XRHDezdFhfVmmd3kRFAFW1xoH4VYm623xOVQpuHJ04QSN+
5e574IxeewteXD24++ymVIyEfVxwemYQescu/y5XpcBXm9G+PzIdd81lBfj1
qFjTuaxUJJ6COEuadPjtLNRpjhlFhVBh9z3JcZ5sK+5EzGrJbMiD9Qt6AQ+L
itfXqlScylvhwRvs5+NdhNCW3R0WNjSstZnfmObXhufRQts3VJbCcp3kF8NO
kseSk7Jn97WD382k0SGrAlGPQ8y3udGxW2wkRtiqA4d/RnjxitbAO43vUawU
A7cia6Zoxzqx/3LhwG16PbqF9DSm6QxcdBz5ERjfBb41jg9U5T8jacsu2eOl
TPD2Ww7e/NUN0aj/pHJHm2HNCd1/P5MFBO362evei7lbdWaFfFvx9XP6XZEi
NhaqB5e+nd8Pq0379c9s7oCUceqa9R0cnLmVLaGaMgAR6pbQ2+LdeO786dTN
OcO492RGJSdjEBrl1QNzlvdB55qzHVdrBI2BaTwZUVToGI8e/bFkECz7Yy4V
7qNY5l123daW4KG8MLvCkYrlqtOpDpJcBC3cwV38i4ZLtnbxUYdp2KoocYh/
DRcWMm0B1+7REZPo+63Ejo75xtoNd9ZyoUUrOT0jw4BQzwpLUzAwbrpFvl2e
i8Gx31eHXzLg7a1yxU2QCceasSfVJLfkvRswchNhooT/bsp8gkvL9bg4C+IP
4i15/DOnmdBVWqVL38VCZbyl6n7iJy4trQdVU5nQi8oX3lbAwtevBfc7if+Y
3rGjvGknP591sH3HDAtf5r8pqVTlIq7hu9NmBhOlUfyvRYTZkPF9ThNV4yJ+
wdOjQeR88fKnLCFyvmhr59cKct5xj+13OXJ/q5TGnk3k/p8xTNt/95e3HDIV
OMOE4s3CGzzWLLSsyH78b5474jSXA2T+OU38PwY+EF/U1RL/N//N7U62AeR9
5142CK4RYGJnoYFWJXnfDXmKCs8JPlYWC41zDBmotfJc3krwMbo8+0GP4Gn3
VeeSNcGzpuCHbiTBU2V2p8DgFA0/6uYWWRH8vxvRXBYT/Pe4/hzwI/vqnE0s
/kv2JdfPd8uR7Oue0QO1IrJf7q2lkguEBxHJvp7bTPYbeNJA+yjhQ5jyGQfq
0j4UmDnkexM+HCkSuOH/bgAV1rmVB1Z0Q6py4PEiwp+QL3M+8BK+RTtMfbbW
6kDuuaI7ue0cbLQMvXCe8DN8274Hu31aMXXozuOqQjaed1VGuRA+7/faf9mX
8Llyd72uH+HzkeXHJc4S/tvOo6+myn2GYrDG0v1kz+v7+AuDiV54FitE76bV
Y/6HDWIFRC/jNwaF3ll2IGHq46HXwjVoXNmtv5/oa2DU9ncs0ePU2QpP/swK
JC2fb81D9OgY4Wtzguj3nMHa2g0VpQg6uN2Cn+j39Iba9M1E701SLdXnLhUh
bkVbnSrRu6J3Z8Xw2laozZWQu7Q+D6MvXN2/Mqm4tMbbZZzkyyULGLN5EVn4
bjc17Ef8pLPTOSqG+I/sm/IuldvpsEidNODqkt7n/5pnBfErfzmR+Gtqqfgi
NrJmD/GrnmLOVGF/C6Q9hSvT3qbilO2RfJc5VEzFHZiI16PAxmupKaM7HZve
aYenbKWi5PpT58/vKLgYlcC/7EsWbLxFa3XI/pKyHgxqabZCLsdtV+WLPFBf
LL+7fIyKrFi50ayOVgwWqx+m/1eMtwVfV1q40BC3+YQ7O7oNsiYZ2Lu6DFE7
U/WTh2mo5oZp911oh/jX65nKayshI/lOKekmHc/jtU6d8exA8pkDf47H1IDZ
OeoYpcNAyRHDrDv3OrH1LMXhxPWPOMUJTBWbz8RgzWS+fVsXLC3knp2ifsZB
h7ZmfRYTAvErzV21e1B4SyNByL4F2oPvN9YMsLDTcq3ey4JeSGULzcb8agVf
oOMq7a9ssMYrIqds+9ElZthgUtuBM7lb2nKEhyB5izezdsEg4o54ByQWd0Pv
6GmdHuNh/PxjsT6RPQgj9Tyz1Z/70BFaI34gYAR7NoUH+H+igmPJfKZyaRCJ
m94HnKocRYPxiCL9Jg2zF5asU3xLRXVgr6I76S8NRsaUjo2kB63QV/+USYNV
ZE+KDuk77xSjNO0+0tE0+lLBO4MOeUGJjHbSj8LfvTwYQnrj+OHg1Ik4Bgw+
ct+rkRwif9mW1UZjIDVX/1GIJxP9O0YaNUkv4x1rvWu1jwnX1+KrO9exIOV2
YU4D6XFGw0/2aKWR7/ZQl2lQMQtCW4OPMoifqMXXaq0ZZ8KniCfqxXo2NEzq
C92IL93hGwx6uYoFvoBt6TZn2Vjl0MdzVJ0LkZupHfc2sED5/nm2IJCN65tf
Hcgiz+MVFT1vkfNp0V6NG8j5GK/8k87kuYHx4jFJcr93XvTuWHL/Od7cxH/3
ix3a6WFO5qEPqcW+IvOsiZ/q/DfPeITHAUMyf0JXetIHMv/yFc8TP5L5n9gl
P71K3re0wHTijwfxxUzbjk3kff/r4vHeQvA5qLiqKpDgs2bXRhFVgs9oT+WF
VQTPgfwtZeIEzyUVmx3aCJ7n2SynPIL/G+a+xMcE/490s0ltgv/O0TBLyWAa
uj0f/gwk+woI2nvRg+zr0hrmmpdkv6cqlu88T/b7MqR/5inZ76Nm/xlXwgfe
ovGb5o19OKXVLD6P8EEv6++mIMIfzkEp64KibphdbP7uQ/izvaoo9SLhW77/
ul9HazrgmX8lwoHwrTY6Zbst4WfPy2NcMcLPir0PC+cSfv4uvRHrRfgsuCTA
di3hs7fAWZnPhM934kI3uxH+v1391iGL8H+x3fFRC8L/lPSOF7uJXryOdSwO
D/iIkUQHB848JmRnqEESRF8Zywu1zB/WQNLsV6Md0RfLUr3gNtHjtjWbS1bJ
VII+Kz/Pk+jR8UzE/DSi39hbt65HSZXh2cMnO4KIfhe+guwLovdzaQllh4ne
LdcyOQZE72a1T1lqxB+6HizJfE78oVilUFiM+IPI3wuvPhA/aVcwup3IzcIq
pVe5ysRPYl9tDfUn/qPPu7pnpisdO21ihaKJ/6wNX/E3jvjV+qnLuasSUyGu
scTRmvjVN/f6VkFOCxZqiT88suE9hDUb9cYWUrG7U0041JSCLK5IaJlSBhb8
3awuYEHFs7XfTQYLKVjp6+TSvz8b138edm96SsW1Vcy3YjtaIZ6rv2xGLh+/
V1f+OfCXivnNmeukvrbiFauJmv2+GDetkrU/XKDBxPP3q+TMNrwSqZ10CCxD
+4v5g7RZGja2LMxse9gOzraJB/VPK6GzZkbEMJ4O9SOB7QGxHdj23VT+w/pa
dJ08sFjeloGzR1JiM6s6oc5Dvv2qDTi+y0BttwIT/ux1RZeXdCOpxD7gmm0T
XNbX9NYJsTBPLknR90oPGI/G2XItLXCqib68ewkby+2ur769uA/rBef5RgS1
4Wl4SruzAgdiT2NiPDP7ITZ0f6PNiU4kSQ38mrNnCKZF73xidAYR9PRJZat7
D2w2WYq8Dx/G5dzQM5+kqTDi3lHa86gfIWt/SItRRuDXs9kBAqQ3n1Fdl8sc
hIPI023JEly0HpJ5p1hIena5aLDsH4L75xubX5D+8iwkZGvlMTr0j+vzGwvR
0b6gjHaD9B2pyL5jWXwkT4h3dQguZUAy0OSjPskVCYdFuNPxDPQHST1axUf8
yaLo5XuSQ75OlX79Q/DQXakjlEAjfvCSeqKO5JZy1TXc3KdM6Devl1CPY8HQ
Kyjeg/hD5nXfVqMZcr7XS3uZFhtL1pnse0z8xDrFeOK/LSzEtjzap5fAhsfc
gSS1TVwU+NTp5J9mQXtvefTHYTa+DS7IXq9B5gzmJCz1YYEqqfugfw4H9Q5p
Qf7keVL3I3oyOR+cJbkuh5y3TlA98e/8GlfltRLk/ixuWIA1uX+Hbt3Pf/dL
5KzlHCPzPAocqt9N5gm4n7DxCZnn9oC6Qg2Z/6WK2V1zMr9M4pGpf/OXKPQX
dJL3pb8/YupK3rfIouR2LXnfootd3WyCT9GyD+OzC5mojD6v8Q+fCN7MBQkE
T7/9nSU/xRhYv+DwpX94+n5PlW4m+PssfpZvS/A/e3tA6SbB38lBVeEu2dfF
OvnjDWRfqVyTR6/IvoxdZqrCyH5d3Vd+V2MNYnX0/bkpZL+8X/JsOgkfxrcU
S3kTPpzaL+G9lvDBw+ij+mPCH7fPEh+6CX8qDL75pRP+uM1+PnWK8C2kfJm3
MeFb0djH5undQyi95bUtnfBzRss0up7ws16+9ZYv4eeksL/XDOHzozcGv+dT
WtBkYvo6mfD5xetq0VnC/97CrqfH7ZowG5o/IL+Ehfa/doebiF76+c2MZdUa
ULLh04ljBC/Z7nv1V4i+9ur2iKYTfYUf36G+luhrrGJEr47oUTGBxyCe6FHP
Rt9ak+hRcq3RvBSiX76ez3mHiX47eFXb6US/R8JPZG8hehe7EiieklaMx3MX
aXQSvVNOOh/aSvxhXFXxj7ZCPuF/xiof4g/h81p2/yJ+krHAOzrcNhsxlBx+
GvGTJD3Za8HEf1qP7Ul7/89/9p134Sf+46dbn7uI+NWeAysvSRC/kvOkvPxC
/GptZLG4xVgLlsXkrCrLfw8eE+u6tUJUCBds4InfR8E3LWeJ4pAM+MQ/6TXc
R0Wojuat0w0U7GmbsfpSl42KuuSF7olUrFxt/avBsRWL1t5cuywnH4sVgoeH
yF5vB+ze1cbXhu1P5slGOpfg90sRbjPJH8vTfO+YUNqQ8HXKxuh7GX4vMLi9
YikdcSsVOShpR+KbtteHZaogHhWcaFBAx+8fxpzCjx1YG/wo4erHWhRcmSP/
8hIDyluszT7+7sT7pGh1m28NEH/ocHzRTiayHkVRL+/uxtidfJ0btU1QbTIv
9DZgoSDtx67TdT1oD9NcqrKfAl7m9OY0Eza8zbYlnHDuwzJF33TLVe2YU/Mu
Z80xDn5falg+f8UAHl/7yFJZ1oWXMr4+72OGEJluXXvbYxBWFy/LDm/uRe16
U+PS3mE8TR1bUnKEijMDHpeTLw1Av9fMYHzjKK6szxQP3kJ4flF4Va4OFQU7
LA73ruTieOtd/9RxGqSO+VHuHKBhnBk98n01FyfPV2c5v6KTPJd2fcCTDiHP
+H0/SN9xMFKO0rBkoOEqxyQwgIHrwZEF1QokFzUGrJnHIf4Wnd3f5cvEi46J
+ftIDpmlPJORusBEo7/oxklHFsyr9FJukF7mUVGbdnaUCfXX9X7bpNi4OFr/
2Zj4g1M8a3efFQsl07cnmgvYmF8r7ulH/ER7H9e5/AELo40vamyUOXjXbbpw
jSYXAnWNuwrKWCic9R6ZvsBBasifZ2u0uFhWzTl9u4n0zJdbtBrDObh6QXrD
JfL88/cOxyJyXnuV0OZZcl4sYeLdv/NL/KJiR8j9V8Pm8caQ+31pjJ//7k8+
evaD4k4WJjVi5C1Ij7I/brnBn8wjUh4ylUPmdz5+RbeAzO+42MvXhMy/Qrnv
9g7yvqJ/PW10D7JgrNf06ua/Htqf67Od4DN/tdyy7X5MND9YeNuG4COjtCbA
j+Cp2vSoa5LgudXxoFMtwVPV4kh6FcHf6tGfCP8LdIxc3xU9QfBXuGN/znWC
huIDRXUl9jT8bDmqMUn21eE0PbR+Kw0Gd/5al5D+00TbJTlI9utu7jdh4UxF
xuxdVszlATT+bX5fqDQKi6DZ5cKeg/hz+LTFe51ePE+yPXepbxhFo0sl+wjf
TKM26r9d3oWfrxbw7Hg0BL9EqSKHo32YszRg+YRUO2QMj25tIPz0aW6Rzqnv
gewGXvNzdhRIfuPkxWxngy99vWThnm4ceX+5LLO+Cfkxz/ztDVlY+PZMxJ0/
nTB+naE870cD+G4eXHyf6OUX5+kCq4YO+PyZNPX+VIst38dlFnkzoHX7nEg6
0eOy5k8bh9dWIT5cVi2C6PHIqPOTNKLf5Qu8o7LGysA1Mqs7SvRbe3IV125R
GxZKJN2QOV6Cq2vPnlUm+XWTxdMZ64OtiEmRN3qXn48LHwLTtwvSsE63p+gj
8ZP4vVZHwhqyofLY4FUW8ZPNDo6+bcR/BM9OzdMOzcBIV7v8MeI/J37a7fQk
fvXgnY7Tt8L3CKcs4TcifhXqeWHtrT8tYC0oEBPekIYLA67XFi+nQvVXx3+z
zhTkTnbFpI1m4ORey1t2TlRYL3139FE/BR8HtX0P7sgh35eoxs3ZVBxtzSuI
8mxFqn9L3KV9BeCslJEeWUXDD9P83yvk2qAhpZwho/ABgrKu+u8f09DQb28z
Z7IN0zLLVi5yLYe9WnFtgBLJ9c4WYpc57bBRcJPUzK5Co/JWr+EO8l0U1/8b
NtuB8Gvl5ep+dThe/8npwBMGQornyRzS6UJqYbDkn/JP2FQk4fPUm4kSexn7
mZhudKiO+ndta4bSHtW5BedZaPrvZsqEZC+uXDqk7samYMdUe83xa2yYTkW1
8Fb04Zhqko9lVTsy6427+d5yYLtsteLLmwMYKv0jEdzeBamRtlPnWEOIyrt2
UD99EEsb9OYNCvdhKY+BSbfGCFJeGBlKkj3MVXp9U0VrEJNxinZ9kaNYn/jH
WdSXhoh7Tg1K0VTwSC/T3Uj6iCT36vc5GnREZUmssv5Ag31V/ZWjpL/MHJ/d
aD1Ex+mldf1xNDrG7Ose3pAj+jL/dSwomoGnPxRMhqYYWPGr7ZQ3yRVGycNP
HDYzIS99+vB+kl9iWO1ia0nPOtc0R/FPDRMuF4bW5NFZCJxwkD+vykVUTegp
3W0srBjR3Ls/mY2+uZu0thF/6G8+6dibyIK6Ye4TXisO+C/pBkQSP5Ew+eks
/oOFK/7nju2s5KD7U3W50WYuLlS/mAhaw8bEuYTkHQJDiBE622amzcVllY7M
PhU28nt1hb/LDWE4KPbYS/JcK/S3w2NyvqylTeA0Ob+lxnqPOXnecaDq81ly
f+tCdf52cv88Z9/3W8n9DYNHM069ZeGd1fKMITJP/siSgigyj/HvcpN+Mr9Q
1d7HB9+x8crqypgpmX/xx8bMh7VMKFt/cUtjsGBXZv7Og7yv97HqmpXaTDyw
viwb9puJWX/7iwoEn7L1joy9DxkIs4l/ozXNwC2/KtkrBM/AorLb+sN0TATd
SZZgkD0csp4JJfiHZEgZbtGkQ2bPrbW7y2iIm9KpciX7MrlbuQV+NBiqaj8R
iqHCdFR6ySay35iehVPupH86f2lND9AeREPAkdTiu6NQlvm+KDBjEMssqudY
L+uD5O41nq+1RvCUL6SOFjIAoyfvp853dyGgfXpqLmcIo61fqCZVfQi84Wqv
UdcOU5OKubFJHET3qcteWN0LOfbfXdUjFOy7OnhV4Trp/cpTM7ZPujFHIq1u
fEczpuZZ/nB2Z6En5k6rol4XvrxwLdKo+4S1RR/l+y8zkRdyKWohTyf2TzTn
2gfUwfVjxVqXpwwkuG0TSR9qh92OJQIe+VVICskpqOqkY3yX12PRn22opdv0
l58th3+YYdhWZTo2/lnTriLfhv2+34VzlD8g7hxFy/MJDRz/GrGHF1rhLBxv
F+pQgAIh/5UvpGjQSBG67TJAwZxcK1+aVQ5s8ufHVBM/qb++41H4UQrkF3bM
vfMtA/dxN6+I+E/uu/lBU8SvfBbszlyunIaxe3Y1dsSvmNvvHKEuoqDEL9J6
9Foa4t+8jMhdTcWWWO2H1R4UrI730Lton4mC1m0mbqeocO3LWBo1RnwyZWW/
MSUHxz1XLNlSQXzv48OOmPBWaJgPxgXMLcRfx1enAlRoON86811hWxuurns0
Jfv3Azqk04wC02hQcmGGb5Bsx7E7ia9Kv5SDbrX22L4ddLgq3/AfWNaBKvng
lsj91bjsGVF4c4qOXn0L9WNanWjlycs4aViPauXIh4/KGdhzY4ry07cLoxs+
GN9LakQMLczH9Q0TNs3+EnFskseWRJ+/96kZneueSM4msJAgKlHW5t0LbXGe
rSrBrQjYOkiqFxtrtkpobVfqh8wXWj+ffwcGLLf3Z/3gIEwpRUSBZxCxcZSd
oknd0NcU7fymNwya+nDypslBBFQWPs+c04+tNy58q38wgrRKDjVsgorsMRlf
StEgzoot7c/+PQpJy+/6xwtouJqrtmZ0horuzZ9qY0kfSYyyak+/TMfzn4we
UxU6KgXiVKZJf2mN2C2jpMlADt+WseuODIjNy99nRHKCjNuJY3tJruAkCXfY
k1wh4n6q61+uMNpTLFN6m4lXvw0/lQazkBOzbqU06VmL/xMLd5ZlQdGpMWyj
NxubV7UcClXnImNwewz3FfGlfMa87O0cDFYVRHgTf9i/2rFWVIAN3WUehfxf
OKTf3nHqJH5SXq774MsBNtSijr4NPjWEWfYoI0aHi6nFZnunQ9iAW9ljqewh
FBjaXUjW5cJL/qIkO4aNjYzzfVmNQ/C5FejCp8dF877udetvkZw3e//SaXI+
wT447B05P573rD/Ano3bo967LrgOwZXf3+gpuf+u1TeV+YJsXJDvno34ysHZ
u3e7+sg89ZRcARGyz8Z8o+HQHWRP6Te0r5L5X8peZETJsbD+0d6wpT5sdKfM
7LpL3rd+6Pm+9XeYMJcO/sAbysK1518d1xF80hvm+dCHGKgfvJLY58/Esp1m
U04Ez8dOCnaDWgwEbjbTNDzEQPX5WCNzgr+JJeVGhi8dgXdkH19VJ3lZInFg
Aclp1TsTftkW0bAnp6mLn/Slw18eSb8l+3UMfV04/ZMK3gUbPAXLBmGtMe0g
zcPFat4dc25PDUJNi65NW9SPoJGAh+KPRhDIV37SbO4gLis/3nA1vRssV/m6
b4bD2K5T2nhMrR9KW3y3adzogMjy2NLHk6SvP/hmuvhKLyKMF/939XYr3lXM
CeFWsOHS8JEbOtKNG/VWt4+3NiNywMS6lHwPEoLSFDWuduEi791SSnYjCopO
v0x7y0T/7Le5qjqd0Ina6Sa1ox5Zs9lTkZUMKJZW0bXEOzAooa+e5VSNFWv9
ZjdM0zE5InVMjeRC0UW2Z+smysGYvGxbakbHNbPlPMLb2+B5NF1hM28pdAT1
fnan03DPseyGNZlPPqI30lOwEDtGMs7kqNLgNPGf6Y8fFFQlh1j09uYg/5OD
uU4lFd+2yY41e1LQ7H8pKf9IJmSakjdsdKXintuijJzFFNz6u5KVezMNXgv+
u2y1hgq7b/6rXJdTkKC/zlhgIA0/Apse664j9zwY0lsaREHaBwOetpZMuC+y
2fjYi4qGWu5mH75WRPvV/44/nQs7k/ighBYqxhK3hAgktuKmb0yMV1khpD98
wyeSs1cbapzWO96GnuCSeSIXS8H7PWzTxVoa3C8oBi/e3o7Nm+W8HK5VYL6j
UGPZMTqsvVVm6sw6sGLAqiBuYQ1OcgoCdkky0P9RIDPdsxP2aw58iBL9iMMf
H3ukchlQsdskJFrVhXBlgcKGxM/Yn7O3+GM3E92b+jaPG/TAbasjf/rRFnzO
TM9OJnmkImDhq9y+XjTeHLr6UKsNeooCrwYWciBf48D59rwfX+Nt/tB2dMJj
L9U/02QISbyq4lNbB3G99Lvd2agepMt85O19NAybq8ruM1uo+O+q6m2dReT7
uYr1dhfPKBrWHTcq0aGhSn9CUVOJCv9Dc8ZSSb8wnRDZO/WXhinVuOnM0zTM
fk5u2LSGi4SHMxuMq+lA0vAHqyQ6hD31FuXLcsHz5b9LkSEMOM7zj/SjMcD7
TWFSnuSE6vzoTSZbmdBQnM/u/4+FI9PbK51JrihJjfPp+8JEvP1osbIMG2de
6fLtIT3L1oObvoDo9mbgW1GflRw0/OwL7tHg4kN883wzITZUWc2ch9854Iia
b2ESf9h08nyLpS8bZ2Xy38rGD8H5e/BzB+IzdkNumks+spF5MOyr5ephpDzZ
Ka2kz8WnMgmt0Rk2FjlVNn06OwzBiwrbzQ248Lvnd//qfxx0PT9bcD5kGMeS
rs1NJs/b3VbXbvnNRnbcKyvbc8M4ox+mY0mei6T8WD1D7q+uPHakes0wtBJM
/dTJ/aPrM95V+7GxafP+ysDnQ3jfk2roQuYZO/g7TUKYDU3qo1VB4xz8eTPR
/5XM/0p5Y8h0GAv960xr46Q4kKwpG2OR9y02FzRY950JbcO4lQNybET6Hz93
iODzTEJMvHMbE2ZvG+/MEWaB8+FxnTvBM/hblMyeMAZuOIXNjLAYeLnXXGQz
wZ+17+GbPXWEp9dSo7Xf0yGY9JpZT/aVtvRl2O+5dDBipPPD3Wh4EOp4woTs
t9xpWiNOnwZN9fQXFDUq5iT9l/+B8GGVS59LjQkVkwJvfM4uG8B/x5f0vl4w
iqIn0qd9tw+iMOVMxqu4Hix30pRuiBuGqn3E8teJ/fiud3UqdF8nRLfRXp8y
H8KLktYNxoxeeFic+zi1hfSba8+1LxPcZ99eZc3Z1gNVce6NzedakPwju2OU
zYLqTLzC9vouuL8sjaQWfMaX2L3w7GeiReSX61bvTlR5GYx4rP0I74SWNvo3
BjZGKyUlWXUgaGl+icTSGnDOdW5ctJqB7TI/Kg6btWPofiHfZFgFOh15N0qc
pGO3lFiS8ak2gPbmcOy1UtBObSl7WE9DiJX+qtykVshMxH3/RSmEiGGTybtt
xMfmPm95vZj4LzVnQ55PLpzV3/IotVLROKOyru4GBYd/72t/158Jpq5weMNF
Ktw37GquW0GBjMP8vU84aTB4w61VW09FjyU7aZM8BSJdyZeZJumYv8VDOn4T
Fe/2nfw5G01B469LvU77s1Bxb98s4zoVj21vRZ5Z0wpd9zDejSJ5WGD14rcP
nYr0cN6HItWtmLivddswqghbJSOPsmxp+HZO8MGVsDYc7HWNefGzFFFyc/Jf
02iQOrr+XotnO644WnpGrq6EUXxP9ZcbdIRuGz16OaADr06b2hrX1aCj9qGD
hzHJt7eyp0tzOmGZbbi96vdHrA8sq/8syYRDFL1acGk3MhuLVnofaoI574DZ
XFEWpkT3n3F92oO3MdpOXxdSsGdt+GYheTYaVKp3S1r24fsnftVbpNeOHfgY
6mXDwdNNy/SeSw/Az6dVgS3fhQFJGTV3omO7DvrgqvBBeFXyXf14pxeCouqH
U3hGcNTRmDZ1n+Cq8LuXIzYI7c0fMicvjOL1boMeY38avA/seWn1hIp4x3kd
hqRf+GTOzJG3pOOL3JcycRYNSYJ5h7+RPsLuczaXlGDg4n+LdHjViG/dHTr0
Qp6Lp5G0A8N0BpZrudZs82LCjWIuqU9ywpVHj0w6XjHBXqvOh2SSO1Qe874g
ucLd5GOVlh0L9+N9GB7ED8b37O/KIz1LNtu3wf0XC9cXMA9dayQ95FBf/TGi
95xHYudpgWz85yAT+/XdEC6UNhdEEH+oWGR5W3acDX7q1RqrI8N4eKq1X5L4
zJHfqh5SphzctxSLjmcNI7qzRGoOuOi0fbpKwpuDCX4HWYU1I3irP7/pX0/c
uePnwoRgDmxmLu3fLzeCJK5z017iG54eV0eiyXn+5Ppya3L+8pA/S4ScT3f9
KHCV5Ko7q3mk2znDEI27q7iI3D85HBC8d5KNQ6YsxmeXYWw6Mid2HZlnXVjW
6IObbBQMPnu9PX0IdX8O+seS+V9XhS0//pv0Ytbfm6BwEFnxiO8SeV9GSxrP
WwcWXAt5XX43sZFUtniygeDDM74nsCCRiYoDISv901kQ3tqRk0fwPPS5J12Y
5F5B2+Lt332ZCD8yfeDf7xs1ltplP5RiYE1U4ycdbZKXA7aEFJF93WfE/omx
puNd0bY6cGm4r9Buu5jk6k+p1QqR10lOO9TM3vSCivXdISxbwocHn/i8Ex5T
kSdksaVWahBtJ8wZ3/1GsWLBj/fudwdho6q2bM/LXqyllR1azzcCI8OT4h82
DEBSp1LfX7sLU6HcwxEJQ6S3XVhXbtOHJq8393YtbAfz/oNDBo4cHPZcVWr2
uofkkZKHjiSn1LbcC7bYyIb+/X6rdsluKC5c0z57pglJBufGL69g4YKO3uqX
xZ0oUVwomC3WgHtWtw0TpJnYFP3N/3BwB/qe2snX99Wge3rkcIwpAxskJzLY
3iSH7CwQ1FerxG4PT+2AW3Tw056mz7nThh9CZtz9C8sw+eAvWpg0BI2/Ozpd
R/LPyhCxkylF6DAfF3xtT4Ppr+erXqxtRYYY7+AVxTwYVxxzLmJSIdCSlRH5
iALP10GHtU5moalNLiIjiArbolOUHYoUxDMtw4/sS4daCE/HUk0qzio/9Nyq
RUFpQN3re9np4ImP0uMYUuF2SSn8VjIFl05P9OsxsyAQdqtm310qFjys8nHT
JfOELdNdWZOHY1mNrytIjwpViTqVzmpFC+NX9yqvYvy8pnueco6Gz8GXXk1n
tqGmY3XKuaAyVA+YH5MguUT18erQe6/bscSEVnivoRKqptMerEQ6VPu9x+eU
dEC5qW5B5ZNazJEOCvhzlgE7/00O7/52Yl2d+D676QY4DkefFrJm4k5RQy/f
mW4cbDzSnDHZhLnOgWvWWrNw8sGdPJl5vdDx0gy+VUDBfWl6sNE5NlKuqz1W
quyDRm3QAquadmw0pfN2vuUg7tnWs+HvBuChNj7mvqIb1Va8R0TnDKOto9Ux
t2cQVTuUjjx63Qdn+6XH7riN4E57x6adX6nQzOYP/5U+iGn6PZlvP0bxuPRR
ZA/Jm2bB61YriNJgX1ixboz0C+X7XilL4un4TPlPcu9pOn6PNZq2kj5Su+XE
vKNeDCjcs+dPrWCgd+HhJbmKxPf2Xco9acqE/9rcu2uWslAe/LLsGskJ8Zpa
Z7SXsGC0pNGj2pYN5v7H6WKkN/ma7y6cqWehsm7lSFcg6YOdP17t1+LiQsAY
tcuDjSW1lNN375Lv95WHe9YTvefXdiwan8uBjBrfS/HLw+gy+mnlSfzhy8Xd
b5UvcrDz184tgatH4H7v84w86XfCyy2e9VZwEMBfl+6qM4LJFV3L7JeRHuey
oiKE9O/olk4Pa7MR3LfPej1LelN7ReAFyrwh3InwM/6wcwSdbzYrZ/wahd5m
h/mmJD8l/ChlRJLzf8LrT70l50+ZTj14UcXBiMIP0bm6I5B6ppN7eykXBdd1
438Q3/vBm/7uPPG9jPhMpyHiS3FuJ/6r4eVANk7pheHVYbz74BN/i8z/YW5H
+LJLbIglrFI+HDMECcf8/4zJ++73UzXnfGbB43nrjoowDrRvPDjiSfCpudCb
XU3w5UibJGceZuO++HIpTYKnTP/NZFsrJnYuq5F4K0Vwfb7N+SXBP+iVXEqO
LwPtCiddOj8xULLvw+8esq8+XrMtTq/p8POfTPH0omObTtKSX2S/6iHZCj8b
aegaGD7yU5L4mcBI49LVXMixNYeOkL5ppdtcOL90EBkyb8PN/44i/cieEwfp
g/iidvGoemkfuDXBida+I0jk23+Gv3AAcV2PnRLUuvFA4EGAMf8w4qb+1Lc2
9yHJtklr8UA74vfU+rplcjDePW2YINQLAQ7loUUTBQZfL/L8R3Dx5lPbJXWJ
fPf3yR2aWtSMgig/a64tCwoHb6ZeX9QFu5ydWRGSn3D77qm9v/YzkbqufU1A
dQd4VPPErfNrYS1/z2DSkwGXEzekOO/aYTvMvCjMqsTkoM4+gVQ65gS5vzlR
0IY30ofX1jwuQ2LR15tx8+gQUlf3VR9tRbURt+nYk2LssdtQku5Bw5JPqskz
hq24d0x5VTYrD62+6vITU6SXe31t1nhPwaF7YedLZ7OgkznB4dyjYkV5sS90
KMjoGD/iWJ8Os+9Z7DmkF8nt70y4aUrB9Y7FdW+VMhDulftxsQXpiX7tg8/K
KOAT/2Uw6J+NjvG8Ez3PyD0pZmFn9rfiVYNPXtGtfGiqPX52bhENA+NNRvWL
2lCwOC9T61QJRP0VRP2DafARSh8OG2hDuYN38deV5dh1I5EvfxUdpo/NmFI9
7aj1qAysvlkFHuczq0Ma6Xix6U/ahr8dELt0ermTfx26f3Af1z1h4EV8yZDq
zi58X2ipeZS/EXnfTloZBjNRUsPpTK/rxmuTjN3hj5ox/9bWE5N3Wejk3DL6
4N6LmAUS+3p9WrHK5t77P4VsXJRgJV416Yfe79JAhcQODL9K2VU4fwiGXa5Z
ktKDhO8+bWmSPeAt+jS+zXUYL1UMjl/91wdS026yPvej0V2YtnZoBAkNTTuU
DGl4ti2iY58GFQv/CrfUkr7QqKT7bJs4HdOf+h8euE/D+2o3txrSL/Ju3eHx
nKIjMuLQy2/TdBT67ub2yRGdrnfe1tDBQO6SrocNR8j3L8rfZWI9F+DXeJ+X
wUR99O3D4WUsXP3kwPeD5ITqAj+XJUEsvFEStmULc9ArrVKeR3oTn5eg+qft
bOyKwGg96RsNB3KxjviP/KL1fN0TbLQY+ab+R/IM39D3Dnmi95pzS3MOhnBA
iVj+8B7JS7dEbtycQ/KSfujdxP4J0j9FqlqXm4+gSceqfozo6+mt2O+/tg9h
4X3ntrXHRnDG6VjP055RBOZFLmnyHsKbu+/3lnuNYJfPuK5ZFdHj4Q06324N
YYadtdeb6NA1/J50bPEoBujLaumXh7DnyCkTqYsjSJ37KPtT5Siqbg80nTEb
ws553wfHyf0bBdvmB3WPItvL5u/LXxxo/DdZcsBiBCFehbu3zo5iyaPDuYIR
HKxS4iyXVRjB2iDuZfa/v8P6JO/KJj034/qmJ16k5zrElS0wI++77JnGpmgr
NjpPbmtMtxmC709GpzXBJ4v3Iied9NAlK6NWrCc9tMlm1JxJ8BRauvLNQAET
hwZ+R7xuZEF52ZcnMqpcxFz+WuE+yMBW79fC6eeZGGX4dyuQnLYjS2tEbA4D
i8smHT7z/fu9kuvOJSSnRZweyX8lTYe92uCdxuc0BO4/v3uK8EElc8Zx93Ya
VLTPHz5FdFisVLNvivDnxjrrn4v1qejdrrUuarwf7mcPek7+HMHLbN6EFRsG
cfdaLO8p9GCGM/3KynsYXlZHZVXt+pHr+ut8Qm0HxqR3MPuEh3DP6X1m5/Ve
jMgIhzyMacVs31KNubVsyE91hAx1diP785++OVnNyJm2tEl8ykLIHh79bIcu
eIuo73fRbUSQ7EujkjtM/Do/Bc7iTrStLNyj/KYO01XhBoteMbAkRUt7G7Md
1w8VPxZMqkKh3JPwt210nBt0+M+J0waN+SZWT3XLIS4VJDK6lo5yr2XuVsJt
eMSa2nMxtgRfUpFTFU6D53z5R68cW6F5bN++P1n5GKhcF/pJgIYX+1bUp1RT
oKYzYMPzIhufWp6LnnxF/Cq9yPC1BQU7pjOPWZtnQLP+8a+vVlQkPRw+03KA
Ap44PcGhdxnA7f5HLFsqruV5eS7uoiChUlsoWzoHUokGpbvSqQjh5iYtu9CK
obz1+gJ2BdD+vaXHVIqG6Os5B3hU2hDg8+z7vDMf4Hjs7arXZG8H7/TO+yDQ
DsGCX38fFpXD9vJyQzVDOpp2afEPiXZg/IKr7VbLajyWDXvvPkmHz4rt/1lt
68RlGZtvFefqsXWJhv+hBgZ6Fr2NuP68C5p/5JTWKH1Gopzl34YyJjR/3Vda
rtQDL4G4QaftLXCKFEho7mCh9KV8kgy7F0VdV+J+bm/D2zV6Mv6CHLgK9h2o
buxHfMOvdR3Rnbj69t6k5rEhxBZY/LjvNggp9QxpfrVeeN3ZuOVX1zCMLxhJ
PAmn4sO0Bc2RdxDVhYc2aJwaBb2D3rw5lIb93E6566nE36tnY4JIXxA2unw4
4xwd6dGx6k+JX39ZEslTQPpF0Q4LnzO2DKyor3p26x4DF0IXb+Ij3/HHGb9X
OBsxwVppl9a+iAXL+4OltuS7v0F9N+8nWdKPlms96/BmI+i6zqdwkhOKju+P
0f9LevPiz02NHcSH5Hxjgkk+oZVpWHjVs2FZ8HHhPqlhGKZrP1qnT3x1Kqc1
3J8D0bDIp1YyI2DKrbc4ofnv93URvi78Q+ilfdE02T2CshXdLjsniV8JpDoX
XRnC4Gb9p8cvjeCT5r0nYhWjWMz/Qy6gZQi/nYP1k++RnDbn8nuJ2FHwOj1c
kMRL/NHjyJIlr0fweeWGp0U3RnH0x5Kg7BXDaBqvDxVLJr43P0PszZVRRKcJ
hynyDUNAcCQ+kpwPP/TKQJic3xDKs72mbQjreqILyu+PoJRVrvHyySj2XPx7
Pff6EOyX5bYKXSbzn1S17yodxY5QMcVYoteKMvW9dntHcEj3+WAQycO3ghv6
Ht3gIE9qIvSNLMl125JfGhLcvHe7OART2NjwMP4ba+Mwzsl9DnEi+Ow5MaTu
soj0VrWON6s5HFzza+gpJ3iuaOvISlBhwf76sejtoWyUJjaubiD3WPno/u2x
YOK24CFRU0mS74avFDz+93fPC34rWc4kn9n13P/1mvRNttgGC7LfZCPN4vbL
dEwoucsHqtDRYjnNO0P48GSrmTf/Axp6svhPsz9QoXHwcG0F4U/x9vsJ70jf
XLFjiIdC+uaNzA/3p//1zZwLYswrg3DiDFfsP9SLz+V/6t+PDmPqZOateHY/
qvQawvnLO3FzYNG7dxeHMG4uPdv1pxd1Lm7si+fa4C4mqOlFfHrnlZvBB7b0
gPvyfWjMqRZoBOckC7JY0BWcuXItswtJd0tk009/hsjJM+IejUz8Wfd7zsze
Tngapuwxf12P+UG1YS7ku3tGJuCcn3QHFHbw9F3yrUaC5i2d33/pWMOuOHdF
vB3JwWYZ55jlcPitpuKxnY6M9LSAKe02cLpUfx9I/4C/h3Y0JCTScP3Mut0O
fiSnnZ86ePtuAc779XktlyW9/OD8LTUDFJQLjo/esc7BxFHWBH8OFWWfZQZ2
H6LgtIdIoRwlAw/7eiorHKjI/iX4qvkMBbGHl+zjU8vESKnoDaNjVIwYFJbY
fyc+JuV0s7E+B7Zv5xkdL6fC/tXeBFZUK+Ji6m8cUC5EZM6S2K+biK96NM15
a9MGdZUydXf9UpxU4n3YVESDgtqWjFKDdqzWChkIOVqB7O5NkV8Okff9vX7D
150daFmdoxYoXoOS76cMuKvJ/vkTxDeEdyKUZX829eRHnEwxbafOMjB7ZyJX
bqoLOc3vkjYpNWHqp8mHtFnSu2wFdL3u96DNoUlPfLoFLo82X7i0hg1R0VPG
Okf6UH6OM2q4sh3jpwLVLF1IL7rm2n//4AB84uIjZCO74B5q9O5e3RAsR1zH
TCsGsatO5cwz6z5krCxL2Ez60LD5jOL5ESqkcve5GCYPQu4YQ+Lql1GUa0ac
P9RFw8VdA2vTlGjwa0gL20P6wkq6ifCrGjpUvPXKgt7RYb61SKxMlotOF1HO
3gIGGsqT2B7qTOz6EnTCjOQu1bRDlrtTmBgZl33bl8eCayvLn0JyV7uj8GjC
ExZSNmXe+7SZg8oaydNbif+M7/J5++AqG/O0GqZ5E4bwNyPzxQXSm66tKz+Q
uJf4la7f3KrpYeSL1FmYg4vzenF7JniGsPa9hme91Qj4F+qKzEyP4lnXFSrP
/SGkXO2IoviTfvfUu14ifxROI4luZ0lfaVq3KjshYQTOWp93PQ4cRbWX3Fs+
kud2PFk4oV45gpJnn8BxGIWEtHnry8fDqDdc//Jk+wg0zKRj3I3J/bGvD6ak
DOOR0XRrWS/JUUHLtgzrjuK8hfiuF0+HIWhzvF+kg9xvcIAVvnUUHxq0c3ac
HMZJd8GPsVUjoL1J+MRjP4pZw9HiVuFhtF+ZdKpLHIHv7W/swmujOLf37l++
p0N4IsrWCwgYwdm2bwkB2aPI/YtPcotJf7598lu39Qj+5iWs6yP+7KQ/X9zz
EAdasz0WuQIjEHLTXRVJ8FHi0y7OD2ej7MO9VbKFQ+h/5b+3jOC5XlGtJe0t
C6/3T0457OQgrVfuwH2C/5qz1avXFjFRsM1nR0oTC4Lnc2bWkZyWd9NHZH0d
A2vERK6ZmZM+ap/4J57s100osEyonY7nzAMmaRV0TOV5GywlObzhnFvvETYN
7ldXBKtvoyFZU3LnK8KfpCch/kl/qIh3lX/2vX4Qj2xjn6zm44I/QfrlzdZB
uGzI3RcT3ocIYwc+r+Mj8F8zLFV4ZQDFqiuKF9d0oTT12/SGwSGwGtNMnvj3
oWlsIMlmZzsUQ3yKx0g/b7roI5iW2oMnHxyuZylQMBv2JYulzsaFiTjVc0Ld
KP1PaPd7myawV2i0CgixoB1vKnP9WSf6rtxOOfX+IzRkJI4pCTDh9JZieedw
B0JmAs8276+Bi2jWqt0bGUhLsPk5btkOB1rX0pMxFfD57rwszpXklneH3MKc
26C8qNcRp0ohU6pS0V9Fgw73Tc+j2FbIh8pcrfQuRHDIvPILejS4cVLblk9T
cJz3o9WDhbnoVuO7FlpLxXHnz+wxTwpGZ6uYcc6Z+FtRamPsSgV/9s6XfNco
cLZl3E7OycS5U/6vyjyo4OV98PDHolZsXrzt4aBXLhI9/YvfU6jgcz3KL5bR
ii8Rd3xVFhZhx6urC7rMaBijtDbV+rWBccOxyr+yFNGdCo27Omnk+zjf8sC5
dijfWnTn5n+VUF+a+H3pdTqyQt3zMkI7cDzlftX+oRrU9jBHuWYMLPN8xzve
2olh0/6UumMNyFmdabSI6F5Z4FgOZ1c3LOY/zPxY1QSnRL06J32i+w8tI8p/
enBk5Q4B1TQKsuTiooVd2dAvEPL60tuHyBOd4rZj7egIu/PCoJADAbNzGru/
DCB+cEVkQ2g3xpd4uFuqDOOii+rz1cupiLSPClK50I+JZs0LwkSv5Qtytd11
abh8dmHuPmUqzo9c5s0k+d9xQubK63V0PHa55JCUSkPq2UW8CtJcZLe9jOuV
ZkDM7rOfjwHpGX0+Tz+TfuFWnRKfIsVEoXCP9HsKE5YKcwTubSTni8Vd+1ey
MEL5lnKFzK0VFPrOjnz3S9IOOJiLseGvV/b2BelVTXZql+Zqc6G9yaaMNocD
+rWJMOdLwzAZEhM9S3pT0mjd0doWDgpm+31dDEdgHpvcniREetYl00aXG0Pg
H89yGCd5ZqeUrW3Ch1HIqFz8WUNy22KLaY5ECvGZ0U1pX3xI7rr0DCeeDCPk
69int8SXpK9z+SWIL+kbbPb68nMYuvURPUETI8h5n6GeID6Kwy9r6v5TI/eC
Nu8u3yi8bfVOCvGMgsf9spm0yQim3fn1jYVGscmMdmkJ6UdifsytcZtGkFXR
Ynxm0Sh0DVb2cmZHcFWwh2LxZxjRM7PtO8m54/9XcObRVH19GC8kIhpImRpI
CEnGBk8ToTL0K1EqJEkaqVRSNAtRCCFTKJISUaYyJGSeCXd0h3MjFZLy7vdP
11rnnL3vs5/v53PXXffuX4GpHEXmuOuEVwoP0t1qmfZdfDD3bZ0IAIXhz1d0
6eo8ZIm/criYw8eAtswcj/MUnpnKWEuEcwlvGX1vv0L6+fyKVSffUaD/TlTW
GSD7aCpn0LuZj+bGmF3PxQVIO3E67sw8Dqp6jxn8DefhI1cu7wvZzykJm6Lx
5cRPl+3ZLrGAi+4R3fRj///+W3K93zUdNo4GSfWeuDMI0TklnpXk/VLZ2bJy
32oWut/tUM35zsL6+D1i0winpZ6lrRLXZyLEw6XvxT4mGhN5WSYrBIjZo0Db
sY6BwO0pH2fW0nH24sbZoSQ/ix2OtO3dToeBxjFnP0sapsySM2QVyRzUWePY
o0VDSMTJJeWlfTjoJzEUT+cja+V0vofEAOZKfq83burGkJtxYvl2HuriEutG
pvfhusU9dq5eBxb4quZtauOg6G7NOVPlXqw9uLk3k9sCn2063TsDBnHKLaRx
w4luFJ+OmFY33giLItEtk7ZsuHM6fsd/60SZS6inWGkdOOqvs+dtZeEwTy3q
Z2IH5ozZ9hcZVsPNeMbZB45MvPQT3xkY0I5LG91urLCpwOKOM+tC7jNQbfvh
5/SQNpiI71XjTpbh+KcZL/IZdAw/870YVtoKP3ejngm3IoyaCrz++48O2dxN
qX9kWuH/mJsY8/Et+l+IXj/dQ8PS+gIZsbstmND/0oRfufC5V3VL5iLxx6Uq
Sf0PWvByqnh+rskbaF1OtZq6SsPeoPCCecta8Xq8XilVqQBzb/i/TGHSUO9l
eT2jsRX7Kcnurz1FaLS78sP+EB0VbVkxmiltCN/aHTRm+QHbZeFr+YO8XrRS
XjyhHWVOa97ue10BP3bO25gUBuyfm2s5VXYgOFrXaU9eNeKS9R3VvZn4oapx
6JhiF3R0xmdbHPyCueozhDa7Ee8qTY9ekNaNXLmp/Sn7m+A3NqUw7MvG+4Tm
RbPcemFU9q5X9HAreAKm5/7Xg3jy6cVFb/s+aJ9Rt0gi9xn8Mdvl6Rwuzn1+
v3+L6QBUW+9wpQN78LvyUILpQx6En+4rvXWMhpPjId+LHvRj/fCz1SwjCvMm
qx4OX6WD46p48V88DWdOicVbEP63E17nFu7LwM7Z6zx8tRnw7DON+0F8wXWP
4oHIS0wUMBWCZxIf1iy3dWsjfnHXLj7/cAALHZ/9l1meZWPi092lLToCRNN2
X0y5w0algfb3jYs4ODiW6NOiT7xjdr/X9HuDKGLvTXcu4OLHkSbLt4QTxIqa
d3pe5cBt8d0Lj4gneuhw54kQTrD9peQ/tJOLi/ySb+eO8mGufafQv5MC0/Tq
3JqZPLgmZymfJh5nmP8hbB3xuLBvBR7n03lIrrS2etnNx5bAg9NyN1Do0zjR
uEGDj8V5isdGZxCOuaMwEipM4fTOpuMZdwmfXp9yV1Kj4G43rH6gk/xtrv9w
G+GnhT8GN02ZUGjs69qWXszHzLHQ3uPkuqx6J0XJTRS6VaoidN7wcf6hZt2l
aj5s124+O2cdhS/bJM2Mi/hQEZhxTcP4+Plr6xcbdQqU9Yr4Y22kXy+6loqT
3hMx3128lvSejEWj28opPlrDnBgduTwMvF26trGPD3Ylbf4KYwrhc9XS1Rfw
kD3neOva53wMvZULq/UnXjY/XevkQS7ejSXIjnrxYRn/YEy+iUJdk/rgs3AO
hMzkd71Q5wPNKWs6yHxZLNKal5M4CPs6VVHjHi4qHHQ6DNYJsF478YDPEzZC
dbYkcTdwkD2sEudA9r/rQvEr82gWRjniDKlHxNP2Jrx2IFx99bF6DCOMiUeR
K637hpgYd7UJ36shAFdq26z1oQyMWkz9Z2HLwNmpYKmzKgIsOPC+MzuCjvvT
tWN2Ed/sOdeS+YHkjffO64ruDRpixI7qnhvqx5z7tTGHDlBQLHxwWmHvAF7m
zenw6ezBWGTgZc18Hpz95RX7rvfBpH28J1qmE8F5y3LDdLmwls+5Hh/cC9du
esXDZ624W/Knrr9+EHGXY7bMr+nG1PjeXIPYJli1nuxb+4CNIMkKTcG6LqjL
6l/pr/0CnZkxKh6XWLgwd7Fo7kAHYlMORB6V+Yz/qnsND90iuS/6eu5eXjtc
54fZKohUwo//6PLiNwxcS3N9OudtG/66faFp3P+A/Vm7E8ymM3BX0WurIY30
ifKU3JR1MS7tkLX67UnHVfYuy6RVrVga358guFwAyd0dbZrfaBBZPu4liG9B
8dhK2Yhbb1CSoCxfcZuGh3XjS96ntuDbpz9+rLw3aF7prRscTHrPV2rad+NW
uB9LVc8pKoCOgfuy/J80fBQ56p4uaMUG85enbj8txkP2zba33nSYP58SC//U
BpuP4aLB1R/gqmYa1ifJgE+tJ8Osth1JMltOPbepxMqIj41uhK9PpirFiv7t
wOdtH9M55z/jRLhU7rZYJiZYaVLrnbtgFFu6cJlVPYSfnX1JPWTBY/PyBeyx
bqwWrjpJ5zYhjvPr2KnXbCSvzU/MrezF+brR8jbJNpyPfFf2b3QQeQWhij2f
++CUWfHSMrQTA+M9P8tcuEgaK15RHzAAib7h0SGvXnDucCidER5OTXw81/yW
hkNKqvMD7AZg6n5D6sdTCnYDyx9NfqBjk6r0iKIYHUnebnNqlAVQm//LJJKs
g9G8K3HqKQMiQpLuz4g/bsDSmUP1xIMl4kJD/2OBJ6/77APxi7uOpg1b+lnI
oJWIKosPordtyd9R4iOBT/75yQ+zwdxvou9fysEibbVtq4wEWFeduObHH5Kv
+2KSXSd4UFb9cfL/38v6tiGaLSTg4PAS9WiVbXwY5ziX8IQJdwkEI6rlXLyM
GvxxL5QPp9JU68kUCvlxJ4T513nYsesQvbWej0ThqptPdlIwVT22Op70FT3m
ltECUQqYtcvIjfTVhEZDrz3hGyuaRazwGtJLycIDYp/4yBzVFveTodBSkM/z
2E3h+rTyMytj+TDdJl57YxeFn6m8woXHKOhPKtGciae2iVw59saDwvieXe/8
T1Ownm/hedqH9E9GsLurPXmuL8z3rp4Udgmb3n3qR/xo868FTooU7sc8MBLf
S2HzEolNqVF8jOQ8z5xGeu7Oyy1Wg4YUrNoc1jd84CNa8d06d2PChYnWJ0Qk
KLi99rtZMclHmueya5qRPPj30HZHtvIxh33kMMuMAj+xS53XzsWNgB3vVSL5
+K2czVjymPCet0d8ixAXQnLxI8es+TA5MVarSrz7cd6/5T2yHMyUOFfs+4iH
qbVzn9DI/r+p3mO2S2IQ5XHsKyZ8DlwPGCyuJ++X6Evnm1ETLGxKbI0QMRjE
eQuHs1GrBVDI6X0Zw2XCqsRs0VF/FoZWpFkeWCnAE4mycL+vDMypOeyY0MDA
7mmpDzYS31xyS1ylupsO/qH3L3+sosN3UWnFPuKb+yVhkd1Bw0x2SyfrzgBk
x1fOft9MuFSRucj/yQDkHr/21WrtRXBmbDhXgXhEWw1t6bR+vNZMGM6gOqHW
XuvAvs1FtczLCf3RXlzryFil5dKGjLQ1dbJkfqZ+mkriLOuBl15U3XP9ZpSl
VxU/I978gN6tz7/ZBVZ4Zab2l3rMiA774pHNgtqegxoFSp24ZHv1fAznMw5K
DXI3vWIi7vqu/QcH27F3htfPA68q4fZs9INKB1mnds5/Dv1tMLR4ar9e4SOs
tqZURSgxYCuSbnJ2ehuqnl6r01lVghUFi7oTA+iw5unZaFq2YpeLjtwt7ULk
Tk9drDSNjsNxc2N/vmoBk+Ot0z83D8Nuwnc7Imnwl104vDCvBbGTauaFK/KQ
OL24VTKaBoOxX6GDO1vxc9YvFT/rQnDzP9efEaaj+0NA63oxsn4vsQzPgyUQ
vTj10f0WHZqGkzXfOW04uWNofsL6j5AKTuf8p8rA6+pIt4qf7VjrE13xq78S
+/StvUIHGNBIeCEur9sJocLDv26q1+C3X+FG7RImSko2nruU0AVHg+n2kcsa
UJzxJDizlIX44ON7/m3uQXI4pe/j1YxbkzGehoNsXO1c1HVg8Vcc3Br5syij
DVobDIyFDTn4e33qZ+uafgy7rtUIMe/CrQVZC9dncaHJNezoKB3AJuYJRubW
r1hzxCTU1ZIPnbV5lz5M0WBo8qPpYf0AlLiy0dISAvyU7h948Y8OoxYziaRj
dLjMW7VVa4kA4kam226LMZFlZOhYJcOEw8iP8nXEH6ub93peUmTB8kS4oVoj
CxNGSoa3yHwPDV3k/8iAjbg7/81tfjiIoH9La78RH5lJsztpZkP85PrVLHcH
LmoWh73YZyKAozGvsfswBy+PtZvUypBzN+NxcwYEKGumv+m240JQvv1ShQcf
w04alsXtFDwKk/8KET+O3v776o3XfGTPKNvwzJvw1Z+Vb7RHeeB6fTYY+smH
37WdG07JU9B6vdHXJ4kPC2edYUkd0g8avoLcL4SvMueXVWhR0Jl+UzTQicK5
3alOVvf5KNh9ZtuhCAo3tEQipa4S7rEdsRpwJv73R6kgvZVC9vraA/7k/zrC
N5rnb+WjxCHkSBufQvClsQUmcRQ61cyDXpnwccXv7b7VXRSWiCUXT48inOe+
8pgE8bxrSebKwfHkOdSv9CgFEn6jGoUrnEi/pT9XsVtL7pc2K1XUhcKeg+23
jAkX9k3tac0i69y6d61QLelbxr+bk5OEC2P3M/5znEXOsYiy6rM/fKxzrBk+
MpdCe3F0prw5D50maxhG7/jwcTraaEt6tylPYofFcS6oyZcbcYaPOOuSfw61
FD40lU3uItx79KbQq/uEe+8ESt6UIty1+PMz66GTg5BVrbpvfo8Lv5/BF+YT
TtabJT11ZA8b0T2G9VTVIPx6Bzwz1gjg2TgSeX8dC1khv1fKCbEx6LMxbh3x
TbUN5q6FakwkpmldsjJjYrP68CSf5Ed/ps3yhwoM7E8bcZOKpiMooYDdSvLG
/qIm8luJjuDY5uioaTSIy5wYkFQg8yvXetFJ+gBSBrYYjRR9RXv2fstpl8j6
m0RuzvPuR4iI5unAN13YsvmEVXYnF6Y9c8ZZe7+i7mnhHDGJdixbXeZccoAD
vWWWF5TO9cDubIJMbHkzXCVtzE7PGkRqQferozVdiLCfoWf/vgFq0U1NQX0s
yAYIPTGw78SgTObjWS9qMHkdEb86mTg+11UsQLYDhV7WCl/sqnD83BuvsDHC
Y2J3x9NE2vHsR7XdeNxH5Fs+mPvFiAHtnCN6NovbEBIVNjrwrwRuo+ea4qPo
8Dk6ua/VuRWdRrdtFZoL4XhVo7pkDh1MuzXqNytasNvIqnnyQR6eJG/PZiTT
oKsz42tqeQsCR68OMIPzoPGfv4Q5ef1lwn3HIHKdc5YJcQsbC+HjoVwZRK7j
MHLmQj+5b077iEOdUCmC2W6Gwo/oyBkzmJEo2o5UtYHHrSkfwWpumqFrwsDH
b6W6LxZ1IGn5zEgb5yqsT5FVuTrBQKjPxsTgA51QbEitDKuqQbdCm4ZyHxOc
hyqM/rYuOK2lvzRmNGC92hyPWDYL0Weiae03e3D42Grr7IFm0C/Yb1+9YBC2
jdiz5tRXJPMHjYPXtKPFdYylfJKDXuVxMwPih8VKSiee8rrge+0/47BvXNik
RNnJjw2gJunV6zaRPqS3WalKP+LD+7ngfP1qOo4VVKb6LKEhXOFi4jWSk2vS
uxvL9RnwNhGPu11GR3aPMffoUgGM6Q8/TZD8Sa1z9w+8wIT1T60jySsEcHe5
6hznwoLvvByuCdh4Ne9J5iLij+8u8IceBrKhZk+ffUOag4bUDtkc4o/1QkWX
NVIHUaY0JlY3QLx3xTx5K+IvckHX3S6+5UDfaZWWpQHhjPfBdWzyPF5ct9ft
mVw4GX49UHWL8NjxWp0T2RRWZqRxtt3n4cwqVyqhmY/CGxJ771hQ8LOuZGmR
PuBv+BE9soDwj/Obs8UUHzcvUlcvSFIwtj/sXWRHIScvdOJjPPHRhu9RHMIp
t32yfoYHUDhblzB69QDpg9FlF56IClDgmjFPnXCq5KHnS19p89FiIGY1bEH6
/r6Gm9l7Cv5Wj27/kSY9Ed9Dm+kiAMfuhrJ1OYUXd+R8dGfwseCnweQSa9IH
Pl0XpxVTEHf1MM+YzUeve0i+9FwBVFU36qVkUHiz5c6YMOFFbUWNhVaZFLbt
MRbKvUWBFjEx+tiejwv3E45IL6HwKNxT2cyBQoKYX++fCD7Ko47eX+PNh5vC
OZtEZbI+9b+pXnQ+isJHK+Of8ZB2s2nF0R7Cl+XJf9+vJ/0/63rr52oujp40
qT5BvNZ65Zlp55IosI5oy9m0cyA181VgOPgY9xk6sUCK+Lv/cM3y6kFI6C5L
j5fngS8wVFJcL4ByibBUaRob8h3GtERLMn9y1TWvk97TzShymbrBgvqZQENZ
XzY4w/N1OSQP5of2qzt5MOGoMN5Tms1EaIDyrOP///whoPd9+h4G0ighGedf
dLQPj/esWEbuK6y8useWjiu7XMUddtGgvd2+zUBRgNlX4vvPKdOQtVZWPDek
D2NZQSEuhLuLbHONtbv7MUPG8vWno93ICIgsV13KQ91wjG7Iy69Y++JMw6mU
dtjZ17EcHnPgEHbch1nSgysR0j60LS0IvhBjamU6iIJZf8tpM7uRF795332L
Rrzffiy3VJwNhSLVu4I7nbj2xD3t2IFa1OdeaIidZCJwsbHjkGkHInyYqgO0
KqyTfJCeTeb8vCyzFxpq7bjSQPe6NrccmUJDZvtsGBj22TOuspbwmEvhO7/C
Uhi+frTl4jM6PLmPhBadb0W1/hVvUfd3xIOT9r5aTEfsKq9Ag7YWbJYMy5Ga
mY+i+SV7ErJp+JP67N2GxhacvWhxP4CZh9SVL68vyaQhuSQpMft0K/KXHTJz
2vgOHi3OE3QFOh449tY66LfBeYek8+rwUmSlF/e7P6Vj+XL5Tvsl7dAL3am0
8e9HWLvKXtu8nYHY6aO8ZyYdaL35IOReQxXsxl5tnpjDRMu+MIUfNzrx7/cl
hQibWtRoHpds+M1En0RlA2dGN5YvKj601KwRJ4X3NTqJsRFYk6TdWNqDsu0L
bC+btSCsv5M7RPY5599Sb583XxGmvO3gaCbx8pRAhdoEDloKWx0WMvsxc3VN
sOjFbhxJL7JUUuchdtopT+kVNHQfPdsQm9kHS+UNC3y7+dC/cZyTt48Ok+UD
9tquNNi3De09RXKyxCxwa+FhBp7KpRVPSDCQlBo2epHkajQ3JmPvZSYWjicW
4gsTa6aMm7tIDs1/vq3IiGfBNix4bt4TNmQM5iv5/v/3UZV7N/lWshHlvX/e
v0scVFs8uGBoKIB6jMqHYcEgMo40PLHfy8OuWUezxsm5yDSih7ZPcRBp6Njs
uZMPy1UJQZf/kP6Q2PZq7gQXxuZi7b2JpHf0bBVc7hFPbNFf8ZdOcnrj0PS7
3/jIqqqWElMhXig3u4X2hg/HDNfjt/UpzDMI7JuqIOe18nJFGOGRgXS6QTXx
vvp6/deziffdWLvSI3GS+Naa4VfN5DwXwTlqpR4fQRzjuXM9BfCvMQ6wq6Jw
RVdaTXU6H09NNZZqZQvgnKqZPPMr6dPzKZuSyHP004TsZD8J8GCJ8yZ7FoW3
TEsL3w4e5FUXvfydK0DA03eiY30UyU3+u5kDPIREnLJ/dU4Avs+EkF4NhZEF
qP72h4fVXodk388WYLfM6Ndb6cRf4wq+B2jyoRjh/fgI4UL9F0HD0r4UzG+m
sM08yT69rnv/mJzja9WznipsoDAnY+vhi4WEGy+aLD48jY/SfWpv7cf5CO7V
O9krSyFj3fcxe9JH88tdyp5k8qF3/4805UfW4XopQ3cZF+nlp4/3O/ARksaq
kaMofHaRevqX+GYQ/7pmDvHNqqOHPejEN/P0Zu0sEbDx3fTkmdz3HOj0yQcs
Jb7JaNSsl68kPhnc/kW2n/Ba5h67g7oC9P4TScxMInkvNGhpncWCaPP4tUIN
AZ4X3dBwucPAkhYnyQFzBk7zZRg2KgK8D98sbX2Fji8t//I+xtAguz1ovYmS
AC0X0w5xSa+Fbe9NXLi1H2LGjrcVFlIQY/FOqcoPwLbutJKPSA92WdX98HXm
IaZhqEZr8iuuqLRLPFfvgHP5zxG9Jg4qbs9ju0/1IOfgrTiJNy0o+9pRkXh8
ELsu9X56uqEbaWq/N0mkNeKWMn/13VVsTH9zSW17Xif0tt7d8WqsFtwrSdKf
FVg4K9+ju+pwBxaPuXl9O/QJQsMiieo6THxJLl98ZUs7RKZHmV2+UA6ro+OR
o+RcXQsaDk20a4PAQ5/tqVMG+TsuvycK6Zj1fepswZ1WCCtcfnxv8B2iyhpH
PmnR8W8kfH8LowXjCk++53vlY17T8uXMAhr4gzE/qe4WDEZ0tjfq5EOmeHVv
8msaVLfLGTj7t+K71LYdMU/egRcfWBS4nI7NBxn335q1QWjGXJVpM8qwTzJI
Ie4VHepuisfUDdshUxb1erFlOeiBdguj9zGgtkbvQOPuDgQ2HPf+pf2J9M4R
BWlVJtjT2nYcTevEUxXdEm55LaKyAmfvmku8+1QELVenm+yPyWzp4EaMFEnY
ii1nQ32V+F6p7z2gn5MQlX/cgv94Y+n3XAi/Vx1ZtX3oK9Qnco5sndeBoq5F
+5dXc7DDPN+2Q2YA7RdWfRIZ6YbkSp99Mxx5yJ8afd5sQ4NnneSffSb9mH4m
amHFfArFLvkefiQnKxou6syOpaHCQHz7WpKT6pD1B9PvMfDdva9h2Q4G3pzr
/edKcpXbWBBSmMFESq2St+YCFrI3umXRSQ5lTn1/WEx8knGvu/fTdzbCbP1M
kv//ewvyM7Ld/rFRvduJ7U3m/NLoI1mBJOeXIrfcKtbi4Iu37s0NRTykSiRo
HTUlffh2xtIzG7jw9ZzJ+OXCx+Hz0/fS+4k/BUqefbGehzmndVTnv+Wj6m7V
0N0ThCvKXAPNyPnWEwpxsBYl/BJ6tWGhMAVbjY+lp6YRv6PFnircSYE3bfsb
tRQ+6B/27WAUEL88X8RaR3rw2JkLh2/Y8jHb/FWelI0Aj7L1ymwIL8ldtqna
QHipa5fV3PYSwo/bagyi6BSYywqUNXt4kI5Uh5/IN5TeDFrU+JvCwuvGRqPv
eQge9V2qpPwNkTHNE/uFyDl/KjVyKYeH+ORm4a5Z3/Dq5PKNQ6SXw8q8bisW
8uA0EuceXEs4jRZ8poVNenTjFR3fNh40HsxaWEy47puWR3AQ4bpvTbvN+kVI
T39bPKOqkYJyauA/vYekd8SfTTWa8XHpYcOvp4qkrx+0dy3dS2FZxJT69Sg+
aM3mtn5WfPT89TklSTzzvPYgnhPPvnTI9Ou/QzwkS2YZdn/kY/PuhMNvD1Dw
/Dl1TuQwF1Z//F9cOUk4b4sZQ7KBgkyHTVCgAwdfOxm9YUKkL0eN4t2J7y+1
bFhyQnMQrLHLUWuUCFfPu5t23ViA8STjrdw/LHxg0LpUjQZR5L11ZcJq4pVa
8adeNBN+kaj2fuDIQqaob2CHpgBMi4ePynMZeO6c/DcimJzzpD0yO1UFaFC2
v7k7hQ7eFmmLnnYahhrG1OSUBYjhBMyuvUrDrIzKWysH+kHbkvpsNVm3ZVOo
8JuNA1AJ9FsSHNSDvs+fn2ZF8fDozvywyg19iPztplIQ2wEVcX/ZnWRemi6W
tE417EXJ/Uev5WRaoWbreNX7wSAS8Dvg9fFuBPAiMhVHGyH3JPYU24aNa7Qr
zTt6OhGTl9/Rc7kOs1boal81ZOH8+k3xpoEd0Asf1P5e+wkb94uOT25hYvxP
itETp3YcwosHtPpyTLLy7ySeI+tcHtj48UgbihPXJpz0KUP+Y7/TS6vpcDRT
up0T3QoLzSdfH9u/J9xVLzfdmA67z18/OA23IGSjrzSnPB/RyzJLcj/Q8D/x
B/iY
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUmXc8le8bx5URJWWUjKRUVDJKVOIj0SANpAgZJVSU7PpWmkohoYxSkqa9
R7J3GWc4HOPsYyuVEPo9v7/O63U7bvdzP9f1vt6fl9Uu3pZn5gsICGgKCQgI
Ep97d50VPFHXjpuSL/WOnU6DMoVp+es7A+RXuqc8Btuh7l9AUTqYgYqSF7lx
Ykx89vDeuHYZCSnHyzsNWjKhW1Ad/0qViV6fj6PJ+0m4T1ky5rItG8+PWj9t
N2fituSvI9N3SGAv9Mybz8jBqkHJFWP+TOzSe01f/42EQo3WqClKHuxOj8W9
e8+EyxXK59HVZNgHsZnvFQvRypF1e8Bhgioke1noJhkPH2b8GS4sxtvli0Yk
1VgYzt696tsoGbeFPXTup33Gg+7qP3d9WbgjVhh71J2C5n2fH1v9V44dlmuS
RhpYMHz/W9NulALDtvm7zx+uxPIeTYayGhuGUl0PFG9QofNc4YK5WTVK4/Ob
Hoez4a9g06is2IFETzUxqnstnm0M2759ho0Np779e1jegbWCFQKJKfXo/rlU
ss6bA523z5auOEcDJbUu9cPvRqSfT1n5ms9Bl2jK+rwVnYi4lfLW7ehX1OFl
7FtnLvYKXVzlXduJ6FI/hXtpLciUL7Qvp3MRWEI7XX6xC31ro1x5c61w1x9v
vGzFwxavN1ZXpemQVe6r7JRrR9/FGHJ7DQ+iLh+8sz/QIbXvp2a1MglhlDs5
K7T4SB/CwYgt3TBf750/J07GvVM7JGIi+BC59+KQxNtu3GhY1fewg4wYq7Rp
XyYfjltkF/sK90CvZCoq/QoFjf2swWaVftRSDfp2mfcg+qjZJ6HfFPhv2n2D
Zt0P2YPuVVy/Hhxaf1RVG1Q8W+7SRvLpR+m4+nKt2z34s9htVuwEFa5qC0Z6
r/ZjvbbbQBnxfZ4EN27EkAobzx23ConvO9iF3/j//ivc3i34//4pZ/MM/r9/
AeOwUBJxnsQPqfumiPP0q+5eOUScR7CxvlieOH91aFRgMnH+3bPFef8R57+0
/LfaYeJ5568o1I4gnvdYVdT02f8/79DJ7lvE/agce6BzmbifB5+y//zR5ONo
WWa3B3GfKtTJt0XEfQrNXuiqIe5Tifu3uoq4f8O7UsbDxP2vcTbd6E/cP8vl
vkw+8b4yf3TT/0tvwbTjcf1x4n1tfB22m028X2uVmr8ill9hWUeerSPe79LH
VbsliXogBayfjiLq4eBwpfULoh4e7NjaE0LUj3wta58fUT/Tzq8MvhD1k7P1
KV2SqDfx+/kKyUS99RcxijYT9SbhqhqgQNSnjZRz+j6iPvU3/hT7f30+clml
6E3Uc7JV1/w8op6dxh9FaxL1vMcpNt2dqP9njiKM10T9L3wn0TVL1L/LJvf8
r0S/fLLROnmX6Bc3O5n0//fLkO5c7VwIGeIDAbdriP66EHnt+2Kiv6oYMy1s
oh/thmT7HIh+VO8pLbhJ9KOsWWSKEtG/SpbyF8uJ/pXx7CMlE/17028Lc4bo
90SH+/dliH7/82M/9zvR79qH+ha8J/hwMEfO9hHBB1eZCAaV4IOV35ZF6wme
BJ31GDAjeDK47u1wMsETu30Kv04T/NHM3urENM+AX9SHuFiCP/7MBXwrglcO
883FFAleFd/e4/2D4JXzhSg3p/Z2aC9aONc0mwbHxTrH8iYZUD6Lrfcm20G7
EmZhIJoJD3LpgzvSTDi8E/QTUSXOL9d+Pck8CxnuMXu36hB8O/EzWPIUCZk5
LM6ZtmxsL4q7FXuSiU893inkVyRE2H5/VPQqF3KzH+xvPmAiJHBz5unvJCxc
u2r7qup8LM96erSoggm3pFXpieZkSAjP+TwwLEJl/s/jlHksfK7kPTPMJaPU
4Yid0fJSZD6xrXY0Z6F326fUgo0UlM11Xd1+6Ask90qfSH7Bgu9vgYGlGRR0
HPOfOHG5AqGkLz6pf1kovlUgvXw3FbVD7oHK3lXQ0BG22uvCxniMycfBPioM
3RXFfZ/WwGZRrSC/jY2ZM5sX/7nfAduf4hsaeXVI3xS7wPMAB4rhc5QdBjTk
/3lwZ4NNI8Jdeh+51XGwMP91wvo/NNzRHXLJ627G/qGIpVJmBK8MYrxdczsR
uolkXevVAv6SBXGSLVys2LD2Kf1SF3a9u9vYLtCGZtGbpJ3WPKyfl2dWtYmO
Mked/iUm7TjylVvDovLwC4N253roEJI75fs7kAQDNZ/XZVZ8LH5/4lTYzW6k
3I+WlnxGxquW+fSmOj56Wk09/izvQfUSrZHV8RS86CnsVdDqh800M1M3tge3
TU49cA6gov6csdKD+/14Y3aQ5znbg1bK2DrSxg7U/42+LdXej89rkxfxDvSi
w7Bq7mtGB4Zo7uPtCwag2xZ5ryWwFw+RYnhqHg3JOXE2TWoDSHnczmwI7YXe
JYc9qitpKKgqkhHRGQDr0+G5S0G9UDQpKAqaT4PvVsE7BhsG8KgwzNbLvBeO
M7sVArM7wBiKf88THUCYxB+Ftn89kL1TK/tPowPRs91alaR+nFxUOrc4rgfn
Cw2ULa9SkRJ7ce/9sH5Mahu1/JLrwUma4xfrJApcwpubt23pxwfTzJfL7nbj
337jlu0vyNAunKnb38jH9TPBwsFMOro+bPAUvEHCosdlSc9s+NAVok5t06LD
s/5cTZN5O9JD7BYLdvEg+yMi+5t/F2BZOn5BrA2jxtX2ecd5cOLu8jYq6kSS
X3JVxvUWBCwPe3a1nYv41VKv3v+lIfS7ysiZ4WZkHnYhGVgQ6/yE1TG7aYh9
nDx4+EwjZOJ3nfFv5OBCwI2edeEdKDx+sO/Y7zr0zu9MsDvIwd1rqlIjbCr8
5z07euZNDdQuBjkXktnYWpQWwDWh4nzyPDunq1UQf15D/XmajX0XhaQjsin4
ZPzd+dr1Cih9NWfIz7Gwvu2pXdVmCm7z5YzPun7Bj5KvVrUvWXikvHj3cD4Z
MutuLmSqlUKadOqtkQULl1M2fP9hQUa9Xox19aEiPJU/KB8kyAJnZ5zHhXES
vou9bDVpz4fBkYVmqlVMvIzoWZfwmoRgiex4qfRcXOiVbqoIY0JPvNs22omE
2YCHD/vp2fi8WdMj1Z6Jrh+LRPaqERzYIL3kkHUW1p0g90pvI3hyz/R46FQ7
xAQ2Ze9YkonpCfs9O2WY2DYgPKJNaodgyX5fDbF0CN3rjd0/xUDLlQtTF3vb
EUm3D3/+Jh2d9+oFteYRnBl67PlnAQnl2yRTEy9nIvTHua2nlJgwGbNdH7OT
OOfTbW9SSFlYcVxNdHw3E+oxA2fiAkgoxZje/Ks5MArYrEA+z8QKy7WWB8tJ
cGIfzUryy0PKrhaJ4SQmxL/3hnYvI6OD2v45r74At8vfP5boZmL+J+6OnUHE
vU2tpTVeKcZP7jwfzmoWitwcZ7cPkVHhfjbpRfRn+I7Vn5nvw4JjQusf8/MU
zCThh1pYObK/udsWNbMgSmqfuTZDAUtxwaWEG5WIfJqTKLmF4JVXyLK3CVTM
ydLcJD9UQ5x0d3b4FRt5bT3/UfZ34N5jv7sHheoQzT+Y9lqBg5uq+GBM9Nve
8YyPivcbENVy4+bv5xxsU0zSqK6h4f2bBPqUVjOetLZR7FW5iL58aVFEZCfW
L3mQt3n8G86R1qxj53EhEEk/9MOxCwaL0xzH+lrRy4t4MbaXB8/Y9rqMzXRY
ehvruu9rh7GPHm8XjYd42y3qeZOEJ4Q+4Z99R0L01dUnht340JYjHS4u7obl
7MdVFVNkhDiL2+wf4yPqYq62hHcPPkV3vTHfSkUcZ6JJyKsfwm8UO/dI9sL8
7KuwYxYdOKWt5y/M6Mc/aud9r8ReBLQv/nwINDh6zZiSdw/ARWrpP8fFfXh/
rT4rTbATdIMbRjqPBxAh8TRGzbkP93N0S+1jOiGjcRSyzQNw/5JWWBjdB5eL
57YJjXVC/Kr6JevvA5hUsutMSO3DZQ8taSWJLtTyfXN4MwMQXRO81iqW2Edt
vO3rj07cTBxm+/4YwHSd7o6Q0334RBXdqpHQCbXg0xaXvg2A2yH0+6RUHyJE
BWZsxYnzZCTl50UPIPHt74mo5F74nrGumjlAg/E2udPr9g7A7Kqlh8aKXny8
lC5tb9uBmL0SFCanH22ugZXLAnpgujahcDcxx7IvIfD95X4ktrfw0qu6UfDD
/6iVGAUyR5OePvnNR2DgvIIz87vx7HcD16iIBBOz+dklF/g4pnUncdN2Oi7N
GX9Mtm2HpXD6qoQ+HoiWS7L36EJzRZPC4vFW+FGtdhkf4iHlQllGQHwnBNKD
6pJlWtDYfG64s5QLtb6bh0620PDN54qvlWUz/og9tpTX4GI8x2NxwCIavsrX
DCi9b4D91I34CykciFxcUfD0aAfSn9+urlhTh4yQefebVnNQe2NTD/81FXoi
djera6vhzvjaV/SWjeSpeOvFQlTElzxZyIqvxP6StOXOemzYHrW0n/ChQO7p
xy6b5HI8H8p44d7GAiPE5pHcDzIGTQpKrn3+jHUefW0q/iw4bTH+cOoa4bsx
eXdjkoqhMDFmd3MdCxP0lrzj8mSEM5x2M/gFWP6C26rTx0ThX+tH6tUkWEdU
RkdH5sH65X33N8lMbI/b48sOJuFcR0IqKyoHXccCB1S8mbAtaMo4bEBCdVb7
wAteFm6uDp/s3kPkOO2rhzUXknCJ//7QwluZSNv91nJ0FRPfwnRqwCD8aq/H
VGVZOu45fDX1m09w6cTPqdShdsyXdH7v5JAB+SnaUOBCJjQEYhL6VpCgR/ft
2zKQibznZ+R2b2Tir29M+b/DJATEJeQ+dc/GsQWb9vw7QvjehnV7/KNI6Cc1
7qbq5uJOiZhB3nWCYzOxPz8yiTmXceB3iUM+KINeiU4FTMwoW1YNGpKR/Un7
PniFyHa6azIwyQSrRcZB7yMZjdJB/X4dJYSXOLuLmBI+5jayJliVgvLszH0Z
el/QvEDf7mQi4WNvSyc251LgcWp07eo7FehNmRdg+I+Fj5FFhk5HqRBpHllS
+7YKy62ubyi6wMZHH++/43NUhDZRpR0Fa+Fy4oZ9Pp8Njysl4pySDlBHXz8+
G12PtCyd1BvnOTD0jhHWuktDlmPvBpZVE/Jv+9SlTXNQqDhJu36yExm01xkf
dnzDz1qLkmeRXCR5/DYkbe9C+JR26bvnrZAjSzxap87DmStNzvLydGT8Ezc5
ua4dEmfXeAU18vD1g4IK7S8d2mbzF3WnkWDXuzxN2YMPMd6iW686u5FQ6Bl5
VZOC9nmyHgLC/ehVZ7+MT+vBgxr7cfGXVDBVOTem4/oxkL2EEe/TC6/TcwIx
Ex04rlXa6rV2AOZ+ko5TKn1w3BP1anpjJ243uE8tfzWALoH5xvalfdjvUSD6
fWsXutfl7NISH8R9oVn7RYoMjP74z1lyER0H66pd1rkOom6thcz4AQZWPjUU
ySTy2ffflhc/vB6EUO6t2f1uDGxgfMzYtbgb3B7BFTeaBmFCF5k8eJEB3TsJ
bUu1unFL6px0dOcgvtY6+r47y8Bx5ST2fKlu5OhEKHl9HcR6PUXljIMMCCy0
ZW3LpSPAbCHt1ttBlJuUXZRQZmCboZKAsBzhTWfUJBvcB2Fu8lr/Um0fbp6U
fxtg2oXxWA/1vdKDOJxq9OCdZh9EGn4GmqMTn8RTtlq8H8Box8JpiRu9sCZV
OEwtpoEvn+PA3jyA8ZL43edKe7BmnaNFSxEVfZ/vCZxO6UdoxZKQhwPd+PhW
lLHBnILVas9Oai3tR9/d0TC6eDe+FV0fvthEwrUXK3OX+RHca62+LUf4868P
rwr6jdvxYe9p33OEP8/VRGhpHuiCTO+2i/LFrdBI/cxM0eMhkUevtjvXiVK5
Tee/XvyGxa9OunxO4EKHK57pGEND8TsndlpoEyaKHB1thYl8OvhKwKyxA9lS
NpZBtfUQEh5WT/LnYDvrffp/4h2QKLJ29dtSixUTZ5p2/mDjhfRNr1oHKmJH
DTdx2qtQqnhX8KI/G7SlmvVqXyiw9/2WevhjBeJe/h77LcKG7jebvo3aFKT/
vBMnc+ULlC0nqRtfs1CQkR+Sl0PGx2tyvLtSpWgKXnZuzoyFe30rPlnsJcMs
8Ma7F3JFyK0b15OfY8Kgl1Yg3k8i8o5koeyDfKwonljTXcKEp0xUGOMpCU+7
DpVdt8/FxOETobduMWFcnSZ83ZqEqWWzWb33srFni4SrmjUTEdeHjj5QJEEq
+/GDnPlZWPJZmEpWZ0KNI3fl9Wg7DuxhNw3ezcCDtfI7osSZ2Jg3fnzNdDuu
jLyscZfOxDbvi9dTCX8b6/7Jc99EwpBdpaCSZxYyb1mu3a/HhGXQQFbwWRLk
jx+35i7KId4fo/W6M7HPjmNbBzNISF0rN5wmmIeiN1QX92gmUv9FdZmKkDGe
5MIwsy9A54rzDLk2JqaMZSN/nSPD1va049VVxRDZvTk0cgULy03fDUuwyJBM
OTjCtP6MZ70j4Y/PsXCnivsnxoOCqwsUYktCytF56kRcWyMLB+9HCksKUuGg
Snrj+7QSgpOeVRm6bGgMDmY8Sqci3WjH5aahanwduJW4LYONyE3lp/6c6wBN
iusaeK0OzLDpj9Y6HFykG3jo7SRyolWgW7Z5I1zoXrIHajgQf8MtXijbCZ96
+aYE868Y/bKVe8WJi53PRSv4/zoRdDyKlrmzFSsOfHm0VoiHmdhlx17+6ELS
g1K/6d42yL+80SeSzkPy332Xavh03OO/Mfj9gISJJ83rhE/ysaZOUelibzeO
iB/dTdOjELwXM3cW7UfZncHwptYeMCyGFhr0ULH7LVcqP7sfGRLFk/8V9oL0
mNew4iINR4Me9zw8NoCN4uE8ekQfSHYaXyN4ndjk+u7xwPAAOopab0+oMcAa
yGLO6tGRGLd9zsJvEK/0DkYGXmUgZ6BQ3dWuG2viO85lDA7ijEV99JFyBlIV
dCsP7+1Bm6+9qbjZEPbtcYxMGWdA4987M6vfPRhX9TZpjBzCjuRra9skmdDJ
+OtV4twLCYEXYwmlQzjHexG3YCUTcjFxx4qIfGnJks13bB5CsuzNZZ3STERe
tbrZ5N6LzI7WWv8vQ2h6MfoseYKB01nbT20T7AXtO5fuFjuEK9NfR1bXMiB3
icZ/YNcDl+yC4h2WQxDQKf7JuMVA2MSixnW+3TAoPCAi93sQ08PW4pnaDKgG
jLCtbehIz1j13+MQgrejtmTa6z6MqB6oPCLWhVRST/Pv6QFMXaxg2H0jvO6h
4kHFWBrqgqS9Bk8PoLJm3la1/h4cilWsogt3YIvZZ+vVVYS/6dpkbvrTDdue
ynWdLhS8/bdEq0quH9UbvMSjBLqxZENkuXQ+CRf1iwUvn+ej+ndse6EYHYUC
3s19ou2oGFuuOlHGw3rvqK4Dsl24av5Qwta1Ff9NFL95IsNDYWDWpNPmTqSd
ffJlf9xXWA4blmpc5GJjpfmVE4dpOHSYtkM9phHT8s9T1pA50Ljv9vHbdSL/
i3zxDqiqw6zFNt+9xhzYVBB/t5yKcmWj2KmNNeguPRs8XcLGXrm/F3SkqVjL
Hrn8pKUSMte17RcYs/FNdmkrLYCCF9eOGFnllMNH1vVyB5kFk52dIY9GidyU
aNha9/Ezrhqah9v6sjAWYXPumz8ZJRprVX55FqM79xNVS5kFRYdTeL2EjHTD
z+Hnnxegr9WkMb2DiXoK7V9vAQnIHc4S1M/DaG1K7784Ji4tajCX9SLhRfGA
PnNHDry1G0+vc2Mizd3mZYsWCePpS8rTI7JwS/X4mLQ+E1FTm8fuzbVDfMXR
jbPahKcFr3vyWZaJxZukdIUJf9s0nXiTG5KJQl/10lbC31hn/Cy/gASJCEdE
/slCkWyByRNTJtAYfMcwhIT5Tn01y7/k4IB8lFfCZSa+rz/E2dVKgiX5UukV
Th5OyImOrPrIRPeNtF4fDTLkrM7a5F8uxAkvHXObESZoZkuT3J6T4Vt2YL1T
QAn+Ctz/ckSfhQdZInamShTsOvFnwbs/ZThUWTzNimFh3PZwnjqR91sbIo6q
XavAx1mrMsosC1JLO3/m21LBDxU8X1NdBeWpSd+Yy2zsg4rgD5kOOKrP7KMd
rsU4OVFn0x82siqUimvYHZgf13tYdlUD0qWWKYWGcuDiNXdUlMiJs33nn5zX
aMYNsbavtPVcrJ+Rd9fP74RytdFTTb8WWHZXWzi0chE+Rl6UkEvkxOHle5i+
bTDzLpdce4sHjzDpv42ldLDWnhndaUTCsslHN1p38XGIFft7tqEbgrXvA8xl
KDCun/o4f5qPfc6fBUo6ehDblrfk4AAV1+9O98UU9OPX4VXKHxm90C+t5vzM
o+HcXVXnhksDsD2mVSDd2wfNNZ3fIry6oHNN+TZLZRAXYzxc+04z4GdI32kl
SuSk+vtttxoGiecy2qLUwsCsmsFcQ1APqEnhonTHIVivaRjOJvy6jfZ8hTHB
xXiPMO+YviGo2Z9nbPBjYmRPf5lOSR92/eddaLR/GHQq/6DHJyYGvGL/vDdg
QL7HT3AgZhjRSUvOfvnGhHphfrRDEAO3zlZFqtcOI1ZTZdCczoRXboSpZgQD
B+JqVVo7hjE0li5/n5hjSktHbuleI7jVc6FStnEYbDuHw5wsJn7qC53X3seA
1JNZxefPhzFKTxBR+48Jh1sF6wQ6+hA7P4V81WoY+apvF0/oMKFoeJb8g94L
TaUCjfmjQ/CKXyVzmM4AydCnVCOlh/CHVy2z3kOQfP5VrtGH8DoTt3OF27tR
euNoinTPIDS+0kwvzvRhvUaipt3rLowcS1q/Y8cgJIt0RaYE+iA7+Vpw1SgN
6trLHv0XOgAr5rKZN1M9MBqYOme6tgMnbz51ON/SD8fSrYwVw92Yv9VW/dlh
Cp41T3ROS/bjxZ6X6Vq9dHA4Dx8dJHKVZoen5QFrPlaPZoQspnTh186lv8zT
2rBCqH3sRxwPEsvXHVandEI4WEm3ntGCqx/8tyjyuHjgVHfMgEVDm+DuZ7NP
mvHyvH/xKX0u5s128Nf86wDFTeEBrjWgmKHjVZXAwZHl6rfmNndASsFvciK1
Fop7jNJrRTl4LLIqYeFFKrZFxTp5SFWD6+AavPcWGzmLWjvGaiiYUSrZzays
wN5WnCxaxEZQUORUFJEHJmb8cv95f8Fzb6ON4sks+PvuWer+iYx3209Ife4r
wScbyqNuIjeJmd2YddUnI9FrvL3wayFkvyg1ek0wUV0vz9SnkxBTEPblt1Y+
SNGrrbuyifXnURauxFwPnEgqTJ/LgXV1Y7hoMDHnBgJk9fcRnBH0ME3clA1R
+dlMihkT1DKjRMWlJFCvPp6351MmdL77Z69Yy0SzcV+zjwLhXUGLQhT+ZmJ5
zLTLUsLfZj+LnlhqQ8J3lXn0mqhs2KmkXjQ+RtSN9fD3O89JiBpfebL6Vi7K
rfVPXbnHRG11gljRTxKUfCMM9tHzYf2OdnJpNVGv/sWXI+zICOnUPB6SWgQr
6zqqjTgL/b9Ux7JIZLx6YlIx870UyYmfrYOcWdi90kn6jBMFO9MUr9c4l+P+
KsWJk9UsnOj595E3jwrejv51Z59UQrXdn1B1NqatJYIGC6kgt/afJS+pwdV8
W6Fr+Wx8j/82evUO4dsr1aO3d9RB3+TWXZO9HJCrXeeCz9KQaDVZLjfQiKXV
ln9WcDmYbnB5meTQiUYn2tvFu7/hsXcpf3kUFwnXN08YnukCd65PmjvYivhf
+/MdzHm42UytPHqFjrmHrtmu39rh2fDwQbMEH2amq38aJ3ZjLihdpb6aDHG/
ju7eTj7mOafN8Cp7EDGprbyshoq3j7yCx9/1w/hsOHfZYC+8X/RFWdXS8HG4
N+ts4ADanDP2jQkzUHZU7aNGWRfOOxv7SpoMoijt3vPESAaCDbapXHjZDcVn
GxlzIkMIVwkJyCC8aMkwxWov4UXM6pq484QX3X5oEKpwlwnV7S3VyhN9mHdv
tE3SaRjLG+I/Rw8y8d766YvK9wxsbVgqe3BkGHMPlt+FJlGnv0VsTigycXWT
fvYlhRFonU78zjvJwoIvvRdlTxPzz1PhoL/iCEoK3/uVB7Dw4/OZZ9RIJkan
lpJXrBzBwvHWXTI3WXDct8nD6xUTfYc15Y4R6/G+l3MuB7PwiGm5c3MME+Pv
1WLViPVlzY9eGRLvX0b33fdP55l49OtPUAyx/2RI0PBSPRZcX7ku6FcjeJZ4
3jKJOI+Qo9tbs0kmzu5X9YirYICZn5z9WGAEKvpHRHxjie9t2rr8qiwD7m9c
Xy0KGMZWidOHDhH1zidNtokkE/NBznbyGXUIJpvzi4ZSCM+sDqeI87ux2zK6
64EKwcOEkG/BCgyQ74xlyhM+dfVcuradyyCYZG6JiGwfTkf+cAqQ6YS79h7P
2acD2NmTrKL5vQcSG7y+tEp3IHhHcGRNfT9mTjg97KnvxlbDN/+OSVHwaf32
Kb0pPiRcpH2yUukoGTk775scCYZFZVb7N/MxX8H3Y1R4F1yNdY6Vb2mDvdKg
gYc7D7OPOlujbndi49G/S2/Uf4PGjulK/zQu8hdY3e8NIzwySlAj5WwTXnj/
Efk0R9T5+FBdQ2oH1Boczwib16NDrpHx0YGDLa19C7KoVLiLhIadCqiBu7qY
/rkmNvqD+f4WilR8ODL3RHesEtmlP3ae38/GjbNjEjcIT9uzNSRRKbscTjc/
S8URnkY7YZuexyfD6GadgNbVzwjjvLJ74M1Cx4ZnxV+JnDU3IbPfS6kYi45p
GfgROcujoO+Yw3wyvgsI2inuLsDK9E85dsT8c3F43Zv7noQFRn+NbtBy8e+b
kesioo6+PPsYvdiJhGBOmD5o2QifdcnaZ8+Ek1nPRLQKCUHS6Q2ftmZhrpBe
XqfNxCbyN4NHGiTssdBfPXk9Cz8DXl38bwcTL/SPyYcSvve+ndP0Y1cOfjwd
++RL+J5Uk5rCg1ISNmwbibxyMg8lN5O+7nvOxK6S/8LfypNhfup99KLBAmTI
tI+e72PChL5WaOIBGS01uoXKf4rR75gpcVKDhYsjtidMl1CgoSO04lhEGWKs
SzROhLHAtT5bPPGOgkqj6PvKjhU44111z/4PC+p3YmiehHdd55RVlVZVIVVz
9M8pwruKZfU7L6/uwPZ5UkJ2V2qxi2GiPfGPjVHNuCOr5tEQl7z8luqdBrz0
GClTe85B4MJYiuYkDQLvLXIOM5qxOuhnQLMZF3E2OYdNhbtwLdZGVtikFT5J
AfyBBTwcdM/JilpHR2rAjsKDO9rhZMOTu9/Ow1tntlf1sW6M5w8r6ZqRYfWL
GW31jo/cA/ciJx/3YImE05J5xNxbT/tdG363H3NK8etfkXshlyGiLvyKhvVn
6cesPAYwXPBkcGQRA+Ub5x9aQOqCQPXWqGsHB3HJ6MTU7Q8MpCWL8W5Pd2Oh
somfx6YhiH+d8fQ0Jniltz6wZGEfNp86+nZIgOBS1zXZ0RbCc9+oM85dYcCy
YbUotW4YtKijD1wNWMgMEcheupUJMZ/M7dUEB5JMz/f7hrMgcH1ZzNE8Jowo
0ceeEzw5uHXgQGgrC+nB1zlXVhE8M/r+U2nVCLptXNZkziNyicHdV/5eLPjO
nSUZKI+gJW9fiJ8yG6FDaaf4SSy4i1PO/iDWff/bartAnY3z587oX8tmYa2J
5ojO6hE4pAaJfFdhQ9Brk/a1NyysNBjKFSbWv/7auD9JlA0xmWfN8UEsaKzW
Mncj9rm7rH5zQRcLX+seXKQRfD16pc7ZjjjPgaKmU/EJLPRV7fl5sZGJAlyR
GCTOf/WECUfSggVv92UpxgeZuOP9X+kqgofHlvqMb+ln4tQjN7sXbxg4Evf4
5/jAMCz+ufIGif7gppTpc9z64Pjs+FL19cMYkHdtiCXyrPfBZXtX2/fghVTm
TA+RZ29+fqUnuYGBoNxrRXbb6eD2O9+5TOT07QYx8y4s6UP8oZj9Rgs6caF+
aOxN1ABchE55KjT3wCTmwdHlFCqedJHjPDP6wWF9FDgW3o3p9KShCMJrDksG
p8m08lE4+l9W4Ek6Qn+V5Qs+bQdjujnYc5IHZVnXGKHtXajMzzq7O7EVXu8D
DkVv4uHxzhNf/FQ78bdS8UXO7a/o5g+1CZ/nIvjWfPuT6jTI/nLRvqHQiHHP
r1fCSjgwkhO5smN/B6xjSgU05tchaqh7ga4CB67Ljyl1XqHidbz8okD9aly4
cqAkKoyNI3+Y8bJ1FLhv6azg1lZAT+PZ9vvibKyd7Z2x3UBB1euHCYUmX1C5
nfrs03MWBuu75d1ekdFEOnpG40kJOhvUlyobspDy4e2XjM1kHIkSP+DhVYgF
avIbvg4Tc2zh4iKXZhL+dTydn9WQhxYtYarnOya+Fc93DLtCwuAXkSCfpzlY
k2cxHOfNBDNKcIHqDhLWV8uZZzdkYXhlfMF3IybmLcjPuLSHhF1OT9bslcxG
6crlLur7mbAQ+XDu4H0SZB4WrlT4k4OJ+2fDTYII32t9veZqLwlb7sYLR+3L
R3rIVqgQffBf/2qbfaZknD6GNdekirDI9SXNeZYJ6+E+wd9fyFg7VaaQf7YU
jTfXLY+3YsH64omakCMUHEgOSLizsRw/KUWe2kUskIXPZftMUqA4fqD+nk8l
wmPazXdoshGsc2mPRREVAV6645ska2D2J9univCuQytvbhOK7oDWpItumVg9
RoarAoOPcCBw+I3G+1AaSGXSv67YN8F+3vEazxkOlrfmZHTHdkJKznyZnGgL
2tXzdh4t5sLm1ikt5c9dRL5Zm551qw35RuR/yvd56Nqp8iF8kg6TIamfa9+R
QIuu39fmxketjqzoDdMeZDOjKxYOUWCXbqDZeqQfNf/mXfqU1IsrP7QLfpgQ
HC3Lvq9gMgBvH4XOhwIM7HRautPvYxfu5Rbzru8axBKfY/bPshjYHW8xvEq6
B3dL6qJPbhvCWvtPBgdPMWEQs0l7k3cfWGO/I29vGAZJ769yvTAL9LvqUhKd
BK8OXJu6Jz0CWqGK5h6i/x0W7vi15wkTr0vmUlYTfS2jIXvamMEC32myoHw7
C0FHjpYGExxod0w8jR1sKLrrXC6pY+HznxCpmwRPLj89SmKGsGEYcOGe9y42
rGzJfzaojIB94NGCxYVsqDt5mQQ+YcNpYHaF29oRnIuwnLeii43U1/3fNjay
8fxTZo36uhH8rr1zVJrPRrR3mo9IH/H+0mNCA4n1xjoM3OllE5/Tafvb2Kj6
sDlpL7FOvbDObKScjZtXddVKXrFhHT/CjSP2nzgZUzkezsZGi5D+C0fZSJHo
3+5PnOfMdv1FCmZsWGxbcKONRfiBUrYvhzi/2Yn5Bra/WFBQZHUssGVBKk10
eox4XpXxj6GKkSyYOhrqTxcw8XBJ72wqcT8ck1wVBWUW/M6+WyokxIR/ZIKV
HMH5mZTfCftuMdFxcMlJ8+E+eNruMl5hP0x4WvQTGpWBnnMrSt5H9yDxPI1V
4DEEHYnrihvWM5Crp6cMDTqOrxB/6nBpEFcL7n/SIny7mk5ZfZPw7evZSbeC
Cd8OPRW1UDi8Bzb+x8zXeFBRqKjXW3eLmHfje1g5Bt3YcqM71lGZDBJJhOXx
lA9bOfrKLXNdmGTYHKX8asODj7EO3fk89LrHZ1qROgkuO2TbdxE5tHqhWCuH
C08jO+eRLzT8x4su+6jYDCstmqmxChfzV+7RzazpwNMY3fig/HpwRvw8XC9z
ELW86oUflwqb2vjTxR9q0PKqxKSZwsYWbm7FilVUSLQ5To9MVkI+bvyHC3Hv
cLap+nWJgu2uyZIdL8ox6tD9JIeYf0M7bspkdZOx/6L6z3DNz7D+HDmv+SwL
hxr9FyU5kNEVgY1NJUW45egU/p8EC4HnpTyrxkmY2+31M56cj5vdPiWuVUxk
6qy7NhlH5EdRHb0l53KxkVK+deY2E60JVtdEj5Jw4+XD3/Xe2dDh7rEqOsrE
iZP5Pdp2JAiud6TeyMiGYuK1tA0nmDjKfRPtm0rCiXGlcnZFLoKyDHwqHzGh
+3zVs2BBMhR9Cyy69xegveeApgrhATUB7X++XCbjZeklo+xjxXiXdnl4oRLh
XYU308qmyNDJM6S9mPqMkTcWO/WuslB5T9Mn9SkF1x+b+w6trkCUTleQ9hAL
ioWJNLXDVPyqjP619GUVjA1dXDeeZ0OCS/f9QXgXVXy6ReK/WugMRgceEuDg
dYDPbylJGpwPHN3+srQBk+YLax3fcSAycWU6VbETetorzZROfYXhI9NDF05z
8RMLFDeZdOHZOpEa56xWZC7J8lTS4SG7M6Rq7g4d81mBqT8Z7SDfnbS0WM5H
Y/h30fV93Qjyd4+Q2UFBxNCNdUzRfmQHibg/N++FtCRluCG7AxsP/StZIDaA
Dp0iyaTaPnw4fNO2zrQLLwyMXN2kB6F9YV9oF5Ff5hLKF7XxunH+BCXDh8gv
D3X5M22E597xceVZ3e9DaF+Nt6zOMK6oZsVoEvc3mjljOipA5PlgtpIE0V9x
yUrHT6ew8J/IYuFIGvF7hodtVyqNYMu4kNOb1WyI+pYntLxi4VX29mOThM8I
2P/Vyo5io1fxhs/l42x43FJb8ZDgwOjatMLTv9iQjBlwP098lu7l7a4leHLk
1SUfIxMO/guiNJT4cjBVWnD4meoIynVNu6evczAr47Yzh8yBk+gX1i+1EbyT
D/jw6Q2H6KO6uj2SXKRtXdXXumEEivZ7XpjkcvA2NMIzX40LqVqNhes3jiDo
Mlt030cO3tcEepjIcyFxYWXUD+L7KW6f5PXDOBgVDZqu5XFwt54ZpkusR0rJ
rCBbcwjPml7nGMHBt5rMxVPEeSIcZJTKxTiw2xM0V7qc8Ow3GVzj9YQ3WqTL
rPzERiXZeJvZDTZYry56KRM8jHWNyH1kyIaQxR7mbqLfNuxPFntFcK+B/y5S
vJrwCPY/owuLWFB++k6OStznm5jk7lywcHBe8L8GXSaiZSy/tBH3f27BHttJ
Ig/H39UQf7OcAYX/fjY4+A+j845SVCCZgYbFxz3PPuzB8rJsY2e3IQTmNg3f
kGLA4bkdjz3Qhf3mhwxLjw3i6+Pn6oFve1ExGlZx3ZKGsU3DarEHBvBOknPj
m24PTmiEBF1ro4C0eWHY1b394B7zkwim0WFauvqSw0USwvUjT5keIfJpq+fK
tMgufF2hGuau2wbFzVkf2B486M7fW/LQpRM+vxfIaVp+Q/RJ+R2PYri4F5Xy
4e9hGu7OjmW5Pm1E12yVdQzxPk9LqXrxbDvAyfzv2BvUoVjsqm6yKgf8E0/C
1G5Q0ZvkvNHPrBpRQbv144m5YjdksXppJeEhi92fu+dVYJ9/jaOAGOEVjVfD
VytRsNfETCZjogwa8dfbG2JYMFv3VuNBFBm/1Leeo24qQbG9w8v0rSx8YYjF
qqwko/WDw0qrvwXY0jL4fROTiUXz/j18XELCwzCwiq3zQLVJWxmXSHjUjNEa
j3Mk7DRkLjBQzYHdJ8r6PaeZ+H2JbdLoQ8LSZR9bI+xykK68jO7jwURUeGz9
TA0JpZck92o/z8NjQdKnoddMGA91PA3ZREZVXcNJnCrEt0pxlskQ4YEeVc2L
U8lQ/th6PzynBCINh+PO7GYhUmWD2ZHtFPS+ahav//QFb4/XR2m9Y2HjqiP3
sjkUaP3mqHVuroS09vPq40QfXltkYayQRsX3m2IWVbxqrN9gYqqdzsYir0YL
hycdWJHu/y1oQT0eCu7bJEx4l1MXL+7dMxrMHBsSVkY3wffafOn3C7g4FFCw
SOVzJ27mrb665VELul2uvtCjcGH2S/jSZgE6LplqnNs32QYtmt6QUSEP3VMf
yuY5dWODa3afoD0ZPaNDPXcy+Nj+cPnY7c4eTBx4uc99mIouh+z8jsJ+eH4L
e2fp3odfypSstledMPGcMlJuG8BIZUPog1sM3Gj32Dvl0w1b6fZHSb8GEfr4
7QPX40w47vvk/MGqD/07die4KQ3j+ti5hVIqLEzcue5eJ8rE1jORLzcS/SKx
9FGnWykLlFeLy1X+MaHFdg98T/TXZuOp8NuH2Zhunki+RXBfUPfJQqE1I/Cv
aAvtp7GRPSSnt6eeDYG0V13rCC6ZNL6u+UNwoJAkGfSU4ED08f6e/3NgV9eZ
+G3lHFx8OKbC0+fi8Zr64nMEZ4bV3K7OyXIR+9Sm5Uc9F4yO+oXn1Qm+LUj0
77TlQpTWea1iCw9tgZOnhjePID5c6fuzW1ysuL7KnOJHzINlW4QYGiNYF2yy
UTSaC7V6IRWDSB7U1yWNQJM45+vvEakPuJDZxL2wMYSH4H/UzWLE+u2M1CMC
7lxkhQl4XDvAQ2vs1IQhsQ/ZbJ0WVZ2LVnXvZq9BLnjDAulc4jyDjxyShOkc
5LPe5027ETlKfd820U0j4PIO+NAI/ppQRs62VHLgfzebn0Pw9nPU8oaNs2xY
Pinadmc+B6KJv/ymiPvpGrqXuDuA6MvAAZ79JjaSpF79GiLu02HGRieEx4L9
G9XHDcYs3B6br5lEeN2bubq2xENEHm9fpvH5EBOWYuaf1Yjc2iMkcG8L4cHv
S1S72yUZcO+NEg/0GYb/qQbRpjIGTCKFlIV39yA0YXtB/74hyMUvJr+k94Gp
LNRu4dmF8Uvc0Q1rBmHQ3nogdV8v9u4q7Od87ED3uv8OGooMYP+fLSJv6rqh
HH0zXncpBe1TYtb2k3xUv90dqOtEx6j5p7XGSe3wNyOHfvnLA6f974dOmS4I
mq+uVjjVCkbF3YluKR6k+mgb3vJp2OvHqmhNbYaG7FzOZnBhRxMxf93ZgYmc
ZNPOv/XIftFd6B5C3N9eb8G0QSoyhk9t6i2twdbkf03+nWw8SmhQni9PxUHN
NJVd/ErEsdIvtexlQ/ziA0sBNwpWlZ6/aeJXjuDXEx8O1rNwa8zsWXozGeLU
c0d0y0tx5b3ewzB7wo+vGGXkmZOhcMvKbjuKEH2hZJA3j4U+R1X16wyCSxOu
SyOP5ePQsvPbH+Uz4evQq+oRSkL344GQ0e85eJsvSkkJZOLYSdkymUckaNLL
CjwkcyF59oz8yBUmlp6hC+TxSbgW4Pkx714+1IPt/3tRwsSP+23yx2zIuBea
nSN3vwj8TndVRzEWKsoTK3l0MsL/1ZGXbPyMD3GmrQaET+5sUT5+5AoFnLXV
T52/lOPARq7uvg4WlBIT9+nrUeHwxDSMfrAKf6WS99qeZIPzgyLbJNkBVbOv
xVyTWjwUl2j+RfhC/chTrb/iNIRoGb45nd6AKzqzrtcID3ig0+W6bGMnNk9Y
7SQ9+gqnC7foPRe48Lv2jH/YowtWY7L/Jn604vyR7Qd3HOKBlTQkMt1Ah7jE
2x2qx0kQeKZyR2YvH/rL9nxYZ9aDtbbK21b9JHI//YqpjHU/Kj5uaA/l9SJQ
uWxsfTkN+0YuNPT7DeBEloj+ZgsG3Pw57sN5dGgFx8htezeI1n5KPkWTiVFJ
uR1Kjb0offHr3lfeEAbvv1wqI8PCmU0OnZnfGZjmyK4hyY8g2V9WjVfGgr+H
3vf1gixkn/RYVEjwqvEJPEvdiPnGfFbZtpSNzOuzD8KI/lp5oM2cuoCYn1sa
Zt5Lc6BvtqxEj/CQxz86NRxecCDTPp98W5jg+HHlbamEzzy3Dw44tZ6L53/U
V4kzuLjds+D3F4ID+3W+H/6XwMXbsdhgsec81CYpeHoRPAldt6XKc4aL1Tv2
Dv7S42NyaN6qV9ojWOTe4f3HhIfYiV+idz/xwbCzvbN/K/H97r7izZd5SK7X
Eqmd4OOIi7SejQ7hgS/58/Lu8CCpWbA+TKafyJHcE5XE+lxjooLgVR6ibBkX
/gj1Y0vDjer7xHpZ1D2BNzY8eE/zTo7U86HxX1xmBrH/quZndueX8zAZzmz5
7MzH2pcNnO1bRnAluCDV4zMXD0O6h4raeYhcbX1BW4vwOo2s0zKHuPCxeGpN
W0X0bfu7jLcEb9WXLeWHNhFeNyx0cwXxc7dgZVIawe0A6fOBJ3dwMNDUlrbT
lYO9DXolJwjOfzDePbgrgbh/OPPVz7ARpsn/8Znw2J3uxw/v+M1C0SutHm87
wtf6C5b9Jvi2N6GLOWrGAkn7yxfSfibMZteYSBN8a4470pcVxMT99fdjJhr7
4MeR2ZV0aBjI+PJJJIaBTY2FfbUZ3XBgPj28dfEQvvwdXtLn3Qfz89eTfqR3
IlRJ2tGLOgDdFUvaPZp6UBTofI9JIub8LrGGkfR+aCUU6hfu7obVUHCinSoZ
rHDlF7viifdTtHnrR2oX9CIUdytktmHa+3CGTAIPocoX7kQ/7MTM89eU45xv
UHo4cEQ2hwvlr+z42NM0sNf/kVnU14iWN1OJS9kcyN+Oq4l17MChnN1BPw/X
QU/JijSykYPEGyyB8iAqzK7aQF2nGhN8koHcAzYm5hlb78ulgJbPtg26U4GF
0YVmR/6xEMy4oLJQnILJxukxemAZ2nJXtUrdZ2HqmTYv6BoZ/5Gu/zV/WYyM
R38ao9excO+KzLIqUTJ8W39/ib9QAOnnRsWd7UxQzLvuLnxHwva8fKmh5lzE
a9O/9IUz8c7WTbuIWB+qae5+35YLEb+8ELsIJsIbbzpsXkQGz+wt3e1aAQ6q
uu15SGYi7fk+OfdbZJwdexkcW1kM4WRj5qINLCTfCF6VIENBY9yySe/cMrxk
1i5dEcFCeGLaDX4FBYpeb47RcyuwRk2+jS3KxtcTghX64VRodQ5sPnulGgsW
FcRfe8bG6fQT92avdBDzeiRAO78OP06E5j0FB73NKi8sH9Gw/BpdOvt8E+z5
Kfey/nHQqpGklFjVicaee5zc1y3YUndyZ3UnFxdlKqpUVtFx3MBbdaVGO3Jd
tyQJfuOBHX1GfFtSN/pDth/hN5AxJsbp/E7nIypYJqdwdy82rnTRj33VgTTt
rELp+QPIqS4UfDyPQXD/74/Z9C5Q6ZXPRgwGURNHfqo8xsDNZfQ0uYEeBLI7
0Rk2hA9ntUv28pg4/aDtzt5kBpRKVy8DfxjeOj0/kt8T3tWxXneWwcSHyqpf
+gSvAvcs7BM/zYb8uwjJEHGC10uCe68QvCoL9D3tqMDBH7Vt5Yu2cuDyLafg
PcGru6nOLW5EP45bLi1hWnAh+WqD+P/7MfUMzfKXNxcqMol5pgQPVk6udb5A
+AweqhlWCvFwvzlNzN6Uj/i/WV/bCC6p7RJouk9wpkE6r8CU4ExrWLZ9BcET
lkf4sNEYD/NehL1WLuvH/FWXjm7UG4Gx4zOaCPi4H68xc9BwAP0PBRl/t49g
2+KePDkfPi7S3N/aRw7geLTUj3U7R4h52Hhq9i4fdYwn3cNZA1CMketKItZ/
W6xetuI/PjZErXwskjyAVX11cm7EuixX9dIvaz6OudUEhjoP4I+BSOeVHURO
RO31gCV8tHitfsr60Y/J2w+P8IjzzAUoT3HTeVisJz9dZNOPS8cvfs7eNoLE
liNa/G080OPnK1lG8xEWYZD4neCerd3ifb1vubD+sMpIMZOHjONhWTkEt7fo
K1pmi3KR72eS5JDJxd/Of1VS//dPJ+kVp+05+BI/XXk7gYNu721a6wivsz56
afWpt2y8y7Ar/hjIxl+F1gohIrfeWv3LO36EhesxNXbahK99MjmbWE/wzZMu
9kuTyE/FOsLxn9YQefS7d0Yo4dvqZsntSwne8T9V7ndW6oNpkmp5t+gwquto
T+NsGNgyU2ORRaXDhf3mz+W8QZR/mAslMXvxekjR9E8BDSKzIjlxPgN4fnzJ
SOjWHtw7Z6X6rYmCHQWhLE2TfqQEq6QkpNJx/cuw7Ds5EjYH5Qjs2MxHysle
apxBF1z2Z16beNOK8CdeX29o8tBvNK+0cYoG4UtVsRxuM2TOMo1GzLkouGR1
VJHeAXXqOvtJgQY82jOWfekmMUdVFja9YVBRPPOoai6uBja/Ft3zbGdjRUCu
z2VRKqiOQ5IaHyoxtVH9fuBONj7dPu+27QgF96SGF1zdUI5/8mvK/hayUN4b
3roqj4zA43WFjoqluJFgu3jWnIW8eQ/6VumQYcSapmsmFOLvzvZgqx9M7A6w
klRqJKGi6VncYFEeTq/rKGtPZcI96EvEaiI/0kRXx+96mod/TjfjjxL5USSd
lpKqSYbUzxym1NVCRE9UxmmMMrHh97v6+iwytMYEF68VLoV0y2vllAMsbHi7
MWzmEAWuMw3Ldq0rR7mTWs8q4pzfq/JMXy2k4mL4a2ZFViUy9ZOiBXax4ff8
d/0Inwq+VGjhkZwa7JwXEhHaQTwv+eSvsIEOIGykYdPWBnC65os+fciBhP9Z
42+SnSifMLZ32/EVQuXuzV/tuSgR7juj7tKFLe/TfR9xW1F7en2/DpFLjl8t
vSxMp2NLgcCiRl/i+QqtNJZY8vHw0MDt9Cs9CFtS3YADVNTf0bvJ8e/HKOeo
Yv/uPui6XpYSOdWJTX+2eSnnD2C+zMsxfjQD8zds+HuSmJtKCbHyosTcFI+q
iuHHMnGmgCxouoKBhXMhS9MDhhF5e2/av2AWji8+vFqC+Hni3iV1m1aO4Pvq
dMtKEzZ8DLNP7Pz//9/USEY1q0cgGlIh7bOE4HRq5D32KqI+hE+uOU3wSmfF
VbmfVA6MPh754O3Ehba8/KXvBK90PaxWJcZy8VVmXYhzNA8Hm1SmDhH9OMcO
c6ITz537+O8j51w+PFszlpwhfMb6h6KQwjAPlzfRqyWLiOe0Uh2XJTjw/Gjr
SGogH2+e6Aez4wcwx7DZfJDgiZX8V/utw3xUPugSCLMehKmY7J3RXSMovTW7
/PWefmzL+Hx+AXMQ7Py65mHDEUwt3ZdBDerHFTLtdInyEJRNXd/cIva/WvV+
/Fd4P8SWyxnUqg7B/Zrim8UEV2W//We04G4/ZKcVhJvXEvfIvZq8mODM2eo1
W5Ic+2Hhqkd2ER+Cn9Dj/Q9A+M8HZ6lG6X6MiBm/Xx89iGNljhEUA4L/zbbm
AR/5UH2+xCJ0eAAueoeLffVH0LrHc/K6Gh+DXpe2K8gP4NeMn3sgwVv/ex37
noTzoCW2s7NxTT/MfuySnyC47Tg+nTnMJOaBQaTg6cV8TChV3RQhOB+30L27
j/DYYPIZzy7CY20PH2dVEnzratZ6vMuFgyOdlzYPpHDASEix2Efw7duWu6rH
iDns+GcTO8SJjfPvDs1+Ivxtxkvw4suvLLzXkSxplWch/U7r3GKCb2KijTc0
hVj45lQXvY/KwCpTkfgDkiM4aVMk7D7LgLHhuwMV8r34eLn8zFASkUNf7e87
IchAU7eIumZeF3RGFO29jAZxfp985JItvZDylblw8m4H/p7jSkj96ceM7Ixs
Ykg37JLFxS7FkhFcLJepUsfHs638t2snuzA6a7Xj8GAbGM/cXROyeRD+buip
8LQTaZ3623+KtmCvWPuR/4q5cNKX/i/QkYaJT6FT1Q2NKC9UGK3q5WDN3RuH
jCw6sPB6FPuddB0s/o2fL1PiQPCvpvoJZyrWvI/9YNFXhfNullvHCd4fGTuY
imcULMj9qCuwtgIyEhvWPx9iQedr5K6BUTJiDN7Vm6Z/xtI4bZF4Xxaoa+5c
nedCBuev+LsDXUWYKb12LkqShSP+qeNaoyR82mFx+VtuPtaEF67cXM6EBLdh
QTCThOQfTZVO9vmwyXh716CAif9VcObhVH1tGI5ECSEUIZVSxoqM8Yg0R0oR
USpUNFEUKZXmNIgmQ1SipF+SkLlMoczzeOZh71MIpVLf+v4917n2WXvt9T7P
fTvnwhz3d1d0acbPNKnLu07mQT71vW+lFBO/WvkRWv3N2FL5fWXQ6kJcsP2l
aHqAiVOxex55XmlB/MNd/2wGSrB0hkKADoMJLavd1IEtrRjJsHva9+oj5t2p
j1h4mAUbQaBy1Yo22HzKXFdBVcA4z6bhlQobbzbxrbxd23Fr9egZ9cxq+J0+
uqCqg43PMb6WuXc7MDtcfeNDqToUuenGmZF9RutNHU+xLux84nXa9VcD3F+q
71TJ40K3qOBc2b1ubJTRa/1R0Iwn0Uc3v2vlIarl8rjr9l7cV/JvTatuQ+85
7cYMRQEiZvu86pjTjz3rh8dXEI5bt5UX6+gvRNaKT+vXLGLghOxdha1ZvTC+
fTnnXg8FbafwYN4SJprVVOritRiYNclz6VnSs5F++yQtpVigpwd82hHCxL+7
Vgu8tEQIvPzDw5nBQkFjiklFCwvIvvp123wRDGUkL0cVsKHF0J8racqBnV7X
nm0kr5QmdG25GsPBGeEVB7nbXAxusuXYkbxq3Bnhob2Xi846Z52EXh5udc8I
/kvyiuXhFLFvAQ+8g129RSoClAmPGQeQ+VVTSog6Qu574Y219jFLhFD2qLpw
mOTS5Gk527Yc4mOWtttltjqFQ0G07Evyuurhhy4WfXyc0nh656odhWkx9J8Z
0iKMKj2IZ5kI0J5aUDhrJwXB9W7rHBaNdyI/jnuAABrs340Pj1Ioqro71lNN
g6tsFCQTKcBqhsvFsycpqB0virctobG+OCR+RZgAgW3Tv0YHU3j32P/P4jIa
F7+o6hzaLMB8zdSUkX0UNmizLcNaabjfOiQbKS3As6TzXr82UVi8FQNvRmmo
bFlex07hQ6ledXuAEYU3LXvlKkluuDbWmElo8UG37/xWkyoEz2dAqE7yNqPB
8b5WKA8/bFTX2CUIICnl98mF5PZuP+UPvcVcqCX4tP49yofNodRPyqaE39gD
w9wRDlKWLzILJxzTnvxSNYzkm9HmQJPDczgo3yf5Rb2dg9jcqrlPSL7JqR6e
Nn81G68ER4q9T7LhNTy45Dnx0waJPd97/FmY9WgW5FVZuJhTe+o54e1n4xqH
Su8wEXSzc25LIQP8j3Z2BaTvwlatjIhKY8Cp0y9o2LQf97+UXD11i4bClmdV
mQ/6ITbZoUG8pBtzF3gbfpxO9mmsNSzGrA/8+pZIhY0d4HdZBPe+Is+Dt6y1
encPCkpNdcY0WmFq7hvg60Oeq/uMUOXcLgRy3zGlzcncH6HtzlrwkPMqcr6K
RSfCrdLkNBLrURlfddtFn4uHJxXf1HHaoZ2hh/1JtWCHFGxnWnPg9aSn3LSw
DfcnKIeIPahC4Kha9qGDbNx/LlCULWyFXNZ4yjLNckTO2DDRN4+F9h8KDx8x
WyAmN4/5eMEH5IiuJzFns3DedTg6QbcFC9zLZ5/fWIxt4U4StxKZiHTtyQy8
3YzxdM04G+18XLfVMhYuZUJ7aodF5PRmLI+IeuqbmwOO9uEX+zoZ2PbVRbXi
D/HN7hAzS7UcrHvlWh9QTTz0zYYrBiHNqHXQS79y8D1kLZRfB2kx4VY3EtZC
PNf47Nji3aeL0Cj6l5dMPLfKQn8wn/ijdX1+pz3xR0nZbONy4o9783coVz5o
RVzKdPPrT8owUqb4NC6JvB5d97XgfhtZ/+qIRWpViLAoGKvZQvwp49Xj8tJ2
zPuw5K/yvFocCyw1uKHNgf9ac/PYGZ0Qez8+s3tPPeZqn0uoUuJiamDqwva4
LvzUKpcdlGyCxPwC/7T5PFyNnHJNxakH2jLzwt/9bkF6+X/WUa58SHBC9VoX
92FBcBftuqIDjxtzFs95IUDkhU1i6x71Q/79WqeQpm6E5h5yTZpFQfyp4fT6
PAaazjgv/OHSj9DQJu/iNBqjtVNXqKYzQd91fbSNxYDq8PLwlcQT7Q4zNire
YoF7aZfAagsLaw5LVJ4i89Xkc+m+TSgbUe/S554iXqjN+La/ifT4XnwTq/Xh
4PDchLzvDlxYn09XXUq4Zd5kmxPTHLmIOGR8ZW4+DzvDK+6Fk7xa3P1bcJjM
lUXWW0npuQLMyukwjyV59bbEyjHuLw+JcrwqjUAhTNZPHdhOuEV4RkY3O4tP
+L02ScqEglx+SfldMi+rfrZ9fbNagMwVHy54+1A4dcT399ouGhPTb+2sKBXA
pf761Bk3KAz3eXs+eErjPLLt0jQJn2Wt2CafQXLcMYL9J5TGj3U/Bhd5CBF/
k59vXUphsv+sS4ydJN8uvKuKOy6EfHb4+mnVFEzTvVMmu9DYJGXJWXRQSPy8
ZYdNJYUsu9t6Da40jh9LULa3E6LbfQ3rWy4Fk3Mvj0/xp/HUONNZMCLASsZ2
zknCJQu96EHrKBr3zqRLPbkqwJ/9a4azwijkznsqubGQxk8fSfb2iQI48JPz
7jpSpOf1nvLHaAgnSbDP7eEjKXfDsLUShZnNJxqeEd4zq59fPBLHw/S56a6J
TQIkVf+2UiNc13ni285dH7koKy+WSw7h48YzHVtdkm+7FBpuevZxYK9h4Ld6
Cg9iev53fiwWgX9SXeL7MBuOO0J0ntzioKnP8MIjPRGSX3hUbZnCJj6r+lWO
9LSWy9GDtoS3H2/uWTKuxcK00Ld7SpOYSNfJPTNM+m4gsXbCXzBx5N6/8zBj
IC1S/0AT6ce/H9raXxoxYKM+MOvWp140izxUYrgUdFYNrHHT7Me/+UpbFaZ3
Idm40MjbV4g3bhZHG+x7kTnnZphVShv8avW+Xyf78q/uko/ciW48yqeTmi80
g3/7alNACQ+eQQ+XWnV14sd1BxXp3Abs1e25tTaRC6+HFW4+Bzsw1H/8BTfk
C5I3rk3TT+CgoLN0Z7BBOxLsD3m6za7GlBPP9mwmfWzoe2xUXrUNb6pPOC72
qkDvfy+3KfxiIWJsVrSTQSsqfjV98dD9iJR/Z1x3ubAg3CpFP/JtQZlY1rnD
ISVwq53cWlDFxC6GpqJhaTN2uz/ebXakAPEqI2rBLkxMD1XtVLVoRsXX8NW1
hbloFPi3Nw4zsPvaFDVplWYUvNZMG/qUg9Yw+fuG3Qxo+M+tzb7XDB0pF7la
p3xcLLzQv8mMCWPt4kmOpi2oD27aUZdYDLpHWbvyGdn3zyH2SqMtyJtg+23d
gQ9Ys/2Jyk0DFm58Ol2/rKsVPcbFpiqXypGwa8Ty/hcWRjtcjuURf/Ses3Zi
NfFHtVku4jnEHweG1B6PaXdAVL/lxrRTnxG6K6Zk1QEO0vxSJ/Xd7MRhO30T
8WUNeFZ6p3Hzfi5iwp4nmul3Y/aOxXd+iJGcruQKZ1/jYZXLk7y4Xz3IrX7z
ZmB+GywrlKer1vPRWyhmk/mrD8W+j6lNSZ1YuEFt7K+ZEBkFqTLflBh4HOk3
OzqgF44jD8PHSyj8TBbVTTFmopJZ53x4LgPs0Pb6S+RcXbtV9k9Sg4UTCcNd
ex4yIR/TvauHnMNNe4+d65FnQzGxJ1hvLhvqA9v9A8i5fb3l7SQ3aQ422Pca
TMzi4OeArLc66fG+kqy2oElcHJ2/cO/JVTzs89frbCG976AzIm83zsWO2N+j
Sc18nA7bKXOK+Frt55GphRQPTDMNXu0WIQbEHzRShKMG7Q0+y5XykZj3yjnM
nMKQzc2XcTNE+PByscg9RIDYRiOOw3EKnB/bfAbKybyf9tQSKAvx7r5pyvwX
FJ6pfpnEP03D3PbYysH7Qijyx3LbWig8jZy22mQlDQPZ1J+CP0K8cFNZZviD
grwBv+zADBrnTE/IHLOhELy7AlNkabzSTzCR+0XBfJn7gTIPkkezfEvrVGhI
Lry4gqYpbC4z6uVuofDFIGLdYiUaEdzazYED5HNmnXnlQPxTbXn+esdJNNyq
B2uOSNBIKRI9+dYqxNGvGQqRQgpO/l6ehxbSKNkWbXHFRwjz+uGlWWUUppv+
G7XyoPFY7E2ATqsAff++VjNjiJ/G+845EUcjeHjPB4G+ABkzQ1sDd1Dof+Ex
vpZHw9vTfEoQ4dKGik1q3wiXXvue3JlA9tPTcsqXlss8nJfVELHeCqBPLXv0
wvL/fzdb7KF8l4uw5CaVLkM+vFeepuYsE6GoNjnAJZ6DxoUjltEJXEhmNrof
Ify8skGhbnYyG7/UuAbDUzikbyY4v1skQr6j0a01z1nYv1BbvSiMhccv5gun
aYvQ9shTfkEeE7VKokzBGAPqYvan7pJ+vJeUHJ9F/Om4Wd2JwV39cFs7B4fe
0Dg2oiedG9+PU09Fdpequ3HYtC184kyyzwmO23o0+mBsecjEQ6sDS84zSmvi
BRD3GjFwWNoD8TPfbeI+EQ6KsHLfYM+HmtrfnRknujAvr+9pzadGaMqf0xuU
4cEpeNIdg8EO8J5dvqA8px7nOr43V49xwOyPFTx/2A6Zd/lJKnE1uLMsu0WB
3F9ahGh9emAbbBfoH62MrcR6LuOJtAUbbtr2U9WDW1HEdPY5r1OGmZ6LbK9e
YmGSWm28QXILJHZV3pC1L4XjxoBi1iATw39uz6/71gzDa77VkW8LkXj5fJzV
cSa438NFnZ7k9dodKf6FeWCphj1NlWNi2W4zv1D9ZrxN+Fsn5puLJQFNxd8p
Bt7MzChMedsMTSO/bFnVAkyT5q1IXc8kfpzlZO3RAvZQqkK7UwkKWj4dKCgh
/mi9bt5H7Vac+lufmCzzEZv3V631ciQ5drrR56VyG8xjNPh7NlegIl3AffWD
BYbYf7nmS9txpPakJseoGtmZSmkvigmPzQ5yEIR3YLn8VbWtmV9wvG6NSlUa
Bzaszqk9vzsRkxKiXznQABknsULzbC6UasPdJr/qRsjew06vWM3Yc6veYgeX
hyAjpbPTYnsRNCr7Jpx8zm66ZOqz5QKES/4R7HDrR/E78dLG7i6EWIe6f80R
4uTZbkejMwyYORh/le3tA1sxqWjbNhrz9iyWWhvFxOINaz8czmIQHgk983+e
SeuXtrOMZMF0Y/UKE1sWeNyRVDPCXZW+6++8vUB62WGvBbeHcDb1coMKObfZ
dr8U7KM4eDND7cqOC2TdN+z8Z5JzzjSM0n1H5sKxfHNIjxEfP0N+x84nc9FY
Oft6XzwPvpuL/yq3CHAgKPDWbMIJd7cvY9nH8NEZlLbv2iIK/xrd216S3p+n
bBf4bZ8AFbVRzOAjFLhHx/R9a2l0Hk/PctUVIunDPN7Iawprqsrflxyn4exl
nN7WKAT3ssmDBQLileKcTntd4nd2/2Z4elEQnTyyL4PkVJKVbNgHikITK1s4
6xOF+iaG/iorGjLKj1UG8il8jeVZXZ9Go6ryz4mPm2mETPRO8o4nXBZvI/nJ
iORaBn3jvCeNsRPYPRBFwdJVV6yA5JCaeE/yIpI76ZLfpVRvU5ibHcGoIflX
HvVxsG09DZefm25kpFBYN+XXPPlUCoUVZm8ocr0yjbvFi2tIbjob3rNfTGG1
yRdq42Qaq1y1r+2fQEPisr7pkwdCFESJpk1vpeA/NPkm256GRpvmtWs8wnWZ
z4/995DC/qb62Iw7NNpGec2dmgLssv71+oMrBZtj2x3visj9XeR2p9jy4aA8
ibLoFmLhMr57F/FT5XjawseWh8/1zUNnbAUYW9LaPdFCBG1/3Ypr5lz0vE8w
vn2fB3VO7eQJhJ/j/xMrGDPkwDAqPqpXxEFnZPiiIdJf/GgD1peFbPQHrkh/
soaN4SsnFvwkfRdxqDMzRZeFDS/WiK96zYTytxU9+nNEONv0TbDVnImrcTeX
DukysGBEIf8Z6dP/PhYH+UxnEP/38bPw68VPz1Hr5iIKxzr8opjCPrzjtDQ0
R3YSnykRMvWFeP67UT2W0YMUOUuXg79acUE17ci5Ij6GxhInz5QlOaiwZGZn
TRNeiISmtsd5+EKdvnT9YCeGWEk9LmP1UFXdHGvszMWAxH3XNrEOBE6Uc2CK
fcZdW68Tsc4crOvPqQ2oJNxQeODJ+YIq3Dc51hd3jA2xX7kfp+a3IvzNh8fL
Z5Rjq96Q7XgOCxpXfh7PbG9Bj/mT12oSH/D5Wsdv3kwWODJ5tkrqLWgat3y8
n1+EpnMaj91imCiqO2xQE9EM8Y6jRgdev0dX+rrSZTpMLAy+4RQHwmmFu/dP
pXJR9Fng5kN6IM/+xy/PzyTHBCqzfpUVYGnNyTpJTyYi/n6qaAttwfJR+21F
hSUYMNAIG2plYlMiU6xyQyteaY3ZV937iMgdZz+FH2AhYTy9mre6Db8X931V
EKvEI5ejiX/U2HBaEnLx+ZF2nMyWfCw1pQa3vYoHr1Ns6GpdTkqr7kB997u/
ZgV1kJ63/1huLwevm3O+Wm7vgvcCB1XNO43gT5JZ3jbKxa/fs5ROa/bg3ZRj
DLPUFvQp5Hz3WcbHTZmLRzVn9cHszwT52FkdGI+IL+15KIC3ZrnpudR+WLy+
EC8z0I2fox+mGRIOgPVJh5IuBvZ8zIwdu9mPIVFoZlA7jcuFAx5y3UyIV79v
+beECVXPWJPds0X4nJEtHdrLgpovO25ZAws2Ofzt//9der3U6fjpNBvjnpFP
vM9xYKFlXehPcmZOoFqj4QQudhkEssRseLhvZK+aQ7jr6GOd4SAVHj7Zpc5T
H+fj071x5WnEE+cvff40dBEfxXMWq04gOWvzyFrbhczRLfWPW9o1BKitf34q
gMzd4I1nGtJfaZzOlf22ZVyA74suTf6eTCEyeIoXdYXGkfEXC1uqhLg6p02h
nkPBefxIV7EhDbZHRUhgKIUeX78+6Tk0QrM/pBj0UXgyo9ChnnCV9u/tAUYk
l3pFrhcWJlDweycpySC8Fqf0O48VQkNc6Lnh7AEKjLN7Vv35RGOd3dOIb7do
rAwqO9u1hsKeV9J7tUkefF4/73NaPI1hvevBsywovLoRGKVFOGiCyn7H1Ic0
TDV0nT5bkVzSycXWXBp/A1QvyVyj8WdXtWTZJgopK+9M7fUm+TVpUNLsEHke
v7/fiQgh15cocYokXvWzuCRTyYHkbVzzzo+vCM+9+52etpbClvbyrnJ5GtLW
SfJTRsj1OcWnu28Kscp/+sn6RuLFNeIVDmtoVBbfclhSJMClBlczznVyPesc
C5NnNDYI564f7ODjfKV7dqUthds/pLKOy4jw0+jG3+xOHjo13DWPmhM+XaIZ
dJnw20SXieZOFVw8cog45nqKD0u2ipcV8dDC5tps7n8cDA/d9JQo5GL3I340
k/SXm7drJiuejRK5AMcFEzk4kKvyMIH0nS+juVU9moUcxe7Q89tYCIq+8voy
6UcXn292T+4wwdrX8fxpIQOpRkuj80mfutrIRXJJ/w48NZe61t+HopMiezfi
6S4pZ85t3NKP0IspUyxrunB+9PrZhtdCbA7fGuh2rheft85y/a7QjoWCeW2n
jQSQ2YLdvrHduNGtMNSR24zQDl8XmRbCo3ct13zr60SHtN4Ls5IGvLWYXXcv
mYuX+6PEe3d1ICiQtXrrhi8YusM96xXDgdIyj767yu1oLZnWs6X2E6I3HFl0
LZ2NIwbWuVkkN+9MP6b7YLgcM+NqzN+zWbBdfm6FlEwrDI44lCa++4ANdu36
f5azcMsu1VTJoQUh551Uq8RLwM0Z2rgokwnv7jEV4+RmrLjbdbfmdj7cSq8v
+2PNxNq2n1dXOTXjfUfYskluecizywvbJ8HE6NqZbi8Z5H7OTHYy2VyI77f2
rdrgT96/c3Vkd0wLQm0W15jPLIVEkFyulYCJaWV0aO3BVvwJ/dgfL10GJebY
2JuzLBxJ518/dbQNLi2XU1/croR55lDPMnM25K9k15x72g51id8cl8IaPJuT
f2V8Gge+6SUOUdKdSDfZ9sl4Yz2eH0qcnjSVi1c9BjU6qV24Oc6sjFNrwv2R
nog4Ax5e9kf2PTjVA4biRrGOda1I+jwmvBLCh/4cq6GYa30Ils/+ObuvA5zl
UpJ8gQD/5taWygv70XBKIfhMWw/xlCs1+ZGEK0bNXGLnMLHaryt7jyQD27vy
huaQvlMd0a5J0GRBsW84eDCeiRcG1DMu8cfQP1P9aF022j6/yJ+ygY1Duz6c
ltARIet1Y/wEew4Uh5UmychxsTldXNrPQITTjHa9Cbu58Gj66aXfxcNyr77R
QdLXF9an5x8+z0PoiY2bzV4KEH0tQOMa8RfG4b02H+P4yKcjg6fqUxA3fflz
00IRVH5N472/I8DNvV3LC05TkLypqW2ZR6M+5tJIySkhDH88X3W0lnCX7E6D
lk00BkpVV1o6U9jp8uDv+uk0xKatlEwZpLAkO/67xFQax4MmMG2daUz2ZP/e
l0h8K/H6z/AUGir2DTPKIkkOfanuMNlOoWzNwxo3dRGaPzcl+b4k7xfNeT4y
j4JS2E40+4uw96L6KK+Cxgcp40nuE0herteX7rotAj17y4q7TTR2TLvbtumb
EK9UC04qRomw7ckazngD4agFWoHHB4UwYPXv7PUUwfndWT3bDzQ2P3qvHidJ
gb8t6uX2SSKM2moeyn9KA+1DyvaGFPa9Pmi+9SKNgEDDabtCaShbXDio60fh
7K3tHpvYFHIv+iW7ER8+vfmKZMl/FGY2fKCktCm8XVF0z4L4avA/t0ts4q9x
U8bW564TwsH3laiU8OVKrw2B8CNee8FgAtdTgOs9MS+rAih8Lpk85krW+0nb
KnXzHj5Wz7EOGphOoc5gJCcFIqj5hZhMXclD0qO0eztWEX+Tvq6jSjhtOKdm
XfBcLr5IqSb///+UXf08UefMUhEMVVbzLCQ4ZF1p3YbPOXDP0s34Sfquxvne
De+vLHxjJPt+FLIgfs5Z78n/vw9aWx9nzGEi941DdKYtE7vDtGPukT7NbnIe
/tfPwP7VP5iqD/qR/vi3b3Mf6YMrFWZHSV8vVtE41/CtG85xAj0V0tfJJyVv
5ij2Ie6A5YoxmQ4oFF+eMRojgI0dxiTlezAcus9Q4UYL5NX/eFnp8bHPxDlW
YnUXmGu2Xg4KakT1hJhT0kIu3Db7dKS868DzGbcLk4PrUDyvSz2tnvAY71yi
3Y52HJtVZaT8oRqhQgMrU+IlgX1zjVxN2tCsdDlrcmEFvmi6Ry6XZYN/vLY7
1rIVLDM9qwtuH6H0zPfNW08WKt85hW050ILEtHPxjpElWJ98qnpbDRPnpjZm
vC5qhsvk3bu4XgW4M1wy791mJjZoC2fGeTQjsiWnuiIjD1cW7RpUlGWS+Tnp
kzPYjN2Lp1+qKi3EmZa5pdHBJK8e/wkPe94CHd0p5l93lkKBda817wcTMXLR
xnKXW3G9sXMv5VOGqasfKurEsLAr73bCf9FtcKOEdRqTqqBu7KF6zYmNmJgz
Dkpf2nFAdpIJc2MtfG/eDDUx4CBEFKs4Yt0J45ljs2Of1UNBZzpdYsSFYMf+
BAUuybF9G479u9SEXkeqrXE7D8c8tNZ1VPVAXv/VP/+6VkR/dPbSyuAj3UZL
WYzXh4iDT48qn+7EhA16bxYSv/L5OLbU7f/fLyZmbrSN6cVuFdULUg2Ea5pu
ekVuYuLAmdNXap0ZWNP9pNOYzK2Ggt02660sdE79qJU9zET42JTD8+eKsGDC
zPnd+9lIfsBtWJjJRmOBYk0QyZnF/Ubl1Vc54I/+fbj3LBfzDy0Qkyb9+3Tb
9iTpLOKPN2oW7Pbko2prAFVN/HGPbJXshF4eKIqr+N5aiGixPSlxpN9tE5fo
vR/h4/Hd9OdT11EYeG45b+IEEY53OW21GhVgZ2azTewjCqPXeMaqUSQ/DILt
L/CEUBuQ7ps6QKGI6eQygXCWpN5Jw6aPFKQlfiuet6DxwrpZ3ZF4R9EJWfE2
klPLsyc97D9JE/6MS2shOSC9snYgjcxNtot7xtn/aNQMNt76NJvCw9qyzpJk
ERR7FQ+xCKe6NNy/vYQvRGDWyrz1IyIM3LvoXTxMg/Zd4VD2QYjroyfmaGh+
ReyDxl8e4uR6KXJDoYQHlNe//5en9hUXOeH1lmIkzxpP+P/LFMJfKlXsEiWC
qdb24+GDNGYrDd7VrhQix0xO6iHJw87OtXciSB6mqb7+cZDkYe6gzLHyaWQ9
723kl6WRHJdfR98jnt0wcNb68X7CZzIXpnw5QmNbyvreSccoBC78KT7tKcmj
306mFOHRQHql8xWS99K7eUb+ZUJkdSmtcCX5Z+njrfx+MY2M9tHJh+sFuFi9
9PivaLLPI2P6kxNpnCzKLD/5hY/o/k3Vw8tJLgT5191XEKGqvN8iPZMHo2jP
F2fI8/nlckZ030qED4rSh25f5GLnJ0knkTIfA5PW7qw0IeuOdW7I9eLA/+69
lFhL0m+h1+omGxLOdx+Ocwcb616tNe8JYCNgueP7MNKPj613t4j0yTlUzrox
kMUE232DoSXxTY9Rlu5vXSasd5lbhCszMN3WssaN9O8Il+blD/bDeGW8le5Q
D5LqJa3P3yT95r1d5nh0H96Hrd6kRHXg6o4M6cKvAlw9u+pPCeGBupJKcY31
rVheNnVfCuGB8/fXsB487oL9z57Y14rEN91fz9iny0Pj+Jsh8YmdCDa2OTnD
th5f7zwN2CJJzndim9y6uHbwA2Qu2SfUYOYF8T3npnAgIS+T0eLXBt3UJ2vV
jlQiaG6408ElbHgF801X7G2F44+JFwIEH9Hl2tc4Hko87oFmZN61FvRXbJwY
9LMEkosc2uuYTMzIkPA16mjGyhmhKXozCvHysM6srT5M/A+q1gsc
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for counter-propagating case.", \
"MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->482398204],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUm3dcjt8bx1NSslISlZZQklKK5ichoaiMSoRkhJQKRSW+FFGiRAnZIqGt
PbR3PU97PHs/lBmS3/n95eW8brdzX+dc7+v94ZWWt7/rQUkJCQnDyRISUuRX
kYzyyl21HYgYfZsZ5PMGZzaPDHwfoSE9Nct4dEEneMf2XAya/h6UG8tmtRvQ
wc+0+HsmuhOXAx6Z7RdkY3ZMyM4/Z+gwjO6+nD+FgihasP/+vfnY6va+yred
jt6qu8HbH1Cg+MFhXVd4EVSLozg/LRkoofefOepMxaxlhbdWLi2H3C11Oa0P
DFydbHtWVqMLhaqmXrljlbj1Q+qC2yYmdvXf+m43vRs3l+5Znr6iBulLxy/P
HmWiwELl68S8HtwunX52WU897A+qzh55w8LZIPso7fW98C5gqrCFzfj4U1tA
i2SjQeLB1u83+pDk6vRd17QdtoX1Yd6+HCz2X32q/Gc/JNcd9i193omzbQae
toe42H94cbxu6CDu8lWeDazrQgRHM0r9FA8n8udkY9Yw+l8IL4xO6cUy+73z
om7x8ejkSutRDxokLFfVOjP6EZl/MHNxoQC3TQ+7XDGiY4AXvvVa0xBiTeIS
67hCuO7mSjvJMJAcVGOb1U9DxYOG1FdKYkgqdh/OesyA4Fd2SxeVDuOUgWBF
dTH48dtS1pgxoZ3YPFVcycCtEff7AVpinP08eCSsjIl9KaYhRx8y8Ym9MPym
jhgOTvOpiRYsTFXQXGp8kAWVRAna3iViLFjvo/nwKQuPK57l3JrFxvEtcwsb
9MRY3tP34fhvFny8h7f6J7MRopgYWqYvRpoapbXdnA0bHu/zpn9spDTmBq4w
ECN3a4114z42NM/1M/nWHGwIUeHOWS5GXPueZel+bAylRLgmuXIgdIie2EvW
525cI6btZaOv+7jvSSsOTmk8vTGLrNte+WS0kLw/cH6jl/EEG13LHp4xIO+/
WT+j34/sR/D5iuZJsh/bHv3I/+/nlTb7WAPZP2OofF0P2X9IZUVeI9n/phSV
BgH53pqn0+yLyffek3tO3U++1+hSq2MoqU+Xin7oQVKfbJWJo/+vT8Ii62Yp
Uk9qVn7JVVLPP8yMlf6kniY/7v1WecKAuR29M6KLDj/1Jd1KpP7flraPessy
cFev7tztQRq+HmxYu0JZjOd11V/6yPm+NA578ap5CHm9ywqteEKEaQx+45D7
4P55l7QBuQ8+ra4W88h96Lh4V8aM3J8PRwre08j9qVmT4Hie3B/ZuH+nNMh9
e1CU3N5E7ttL41DNeeS+FViM/F0w1o9ajWa5/S86oalZq3yR3M/chEtzK8l9
nsLXY7eubIfRy6owG3KfH3+wjttK7v/RV+KsC6JmLH2hFi9xgY13fRNX56n0
oKF/2/t//fXom3plLDeThaJ7VywjSX+5SKeviTCuQco/6yQr0l+PQy9doah3
4bEdrUiC9OOKaot/xqQfs7sThneT/n1lauQoTfr3gLZOmDLpXz3VY6dUSb8/
cGjt3xhWBMvA992tpN/HhmV25xA+dPx08N9M+BB99XrMYcIHeQ/JyRcITwr9
hH8fEp5I0S5mTgqhQydk5P1nwp9XpYdm+hL+1MhWSbQR/pymy3C3EV55SW6e
qkZ4VXhprf8o4dX+3WY/VLs7YHerNzUNmfDLeE6RHafBfv23ferGncgSLhbX
3H2P9+gw+WdJR1dS24LpjzrxRLKKb5+ag40Wuie+X6VD/9sTl47FFCQVPot8
ZVOAk6mQ/s2lgxFw+b15DQU8iyOXtiQUo2W73PAkdwbeLX996fwFKtR/1Msw
KeVIlQ9kPuxnAPot+W27uvDeUcI2ua4KIQmzwzyDmbgVfG1o1/Zu2NqoD+1e
Vour11uiixeyoEd1NVPw74Hdyq5V56Ua8dB1ReYJAQu/5aZfpr0i55g5RzLb
qRUb/ix19q5jI3mRlfJkmX7c8TDapj+5AwFPtTbPKuEg0XGlcvaFAdy6sUM6
OYkCd6vsXpNaLu6znhv7Kg/hzPx/y6Tdu/EnMcLCjcVDxplojd+Vw0iIdTc9
iT6kqinmdMkLEFUxHvq7lAaR/RmVV2sGUaxWfUjfQYi+0kWnJz2iY4cGewlV
j4YolaedtMsixI13D3odYOD3uPQ+5QA6Vi7QZjxSE4PtWuyxcAoTT2e2yd4/
xYDKPUajmyZZr3rf8voRE+erDkn858/E32uG4cyFYsyY9uPYfmMW6rx5E5Pd
WUgzb5cyIv37IMUtxy6HhdMMH7dsXTZGkqT+LVoqhsLlJUOGOmwM516SuDpA
uBK60iR7mRirDw7ebYlgY7/+a672CQ52PFkz6yPhTPmBvD5aBRsB5+WKOL0c
zLRSDN9sJIbpB06cnZCNh7NPDh5Q48L/0owJqxWEVw9f5qv8YqNZstDtsTEX
2lEt9bFk/dJoxYVuARscd4nBfFUu4uscYy3I+p4Ai3k7KtlYXjz3/KM+DsIC
ghduIe+XiCySTiHzx1m1Q0H6JAf9b89caSH7cT53W+XJYja2pBU1htDY6JGu
Ol9B9h/UOGuqUz4Lr9wUuLcN2Bgr312yinxv+hmvpHOmLLgqFP+T2MPCt8oE
dTtSn676u/y+p0w06M94nkbuWfbfRQo/SD1XCr+s1ZNjYlmacYdiGANzfp21
9yf1FyeL4piHGfhyyqPfg8zvmlPJtsXkvBYurqs7+pyOx0Mv+61NaMif+VE+
LFYEC0WzJ7+qaODPerpDbtsg6t9XHF2xVYhB98qVdU3D+D4SHx/u3IenDZy2
QmUBClobdzRqDsFKf1LPjiPdiGtoDP0s4OFCusVGccwAPKc8tH76nIKX1plT
3jVzcb30dcbvmf3gf1IdllLowGS+vOzLSg6OBrNKrmX1omdVnqzXkVacc5w9
t6aZDb/aN3HSZ3qwZMHt6Ys0GvGrI0BHeoSFGRojfcm7ujHwhGevZFeLWSrR
zpq6LGTdZz/o2tuFgeZWkXxfFS4qS1syzzCxpkj4TyKKCsP0daviWOWQGbW8
2TDEwOzZvnxuPQVfigQ3uRnFGDkaqnB3FwOy9e7V85dSsPlcf0fIjgIUSk7+
t0FAx/OYdRs7n3TCQ+mZXPLbHJjqBoF/jY5qraIf+1Z24nbvoZGIl+9xy+l6
121rUt8tpbqfezrwJL3fVsojEylH4pe7/KXhN083UYfbgdkbZhu8UH+LRBnz
ZCcZOq7zty96bt8J3Udee+KXZKEkrlDSbxMd9lYbGhSKOuFqqGa/0SUXdvyx
KbapdHieHBCEbaBgRNIqp1/rA1za0t0+T9DRvqB4UscnCrw1xKufvinBjcGs
rKvBDFzY+y02IJuKezztc3EXK/BSkOj+YYIB3sPQ/id3umCUs2DtgtSP2BB2
YpoqmZ+OgaNj2fe7MUvyfLiffh30Tly23+jGwnX74C1Pa3owFF5lLb2yCctn
6u76vYQNQUWInrdCH5iTz5S172qD37Kt2lqzOThnxpzQjuzHu6PHv1d1dcB7
4dn1hgpcfNkUHzt15iBEbbn+92IIX202ulP1ePB0jaw7XDAE58rLpl8IL0+Z
B64P38HHkr+e/lwrGkwOdknvDO9HfPu/mztuCtBp+K65dBEdx7uXr5F9MYQA
O+mRBz1CRN4/5ag9mwH3jCcV34U0XGxQ+VqhIsZQ3IlxpXIGJNISVWdJM/DI
JX6slMz9lm8qio7HmBCqWA8umseE/6wzes+1xbC785crnslCdx536SwNFsZV
JmnsXyxGz7KWQpsXLOT6/amrVyS8Mrg1tY/4ydOMQDkZI+Irfp9sb3xmI/jQ
Uqcx0u8XA0uPjDxj47ZDU4nkGw6a7rn6vzQUY8ONi16npDm4EaXYc86eiwKD
OUwq4Qyzb6mZvSMHFxHYu7aAi8erzPSDTMRIybTfphbCwbuXg+lZE1w45t39
F7hSDM2y1s/8KA7UJlf9d24uDxS5tgP1ZP0yZ+yvEnm+pYAe9pI8/7zqcd//
n5/bEzNe68TBg5aMzLeFXHyySP5xjrx/TrRGy8ypHDjFUnesc+RiXOIOS/D/
/eRtHs19xUbJlP7Db3I4+PtypcNHsv/2bIdZLaZs2FUvSOseY2PRs+LJKsTr
bqu2L4oinm4c43OKtoCNU4vOZU6Q+vgpMy4kK7Hw4Vl+S40eC5T429OvkHqG
rF1o8SWQiQ8cKYUAHSbOfl3b3EHqv+WXcP3WOgaakofz1yswUDl32s9P5LyG
f9xZyJrHQBdPOuj4GA0UUfjqz+R8b6xr6ugxpOPc4SlT9RqGoMis4bRzhFi5
eo1MlT0ND789y7//sB/r6szrjR4KcNbu54J1jUNIqszcVxLfg8WBdRml3nzs
Opz8e5nmIKLfpsxf9IqK3XFKjYlmPGwKiL7tFk/us1mz5eiXDnQp7R29tYCL
FXpjDve0+nD1dF/DxlNtuHj8jQJFlYPo5GD5M9QeuJz97XnzcBOucaZ4HDRm
Y6OxttF4ejd2fn6zd+HOOtDW68sL97LgOJxaKXrUBUevaEV62Uc4//0euuM5
E6flOEdjiqn4cywibOXjCrxqdmtSl2ZiK+X3j+M/KJCKztS9yigB232fHCOU
eJpUVZPiFgrS/Seob7d+wKHxN5x4KQb+DrgkpZZ3IvIcRprP5EK3zSFEJ42O
xSOrvVds7sQ625V3lm7IQukGxrUHTnSwYi0mUQQd2L2zcI7A5S0sE78+Y00l
3Fvbq+X/swP675hBjyTewaxqRm65Ah1VF+v1Lnp2oiOtq+JJQRaKdvBk5nrQ
MZkbI/6P2omalb5KRlPzYOJSFkjNpKNVOmnjmyMUSMyLs38rW4iccINMu7kM
LO5eYzZ7HhXPz95+drGpFAFSQe1RNxk4859q+HIOFUeuZAdLmlSi62xPi7c2
E5X6lB8nqF2Qb3a49S+wGsIjf2hXGpjQvNG4YhWvG5sGLVtjltdDatGzmBfX
WMgoZj9I1uiFZsjsaC/fZlSuX/Dm/CE2lmrpvo861wf1sWnbHs9ux+GFl3ZN
8eSA6iv/Q/9PP7jMTxnvMjpR27Xh9YsjXEhG/82+kzoIS747L+RiF8JW/WiT
jiNz0PSfzqjnMOrUVD5uut6LoICMt8fr+GgvUFOoTKZhUtiRYMvyAbyylFfs
UxRiv5+9kXocHVGP5UR/ZWnI+yS5bvsxEbI3nou5cYiBF1cWX1t1io6tymsi
c8gcb+nUW7tWnQn9uymT9qUyMM5ISGKRuS93bz1regcTZzqrvW1KSF00Mil/
SQ5StjS04IazYPTnqdyedhYuTdX6yNMVI+ZmWuAI6c9y3x6D8x1svH4+VhxH
eOVV7tBS8IYN+0b+z/8+cHB3ZKyPSvo9pnh4OFePgyefn8kWRXIRMGYWnG5M
fOPbpH6zOA4UrvS6m2nzkCrXM/GVcKbMee0USg8Hbj9cU+el8NC1N+zkCzMx
/kiGHdCRIXNAWSP8IvHUtdP2FOWuEmOX3o0vnLlcJLn/5lD+8pB3al7u7NVi
GGPlrLPk+aa+TQuns3kYa935Np88vy8WsR79HJzdotK46AEP/V4Nunnk/VGe
zNUPEjhQvLxVlr2Uh2ItoyuKpsR/ls65SzXiYOjoXhuD64R70adlOsn+n1Q/
/W6fx4auyuPPdrUcBGsX18kQr6NVpIUEkPkWV3mnqpLORnHZxuU1pD6la8uV
511h4dMFk6piOvHY/85b6xC+zZn75/v2QSZ2KaTkerUyUWMU9hqLxPAp9/M3
XMpE8sLcf9FvGbCZNk9/Kcmhkn5zp2kFMpAfl9DXHE36qvi+1Bg5Xwmm1ZL9
9+mQ9Zs/J3ohDd06er9rI0VI/ftk892XNDyO/JHW+XUA86q3j+ToCiF5P+aB
S8gwQk83f3hU0os7xyytvAb4oCy0Gn6TPwgVTYm4m++7oBo8y3zWIx6uP3i+
4b3iADQz6q22dXdi9mNzf2YoF5tW5n10v0Xm+JY56s7m7dDxZZrLH+PAOMI6
3960F/LyoQ5lOc2QX3/ySdEpNlYbu8TF/u5G6DTntVtP1OORdlF9zF0WjvSe
WCjN7oJtv4SNSXo1hocUVoVTmYimruzgfKXi/ZhfUIF3JZKtGVtlljFx6Kqq
7b2FVCj7uJRVqZUh5Wb0l8fJZH53RCrdCaQg/r+jgY+cCtH5yHy9xQIGpiXt
8qMMdiLv4rQ0qbV5uN5qtf9NDh13NQyiPbw74S7o81zNy8Jnlxs81h46TMKP
nRkf78DjPn6+zZJ3KJ1X9/jFXDqc41+NfpPpRET1+uBrQe/QZJF6eo86Hb0B
UbT0gE5U/MpJrd6cDaUCd9tvh+nY8O1J/vaRTsSfzdB5V5WHQSPNeZkVdGhv
ft27I4YC++ZNtTVfCtFgURAuMGCg4Wz8Ps4aKt7qLJAN/lyGiFOj28WZDJjI
i4Oezu/C0cMrDvxgV2Lus8x7sfZMTB8wip83pxv7NJ4mcR1rYNy9SinhBxOR
8icqq016cLLnZvNG0waUOv7MqihnoW/hed/m0F4Y/Vi1ZdqTFrRqu1JYxDM2
/VyZqc3pg1z5x4J/De2QYUoFfX3GwfkndctEZwawU2uXZvJlCsqjDtZsL+dC
Wt74pLbBECQunX/TEN6NI1tzCu995SF55/7zNAkacup3Lrib0Qe7R3POfbcS
IKf96R3OTxpu2S+bkSpDfK2dv375XSGitymkfvpJh8xjptevchoKvkW5yEuI
0SRfc25pCQNxJKJ4STBQ5Kz16Q2Z4w2uz61Kw5lwYj6XrzdlIur3zLbZJNfU
6V09ZmHBwiHXZ+w0HxZ8Wna17SE5KPjrvwPHPrEQ88bUZVEUG1HNcb6h+mLc
K6w9a5/Ehu/iSE436fti1jZpJ8Irt1VHt2gbEL/KwirLKC6i3s7xLyH9zjp8
mr3hLQdyG0e3urnxIPQXjuUQPlTNFOf1zuPCYqaFww8JPrpYXMUFhD+ML3q3
HA9zsfCnZs+k83wE9L7lcszFsElqUFK+y4XyfIm0Q818rH0d8lzKkvjVcMZ9
yksuGK1tGxx5hPvDNPeDZP3QGt+KHvL8mV0vmu638HGXUyQvS9YfO+bEDB3l
Ilt5m1vpJT56Hz0q+UPe/3gVP3eaJhfV/wL7L0/nI2WobfYGsp/8UOrtjwUc
0HUWxdw+xMOV0pqdIrL/mPSSbRdWczCw5sbRSPL3lAopjf/I90affVQ/6Qkb
en63sh1fcjCl7a3rHVKfgMK6cM1xFi7Xm57RT2Vje1XukXpSz52qZhcWbWTh
y3/nVJLDWFiXnkDLIfXfP79v0r5YJgLlWI2cLUx4vPSX8yPnFRP+3PhmEwPV
FddEavMZeLu+v1VGg3BsUteSsWkMhNSUBKQzadggKd/6hHja8UjP+UXT6Ogb
3XnopuMQKDa9ghk5QmycyoqhKtLw/rOF96VPfWAIa6TvuQmw+Opb3gqXIdyY
G58TXtyNw6Mns7+SepQvCjnVencAi/0+jteWUhA5+eHnk91c8IrMKbcm98PW
lakn+tcO9zbPPrciDsq3DmzdlNSLg6lnFNSmtCIuT8VT8IGNSx6j3gaOPZA8
3ZuxJKYBWxsb7/LInAw8dDRSWq8bZmI/zYzbNYhyaZ3YIM3CCUOJLX/1u/BK
vCOyalEV6up6UgK3MTH4H5z3ulDB4a+VumJQjtuMWPXmDwzio5s6Eu9QEHXs
Ty5nSxEYsReyzVcxyNy8s9L/TyeSis8e48vnI+M/9c5z9XRMjV1g1Braibdd
FOv917LhOdZYtv8EHR3j/L59szrRcHpiud6Ldzg98qQkcSEd+5oUP2XM64Rn
TbVvB/cd6dtz5xYspcNyVPXN7KhOtLEEy57RspEXPH7x32k6XuvnR5+eRoHr
4g95ByLzcZy//G0ZhY4akyVqPhkU7K40Tng0XISPPy7W9K5ngNJbtdDiOBXL
G7+MCmLKcd+5rD2DnLfVvp+luU4kd1/SD5lyrwpr5lomLCI5yr5+jX7Etm54
FKn57NGrxde2/45pLWTBZuK6lVlkD8Y2XjmogkbsC1r36OwPFo7PNlw3k9qL
FbvVSvbSWvFHtExJhsMGTVGO/8elH9uXbMu/FNUB23DfC2WjHFjqJx3W+DGA
Iu2wjCn7qXCgXHw8ZT4P0wKrdu4qG0ItV+XJlLAenOatt9u7iw/bXG9qyXYa
MmceH7Jo60fy5SaL7iwBpNV4u7Xc6Pj59jg+ug6jSSvx9lR1EV502tWkbWZg
3YGLt0Y30rFzu4urMpnLky5+Vv44h+STeXsaF8Qy0HYdS98Q72rvCk9xHmJC
/Y+/zNc2JvbJKh5ZT+Z+UaYqN/kJCz9OMf9+msFG84zb1R+JJ1TRYpZZ72Nj
zqSHadLWHOwx+5c+e7kYE6dh9G8WByEzDMKPunGxZevtA4qkfzc+5t4gCo8n
yk5f7Xbw8KIXx96Qftd7F/HB04yLOMUToXuN+MiZZLyxnvAhu3nP6KxnXJze
V+piw+DjlNRUz62EM5vMhU17fnKxPqEs/9whAWwu/Mw0tBbjSPSXmgfEkxz7
R0KpBQIstF3YvMtGjAjjPzoHrHjQO0Dz308VINrkdHglWW/S+Rs2qs/D8ye9
774XCiCePnDZm6z7RyR7zR3nYjjfKXb2CQF0k4ysNpP3m4VEDspkcnHgyxaL
FyN8pN6Wz/qP7GfHNIP1xnZczImpy/dZy4fx3Yi9Mwn30v8tm2NczMFkh2A/
5eM8+LzvcpMgXldzvn/eJw0OlvIl9Caf5CJPSWdfAKmP5BtZm2Mn2Qi/eWp+
mjsHrg+WiU+RetqoFPYvyWPh9AL0luqzwUrbN3PFUjEyFZcezxxlgtOxZ1B+
hAnHlB9+eeS8KAztW5N0Sf5XD3slk8HAtSk+QQuIp1VbSJ0/68XALZuZSy2P
0GH13WHHZXIfXItyxN/86fBeOBwyP30YW5Ir53+2FUFBpJR95jgNf45ciCjW
HkDJ5LA6I4oAcvU25T6iIRg5MXg7G3og2CD/bcpZPiZSOrx9NAaxPrPIte4l
FbYHLrXJkLxpfsLsvmxIPyK79+i/qetAQF773vDpXEw+2WjhPNYL9cfjieEG
bfiq1vOwZYKNlGufJN496IHo9dXCOemNKPQ0bGRPY8MqfP/eWr9uUDNNxNWX
auE4c3dNiikLu829hBk+XXgbuXAWU1CFB9pzL288x4Tf6eFJaeepUEjnX9/b
Uo64c3MZW/oYsJ0/fWysmIIn305bfHMtxoxZHqoXXBg4SxtO3D2fgtHQ3xkz
6PmYqv3d5dIQHa4+p29futkJTZ8Fh9cb5UDVeZ/3tPN04rNSs39qdcI3wVXv
hO57WN2+OfDUiA7fGL2CGD3Cvbf5mzT3vMffq6LZY6Z03LgoV55+j3DSMDCM
cjoHV2pNspdF0VF445Y/dTEFk31NlpfbFICmPc1snEv4eU62u7SFgsyJPavi
W4oRVN3UPLGH7H9VU4ooiYoF3xuMD2pUoE7sNZgpID7mqGVhSfJb5DWdO69c
PiKMZWcyK56JZcF1nICEbojc+76VyNSB8mb9qIIzC/dzvh9wbu7By69CWfPN
TUhULW99tYz4yMN92vNX9OGJyHGHeXwb7H5YOOcv5uC6nnpEVWk/3Oq0dF6u
7YThKYU5JjZc9JvbbvA9NYhOSZNcd5sudDaobg8L5MEmuJrbSXg0v+Y162RY
LzYFhw1MruSjdfR2nGs6Df/lh7t7Ev6Jks6WF+oJkdL002ZZPsnfh5sV9jnT
8O+1xfGpz0SQOeu2+V8KAz7RmbVnyFzRHD1xmbNAjN+r9QPV/JioKmz7PUuV
iXdPY8reaYuR9Muo9T1Y2Hvz0jZfPxYWcVfmh5O5v3iL5+IBwq+zSdL+6QVs
bIk15RiRHEQJ2Tsu08kGX5Q68/R3Dn4PfbzzluQmXZ3T28tjOKBVhnx5psbD
RzmF+mGSB0v76l14hlx0bVylKbmYcCAi4ckTwiv/PLfpsaVcOPcpexhPE8BP
IU2VRfhwWfikxt+YeOh5pyifagEqvf4evUI4kzm2c5XFZbJuuu9ZtI4QlZmJ
4b6EA8rhlyeCcnl42rHlcepKIbZ1tt9pIX26c8yyYn8ND4d+MDvXWAhRGHFW
wVxJDHlOT9/WfB5qfi90tTQV4r7N8SO/VAk3gpJHHsbwEHv/r+/2xUJQ/1Wf
nSC+tO6cna+eNQ8Jdcr/HnYJYOh3XbKW7Ce85px/bhMXqf49haNahJ+ud4rM
rMR4aZVo+NWWi9+LKqf6rOGj9qLzfBnCt0mTnf+13ye59dYzv42WPLy6d1Vh
K+H5qta0ontcNriuBwYukxy8nnIoc8kK4kvNMsvkdNgIdg/2dxxgQ2Bt5pZF
6j/vx+Hcjp0sjA94xN+6xcJE8tP3k0mu7/xiv9fgEhN3792J1bBl4te6yt2r
iKfFF4s0nrxnYPvY3Nk9Yjqu7P357Cjx8Dcm9rv+kPmveLX5wspLNIT11g1+
bhGh44S+WXM1DTS1n04+HoPQPa/xvNJFiAPHDD90XBnGTjM/ue19vQh+Upv5
k8uHTUP2KpkXg1DI0P16P7ELLRah3p63eZA4PafzgKgflK2nlf7e6sSsRXsW
rvPiglOxe7GyZx8y0iRzrXrbYOETftViHQcjS2xn9Y72oDntT/y6hiZ0PFvy
082eDVHO06I52d2YEvaw8eOpOhTo1yZtPcTClvnVPg33u7Dzic7zyPcfcWPD
imd+T5gw2tOZbZlJhensezFBARXYcTAqRf4PAzE7OS0vGBQ8OPJ49VSPEqhv
yJr09xgDQ79WZ15eRYHXhjzH9qwCTO9Ua8j7SseFzT8PHU7vRN+8zaEHu3Iw
nuA+SrlBR+qnoUvvVxIuvS1c8fbVe3xRmBTcYk2H6kbquXALkk9fZk+X6HwP
fdrSQ/Q1dIhVgxJ2v+/EvSuJfSUzchF5Pvnd8dt0xLdoYKcdBdst7YJlJwrw
Jl7ppvMfOuyrF+WuHaVAsYghfFJaAgurkMA1pxkY3/bmTkcFFcn5TQ9u5VTg
07dv6lRZJiQW36T9y+uC8cvZ+5dOrcZuyqPVi3KZyPgjN/ausxvfdY4F6XPr
0HhPqd0inIWsOXvu16r0QsHf1vWeezPKT/scVjvARpeCXuat2D74nLpgJbWi
HRPNfttzD3NQUB4yPGPZANbOnfE3cxLJj/8oCZLXSM6wch7Z/H0Q1S3XD+ao
deOUqdThPU082JovHxznDGNtJk91ZkQffisuK1q0VIAo9yO7Nk3QkL9iljtl
wRCmuPhc0XskhEtbZemaOQxUbrpt83uEhviJzGUUkheopwSbigmnmwrb629v
ZCDAVDycT/LFje9Ohwaqmbj94PbDl+lMOAwGvc/TIXltpOZi5CMWMvJOxN6Q
Y6PS3fNyAfGuvqkPdiSFsNF0/Xuijg8Hbyc3Vj4knnCoRPWdmz0Hm9dqTiom
nrJsrnKss4kYg1kUtZlTiF8F+e2rYvCgcdLtwNtVYpRNKQvyyeKiNvzt+vSf
fJyIO7v4PuGVxF6+3vYNPAweX8f+zhFgxTQbd0mIUXA9wc2DcOZp0swwG8KZ
rvxdut8JZ5gni/NMZPlQL5jevdJZCO+N2FL8U4RXfY79qRZ84mERuyfvFyKK
adi2mC5C0WN7iRuOfIhjKN4Sh4X4NiHxVK1XhNKKkS4Ha5JX8+OCeOT5lEs5
B74Ni7B6X6nf8Ew+WmTXuZxwFWKXs5Vt2TcRRiXjHK9XEo+c037192ohtJcG
V43MFaMwSX5hFcnDyl+Ktu+ZJIRUo6GtN9n/zBe9wZY1XGgPPG6/qiyAp8W9
z/KEb1zLlY36alxcrzul4TiFj+1uv4ONCM/33XV5ZO7FQXXxlSOqVC6KUzU/
9ZN6/lbwPLHnFhs2K4IibsRyYH/M2MSMcJVSq/jqcDELDn7Zm+pN2Sg2HIza
QTxt+aWSW/k0Modd1yxopZB5FTjNbxvxtG6rgYIF0kwc2ZL6eiyIgf0Nk6ku
xMOdrV5TWgxIf4iFX2RU6BivubLJl9QZOR955zRI3mTPX2N3cwg/M1fR2luF
WN4Qyv6kQMOcNfqu3sI+GD136ti5U4B1L+zz9A2HoGcXPGXHhW7cPLhFSe47
D/Oa7AYM9w8gR7Jbf7YXBTrhh413vePC6LCm/trSPszgn7z/+nI7KlbnRYqv
crD9QofijvW9CHyWzEkUNYMTeOfk5AtsTBjoBD0d68Z/RqFHXx2uxzeBhJzJ
HRb0XputUevuwmHKBV9KSDXqFhUk5TUykcSzd5k8SEXGL7eShYqVyNX/xBol
c7s6w1bmnCwVWS+DrFX3lcLu7evQW1EM1O8b0m3cQUHFO8ktuy5/wA3jgyv/
yjLAvqLrubeiE7f79sXMC8/FXcNJnm/S6Gj6te9x+IZOBG7omX3MIAsPDzmd
mryZDs47r4ATmzvxWjHNvNMhC56eguB6JzoicjUnptcSr9t8+EzS01w8OhA7
/uopHV0G3OmUPRT4xNxrsyz5gJZu9dbHM4lHM2bYfFQk+5z/LTw5sxTbHiRM
uxDHQO2PeOksERXPYwyt0jdW4t5o9Mcfi5lIMf3mWCzsglL4phux5dWgu/We
Mu1jQvuqL5+r2IOBssmrQmvqsdrFdMPuVyzs7CimmRzphWTFh/Dugy04s1+8
KSqZDdlfPl0T/D68+6U5kNvejn8NuZ/TX3KwenTOa4fkAZgtYhSnlFFwnROn
UdvNBWPO7ilqp4agYGjW8Pl3N8yvyx1fQTzFf4n90mhrGqJX7zp74Xw/Lvlq
KpvdEsA1f3q/8TYyH1aX6c5bPwzp2mntF+eJUHPOgK3jyUCw//pXw950PJJK
Hz5JPETf2kzHz4IJxZEU+7R6ki/7//t6heSLUa/Lh2PVWRhdfAN6q1mQ1dFw
LF4sxsi+4ARzKTaudw9IJbxg4+hLK+oXfTFiljZ6rGayMdPsFztkFhflSdsV
ZhJPaF11JCHuAwcNIXJKfYd5ZL7dHR0hXlHjZepse4GLuuQd4Tkv+ZBte7o7
wkIMqcg3HytWkpxx6C1XvV6A9/pXv98mPvNs+tRA12oevrw5sYtrLoTI1/1B
FvGlTRu38wvM+Di9MsS6YK8Qj0XCCRZDhNTyWfNlr/ExlOL1knpOiJtXvcs0
SkR45OzZ8aCMD0XVaep7Y4WoEqaciide+tsr/c29Dj4qNngr5SQIgYyGppn3
RWjZWqxiVMVHx1HrjBtxQvRk22z9+USEqRFDMtMT+Pg2ZCS6ECGE55K6c1c+
iFCm8/rGWZIbRz5swa8DQizJoIwbDIqwa963bMUuHnI3d+SEQwi5LT9lV8wk
XiT56tW2zTxIzXPY7y0m39t59M18wrc/qatEzimEb7pyxr/b+DjUPf2pPOF5
VuS2lOcUDlLp/9y9E3hwNdkuf4PkUJHz67ZrEhwwNX853SEePz/x96oPpP7u
ToWP6Vpskj/r0ik9bGSeSyl9RjxNa9V0B21rkre+2is6+rKg3Xi1+gTxattY
Bi/EnYmhSWktnF8MTN5d5biaePi882/P2ocwsMU8SPzmJh2vOlcyVIm3K9Ze
uzM1lA7JrV4H39QNo8phTVaWkwjPVUpZbvtpqLkk2j1jvB+7LDk9sR8FMNZT
vz83fwgrXuz/8cKvByfFc7fEb+ejKeLN+RbqADwKVLd16VLxaNJ1D2dJHn4G
nLRz1epHtWeLOW9FB3IKtiy83sqB48HB6Vl3e+H+S2JD6MxWxHCPqdwrIrlS
N9FRyaYHSbnmWToeDfgyKbFRoo6FMZ7Hyh3y3Xj+etr1dtTgla/plE9fyXd2
lsYUTusCJcZuPCG3ElZzL9nVWDHhsn/RMZvlVIwpleiVHSpD16sr7WqPGDjp
pcGTDCb9WT215T+3QiyTmjJmrs6A+g59acfeTqg3nJsbvjAP4m5favh7OnYf
nyVYs6sT12WTg0beZmE8kPFtpTsdnrMNZmN3J86XXbhZXZKFfS99GlM86AhT
MhElDHSick5VzBaLPJTbWWo2ZdORFUPduiCUApHgQNmkc4WIvlqp0abFwHLj
k+aSZlQYaQauKE8tw4kjV4duPmdg7PP7s9bKXSi2COq+N1gJV/q3g4PrmIiY
Zmk7W7Mb7z+/F1w5XQPTRuvf4xNMrMtJb3+0rQc+e1csm/O0AQqs8YFF3aTv
C/JCp+b2IsHTqFDmZCtyTOo2RbWyQeHr8/LW96MsW2a34ckObLyQ/UuDz8HS
pMDOTOlBaA5FfZwTRoVKzkPzHwt5uPyw/M2Xr0NYt5wWFtrdg46rHgt3nudD
d3W++0QUDat8XLN+RwwgvpndH/pLAAP6lduBL+jIE9OuyJrScNx89dCnOBEy
v1zbfI6cg5VS2Aijk47GpFV7ppO8kLmldOrFq0zI50iueOfARMy3HyE7Sb4w
HvHOunGahfL3Rbo3q1mYKVwqLCF5hHPws4GBDxvJBivMPNZyMDeg8Kku8S73
o1mY5ETmZF7JnoAPXIzsrTpxhnhCbJ9dWa8+FxW5FL9wDdKP74N/XCNesV/6
VvmpP1z4HlYIm+UnwH+bO29tsBZjwPjK7dmZpK9vXbdcbCwEu6wkYgHxAXj/
mTwTfExdsjjhvLcQh0su7dEjXqQSqnxrVi4fEjM+vOi9SjzgVsB/m18R7xoI
2tI0XYAA6sY81RfEl2YUavy9KIKRc9yOuLUCBL9o9vD6IMRt932zTh0Vwcy8
x/S2mwD+9Eky08uFUFP2Ng/bLwK9fvX6KQ4CqO/O6ugvFML1GCMh+IgIR0ck
vujNFeAdvczO8pUQW7OH/jREiDDTSNPDk3CPHi1UfkC4d3pnwWcm4d7i34+l
y10Ib++vSSw6IkSEZpx1fZcIbgkFi4nSQO3BeHwW4bPnRPmVX4TPOVoe4r3K
PAi3rT7ETxZgn+T4OQGpT/t/B2PlN3Fh0dmjOtWZj3jLoU1WJId++jrR2+TH
QcD+81Van7i4IrzbaUZy+hNas/6lKDYkFB8zL5/lQPvGzBmj5LxeO19++fEu
C/G63brR4yxsWsO+fpl4dfA3jtaC10wkrz4wlhnBhMJowV0V4uEmHmtlVCsZ
YPDbe52If9htk6lsIPdHvGv0Y0c7HQ+euCfnRdCQFjnhdL6BfG8Mvs15S8Or
N48jveUGIf9qsnHnCuLFj0ZcWq2H0XTP6CLHrReZJp7bkc0H/6+f2rGNg0jc
uqS7b5SKD+trdW9uI/56SF/q5n/9YE/k3ykc6MB+20aPu3O48JGif9kp7MWt
pnPVn+a2oW/fe59339koPWq+kHuxBxSZUunTDo3wmjvR6DXGwgnpmQdnbOwG
v0VOPFO6Frujdv1sUCUcj2eWyVp04UymzaWUnVUoveB/2WUPEwGS840ytlGB
muqmaNNyTPl+ZfxoEQPHDO0Xf79JQVzFGV79kiJMnhbKWG/CgMzyk7KSo4Rj
XZoxB+vy8GrBOGdJJR0vn1v09B/vRK9F5OatK7KRoDPybsNBOm7/me5US9a9
3XceLTfKBs4W2ZqT9TduadNLyXsU1t4zuNCch9OserkM8p7JZ7Z9Gkmg4Jt3
Rdht0yL0SdpWvlpJ8u+fhj+v3aiE5xqSAWvLkZC+7bJFKQP+JUF3Z63pwi91
709T/asQtGj44xpvJpw6V369sK0bu6eqxxzVq0XGxyZFnYUsBPtEBdvf6sHK
Tv9PgvBGfLzvlLiM+MrZRHFRvEQfBKaqL7ss2xCxLtb53mQO8raN3R1+2A87
k3OBX2Z0Ysu09G3hulxMb7aiWAUM4l6yTq+HaRfEw7Tw3hM8MKaICh8GDMN9
6dAD23e9ECxvrPnexcfPeI8Ok1YavHY0rVA6O4iuMLMTv7yEcFDR7cVvMh8z
zfokqmlw/ME2dJUS4+DWT+dTOQwk/Vl3/LsdA1OSt7Q8JPmxZX2njXU3E3f5
NpmJJEceqPippkbyxYHfq47IN7PAEH67FuvMhvbTr2V5JI/MTN3fElTFxkn3
83onBjjI4eZkbDcSQ83tacLXHA5q2y0rg/bxIHtyVL6LeNdD1O9alEr8QNhK
FXTysfNvh4sq8Yozq5KUnAJ52DM/SLRKXYhPHl9VWMTHhE6XHxtp8nHA1D9j
pbsQPz1yDP6KRJiVqrP9VR4flXJNj7xjhAjuvxSRkC6C5R6ThOUrBPjtX1pt
nS0Ey1HW7V2gCN7S1+mbrgtgVHOn5WG7EPJ2exWGN4rwJ8yg2rhaAKvMba3J
LCFKPzx5vc9IhCvVHxMt+wS4NWoaeV8oRFha5oZvi0XYIluwOLJBgLyDlFNe
HLI++jheYrkIITfkXb4kCbD8b/QOA6oQNY8Hls9fL4LDNKVZf2wF8DklFXmx
QAjKGaOjqcdEuKMRPsmykQ/zF9/tbG6S/Sf4i3aniUDciDrHnA9h5p9HF/YJ
8dLdJKCL5NydKtNiu2J5cFFNKzq0hOTZ3p1fY///8wVfP5R6l3Ch+adx5rap
AjCCP2wZJPXMSCyxn9/LweGxGfToFB7sfj2RTieedixjvZ47n42swV+fts7n
QkJTuW0F8TSb3N3yFV9Y6Bun2arFEo/+8DD3FvFqyV1D99eOMzESZ1g/exIL
7yX6jL6R+zC09E5fshwTuzP1CurCGMixvt59ksyXau+Da6WIF/A/TUiHStPx
g+/wQJ3kzV1fDL/7/qHB5s3fuE7FIbSqPA5Qv0/mCa9txezKYcSM7jMdsO4D
c+DtP2N54qFJLzZ+KhzEbJUUzur8LkRvHLR1f8IDZbX0ZXlWPxZV/nD571In
1jbOsTrqTvJ0h7PcOas+JIqWUaSetiH6epZV/nIOFF6cdQuq6cHMaayfu0ya
cKTp5Ej3EjaSijk/iiK7ETK99MG7mlo47jCyENuxQPE02BBxuAsfy2Tj3n6r
gvTSG+fXhTOR/yPQwjeEitNbPYI25pbDSHTjixWVgRN9A+s83lIgydOOM/lW
hCTdZQLxBgbuOQWvcZAluc9wduS6o/k48dbt8H8ddLTqHhpfcL4Tdg+v3dr8
Lhs1V2UK1QLpmF9Ws5ES1gnfA6eUvdOy0dx5R/lCAB1OfEvrTVMoEHB99vnu
zocoJOC7GpkTb2U5a8bfUBA5pm9aIChC13GjtDF7BraZH6B5kH3+KsuXn0P2
6bAxVNeY7FNSQZ76wrcLS0NDL60cr4JmcXlMPZlLbyp5SwMud0PC1choenct
RqqbYi3tWXiRJ/lkTmsP1Jukcva4NCHv1usXPAM2dv00Okfb2IfH25yytxS1
4WX6yDmt1RwIjkgd8v7Zj7v2S4dUnnfi5YZZthMHuXAa+vLzZfcgFM975izj
dyGiHyZX83nwKDFsSOMP4z9x9O5nF8n7/vrUSiwTYMk0A94GJTpmZk6o1/oN
oWfPvwNnK4TYZFPgnW/OwE7Tfs2lBnSYXv1cn0nulXbA3kdZekx8SOsPKctk
YN/iItclJD/ayxl5vtFmQUc7dKjehoUs/ddeFJIfk9pKlKRIHskymj7Xv5uN
8rONr9NIHlknHSjF1eDgDmNX7VgAFw1/m8z+//9oeS8Us5pJn9gNZ2+KkCTe
saruiTbxruHsmY1zppK+ovkbfbkogGW81ew7xCvebP8Xxe3jQeuUdsf8NULM
T5E+IDNdjI+LT3zmxfEhVzqnVDNciBb3Od+9iwhnDmw1yF0qwPHIqYpK74kv
ZTr3JZ0i64vP8m6nCzCVtveKT78Qx8Yz/iuzIn4lO/b3l4wQmRV7U4d+C7He
oXLKaQURvt6P1Rq3E2Jd/AzV6zNFyKnfFT5lTAj7vDCTMcLNKW7VApqSCCUa
19UNPgmRsR9OEhuFcMnRzYuVF4HJTo3Y/l2I+NNa3U2KhINa4j+tE0J4DdhL
LJ0hguH+XX4dhQL8dI78u5AuhIVGTu4UUxGacoLrpq8R4Lmrqu8Vwre1xkGh
iYRvtq+4HaJ0PmwHWiYtjCL5t8bqmcNbEUoXVfc3j/HgK5y3U2GzEB8n9do+
nhChfs+NbZYGPLRdXvhcpkQAxagmuaMkdx8/PV1t4RouAsNrpr5fw0dvwD8j
WeJpz9/rzFm8kYPqrUvtbLK56IhIE+8jntycqNc9sZGNkOt/jzrM5yByRnPv
DQMxGt9/Pz6yiYVHcganz55nwVa/Z2cZyZulaZ2KdGcmtvw3PTVbzECb9tXx
aSRvPirmUhfvZWCrRLe8sy8dma6z1l5VE6PnePytI+vpKJAuK1moNIzfiskJ
mtIi/Lq6o19TiwZRYuH6MrV+/EgZaNh0VICT45aj33WHcP3Cjp4rp7vxTbeq
JmOEzPHPu4+lrRnAlG03Vq5YQsGWbzF0fZK35xy+qqd5rQ+aWpNYFcvacd3x
4aS/BzngeZjc5sr04qZXp8bY3GYMlucc6tnBhrBGWjU7rxvvfkxZvetiHc4q
rHnRd4SFS1rHrl1P6IJEm7E9M/YjAk6d+WORysTbFZ9vS6ZSQV0wXjdnRQWy
Fmnw13xiwDiq6npnIwWJpg+G7QqL0XCwLHnUk4Eflfx/VHUK5qir+2nKFEB/
gbftHgbhldQsWkt8J/b/c3q8Qz8HQRPBb65F0KHukUnXvd4JlaIu10nTcsDW
8N254Rzh3tElBoL5FLg69QVzWPlwZ6ZRuUN0DGuPC/pryPqBiJq8O8U4PcWb
EeTOwLzg25tu3KHiwXLHzylaFTDTHjbREjIQ92/3s2PxXVjWdGS55H8foZm6
QkU2hYlpkh/fLcjthnPXucM9YXXoNzf8UHKYBT/zhcY6U3uxYLue9nrVZhw/
dEOYt5ON52aR4bQbfZDd8rpi8v9/LnLkQ982Xw507jRGj2wawOILlGjvVRT4
xiecyk/jYhLzpuRhiyEss3TzGUjsxpzak8OfxnnIPn96+NZykg/tW0ojN/dD
/vbBH0bhAthrib4YkJxNW/XK5ujOYRQ/2LjgPw0RWAvE8xcEMjAerX25NpqO
W3apop/kXl2Z/CW92JeJduNNGk+VSB6uPz/zPrmHOdlKSu+OsuAavNw9PIt4
9rbRhyEkP+bU2NfpnGSj3r2Zudydg/GZYy7BxAcu8mc81AnhwKXCcKJsguQb
VSmjIJJf3LkXNs04y0WnssS6hff5JA+Xum8nfpWYY7BpRgAP+03d+GcWCNH3
4NosDvEHpwZeUZ4NHzUv0s94k5yY76Qc4kxyImX7hZabY3zsz5Tq2J0mxEix
69wZ10WQz8i8eJLkq0+X/4RJdhEOdS3q/L1WhDb/IPMQNSGaSoRzcyaR30vP
LtgwVURy+8or/wgHQ4LOSFtoE145rTqQNCgk32cZJVMkhN7PvpWJZiIUH9vb
Z1MphNbLByIG8bZ1hvIRJjYixJz2PDGJ8MaBr9WQSubD7/B445rVxOecZ/Vv
LhPCVjYpmUq8cK+ed9cF4m1y3kctu7qFcLTOjZ1mSHgYcnqQLSPCmPfYju8S
ItiZpvIC3gtwyKlrkdSQEHePX0yyMBfhabkW7bqSAE8XU+hTSD49tKbfY/Z5
4pPTyr51e/FxzUVt93w/IfZNz08QtomQ57y74u8twrGCyS/U9ch7dhR9sSHz
Jd2j8KnHUy4+GVocnU/nw9NJ22QzqfPuf4cqzj7l4OY8pcjx9Ty4pkR9PkU8
WRELqQb32ZD7GHrt8wMOvmc92HrKkNyTY7XW32+zyPzIWSNF8ljuW6/Fp0je
lC1at4CRwETgr50fPT2YyDXvl05YKMYqzuRDB1MYsL696L/IOjpq8jZLMReI
sTxtpt7Xa3S4S5fSVksTL2NbqTqQPO7rXHvQwosG6kcXldWj/dg8t3ZoWTnx
SuHSl703h2A1PeUDb1kPDjYcOeljQXLzrm8POlMG4D5XP3hjJQWx1pbZAz3E
xxrjmEpdffjcFPdU+W07dBw8yl6ncPAzNnm6g30v7lK3dNI/N0PB4evKtxdI
rkakt7agG4Kvh7hmpvVwaHKrkIhlwUyrcvxKCck/9/1jWRrV2GZcOr/kAxOS
c+LrP5VQYfTuTNm0FxXg0k3t5k9hwuht8qIfHAqqkr6w/5wugfYUbomUPwPt
biYT21ZSwHqk7pGSWoBlkwzVQkZJTlwkZqQ/6sSeiAaj+LQcqO+e7uwTQ4fu
h22HLqR0ov1chE/tiRzkPfhzbPdlOrb0JxpuWEaB1u605Ps+BaijUspbhXTM
GGJ90xqiwDqJGpxoXoIoyuM1rUcYSKuYtqMyhwpFEWPuougKOMzfW/L8HwMv
b58fe5vThbvXN03XnFSNNsoC88vZTHBeZ0gX0LvRi+oVX5Xr8TT9yrO50SzY
GSp5BZPVxb7zd+j0NEPN47uAEcaGq46sYFd7H+78y1Maet6OdXqH093vcGD1
rqtLOXkAHmo7u9aXEb7eWdPytJsLh76BWRVJQ0iLnXHV37QHTtesK7qs+TBY
wpK640ND77xFcW4yA0h8Pjj3///+XewTalmSRAfDZ/K+P8o0iB96Xgk8I4J6
WK9n33MGvAaLHC4NkHlYp5Knry5GwN3OmAfPmAiVeDHWd4qJioc90b/JPaQ8
/VI0OZOF1pUyva/V2VicbX1zEsmP2ydXPpMvZsP/24u7N9o4yP1Hv6FH8mMx
9bryswYO9nb75G35jwf2GdfX20l+6RJRM2QoXGhLxqjlGgjQSss4td9KDAfq
slqnWh6W+v27Em9B+r85ckfrHDHkQmRiJFL5cKSW+0ZcEIJ/f/7Jy7kiXNJ9
obTTU4C4uBnBjoQfBRf7y5v3isC4WBX5VUIIueSugSjiT7N2nC67R7zJK/oJ
pTtaSPKqQ+jFRSJ0tTdsNugVwqfGUX+rSAjJH3ONpDaIsG+d8Uz9DMKvFEc7
G30Rwt7cbfnnKcL386udft0gviM4YU63E4G2POYp/YAI7roRod6XhZDySUq0
NiZ/Psxq6Q4vEXT+xDV0XRfi7Pd5dn9+CXHPsn3vrc0iJJnVT572XAjGlwnn
tHvE467Yu6suEyG1wdTXuU2IoEylgCAVIabb2lfIEN5WSupbG8qJEHz05rN5
ZwUQKH8/EtcoxKNq2jdpVxEKpuw4YVTKx8nom59Z5O/zGFqYsvK5CCuGU+Kj
RDwsnp6j9dteiAgYBmpPFkP33FxTqUk8aAwqe/05RXK2WfDvw8R7G1L69pf9
4qDU9o7M3xYesm48vXF4lRiecYP0fgEbo2PZrFJVwr9S6vP//9yoxfKMy5MH
WGi4YbA28Qgbr2bRJs8keXO6dD4lsIOJ3w0RyxglTMxel7xEguRN9bZ5Mvnt
DHyq3LnVm+TL9/KFfYs0xKC13TNobaZDLtWWXXSGhqCYF5y+jyKMWj8Srb9D
g8Th7xvu5A/gsWwjy1OecPqTG7v66xCWeu55qN/dg6V/5V6ZnecjM1cvbd6n
Acyrb/05exsVl24X/eetSL7jsv+aGcTnvl1RySjV7UDUH7NpPY1kvgYGhp2P
7IX83SHxtsIWvGt4fD75FRsXeMVbdVR6oPkp4pHuQD0CJj+0KSX3Xnf1LoUC
VhcedwlslrysxsmBdTM2UJkI4CMlaZAK88ynAZpKlciXOZ3jrsaESE5Hw0GC
ihoJk/+UlpTCSPO0W2skA7+TWhd5OxC+fQj4o6T7AXtYLwLj/9Fx7FvC+wPv
O1Ezb6fn5xm5UGaYvj95mw7v8daiey86yXdMu8Srz0H4PSnGzTg6uKnGD6db
U3D9mpuKXW8BNjx9aJ78k44XZxumHPhKgZXhivRDzSWYt1zLsewMA8tdN3sd
b6Wid4+e5xCzAvuo6xf7KDAxU7q+rJnahQS3rOUbg6sRNvgsorGBifLE+ekn
5XrgqPz7081n9Yjzn8zOfcLCc9OO53Ine6EoXmGceKkFCeaT7xY/ZKOS53lT
a0Y/FgRuWtc8swPmJ75FeVZwkHLs90F/2gD+u/bT0sWSiqz/dXDm0VC/7xsv
UkhSSSJCZElFi6xd0iZLqSyREiVLpZKitAmRFkuUJEmlFCUhSyFrlpCxZTe7
eb/HJy2KSr/n+/vLGcY5zzOu+3W/rnPGTPNK/UB6V+dFq4NSVB8EIj91J33o
RMqmqC+yp4ega1G+lpUwgC3nJnOrcnqgWHTQ2UeazMXZnvrWpkFQifVsBA/g
vmnn6ZwaMmcpEdm/25mYEI6afNZm4o1v5J0NJFc6NQaX1vew4PJ3qvOTjyy0
HLx31IjkcN2D9bonKNIffvd3u5G9ZaJKyXqT3G7UCtl5aBIXzNgkhf1reQi+
5HamgOR8KVUznZrLQ7Xhcx1z4ouagxOj00l/bN84J0BpMR9LUka8Eol32Fbs
vGRO+s6W2kcbWHJDOOCgdF3BgcK8NqdpWiM0ZGtleuRGhsBYFm3ad4/M93L7
3wejaWTEW844kieA2qQHjk79hEO112OOr/mft2TsdHWjICd/JlxEnoZC8hc1
O4rCu72nkyqHKLSNMcx0NtG4K6l6aWsWBbGzYtsFdjTOOPd2RBMP8J+oqJK/
QDg2w9bvdiz5/lXllarnaXTLmKxcSHxQ5afrO14G4WCCeYfpZRppJ1XeGDtR
UOd4n+pJpPH+QO/H6xdpLFr69GTvXuJ/a0Jt1xK+KlzomOJ0hMYN+8SwrCDC
3ZSr5XdIzxQ3FstbYEsjddjaYuwhhdFAW+NlZyhI8xuUvqvQMIycZWhD7ufK
bLxZ1iYA3/L45IUCCt9N/6iNatF4dlBlvjLxtDrt7i+DGRR6dj0btyCeVhd7
v1ODeGyEeN7iFeTcN1d93xdLPDZCdIfpCQfSw3QObUv/K8C3nx3v7UG8Sy+h
0XczDywnBe0P1kOIbL7SoUv6pkhNxdgDfS5GjlWknrzOg8J50+yOFUK4NM7e
2KXIgY/kHp56Ewf+Ly5GXyK+p5lQNnZ8OhtJ97fPPTWfjc6el7U2i4U41XP6
keIUFgbq5ou4kB4Q8qXnq7WKEO7FKyrrJZiILhJ2iQ8MIGzBleO68//3/sOc
Gab1A2Sf1XAtD/dCT2vtY09nCvPT9jr8sOlHM/P2TjP/zyhRiGhnvxvCYasQ
I8qoF6Nzht/z2tvgX5JzNtOSj9ZYyYn3u7sh8sFYO/R2C85NK5y494sLZ6fj
q0PyPqPrxS75p/5NSA1edLyL3EOakxzftbETdR8fO+kE1CFyyUzmqY9sRHmk
Wh8Q74D3mm/LV6lXg71i3SbnYRaqIwaTvMbboLU38rnD6XL8NRhxvKPHwpXA
MRf7eW1IGF6g415TAuvWIDmRWCZ2u0QGPXRphatUXazUk0LEBF3lH5BiguKJ
XnpdykBB6jgr6HgeHAyrn168P4i10VEfLV4zIPqQE/5NIQ/TuNa+5cRLStcW
RY1at8IjU8fvt3kheKtaL8iKMDHwNGfSlqltOJuf7tluVwKxzXZnpoUzobv9
m6cqrw0ZW/9pbzMox8p9kyNmLGKhdArzx9pv7Yj9tiHyeVcV/KpaCs/2Ez5z
pZofL+tEkFdkdOCiOgRU6aZrvmMjO+r8DuV7n+G+RC+vS6kJN/oMBvJLOPi6
5vFhC4tu3HbMD156qAWX8me65HC5UBPIoH1hLy5LP7W+kdGGOLvV7U4GfJxP
ff/g2+p+fFjSW2hq9Rkhv/3PF2YN4ezc0JnZ7wcw+vuBqJx1L5jlztvHrcl+
vncz6zq535cHD+WPMwZgpmplMyEtxOGulR4lk1mwyLt++bofE5tyYxavJbm6
pHrIvlGKDcNp9+seK7JRmfCyyJ7k8ENWv4GIGgfi/XNEJD5zwHhefDad5DYo
4sCNhWZceMaNCKn7POTcdShVWCmEoGlBd9UuHjLtvXjPvIYgomykGkfm4nrd
iO1aP+IJr5+F9ZKeF/3B+kwe8bEkv0qZ63uGoFG8bsrzw6R3bW1uvvCJxv4m
uddppgJMWDTdmPmGgt7vlWU3CA/idmzf7CtG+tz8J19FxynUhc6pvTuHzO+V
j9+Wvqaw12vXrNGVNC4uz11UUUXh1BxZZo45jQNO3ic0iUeNOnklu16mUN5/
P9foGY3Tbsm6uwiXLk08mphLuLRDwenQCZpGkLpx7ZFkGk/cRUt9jSh8mghm
OIgJYdR6X6PoEeHYLIumDcsoZHCa2vu+0ZjEV9PnpdDgq9Q1zjOgIHwQ/0ai
kIZaWnie5VXCMSvrpSfsKARQQ6bejjQaAoxeHPClMTW3kko7S+F+zsyjyk3k
56ebjTeb0ZC/fK1tbSGFi2ryJ+ZoUihKPXXVTIxG3+iITcQUGiLSr+av8xDA
f9YaybsVFJIfT3bKdaUR2KDjFXOZ9K0tczbsIlzcLLZqoUopjap+8/orSXzs
k4n7L20JBS3qsmevlhB7jeqnbbrGQ+QZvVW+RUNIf7Ymu4T0/ajRKZb7j3Gx
Zf99BauvPMRFXxVuXCUkPc5e7aQ9B1pyNdnzdLiICXThNywVYihKQWXcjA3J
LR4D6b5kf1etenXif5+/cdJE98P/z3eYvWoRE/HMhGd2qsTnJb9+0dJngnEj
7pXvwkGslz7TdVZRiAv/8lusxwYwbJy09ZRUH4qHA7zUk0gurH+3Tkrux8Dx
tweyfn/Gmul/bvj/GELQrfo++XO9SHV68CnPuh3+PWa6rEA+0jQrilfGd+N6
bMXuJ2MtqHZ/dXiLCg952yxvBrE/o9LF8ehfyWbkX55xu+cLB1Jz4ZBwuBPz
0sUvdI7XQbnCYM5LPhup6mFrJjQ70JgWEiMfV410k7LvN6awcbawa9bwnHZI
dFiJzG8pR8HOoNYrFizs+BplW7KkDY7tDat3O5RiSMnii8t9Jq5mrolo9G3F
P4c77hfmFeFYZvLg+3lMpI15CdwaGLhGnz57rzYPdn+/9ng/HcTZ2TwX53cM
XGC6/lzgnofN59+f/HxvEKHdaZH9u1pRf1LJoyqpEJq+6yw1pzNhotkR8kiu
DVazojWTyksgsfnHhcsxTBxcflEq/XcbHqa9mp5xrhw1U/Q1TuuzIHXQ62eh
VAf8OTJTN6+sRvPDbG3PERayFXvExm07Efl0ZrhPTB0azSwcdRls+Oab7VpX
8RlKERNGp9OaIG69zC+M8KBlctyI4bFuuGbZWcoXt0DVaNGff1N5qAukLF84
9iLzZpCqQLwdrTtydrBc+agMqDB/e6ofIYHGvIGiz2DWDDuu6x5Cyskbz2J4
A7C2MYr72NiLk8XCWYakh0lm1B39q85E1aa+kZ7pg/Cx3t26muSk2vOlRcFi
FmIo6xujGUzYKUWOzCW54m+dH1xtwMZUxrwnsm5sbGJmZmwhOQyZV+Sjs52D
7XpymR/VuRhYYpRTSHKrFyiVf+s4FwhkSht+5yHoUt5/NiTnzr+tv0XH8TBV
6hUnrJKc71rRfhaZi1z90XuMdD6uaPN+Fy+nwPecN9uV9NYtzh4x95KGsPVg
s4T4/8691ydIPZ/4VbfvEcE5AbRkrU63NhA+NR8Y2kb8STnefUukFQVD/1tH
ZGbRyNF9x3z0nUKsA+P0nd9k3t+YhSywobHMYO6J7Y8pbKlMyG0gHLHMlSlb
cZaGzJy8k28OEL87JiHi/pPGurzZebNTaSyOazwSvopCmf06jRFyXtsE1UtJ
5BxvdzlXm8tRGPZ7TVnZC1G+j58pTbhAX7voypGk8GJGdLaPhRDhhwOs5Am3
pIPp77zZFLxnPK8PnyrE68sIXfiY9E6/rAdvlxJOldnvWp1Gw3v/5srnoeTr
LJsTWS6k57JPyQUQj/QtMi4pdiAcFZFYdyCRgt9/+7KtjlD40slsfLKAvC5o
9p7NoRCze2pF9yMBUhlLfzeTnuyt8vRp71oaK0RSRGWrhsCPMJiuT/rwYGxB
mPJDGnm2ZvvjWvkQj64y+LuWAocpeNJL9lqaTh33eQ0PzR6ljZ/nCyCp2e0w
n+wXz92ZrRHpXLSV+i+23MJHt2g/L2Q14V5Jf5J1OAdJX7NfRAdxsbdNQA8t
I/ur2WhWrA8bOrWUXnY2G1P2UrL+hJOiEpwLdk5k/3f/uSH5i4mOqUNR+mpC
zA1O8evfwQS99825BIdBNE8oJ61bIMTO3OOiU1XJ49R9b5Nv9eGJ/4b2358o
uL2XztEe6Md/AevX6fl3QTz08kdnDQGk3EXj/+X3wmeXUYhHdjuSZFcVxafy
kRncQHdVdqP2y+M4bGVgxxxHmWALHvTF1Gf9kOpCicu9sx7bm7E4enqv3Qwu
DjZ4Xvt5vROLw2VS/vOrx+sK1nGNSRycZR5VNV7fgcpid6WPX6rRvmqQlTOP
DeGbjz9p7XYEjFmZ3FKugJtLjeW/7Sw0vmfoO5i14WbCj5PZTaWw5q1JefOc
iRTjjMdvg1phMa/khHtQETa0spZfIz37w63ASqsOBi4vqw24OjcfpUlrleZm
DyKtfstoXxUDTooqfe7JeXAt2P2m/eEgRvwbFGr2t0L2xL/IZG4hwigL40+z
mZhqqzERoN4GS80ClRdqpch2TBk3SWJiz6xNBWNS7bC42Ts0VFiOtTat8elm
LCw+HqayVq0DFqJufvPPV2ODvOLusElsTIvc+eyIdyeOeAWmedJ1OOaTFVbB
YePytadLT7A+w9si4z8DiWbcl388oE74L1qdnTPldjfmJDZS1yZa8PTnepUN
ajwcHrXCz7BeVF8r3XTAuR2/lvA4vuf4kJ9V4XMwqx+nnId+0vO7wDsrmpA5
WYD7cYHnw6eRfRZlM3vYrA+zPkUbLHpB+tRQx2d9cya2b5ZriVszCHGt8sRW
wrFilYGWoY0siI9Zq83tIfuQs/dvPeGYV0pEga4LG81xtxb/uM2Gg5zoOnmS
w8jfFRLCIA746ydYLw9w8XSi/u0Dktu9igp7Wu5xkaroNMXKhI+20UzZ//1f
jNZwr7x1BQ+dWal/mmcLsFSn9cM/EyGuafzRuNLOx6Ncyf5HoEAv9zn0Zwbp
Ne0q4vKNQ/CU/5C7Io54hf3OCNn7xLtEP6aN5ArAGs1btoz0K83Yrq6npD/+
0mtxrAuj8Gf4X+85dRqFmVu9rnZRCNV1i0gzpLEgV3d64D7CsfV3jo1dofD2
9tSLcvU0HP1+3bMlffFu+sSsPZbEc9ykog+Qvhu70pFVlkdj+OAsNc95FB4x
gwNlz5F7PFZ68rSBRgKr98b9XwJkWI72N9wSIkWYus+0jYaKf03pfKEA59Iu
KkWEEd+cqRak3kTjavQd9y0/BIiVHJd7t5ncO7zha18RTXzyrma4DIXglamn
xZnEH00O+H0nfVSrjBM5l3BF0OdcuJp4mnIcu20n8bTDDfLXC4mn5XzPfHv4
KeHcSPKImx7xO7u2m/F1FHwVfzp+6xFgPPlaWDhN4XTIi/i3GoR/E4Yi+WND
+J44c31JKgVPzZ3LogjHn0zX3+QrNoQ9/tbCTdsIT7WkhL9/ER9UTHd7PMbD
8quXdmv4CrCnL/ePqZkQS+vVHsm1crFWJk4yOI6PxgKdD1cNhLjZvrpw/wsO
Ym7yEm4VcWGgf6Ls83Ihli93bzO9wcbmbJWCuxQb339Nk7fUFkJuhbV4USDp
K6HXPJR1Wdhq7v16mHAs/cKNMqOjTEQJz99eFDoIp5zyWTzCsUHZpT7HLAZx
7pLxtmbJfowYNM75PonGkpJBs3dSA9hoZr6xs60LUoWjfx/YEl+fzdicwetF
9p6Cuf+mdMD+QqLqh3I+Tv7HnlYm7IZH/vpwlwQGBkJP9Ri6EU9Y2l32d1kX
pgcwzkdfa8btVjkTUw3SNxfdmDntWSd2+GyZCG2uJ95YOK9vDgcGRZJySi4d
4J4s9NxvXoPQq6qpHzTJPVU0znubtiNc1Ibq3lsB89ZN6X/2sjB4vdB/gU0b
Yv7kO5kqlmGxkVmEQj4TdYmro4+FtaIpQulDVW0R9gwxS6q0mfC4pe52aoCB
vIDBrh0O+bCJ+C0ekT8ITUYLTRNPe+c1e4X/xzyYP7T+WU88LaZWP+/j4VaM
79dI9NAowumFH9S155PexTz2krW8DcxwTUl9/1LMTk1jbUhj4o/1TWM7xXYM
d8qOVlHlOGAsMC/azILyv+P86as60K5zZljkbTUKnPKSp81gI+HxilV25ztx
PbHd9KJhPfaJREhq/GDDvPdNp+zEZ5hfXyAWvqYZVzwmvHpEyPxzS4QKb7rB
rxyDkwEDS6/46n4yJP3s0Kz9Zs97ESDmkfjlbjtkmZpq2xP5GC9Idkns6keu
RNSvEO8urPP5KH1MlfjK229KX8j+Stlp11J3pw9pDzs5GxgUsk9eDX7hyERy
sIlK7u5ByPAutzqRnFhqpwXluLGw9+/LK5fEWFDcxjjlQXIV5+ORdiSQjbRo
k7If1Wwce+s5Xk44NrnLuazyDgev1aRKA+5w8b1zq7c7ye1/rW9X7i7ngs8X
PfL3JB8bKr9aq5OcPxcrfnOd4sFid273xZ0CONzwKBGQ/X6An/jq618+No6b
BdbaULgW/HWb/R8aPe9YVcm/huD1YeWZfWTuJGVTdMWv0TBcYM/ZzxSgJpHi
OAxTOFp2+Y3NIuJHlUd6OLkURCz+VkSuojHF78bMiUoKhcmzrk87RPrj/M96
G4/TeLFGud7zBAWDa5f9HP/RCLu/Qa2IeJDOojXPvutROLzcdWSmH/HBFRvu
ptfQuB9RwnX+J4D0uwzjzNdCGBw+vaK3j3BmSdsRnQHiPc0nn2R9FMLxwb6N
V3g0/HYm8UNbBRj5u653erEQl3sdMncMEv4wdKp6CF8KXnG0LxEeWqzqMvlI
eLgz9JePH+Hhr+eWRllyQvjO2h17ifRa+D4cvbCYQkmGa5nmFcLTSTMnbw+m
0W4z4y3Xk8L5gKYXq4lvpdplZD4i/VjH9UxUIbl/3Jp3NUbTKTBt/f9+Ix66
YlGrx2Tip38MHisrE0/J0erqWvOSvG6Zc3/OC6JxJnV9x4ulQ3A6qxOd60oh
fmZYzgiXhlJtllKbGh/Zy16u2ZEpgM5DRZela4VYu/CwwcMxLs6/ZFQ2NfJh
E7OWOriG5MRxt7dFMwclG/eOTh7hYtW9DN/7ekIsszmQG5DJxpqX8Qu0F3Cw
dOoz/1+EY02l6gf84lj4IM2+NJV42YLG09eiiIfHavtlxF9mwidtlcQzMp/f
REr3HlUif4+hdNVfewahUpdy+ppvP9iCHRfTNWlIjCamOakP4PHd8ydozW7M
3ZSwtclPAHFdTaU3M/vwrtCh+KFVB1bITEob7iPnPWi123dmDx6qaJ9iNTGw
01Z/aPAUDzbSPhqi1l241HZTzvJdM+4IDSuFhlzoSwk+qrzvhNqx1IZOlQbI
vDzsoKDOwfx5t02+He6Al6ykITukBjaum16IrWZjn6WURQrpsXvU+uzLblag
wyzUOMuHhZxT4b4bd7VBOWNnTPjGMrw1bXVJL2Himbrr4Vk3WlEkbp3/VqoY
Us70nCg9Jt73JsdP5jPwJ290Xd2VfGxSlNvWWjyIWytPBme1MDBc4Jl/4kce
dlwW47RnDmLTC5fT2gGtEJyKk4jZVYQXleJzHJSZCHWKtFxt1AadjuwXk16X
wnvTytBPT5kIeCjR/W9xO4xH9Y18ZCvQp9nX8GUbC1F5L2JvWHTgd9KKsKDh
atjeuWdnTDzTTzmiQCOmE4YX8x+GnaqH6JLx4qzJHGx1d/armdMF5rjxyNo9
zRiQHzNaMJsLR++H8ms/daOZreBRu5+Bm4vb6pdb87Ca8UnFp64XT+mPqxe1
tOOz3Fx3oxd8RFuI63v+60c1c+/680+7YKI6faGtiQBZ63VLjhPfShhW9o1n
9+HAq/iCCyMUGsZ/Ff7xZqKxK/2e0ulBvBe9mFFOOPZ68vvSlwEsyH86xjXR
ZOGHjuOPHsKxnRu+uJtGs0HrVtgZCNk4qXiIsiU5dPy0Nj44l4PWd/z2fZXk
3GK12/4SjlkWlRrOHuDCs0i9rvgxH+aLkvI/EY4ZyFz03SbFR7tunJNapACL
Cn2HMsh+jz6SoyGqPITVeksrzzhRmPQqf3hUSDh26+jjFYoC0nflRIaeU5Bt
SHt8hfS/Mv9Mf5dpFPT0jLwzxkkPLA+7+G42jdC9x25O6aHwXG3MK34dDUGB
yZnA1xRwasbgpHgayTZLFP47T8O+IDBB0p383l72lE/kHgsVe8LY2YQTL8V7
aCUKHrX7MrLvCKHjlDJnZTuNpzaWOxspAXZrnUqePiBEx7FbyCDnuzA17eiW
BgFW91arbRgXwlx9a47XKHl+ubpJVJkAmSHKe+x4QpjGhJTP/UIjMm9Wy7Ra
Ab40SAdqZwhx5JYmd3c3jTHxWFY/m+ydHoc8v3VCrFrnkVhZQLxxhq/nrjkU
ZhYOS0Tl0Dj6/rlAifBsrOHzRdedFFob2dUdxEe+TnNX6bElvD0VO/9XGoUo
VsSuT4TH51c46p8TJ9zLvSqhQ553o8IhYY+lAKa8iC+/iij07dc6ZetN/FZ5
+ly3rUMoGJ2hcdeLIh5zs9imk0Zl4IDvug18LHFZ1SxG9obtxg/eXwjHuIyr
ixbI/8+rP76s+seHYGXUe3nir0EnGJ0lFAdXNk1EL1HiocHKi4H/vW/Wgbt9
rJKN2bdrmdfXc2C/WOZKhI4Qq63+myP/lIV9ahPM1tMsrPigMyauLoT20LGM
8DtMlEfdnza/ZhBfRmKGegnHlqgm6dkGED+r/W63uqAf8kcKwyQ302hw3HIq
eM0AnJplvIJ9uxGzAXfzrwiwS+lj2RK9PtgxtQxmh3bgtN888ZIffMyeNk/h
tU4PznkpSdn/Y8Ba8LNHOoqHFf9cBwvdu+AAfadqdjPKD648zLbkIi7lwNfP
jE6MBkaXf3dvQEbL4snr9UnuFZLiDc52oLBNqfdnfg2sD1o0loKNqqwzvC9O
7Xj+MfdsUkkFxvzadjn6s5CsLyKz0KMNjw+NnK32KoNWv2ZiXBUTYtHb+noT
WrE8dpAxZlEMyR6blWIGTDiEZ91XGmag8WDIDMvcfAQx/otcWDaIigMNI9tJ
32yavNntHembt2yitBRI3/R89Onm/DOt5PEk056QIlQqmh8KUWMiMezecKF5
G8YPVZ204pXCeb/oUoUXTLTcu210RK8dDJ5Div7qCjgVSIzEOLJgp5Wjs35r
B0RTb8gsnVcDA8thl4CFbDgZXtSMTOkE52aQZtTTejzUCq2tnc5BS6B/wiaN
LnjovBx/FtwMflqLobcyF3W33qfbcbuh5PpB+kgk6e8Svhr/nHlgm8+TuMLq
hfXYruiWv+0Iy4+oGyzl41OJRehl6QHw7lzwke7pwsAD9jt1OwGehGxgVFkO
Yqbn1fx2lX58UeQu6ZagcfJCuu3bQCbkNzAETTGD+OHRVCxPcuISMdCYGM7C
HhOn814WLEzxr34Msh8X7/mm45PGhssf6b1iUhycXKXBeEfmX31TkNqfWg7O
OwtVhFwuDHcebThD9q+xnOGjPz+54CjfaNZq4ENyp9KWPWRf2xUWpr9czEff
PK2toTkC1C+M6lhP5sK7pc2pdc0Q6acN7+X2UdieVj3lIOlXmxj7D0muEeDa
EdNh/TwKL/UNfGSOkfkuWLVdUYOCdK68X8IUGlEBFYt9xGj89yTt9QXiH9xH
FH+ODQ3xYZl/ro+Jf34rjv+VS+ZV/1aYkHDgT3d/0sYdFF6VdmPCWgi3J4Ga
Vm8JNwXbDO5JU/jbqqNU+1aIu3eGF/OIR9XvPmMzl3jUJ/76zGLRYXheyByM
HqMx8Vz2nM1bcr7RIFUl5WEk3GkZ3y0iRN5j6a9nsgVw2+WpzJQcRn+U/Zav
v2nsCLc/IV9I+r5qaJ5JA/G0h4G8GcTfbrl+eKTdJkD2nZLI+v1CeGQtVTCu
pGH6evaRb6IUjH8rOzYyCMdqJg2sJjy+9C9j9ckNFFgpKZPzVGhs3eKy6+wu
GlxLpeev4ins0y97KUH6YaXbfulYwvfhigHt1K8UpmXIL80+IABX/+UnX+Kp
CiJtK+/t/t/7yuboP/AeQru/WJ3rMcL9kBaTK8QT3X5UH5Z342MfGUGNGRSe
Rc2Uug4hpvNXhsfr8TB31r+PcppDKGmMinlCODY5xHTlp8lc5GbeVkwz5yF5
TJhWRji2Uacp7WknGzt+qD5btp8DraZY33HCMbu55heCC1m4eERTtiqBhc3e
r0/4EY7ljv/tLSC+UN+prRTeP4hEl5cpBspCBFw32mx8eRD2FzteXh3tx7Wj
1yXM9tEo3iL3t33TACbFMlVY97uRFpvfYXOfeG+F8LyeVR+0hoqOb8vugOOJ
4I3TxIfQujpJcNO8B9UXOM57NVqR6J2qe/QOD+bnbe+MnOhCpvj9LSemfILp
InG1HAcuuG/tqF5mJw6GTRHTvdWAWzOybjWbcPDTzMX8RGQHdO0G7oQP1kBF
rP6MsyWZk0njWZ/c23GwtWDl94EKiHyrT9xMOK36bsXUKb5tmDpN0dY4tAzc
aVFfleuZaNbtrlRKboVm1a/Jx/2KsfVrQqqPMRMpVl1fRb4xcKg/k2Hfno8y
RohHTMUg/g97Xgw0
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUmnc81d8fx1VkVookVGgPQkKhV0aIilRGfRNFJUJSSTQkRcNIw6okZTRk
RzKziVx73X2vO1RSGuJ3fn953PP43PP53HPe5/l+vq6rdtjX3mO6iIjIelER
kRnkb5bv77JATwo2x+s66s0uRk2K5Ks2BToaFOJ+5E/vgH0Wz/GP/gesfbTW
NSyUjvYSyRzDDx1IiXfWXpBeAa52kK3tTAZ2bOM0SqZ0YrNFdlvj+2rcPFf9
Mz+Ngc4/KXFq2V3Ye/ZaXahXHdheK/qN3JmYHX9QRfVrN+Q/Wq63rG7CuTW0
OerbWBCpumyl69ELy5Ly0M+8VhxKEN/oYMPGzO83H86U68ctp+azazrbITOj
57zXeQ50TTYYtP4dwEpTdQXJVV2I22HE+NbKRddfhUIVWSr8t4iMx9J6EdJ5
MP+QPQ9/wtSuPgYNz4x6PcWmDeGWvnv15AQfx7+LSep50jHj5ejb8+dpOOE7
Nl6lIsSgf862FF8GVF+YSKosYeDUngr/MnUhmhKycy9fY2KXQhU1doCJpMmv
i+avFuKJlIkN7zkLOQ8SjeJeszFq/ELt9XohioYnisVa2Rg54nJ/9CYXUgeP
zgrQEyJ5hlHi4b8c+Kv/K/rqzUOh1IKllsZCyDXXqujMGQY/jsuIsOdDfZb3
xoQxAejnTjgum82DwiELvzsv+Kg3Xjx1OFSA4/Fz1G//46HJZ94j93E+9vbg
pdoCAUR+Op7t7OSj7nCpZi8EKA7Yerc+n4+nWYe+COME2Jrtt3LLJQEMu2UO
P3Hlo19yudsGHSFWXaNty84VoKCuzHqtEh9hO14vdskUYuHJyvbKPgFmHElN
2sfk4bfLFYf830J83VYlZ/BTgG8S9roN5Tzc/BmotmjxCOLiP/85MF2IgrTZ
o0HZPDzcN3hAT2EEDin+fu+mBLAOMlkulsfDAofj6WfoQjy1eOd8bkSA6JXG
t3UbeVhHg5hpmBB7fWNPzvokgE8ff9/xHzzMuzvN9cakAC7Krl5nngqQlHj0
j502H/ZPFDdo7SOfc2f14wlPAQbNyws0Q/hYoP/nztgtPmRsbNl6KwX4dDp/
gk7W5eoWuW0bsnjY4fnOdaSPD62wZXtnGgnQFekidMofxqE7KotHI/iIVnB8
viZTgBd1zzq/veWivDx4yakNfIRe2znuulgI5z9CkYcxHIikSIf9rByGp2f+
+4HNQhRvXSVecpSNpLOBtI90Dry1/GNm6Qrh+99y+R6wsIz5KOKPBBviJYYp
ezWEcJkv/f29GhOhAasSLI2ZmOh4zmhZIYR8BuvfgCwDT8uPLukNp8PqtZ3n
fVUhmL3DEWWydLCDHss58qkYiCrNKVMSwi50u/TqNiqOezHWMS8PgHkn5sc7
Nz44Fk/zQ5yG4LtcpsA6vAePvS43TX0choY6+9NCqwE4D7q6RH/pgOtSVaVn
9lw46px6PXW6D3b3szQyKj6jt3Gh1wtJDozGe8sV+npQYeecsv/HJ1xmBkWb
81jw+XFs69fAbmSpanl9Wt4I3WjWNJdvTDTdznGptO4C33FPyKRULYJ35MpN
qjDRdzW8mm/TCRmf7YPNcVU4HDUjj+HJgLHovY3PzhH+iKzdk5RTDt1WkQs5
FDr+rhT4N9RR8GIWW2dF2nukRyz3/+RMB8to/krF3RQ4/zcYnOX+DqoLRYre
iNEhu8SO6c+goDeN8vy2Syke5h19f9ObDotVy39E3O9AWfHmVbMXV8CvpvOG
J4+OvKWJU8t8O9HboSm0nlON9TbXldNCGXAeufNA2r8LWupeckl3a2G6me+R
YMCEVK5m0pPUbtiZNTiZFjdCPSA81mUOCw/Lg3Rp4r34/fy96x2rViQb395V
JslG+6YD+22f9uHxi+3/NOe1Y2+VZ/6GNRzs7tlzWeIM2acjO/yyjTtxf7+E
nYE/F+HVoX+yLg/B3t66YmVTD9rVixWN6cOoOHPJQp1OxauNY5G8kgEk/FuU
f+88H6oTdsanF9Kh12twyP43FVnlTy6Mkno4EZDEn5BjYNchu9qBm3TIKw09
Tif1M3WiQMZ0ERO/DC/0yusxoTK890MeqbfXOWf1rmqz4LDl5vzRbywMnu8d
FyH1aWZ6QENtJxsPn0Rkpr7jYNWo4urADULUb46uGTnBgQ2eeneHDWOBxSGV
iU1CjIeEq/ld4eLVxanl5ksJdwpDFFRI/YfPzr1VHzCMiYdnXp0I4GNLnQ9b
oVYAtYk3NFNnHgqeZtsmlvNxWsmppMRVAOpgQ+btVXz807ufVSImgBhtRv/A
DAGUUmOcBAN8uOlcltU3FeDNg99jSTl8UBd/fzx5WoDTtccjTAMI5zo2Jbj5
8iFubWl2ly3AlnOPtQITBJBf7ZIoY8THXT/vO8sJ97JbPmVkEe7NaFsQrE24
t+3Fw2cte4UwuiaM31wmwH9Gsc6ZUnyUHN9w2nCnEPd2PBrJfS+AVdJ25Tmz
+ZgeNehToixE+8ZvK3ReCuCqkb7KaBkfzOe/rmRWCOAss9pq9R0BjBNmPru3
g4+iMBGVryYCyLaVG8UcESDIxOdiyzU+eFa/rhk94SPwv9jhZxoCtN7jvkIL
mf9nxolJKlmfLv3sQSEfZckzBgVLBZBqbLT1kOTh9S1N099pfJzatW7v1TAB
HCmcoqzFwwhlb/+b48iHsriBZ5ZQgCxZm/fvlnAxk7PBbO8LHjYbmhoobxHC
qj5Y3keUg1rde8IVVC50Bl04afpCqJzP3raaw0KYy56x5vkchLken7dcWwht
O83Nmc1MZEcffhu2m4UmWppJ8Roh2K+3i959z4Bo/FPK+wQGDjeLXrq8TAhK
+fSQpUV03GMcN7L+RUPKCr0H0YSfihbjJssyabieTcku3ES45f1se1Es4bjc
jwfy56g4Nrjv8DPLfrS1U/KUGTxQctV7f30YxF+6ufrBC91Itbz4QWn/MKYk
P97pqelHxZ0ICmV2B5rD/fc2j3Pw4Uf0IiOJPuwbkujdPvMzlDrP3OeVsjGY
f09ZKrQH2ZyajdllLXiVUdH1OouF9KIDLYpa3VgeQ315ZVUDflovOrLuAxM5
fTfvNczpguIs5ctfjGvwqTo//tZ3BmZkP36QrtIJ/bFXgae/ViL4S5LFSysG
0nF+nZp9B7LvnFy5RqsczakNB/cV0zHqqzpsm0XBS/UrKardJdikP5S+YBsd
HJWVHQ4GFBTcufjlUlERlhqm1W0fo2HsU/3u3CoKgubWS5ZdeY9m348PDB3o
GC5YK9zk04EM+aKMwZhyTPNaGSrfQoer/ui8QKNOuBzQVpp3qAqXh9LixQ8x
oDC16ewfnS74LYyV2FFUA9fNJ3wsZZjIFa+5y9vXDYcrB9PEXjagqfFIZ3k3
E200poxcRg9OXnE297H8hFjDrolFtSyY2Ci7Na/vw7NIPme+zWccX3Uk8l0P
G3aREVHKgn4o7fTrSrLtgHyDeOnEXC4eX2osuzs4CCkbiujunG78/XBdZbff
MPzNchpWXKXC0fyp96NT/dj6KXq/3BgPOrfT/EOyaRh2Uz1TYU5FV7N79rNE
cm72MHb2FdAhoR78ZfNPGvyEAuUIUj9fpjQ59rkMzKmwGRm6ycDL+a9DrUm9
rV28bMyomIlnzS9n7tJhIY4bTbMi9SkwWdmmXsfCuNrt1DEGGzlNy6f7aQkx
pD2ydmE3G4Lk/iOCh1w0pE9fn0o8zauOt0bA4OBG6JT0Fkse2qpObfxgJERH
klsLs5uL6JFP63y28rHixJa/QhnS39nGjoY5wyiXbF3GvcGHmkL5eFSWAOxt
fS2O53hIvhRwMLWBj132pu9M9hBPy3Ns6SB8XOV0nrZKVIBqd96fP4Rz93Ov
+cYRnlkUlw1VbhAgrVybJ15DuDCXqxuwRICav6MH5zoRnkUOHza5x0fnf3N/
rjgmQFOyudYfX8IltsR59TN8mKzc9GjBDQEif5qY/AwSQMfX67nrUT78eAka
k5fJ+zM56x8GCuBncLv/jicfRhIxX6p2E562d3t2HydeVxNiWXiReKT2p+sl
f8lzdgb0r9whwJz5vtqmhDciH3v/SIXyIRvSZHeX8Ki3eXpoDfGp8Mkbn5S4
PAi6K0uNvxK/7JbfV6pK7sc+GvFDm4dVLt8WX87lY/2uO7qO/gLsYboH57sP
42/MBfnZhNfXBfFM6xYBHgSLVrte4yJYdfflOMJTFXFvAyfC69ZF8TO9Qzk4
P8tG+n7mMCicau1rxLukOHS3+gA2bs538T3wm4Ps3gvxh0jfSRXp3G3nwcLp
Jv3JddvYmDzXbrleUwhT911iZ5yZuMwRTDbfZ+Jg1hdZ+VXE8+UW2yXtY0Dp
gEvxzh90LPq6O34l8f/RBVHvOw/SoXjKQUb3GA3akvfir5C8IL96TOwqyReL
lZc4PRUZwuO+0aJOki96t5hvdlOmooTxtrSCcOi/eAdjvcM8BFxb1VesPohG
1Q9euV5dOGifVWIj4IKne9/Pxqwfa7yyXy1YQ8G/ix2TjonEH1ec2XAjoReJ
Zy1Cb1q2wShPit/qx8aqoDbZgyt7YFGRXX8wrBnVLO3zY14s4k3qH0dYXZBd
r38pYUU9Dj/Z0SwTyYTtpFt5eXsn6OJrw1ee/AiXFw7X9tczkGIavCdC0IH4
rcWFytsr8WvDwzW9Kxhw0FmQIVzbAVUDpbhnDmWgP2w1CH5Mx+68zss2tylI
7ynT/k+8BE1Spn8m19MRuDv84OYlFDx8u+Rsr2QRqs8saUil0yDYSo+7mEqB
taXRrYqUEvCbapTiQYdKetaafds60JMT+ytjRjkcpqzHHN7SMUtHYskcyU5U
JtafsHlZCRG7lm+szSSPZa+Y92+0E0cKjx+r6fkI+pppXruGGAhQ5IfJindj
XvApv7b4ekRPMxrYl8LEPPes71SrHog0uk0N/2rGDBr9SuhVFpIGG5STS3qx
aYDzXPZKG7oNwsdkb7BxhZ4vss6tH0UpFWelXCjYInAMdszmYHgZo0Nx8yCO
V2Sf2xvXhZ/G9iOFE1wsnh2kWKVOBWud6+uT6n2ov3rx1X2S50TPTyY+2kpD
dibzcrDoEMopFg4ek+Q86s+d2utEx58I3sR+Fxp+nrU/60bqR2VmoWyrJQML
PG4dUR+iY7/IfLkuNZLHJA/f0Tdhwm40OLLPl4nOuTXx4SuFEP7LYWiasOB1
60LJEmk2Tp+X9v6PeNqX5y+iJM3YqP2XdNU7g4Py9PlmxsTTNDo6hqeZcFDV
EZp7wWQYMz+a+YoTT7s/mfc6bCMXGfO/yDk1EL49m30sgfjAYFBm5FOJYcTK
7mtytuPjMDftReQ4yYUa8pHeVcOYtLzWnnqHD3anolF/Ksltxv3/WEd5ENFl
XF75kY8s7cLCx/uJn2SGL9Ic4SHzUpe7+SgfZtfT74guJr4jVbrFZB/hyULf
plR5AbKT7y7v+sLHBYeUl2LxfHhZP5A0Xku4lM6WvdDGx9GvfTpGRXxEzl6Q
mbZRgBvVQbsvVfHRbpZak/GWjwme1OMAwsmj3xukThFOmr5VnP8ujI9Hni0q
gcsEWJFxSv1uLx/jAa0uOTrEsxqmJSySFGCybDjCfoqPpKqx2gVl5Fyu3vww
ms7HESc3hgqZb3H42mJRDR4Gu7Ude8l91nW877xNvNJ85G2G0uVhNDxKrdcK
5KM049ekaKUAknG/n3iUcnH0iViTqT7hYmxzOBYKsXWnkpVHHwcvxNMrIjfx
cLtE0f8W6SMOQ7W7M+hsLBOV0GVlcPGvzp9CJX1nncHm6E466bd3pmr7ZnMQ
dfxZlzTxrlbr+wX7aUww1b46rzzFgv3xv6s11gpR5Fu96DCDgWwvj48LehjI
LDk0cXi5EDt9xKcmBXRc2ZmcoL+T+MFOzP24RIilC19rj03S8M3zJF2zmQrF
W/5SXyTJPGdadNTaqTj4S3F/6fUBcHf+SLzozseDN9J5rsFD+KES4Zld3YOm
R9lXDYaGoRl55cOssAFMmcyxbHHsxOHLKxpqgrmYNJz1LqW0D1lZ1rbZJu2Y
bdnlfcyYgz/Ug/kz1/bCwtAsMfNaK1Y1vO/2V2cj4/zWT1qN3VhGm1XRadYE
1dGxmnVrWbir/90pKqELM5ee9LukWoefMZ9q5PYxYf37xIuS+524SWuo+/Gw
Gv7O4T3nHjEgMOt8/7ikAxFS/h6ijysQIOjpPy/KgIVNsaOiWAe2pjeHRll9
ANdK8j/tMDqM2FINdT4UfBubv2v1hmIMdiaF31ai44zxHMNGMQo23eZL/XQq
ROeYek5VKw2jv8SyhkIpGAvbnUz7UIyXcUWTWatIDt9+L3lYuQPHHGwVTTgf
oKTblbk5jo7WUf3Ov5QO8LYqeuqOV0D2w9+7OxQYCI0p+bA6pxON16e3O/2q
RuDf6zJlb0lOEw7M0yzswqz1gg6xsDpY+z2S0/ZkYn34l2xvTjfGTit6iz1v
ghHeJIqCheTbhgc423qxeyVf+2heKxZLHUx12MiG1OCW/ScofRBE+L/a6dkO
P/Po9BM7OVg679z503cHMFrYQrvr3wkRFyP5+Otc7KCJ6WmGDqHimJJtbUsP
du0+f3MHYxhzXjwPMflEhb5eULF50ADEPDjPZA6RPKYe4fPrGw0agz6ViQVU
XJ9tsuAN4cN3621W1F46ns01uaCkRYd7T/ruA6Te5gyOUONrGNhibSzbk8nA
f8omM0qIp6ma1VaeKmLi0Bk1Q+/1LASpFXhuIZ6G7wEe48TH2/rOMN8WEJ6l
6yU1rhfClnZ/aCiRDTftL/KrDUhOkbxQaLZRiL8uyXK9xAe0BkIGLLKG4TM2
M+868YFH9/ibLh3g4vMqlcsHxflwtv4iHQgh/A0dTs6fNYzVPdL3O3bzgZwT
vrd+CDDkXlh44sUwtt4qpu0geczl1Piu49kCqGr0/lZcyYPGwwoq9Q0fSy0G
mbrnBIh70fV11w0ebiSqvbFpJR5WID0t3UYAiaQr42p1PMwQOWgXx+Lj85O7
6rLrBRhN+igXw+LBpOvWPA/Cu+TRKE+qmgBjDvq+/kM8xCdFpu4n+S74x17z
R4RbPtWxt1vyeAgfzb+gPsRHwHXf2CJ9AW6eWOE/RHg7Q2e+/XLC26JMn+dP
CW/nfJue7f17GHSFnE9pJEdWff5PPOsm8cGw4uc7fIfBCD2led+fDyu6gs2t
egFU+FuVaxq5SDF3XTqb5GF23cxXLfOEsDNjfLOS4mKt/+OdtDAeHGckL3hk
LIS9ct3mpLUcyMkcv6+0ZBhvDvtFRRoIwTp9tvT5VjbcYzYpPkjjYOLEHof1
pO+cam6+0raLhRsP/mlKqLHhvGPvVBbpUwUFt35fPcDE4kj5TJUEJr5JQV6V
eJfrvqO307wYKMq3TMlXZMD+TPqGdOJd4z3SjrxQOsw1fnjWPKVhoX/2H+dF
Qrhb//jP6zIN1WmtU070IWSwb0/NI158Yf0FoaYHFXNXqLcfk+yHVjLj0fd6
Hlxj9uo7lw3CbKXDG9HgbsgsMAt0IfnxOKfq4xZGP77/Wyihu7UD+EfZWCnN
ReGZe70Ken3ou/7dSdThMxRS9XKWDRLvSv13jPWuB9bXHfyFVz5hi8GayK+f
WXg4Tw/ZJ7tx9orX7uzJBkSLfuOeGWYiLL5JdvGuLgymiMi8VKiFZEK+5f4l
TKQk1xh0ORHPqcfxkooqjF4/rf/LnwH3reVp0yI7kCanceT8aDl6D+3LTaDR
8X5VjWnuAAV3xYLvxuqVQpW168yV43R81q2q6rCloPDNql3DB97B59ySZc2i
dOR91yiZL2gH/0G/8arnBehRU1+R84GGOx+WubLdKJj6s13pds876H98d/DS
XDoKtpUoSY9SULezPX92dSk0PbruNZ+lgzsRc8LxSQcKTo/lLNtagRun9m/c
+Y2O2c1m9574dcL93muev3w18W9t+purDHRvneCcONqFl+t1P67zqkWn59L9
PlpM5Kn8NWeHdeOr8rWzx2wbIdobO7PmNxOyXONqFuFOwsjy8B8NnxCutEIp
l8aCS/zqQiWLPlje3snuP/UZTU90lxwdZiPTcCjmO68feHZJO2FnB8wnLxes
I3mzomiPa+r7QXzYxbHada4bjszvlLNOw1iU9etC8n9UeHKS9ZL4faC4BwVy
S3nIsUpYvMWHhh+ts28sTR3CI4rmzvAtAuSWSRcVedPhnbExZdElGlTorwO6
iaedeRC0P96agUuSNaeSGHTYTXXu4xBP+7og0XqVJskR7dF8w91MyM/f67KA
eFpTivO39XIsTL5xyzKoYGGHjP0/23XEu348iewbY0H/Xe7tT+Q82atLTjtD
+jvnwrLbS1rY0Ept9WHd4IIaP+vX8f//v6DQw3QongPzW19jzFoJt1LyZWYb
CvFzPHR5jD0XZ29IHxf9zUPhkNOIGeFbic4At47FhUPfSFaxOR8nYt9HrBQX
ouJhrV/pQZKX3k4uL/Hm41JE/bITbQLM3vXfLel3w1AvPNSgcZNwT/dCdGg6
8azM7uvfxoYxPbrXbOVjPvSKN4+9vC1A5qOSwlBZ4jEfFz13SieeRdNw3HNF
AIeZdb5ZUjz4WW6YcfQ5H3uOpWz6dlWAJ4v1pxzpw6h8nuL1/SEf+b68RdPv
C7BM/O3v1w8Jr+drKR+5TLxN+7X09EIBlgTsabugPQy3MA+x3wf52Jbzu9mY
JQAHQS/c3nBxsuPuzvvE40Sdkr6Ek/7CWDslryDDhZ0m16DmOg89z1oT0gmv
Kqyiz1vbcPD4de7FafbD+Ogr8Dcj3htVMmRYc54N/7PDf1ymcWG6UTc/mOTE
skyN2W+TWHhqLC678hEbsQZe5/xJ35l/ddp2mXdMdP/QDnXXYoF9NOyLCelT
bjfOJStTGOA+mvXmVjkDdMazTkniXemJ9+1CR+mweWC6Qc6BDgPRImMWec79
88sD4hfQkdS2Rd35JxVztj9+zVEi/cjtQI6HCA0JX4oYK5cPItrQIG3JMz4y
/V629/KHkPvs0uWw8F6ELFh7PIb46IdH60MXigyC+qH2d/D6LngGcuf9aCf7
PWqkl7K1Hz772OfOLKfgdv37sEBSN//JZkh9f9mL32/4jjHH2lCxqPROZQgb
Xxt83I9YEp+7X7G05HszQn8wHc+GsrBMytBMbk43Hhaub3uZX4/Zh0eWjz9n
YqZXgnatSBd63xWaFUvWwLCZ4T3FZaBjs3uJnlInYl23zv3OqUTEvpUnxiwY
eL7x1K8Gxw406T2s6jMrx/Su8zvsPtBhped1vCOf8MdzcfZOtfewvnnlVfAO
Ojadtt4dpkVBq0VcgmJoEWooqz0aRmgQBsRsWvu5HRI7PeuGv+Vj+1ZN5wsv
aWgO9h9O30pBS6nFOZfRImSoerar/yHXJ8lFdtRSULHYZejio/eIdFpuv9SZ
jpkPl2zZ5tWBLoc9ex5cL8fYk6lckSY6QrdNj76j2YmkyBaFt5pViKU53NhK
8n/R0Z0Rk/JduCYXbituV4Psgr583XEGvi6aXxat1o2bWLf79496uB5gMX7k
MjGZIMPhOvTgzfWX/XmrWzBdqWXc5TYLqhGuT5IKepHqbWPsEtgG/5xu0dth
bPgkVh+WMulHYcNhh3UrKNDbF+dbSfbL9JZbmvePAWxMn2UuVCE53uDtkYAm
LpafXq0w4/MQ7H6tCbvn3Au+w/3GY8o8cBkv404MU3Fk5swHxh0DWMjr0vt8
leQiib2qzF802Fn8M3lWScW3DX+8PKcJ4Wk9EBTWTMcNrWufUonvXtj94sAs
Up/LbDYvznpKcvbKCb1FpxiQj9C0HV5KeNW+XWLxeSas5kZcfFnPhO5TakfT
qv9/77Gx3GsHCwlzd8loLmIjvddv2iPS39eFaOV2LGDjWYSYx3R3DsQvJqqZ
6BDf2zZH+UEnG0yXrwqX73NhzRC4JRC+nUh70XX9Kgdqh8dnu7wcxsY9qpk3
ib+ZvjIqzFHiQvbAVretj0kOc9Ch/SPnOkHTbG1GLBfBy8dOTV9NclZcWZc7
4eott135ElySy6cfeRO0jQ9G8au45TOFyM+WTRZXHYb/3aDJFU58PBxyujNH
KMDB2MJ3KZuGwXRMSc525aOip3/3A5oA15uFTgMbhiFh4m9V7cKH3dVD79cx
Begq2flskHijT03cG0V7PnLKb1nrEG+sjcpRyavj4jn9tbiEIR91KeNNmvJC
vN9XOrf3GBcl6snUEiU+UqlnQmMJn28t/Ws1k8rBekON4j9bedhm23DmBcmD
G6SOb3AglBN39Alu2kJ4Kab25h/xK1nXhkO5kWyMLLqiFqPCxdXhMyFDhFdR
nYoWrjUsMP/VlqrS2Nhe+vG9h5YQH6h6/objTMjMyl27K46FW5cFXS9JTgxn
7tb8qcaEe/3rO6nGTHzqfaHdukII33GJFzdsGKiZ9BtRYdExsMu9QUD6mn2k
k5RdIB1eZausS2NoiDk6TUmFeNdap4XLx2/Q4FildFZChArey1wtBXcB9s3z
aTG+RMWdDRkRYu79sDo9zTmO5H+XrCX7PKSHcPP2jgtbRHogFL4baI0aRunN
I07rMQBtxtmaOdQO/PUe/HFoBxctU8k/EpL6sLX9ZKWZRDuaLNfs1V7BwTqT
nMx76r1YfTJk6b+zrWj1NJQOU2Hj1+KgJ13t3VCtM34rcGtCYWXpIRNtFujT
E2OfvumCDMtmcb1nHcyPfX/IOELq97eOexXJX5LxUUt8/1Tj9cRlibU5xFs0
9CfE+zrARbeEkUwljnbIPL2lxIDx3jOPVJd3QNYaNY4ry3Bs9rX4vAQ6IhdG
fEu6TcGgaVVCrGQJIjq+6hmQ3BP3ZPswX5YClej1R/Y/L4SFmmXtvW4aYvPt
WpYWtSPAcKkx3SgfKe0Wm7USaODEPltosYSC9bvD5dZJFWFmn7/kSzoN/RPL
e3yTKfjU72H/5FwJfs57auhoSMfUyZirPzeS5xwILPNJKkOkf3xqxHM63u6z
KtYWdKBlzoQi37ISr8yF8UkrGPhQ9TN4Y1UnnIwo0Y83fESI/deRd6UkLx9W
bKor7cKPr1am/xLqsMW7eF/HSSb8dHOOug52w2gNPflOeBMuHv37Nt2Ahekn
YozOrOhFUOD3je9CWjGi+lNotIQNzy0mFxzu90GW7jPN5d9nfA2xe1OvxkGL
Q5i8pcYA6i/wfwvKOyC9auuCBrK6VJ65eOHwIM5ZxD1+/bEbSq/0xJYHDmOm
zMXtf45QcXdEJVJPrB9Z0//Wm5Ac9eiW+JiCGw1Fl645HT0zhO0mNxwl1wmQ
8E5epcWWjkmnHTkv7GjoO/krZz3xNL+e6/QgkrMvPz/0aTCKDlUdqbWFqkKY
LQj4tmeQgcnYJR6/WhnIjo++sI3061/Ju2/qpDIh8chFYDWLhS1ebicqVwsh
+nXU9pUrC71nfZvfGbNxa9zXQF6T8FBx0+7D89govrH82NYDHFjuXWqvRvjm
8iYm9louG9085bcrXbj4tuVrUTPJp5VPWbuxlYME+ipps63DOOGWPDWdeMgN
i/v1+/M4eCf19HDrn2HISS5KSCdel+Z8dqKR+Ixs50AIj+TL59zj5S8J93af
Z85ts+AiO/GF2VI2DzWHNQ5MbRHiuajwkIwbFw/kJhhWsnxkzag59ZBwJnVu
nVf4fi4yl+8vbRbjwzaac8ifjJtt1hNSdLg4dO2ltHgND3pHdr2LJPOIv3UI
FOdz4O40uCrDnoesObzXHMKl9SNl5Y7hHIR2LaqgZw8j2/qGXBLhc7/Wb59Q
cQ583pY8WEh889vQRmqhvhD7qA8EmafYUFT5esNpjAMlvZceOwmvKD/ND2+s
ZyFqW0LDKxYbdYxr5mcJrywCTv+nMI+F4KxpCChjYWvZtNjthOcrtE7l8eyY
8HJu1p4fwYTe3thNdOLVP5U6RpdGMvCwdbVD3nYG2HbU1ftJn0pfM++cXSUd
IxNn81Ml6DjRRf/duFgIw7fr+EWkDzocTFFzJn0wTlYrex3pg9YmHp+nxqhI
FjYoXvs3gG0OywyU4khePz6yc/DPEKZ6QrY9ftKLw/SsZ4sNeAg9xnwxsHoQ
f5rPlCgHduFZaMQT22+kD73U5u0N6UfDjPRWkSgKnDXnT6hVc3A2bvJh0Xgv
RtaJON4dbsOLPU9O2eaQOrJmhFx50AO7Q7/WO0h9QuZDz9kfi1kIrNe4V3io
G4lfniYptTRgpvFB7WdDTIgcsqe9t+3C6JjRrV0qtcA1YWuIKhMvsidVDrp3
wvHXvojm4SoECI75zL3AgF5XYP/1xA7M3yQmemJ9BU5fi0/nC0kenJVkqUvy
nYVlvbzGx1K8KZUP55F8dyE6hartQUFiyuYH576+g7PtSq1WOTpO5/+9ufZb
O75zPpuF1xfgXKea/LZKGj7O2R2m+qgdrJi/J8av52FAxns69zoN8uHzzbj/
2vFrYoGlinohPpg7fDBoJHkznFU05zQFDRu+nufaFcOtx2N21CI6iqQUaa9F
OvCW/0+TuvoDmM+johZcIb68Ny1vMKMD2R69my3dKrA9TDJmapyOuqNe8wNP
dUK3752t64JqhPd9d7AMY2Biv7fZrP1d+LSv/9C6rbV4v8fuSulKJloqdniz
PLoRn8P1eMBoQK2WqfAvg4mRU3f5B+73QI0ysNN55idURKwr+fmOhVV6UWty
+L3ogm9tJqUNeVc7GX0ZbIg467ls9OhH/5wJ3TlkndJj6B80cjngG6ufD502
iKKMKw+/anfhADWoapRCztWlI380SoewpMD29X8be2E6FpBSJcNDWpu24t56
KkaZa6XTPQbgoBJXWejAB8tcUzOrlIbE/JRzWQeoMErspK55LcAzkz+ROyLp
YCamnUp9TcPxPV/mXiP9N3+NufxDMwZ2H29fcaCbDorZtoAPpF8/Sl1gKfWH
AckzW0Qv/WMgtlFTj0P4lrS17V9cBhOfgwJn3lzAwpMHEq84hG+ymlSRLbtY
SH3yZr2yKhtrFC49TSf+dlpOTj6awUJQpGavmCwHvEO282RJPn01u/Zdlwcb
suv2ZjnRCLd2cA9LkHP9sP68gW4beb/VQEL3bS5++LwfDSJel31YkTZzKQff
j8bNtptL/Mv51Tkn4jOR05T6Cpw4OC53tzn22DCo1a/rYwgPI6nxd5/4cTC0
2Cdv8jbJ7RcWOS0inOmbMXdi2JMDs3rqsY1Xh1Ed677mJ7l+fsXA9W5zDkSi
T1x8bjkMvTRKxyIy7rL9rpPLdA4W5iVP6+rnom9T6FD8/3/PIH9/ivqMjWlX
CmqeEI7+89M3DyR83v/slqv8ejaUK1WDDkRwoDfWXl9HeB6+psFR/hkLMhjq
EMtkY1naZFwyyYPlm1FVLs6CTbXXlZ7XLCTeMDOdRXj1i/HX+fNBJprSLIza
kpnAjLcRGsSTA8rMkx5lMvDN3PQNI4SB2kyHggXLhPB4+2HhAZITXVpTtCn7
6BjbOODEJB4e+fboGfVNhGNCue7N62j4/r7RPUtZiL12CtuLdtPg27835zuG
8OVEWbaPggDNah0HpNyo8C1XL53604dlnN5+1Woe2ecFGmbjg/jhl91oNNCN
VZdiAjOvDONC7f11nlYDcIlNPqD0tQPUG1xqnz0XqSbaq0JL+kArktGZMm5H
blT50WFDDh7+Vmmqsu9FvvXu/sqGVvQzUuNdt7ARriOufEKmB7s9bEeer2iG
yvvuTzOcyXrN86t5xO9CUsimHLfN9Ujv+Ksoc4cJUUvKjsEvnZgeyM0XtHzE
tdN3JRYNMFC9y3bmr/md+M9BVkGrpxKv6/dk/iL1neassVnivw5EWvvlxtuX
43C/nbhNBR08hS+frMooeMo9f1riyHuIJIfMUdtDx/alXbr1RhREKfYanuwq
ggXDvNtznAad3Kkd3m3tmNrTyH8nyEfDfP01P7Jo6BRfKb0rrB0Zgl3KrpRc
MK3OL6w8Q8OixL9v6/rb8eq0QWypYQHSrsjof8ulITk8UWzSioLiF8vk7Ne9
Q6Tn2al/UzSceuY7Wt9IgdaF5Qoixe8x5Ty9l3eA9J9L0y6IH+9A0H8u/buD
y7ElJDniXT3Jm5WTjfaqnajbYyWl868Sy26zXoD497pfwcGS451YYat1qZfz
EYrb93xeQWfA9sTjRZYjXYj79uj2Y7N6WP++Al4UEwFZMn+txIlPh5x/0Crf
jF8vFL4c38fCpTgFL3PTXmSk3Lop97oV7pfOHazTYSP2onRR7KM+uOibZbyR
bsdEk63r3ZUcbLH8z3dcaQCLb7mfVEjpQFb47Wg+8QMbae4Om7xBlNTWb2o6
3g1DutXdePthZOTsD03RoSJmID8qybkPTR0bmcxQHqrUC3cOytHwrG8kfeD4
INLMRBddLOPD3NF2QT/J5WEbN4TJ1lCRtWFZi4YoOY87uiPGMuiYtXyP7WUa
DbUmo63GpF/37DHdo2DPwNU784OffSHc17SVlFMXouaFgU/Dd1IX5fQrAeRv
dGdAaSXh260nyqeCbzJRxNL5sZ7DRIS/tqQB4ZvD3z8cyfnEKzguOjrVLNQ4
uTbuJ+c0xiI/4ustFtbN7xV2kRyuWRIfoUDO9dOiqKmnX8j4cMFCb8IttU1j
NxwI90qqfrkPbWajTz9FZ1cSB1t/difN2iDEHZG30Zu8SX9o8W+MJ94UGzTj
qQbhYe+mk4OUK4SHraFzds/mwvFLVXEWGX/u8OvutyA2Dkm4fMMMLipFNG9c
JePWZdQbF52IT37L0WY3crBfc1lwMZn/SZRQbY8yG+xod2Yy4R/ldfalfYRL
lhUL10+Rz2M0Ge89PMjG7G717IPEo/ZLzb6/1omM8041z9Yi9+/acJdOeL64
5qw+r4sJx0sFBRNuLBSXWsr9XCPEqi+ebYmWTIzH/byjGsTEFlNRThbxq97l
C680EV4pDx/w1rjIgPDXukpFwqtF1BtbQ8QYaJORWx0bQMfmIzem7yVenftJ
hP2E1PvJE4c4z4/Q4KbplBvw/99RyxqdDo+mIbfFwFdjFhVqz79cLPARQEv2
mVNfFsmNSyYvrJ3qx+tPy/KsNfgIDhxUWJNEuHZ1mtqPvz1od/t3O+rHMNKd
qGyvHwMoXN/2i6/ShYCC5oHTTVwUUDuaIo7348BK7QM9JyignpLoDsvnYE5X
1erpf3sxuHv3Q+svbcgvSOc8yiPr+FTDoet1D8RZ5pMXDnzCUeMrEWsbWchR
XRZuEtqNLRb3lfUsGqFeSj3KI/n5Uo3THifieY51VdZhGbWwuKPcLU5y88BE
qmtmdCfudLH39F+thvKVz1q6CQxUvG4ZWljXgaV/m6jHGiogoWX2fsssBp4J
W1/8VOnAm2vzED3yAZE5h8rH4+iwvCc6s/AWBbOfR17fM6ME+yt7H99fTwea
01+ny1NwsVn1hVN5IXk+sY16fTRMHmy9z3zbDvfus62+c/PxPnaGVdM94rXc
7VGcE+2QqgzqLVyaiydFI/O5ZB80fh+z2/C+HVozrb4scc7HEoZMi1QyDQYF
J/ckkrx5UuV8a7BMERKS9L9wSN4M6b4tWvGArOO7mgVKdiUwFrGuctKnI2bS
87Hpyg4svFCxXkOvDGm0zQ66SXQMbNZce6m1A4/w4Gc8pwLNuhutlssxwPdb
u+LJvU7EzdvDVb5Xjafm5+OzkxlY9kXu/gOynt6t1paumbWo3PRlpy5Zzz9P
IyhhQd3Qv7R4z661jRifH+QcNMrES23ExCb2oOaub3CQ4idsTNrw/kkpC1bv
K3xW9vWiPS26iFPYBpH15S8NH7FxYqlp5AqDfvzIf2RSqEDByOb7o6F3OTjl
tn8k480Ahvbcr0tJ7cSAIUfxZCIXAQ7hGTlGQygOLI0e39cDmc995udyhvE3
IPNYgzcVW/N3Luxf2o+XAcqSaRQe3pQ/nnFrKw02daxOQ9EhJOmIbLCZ5KOd
IdVRO4+O5BXq0okjVOgPakQ1KhEfWG91puMlHe5/s/epsmkQ1X+UvIvwzeKy
dIRwKwNubocuzqPQkdT9hfma+Ju75PCa3kYGTi3W+2mVy8DFnZHpPeTcjRgF
BdVvZ8KfYh79JIQJncDryUXknN4y71wUWMhE9IstS/o0/v+7n7oiA3KuS68e
LMuYy8Lh4F8lHz+wcHxUXdGScK+5c0DJw4GFuNWMu7oabITadut1Ez4ozLr5
wOcqCwLXfSYxZ9gIPCA7a4jkXC71xpPG+yy0d36mvIpj40OZ62w7wsm8NLvx
z1Es2Ma/cQ2KYOOim9yhlWQ8d/uOhz98WbC8ca3c0oGNJLvo4yfJPDLD/xmP
6bPwXOxuks0EC/F/H0StIPe9nNWrkcllwu9PkQU7mPgmm9ru+P/vqYS7hFlh
TBSOzZhu3M/EHYP15rKE57crnpf8mM2E5gzDD8pLmNC6+HqH2wriS1lq/wJJ
Hoz/8vuXkTUD2hLrlP4jeZBSlG+c/IcOcZlr4guP0FG+csZNecKr/IjLL6eR
1/g6nHrFl4Yed9PKx4RXG7poLb+JZw8/GQlYYkqFV9K11qvxAhSW/wtd3Uv2
lXZqUPvJAD71flrj5sPH5faawUQJKr7E5+28UNuLl/0hxe2WPNzoPTVzMGgQ
06WyXo2KduNAu9dB4zXD6LJJyUsb78f87cY7Xx3pwLl6k2+KSlykRWC9wa0+
uK+v06jhf4asm4/OKyUOPiufEYsw7kV5Y+nWnrRWpGy6+TeAeKoTO93IZ1YP
ktj/wtevaUZY8q2nxcS7uM/2zNr2pwsP4/XU95ysx8OdQxTHh0zMHLvjzpvZ
hQvLW6XnLamBgonea1shA9sRtm1cpxMLO5aozdxShQiX+c3OTgzYvTtrcfpC
B57v75PrKyuH0aWD1Ye6SE6cFB+nD1IwM/hQ6+ctpShGPMfBk47qybHg0f2E
J4F9qjoZ71C1yuZUkgwdgf7rJNcK26FeHDuU/aoAu63SpM6UEe8qlC/qi23H
8+7ztAeb8pA4qnBz4hINSpUzBg3s2/GG/q53VmAOhqdLbYmyp6E1yM8lIolc
j9vvOcF5aDOJ7a8Pp8G5dLPNkfF2eN/jva8eK0CG+qma1Boa3F8WH1hPcpoZ
b2LuUZJnMxncEy0kz0r06TbbcSl4NTex9+jlUjxidR4a96VjbtS6h7zQDhRs
m57c1lOO0/bCOY/7iZd8sHH9rke8tC7mMs2mCk+315auOMDA6mC5GxvJet46
9UE5WaUG+5zKYloFJHefMzTM/dYFpf72jeG29VhhXP9vdywT2482Rd/+3Y2j
+y9T57CasEXmpFmlDQtJwVMsg0W9uOvBNMs82YrHq86gTJGN7pKOlrcH+jAh
YSd27MFnPA7seBT7i40G714Du5x+HH9p92EJn4LNEfu8XIY5UI3dm3FCZRCB
Z4Nt3rl2Yevmqt4+DhfFJdSxurghKJ0V+qp+6cGcHO3eQ1+HIe11V8v/JhX3
VzwJOHunH6oZbOn3UzwUxexSr9pJg/iPystaOkPwefjfvUFZATbUjS3WIvs5
o9/3vxlMKhzxan4a4Zto7oyTc+7SscdiQq3wPdm/H94bikg+vWRlKH5nLgPG
ub0/x67T0RSS6Z1Azp3/VMeZ1SSvK0rdMV9I+EfpFm7TJ+dUZ8uScA6H5NlD
2scOUBlwyhI9FEK8rl9xm2rPJiaoifGxou5MmBbefHiAcK+OIh1kGMjEjfhL
F7bWMXFrU05WLclZn1+LrJyZwkRcTddYgyQL2/y2leQTbtTc+7waOUwIvj6d
fm45C+o+tluUCCftSqM17LKY0G3crrRHiYW8Z+drv5HrA2NOHvx5m4mv375d
XMMnfEqsCbYg4zPHPH4N7WciuOfxyvnxTFjoL3JUIfeV4P0XcGweE7HbEr2f
LWOic7XX0TOES1t9Vv4WKSTnSXzf3foYBppakiYOEZ7fcN354Crx/Xs6UU3y
LDqiPHpf/v/79rD7Hz5c+0zH0qZg/9fqdNS+V4tZQ/Lg9RkVG2xsyXU2dgc7
bGk4rDRZsI7waobjYw6H5BjZ65l/64yoUFEeVNtwT4Adn6J/1POoaP97/+KM
3gFMN7y6uPwaHx+js1e2rqJi98iS84H6fVCg+c1VPMNDTfby1Pz2QciJBr7y
etyNiyNHWl8dH0aUJefXNbcBDPjp7qxW7kSB+HelUHcuVNjCS/0i/TjmR99w
r6Adu85+c3jhzUFeeui78fxe3GiSuoZzbUhLbVyykPi12OQsM7NrPdD1vvOc
1dCCDO15H0dfsZD54u1rL79utP5+eVdLohGxGjMuuJH1FlEVBM082wWxv0L9
0ym1EA0qu3DUkORpU7/fjx92QmyV7r+Ix9Wwtthg1PSYAb9cA6vOrg4cPWJ0
RXVaJcwP7v22U5GB2SGbM1laHfAY8jPfcL4MrsM6G/48JZ4qm19z9SkFQfY+
+t8SSlCSLNLJ3ULHro5jm2+vocBUl9KW6FSE2w0zl8XzaKhI/nKkqqYdIx2B
Mfef5uPQjzmm557RoJLPDX0Z0I4P0uc/ZhzLxbSh/tqPJ2hImDuu+2hzOyrO
/H3KaH+LucvyPH6Z0BAUPLDO5CKZ5+b8XpvMXGTW0iOunCLzyzw3EbS2g+cu
fRjD+dhhc3NdItnXTN6W0jZd8jzuJhzRJ0UQMT8S3PqNhuLwmKMqLym4fz+r
6/VACSgNia4vtpF6oR7tyDfoQOfVZMvIN2XglYR+PZdOx5u0Vdwj/R3omiHN
/yFbCcVtX1ZeUSa+Or15SSNZz52mwVKqT6oRqpAbxSPrqUlx7Gnz6YLO/ZP3
3W/UojojfbaDHhNrmp8fi3bpRs3mW8sUGxrwJ2xxKWWQCflrh91uHOtBsFTc
oqtHWqBer1U1K54Fn0VUNN7oxfiTbWJ5q9rQ3XIkxNmdjd4J8Vn8sj4sVb8i
mbmtHQodlU3TwcFcRb5zgsQAKA5Lr6660gGFoIkHM1ZwoSfalDjXheTQ/LOS
1M9deLRCfGxq/jAifVMjD70fwul7Th9+bOjF81+Xb+rI8KCWGLzp0h0q/l4X
Pz8vvh9rtmXQxUT5+Mlwsk8wpIE71XZK6vsgtJ2uLXIa52PxVTvrbpI//+3f
IRmbQEVrrFyIKE2Ax5xgruUhOkq3W+le86QhxWOeaCQ5d2FF/82dWUuH4DSz
RleWjumLm85wiNe5FX2/CzUGvsSdl1mXQseBbrUZPwn3vsUMfdrpxcD3k30v
VpG63F6SsOE5ybNOG/z3PUhlIFzxeNlDfwZkzUrfjhAenk64cMSyjgGp2Ylr
br5iQLCE1lxNuOG5eLI+pIt4ToPr4YmPxA9XpN1bRDhp8eiGc14rAwoDV5vl
SxgoEgp//yDXr5IemizPZ2Cux9CZ2igGDqkYvHUi40e7Z/82vc4AtaDSQH4b
Aw5vqP9tJ/dN1tmhup283hoj83VeHx0L3kTsqSNcevZ3IVdllA5bo79mfvvo
kN3NFtIJlxI5kt/coun4+k623LOIhhsBI7HphP8Nn/67d4zwCxz69XxxGtaJ
1pSuUBZCOo91kHGDBpEu1eVNU6QvHak88ueIAN/Gxz0xSAXf/t33o68HcDVi
g+2SAD5853VJ/tak4rprghhzRx+evYuIKQ/h4T/TOYkSk4PICP5eOX24G/Zm
9h+8w4ch+6Mg4n3qAK6tEVYw73QitmRiqfRdLg6vGLFds7cfOW0iEictKcjj
qztteMHB9b+v1jyU70OxrZlVrfJn/B4T2CXUsGF67HxcB7cHkkYFCXfnteKm
+1iK8DsLou35Hu2Ubmz//VHPyaMJ80xX2I9qs6DyI2ft/N4uVG+kW3j8q8Mu
j8yKoiskv8w2nH1ivBPix2fbrRn+CN8zM9+eoDNQ9223juT6Thg9M7t5QKsK
19c9KLq/j4GdL8Xs717ugKD8dMartnK0afXSf/fSEbxtaPzKMAVSRefN3t4o
RXCqeU+zHx3Fyl/j8o9TYDBrx0+uRDFeD4aEWinQ8UFG3VZ/oh29S74vcVYo
xKb5WWckGmjImT1nzb8U4lHeaW7tT/MgfH2g61EkDeX79H5WO7ZjTPPUpaeP
chCTVrDjjAPxq2lXT15a1g4LwaGz0pvf4kzIsQhvHXJOYvLZQ27tmMncFMBj
5mBwU/jJqIM0hH08tnPoZTvsZMLKwkby0LyTPm4eSwOt8m94sDgF70O490rc
CxGz9qnBWBsN0tmbd706TcE826wArX3FqHqS3/JvEcnFL0a/Lf9OQc1i3e7S
xlIc9XV3iTtHPH6n482L1zuwd/tjsdLhcojp3CzqHKKjkeIVpU88Vu2o6Fkv
wypsKrsg2+7IwFtfit+isU4otHzSeTvwER/OHVBYSPyCvqH+ztbmLkjsbV5T
21qHr/uabPKITwT654ZrlnYjd9HPh0vkmmChlLNjrxoLzygynlJVPTjK+qRd
nPIJazd7fz7Yw8KI88/FSf29mCOa9c63uA3znFITTB6zkb5cL2BMrB/57dYn
/cra8VGv8KOhHwdrCmUvF24ewN3FMl+tuzuQP3dgltF2LuY7LFp98twgXlhV
LBif7MLn0iKrzyuHUZxRdHBDwRBs3au2bF7di/BjK/72ifOgfkr6Zsg5KpLz
bzvO3d6P3O6Pm94weMiOYiTHz6JBMUns5Nw9g5i7cc2N1wV8GLoGa2xJoMHK
opg/bzEVbw227jgULIDz003P782no7PKwFXlOxWPtrgI+ojXrVahBw4dpeOB
ZcSvwjPELzgl9gWEe1EtGyPCM+hYbiYW84lKw/dzv3YZEu6VLLjImEd8ef7L
FhVxHTomr4naHiZ8kIlb+YI2QQddc+J+KZnvv2s7a9QID5sy/8kbSTEwId49
SyeYjnnbbfJ8ybi7h5dO5gwGNCgPS1JP0dG9uvG/7WS82UQjZIxHh3dShPzX
7XS0P2CsfEfmt/p68v2rcjrSGi8Lp8+kQ/q1hk8leR5mxtul1WGEvwsuvipL
o6G9pL7WnXDprrXqDrtNdKwSDbsYto4Gr2Jbv5eES21ODsuiST2qzQgrN71I
xavVQ8/VGgSwjIiQnGVNg1HJ4Tir5UMw3RSu/EJaQN6vL3etkIp33deNilcO
YJNU0ZU3xnysecso2kR6XsKz05/XzenD4Q92R1rceXBolLy8/98gJo7/laRw
uhEn5+g2em0YbvTLF1E2gHy/E3eKP3RCJ1FymttzLuoSmVPu4f3YoT3YWvmI
Aq3QiOjLDRxESoXY2Dr24bPjHIvaqM8o3tGfF/KDDcWFgQua9XoR0iLRsjSh
FeWM6UferWEj1tJDH6t68Pl6pb7f9Wa89VQ5cdebhfc/LS5rrO+GiLKLp+3y
Btg1rppxvZQJG6XNVqM7uqAn0xEVP68WB4va7l9fTHx6V7zy7cudmO6rNfjZ
phpPhry51DsMPG3TUeQ0dkDCyFvvSVcFNj2+/Y43hwGlkbF5qZod6LBr1Lvg
WYZOplfUEdIPP7aZZp5/TsHnF+dLggtKwJvlcvytCR2RrUMzfHUouFL44eDJ
qCI8SjYwW/qVhuwTYjX5xItEN544U83Jh5HzNHoA8aIlLitqAi61I3qBgcaL
nFyMfmIVOfvToK6evv2JUTuku2TE+2hvEX6yP8fNjIZ+secPzWXb4UShKjm/
ysa0n/lNustoeErvGONZtuNJ6jGPI1o5yDcNst5tQ4P+bL9S1k3ib8cmDmhK
5uH2ln0rFC/QoKdjdlR0sB2zD9ea7zYvQEvUEcVPeYRjL56OSW+lQOfkWLfS
SBGurOVdzftNg8H/KjjvcCr/P4xHSzIiCg0hUUaJSpTbalGSUVFJQ4iUrERS
ZiENCqUvLQ3J3hkhe509rHOOcayEqCj9nt+/z+V6rs/5PPf7fr9e/1i7PDk4
h4JZnrDQSolSROfEGTDNuDCa3f6obScVCfcsi3QLylGlvS3NgJirIbuwq/YU
KsIXX9w8f6oSwwU9G9jSxP5PapUgh9AgWfOOoXOsGqYLl9M0CJ8Yq9dsMtlP
h16DMeeIYC2O98js372qF3nnWtNMFRiwHq3L//6jHnb5b10rcnoxLbsjdbEY
E+cOt4+bqjdDrKf/ygb7PlytLk8NE2Eh3XZzSYplG2ams6IERftxMvihnZos
Gw06h9JKlEiYMUq83F7fj8NWb9YLbOnA5kIfyxghCtbUiRyujxlAUPCznG+H
OuFk9Uk29zcVa+eErD4f5eNdfsXF15eIPnpj8mVqlPDmD74pE+sGEaJ8N70u
oht1JVyvMAYTVXqHc3YNEM9PH7PUNe/B1IKRG2s/sRGfoTvP5/UQRr/mJgzV
E1ynE+6S49wJ47/ih6OODWN16LuQC7s4uNijHto21QWS3F8Fv19E783V3W77
jwOVNuroF5UeNIyGauqEjsBcbVJdn+DoWNnMLKu8HuQsDZZ4PT2Ch8li5fuU
uci6OH3URoR4n9ni8B1EP3gtfCsUYsxF0JXQfnOCH188iVvLJZ6PLIo9rG5B
8FDMqIuQBQebxjLVNxA9aSf21oWxj4tMrWcfO4n87c0fMRAgnpcnZFqqa/3/
7x3WXJHnIKdn07dA4j3s5d6DL4W5oEiFpgdzevDy5VqTk0QPewbTxz5UcNCv
+XBdr2MPrl4543MuewTlBkkZ785x8O9kgIhdUDfom8gmaZtHIGrvXHh3ugen
tm84xhXswu1F8w7ueTyM47T6lG8BPdB9dep2yPEODN80uDM6OITborVv1Me6
ETlfcq1ZNAteRhrp/ZuHsPC4tVs0ows764riqWkM9B2+4CnlPgjyKr2YlcWd
UL7uFFmVR4Pblfe2lS/4sNGdHp9K6sCvFxcUw75QsHwZlfSDMYA5ncST1cFs
zJSxIjroJJwRcsxIkRzAs3tppT6XWVidudMv7U8b8tcfdo6y6sd7C2q3uxsT
oT/kzop4tsCmpXNVw9M+4O3V2RQ/BjrWeEQaKTQi45Wz49Xvvdhw0sPH5Akd
b9bGMYWk63DGvi7ji1Uvdh6V6wtrpIH/hDz/jmUNcnMbmh5U8WD16Db17nIa
GNa5w+VtXyDfsHiFqTHhO8YdujNXqCAFp5EuP61A/Mv3QfPbuEjW+ubpz6PA
OjJcr8ThM95+vXrsvjsXWn7fR/8Q3CXtPaTBFC7Go1vWadcJ7voc+a7w9TwK
5EhDXZu2FYDJiyhVbuYg2eKfSPNbMsxnWn9pk3LhmB3i6xLLwa3Si/u+niZD
8PwL28O0bEyLtsZJnyR4uUJnV5ESGapnAkXe6WShOinLgKPFgZFhHt10joQt
J8yiN23JhFfgUvd7KzkYM9QXIG0hoyKly6w8NgvLl+x7Kk3kdCJNekeMBxmO
y1XtpXfnQDP0s+m1C0RfUdccXFVExuTl2LCnJnkIr2ne1EXwQd5ywxxpSQrc
1+wL9MwowCpnCwlnJsGNKyjnaNcpeOMt4fo3vBiuQhZrFylxYb/o2q43Pyiw
ah++p0n7DB9dpteLa1wYxLUXVRMcm6f51s+OVAFJXfbT1YRPXF3hn9EuT8Mr
mz9LPWe/YIQTOdhrxsO34xJhbe00TBtO9bleqIGv0eOqv7U8bO1M6T3zmA4l
jePevyTq4L9dQWU98X2NaYHy1e4MvF7G0wmYbcCf8tdTrfxeBPd7xq2yZuLP
3T61wNUtKHNZyc++24e69cYL1PayoL3xFo2d2wbNZVVbwrf1I/t39g1bYzY6
B6JeWLiRkH42tKK8vx/HGxTPN5l24KG5iUCeOgWmZdJRF54NgJL7+MmX/Z0w
quNQ8r5Tcd15vFDOmg/xhOTFUfu6IPQmJCTvAx0Ws4rr1RYNYsOzgTOt+t04
eV7pnLsNE2Z9TZH0rEFsf9VnrbysB491FIYyOSz4u9xoc7MawsbBxH4jgusU
PFW+G+3vgD933fkTBNcJeC2ozmvrgV5z6kHrm51w/MAfXnlmGIar7fo7ZDk4
/HKVav6NLvBn7qgP1w7jhFNt0IIjBI8vygq4vbsbi2V1fntKj2BRXoSzqzfB
c8IXPJ4UduOds7vG1n0j2Lb9xOYdtzkQWzcomMDvxuaHZ2wT7UfwPeQQb9if
gwirYpuKxm6kjRyv+24xgqP7hUciCN7fouuzZ5FrN9Id5tUKqYxgR9vG+gIN
DhLGjmRWfuki+vtfHZk3jDf5e/Lchwguan69o5zRiU/Na5buDhtG4Nn8mNn4
HlTVL/eQy+mA8HhIaJTYMKrvpQbPbe1B5wbp8W57NjzHWpOcQ4YQpFn8uonY
F+0SwSejiX3BlNMOArEvos6yHrgmdOH4SM3LI7oM3Ov2kRPAIFYcWdsc8qwT
WVmfDx29TQMzUJ/yM4YPyb7i9RcSOyB0tPhPczkFl5cW0tj0AayeCfTnx7Mh
NF1U8vwPCQsnRx0CFQYgfM3rtPQTFpSmj92ONmqH/VExn/Me/WhcKml7MoXw
xIF2IYWNrSjx2rpjrqIPT3w2qpbnMbBGbUme6W+irwz8n8it7sMnLW1LCpMO
fhWnNORPHW5eiFGPIjzR8Zf8/EhxOo50V/9bvPsrUlasbTs1ycPta1rs3mM0
hJbvfHKlrApZZps4h67ycLFURFspm4qts6GGi4MqUa18S7z1Lxfnemq+FchT
cf9y4PkigXLU1F2/NPCYC+Gd/snmKRTYrviUcyuqBPe8KsPtdnMxwDhiKkRw
15VjL768iC6E7ssWEfYYB/WmDZnKFDK4bMnt6f/ykDahd7D7IwerX784tS6M
DLsob84KVg4eiNwZsvXloNjQ5LSXCRn5z2bZRySysfXD2Qca+znYavo8y0eU
DItIra3tiZk4HLQhWl+RyFmHPj33GwnSZ8T3dER8wkOdQPfnxL7t/9kTwlhN
xuemzjPkBVlwjGM1LCXydOLnFqjZkmHiKngrOjobUrEpl1JtOJiW//lKPZGM
dz99/cKccmGg7DvmHsrBog47Xcshog855FW0xHxoVb696PWZgzCNscbGAxSY
3fmoO6hVhPDWY8/vzeNiyse4o7aQgn2UbYymbaWQ2rB96B6x1xUnDARddKk4
JPt+/qWP5ThWa2Fg9JYLKfO4qp31VCg3Ns070lIJn427JJaI8bBnl1alvhsN
K/02r88SqIaHu7F7300eWF1/b0uvpSNZRmXvy8tf4bVvmWLCXx6eTn/pF+PQ
IVhxVTpNuh6LcLH+v/Be3L28pdAzmwHZHXdK6kYbQTJtc6mT7YOvoMtfi1gm
+I3bSyijLchYv2SbYF4f1P8Jutl5s0A7JtWssrAdB+nysrO2/SgXSIz+5cDG
s48hp2STSUhKL5bpmekn+Hvfv2azDjzPjw3csIMCnwSHLf+lDOB5awG9XasT
TYKNuaQ6KpLvcMxmjfkQfrrsvop4FxY7Jii+P0AHa9mJsjtdfMz7ZXtqprML
ewrErfdmMbDp/ZvDfZcHEX6kzfdSQjeabAbafKaYMLTz1xubGMSw0wuXf6t7
ULhzqfBZMTbSqAy3QMKP3s4tHJtw6IGMMau9aJKNk9/EjbdUDqF5n+3e4Ps9
KLCMiRdO6YCj0Gph+qJh5Kxst5DK7EGExKZAlmgnbr43XqenPYxR8wUGUqU9
CH7vOz9+Ryf2hU7JypgO4+qzWiuR3B6YLLB7mbaqEz+37jRu0R0mfN9/WUVi
DxxZhtd1KjrQf1TaiL58GBKNKZvbL/XAeh+Lf0mlA7rz/jqvoA1B8Eel84Et
PfDOPVvkc4SNdR88TyfeHEJBX+KpiK/d6OJkKD7fwwKr+Xax7fIhWC/JaVwj
2Y15v4UGRpcyYXz50aK7cYOY3M1uHyL2xalQCYmT6XQ85v/n60Hsiyj+uUP+
Hp3Qv9RTtX8rDTW6birPLvGhefdibfWdDkx5DWalvKJgImjfy+6mAbyTX2Bw
4Tkbf+4L2ZxdSsZjh5VrvVUG0P1sfNVQNgupcAj+7tkO7X3fGydv9UP4mNSO
zkYmjjvPybhWtGKevJvtg+4+mDt79+4eYWB08S1KTX4TGv4kWzob9yFuxd6s
gpUM+O6Y711MrkfbKzUJ4Y+9aGmYZkZZ0vHhvs7+tfK1GFy6cp+4Qi+8Uh8s
vZJIgylFKPrUi2pIzmldc0jhwYRiN2c2SUX6SbkHSY5f0LfxWmOiGg876Qv3
Op6iYt3ht6v2HqvA5uRx8q4vXKwMdTk9x6DAu+tvOk36M66peL/Z6sTFu8rI
8+1OFFTYvhVo/lEEyQnRg4ZSXFjJk4K1BCnY/y0weBgFEHpyoU+/hQNLOb0J
549k/LxvJaM/kQuj7Jp5rx9yQPediVt2gYwX+fUdYoI5sH2eeeSWIwejNq7C
9ZvI8NzWseWrUxaGN61roG/nIMk+fJnkDAmKjZExPyUzsbchQuypFAc3x179
fMYhwfFEHkrbM3C8ckPWxfnE/hONVl0iQkadzgvOYGwmqv3l7fQVCN6/OWXU
DDJ2nRRRG/+ZhfyRv+LJezhoW+O750AQGR+XkVVD3+eAoRuhF+HJQcyFx7fa
6si4ls7PZWXm4cr9VEv+aw5UPYoir6+jQPVE4rYYyUIskSlsCeVxwOy0vmQT
ToFBDEN4mFYMz1K5Nlk1Lna317q7zlJwQHM3bfvCMjgpeWw4d4OLDeFBrjsI
Tkup/i7q0VaBPw8rzYpYXNzX+neiSIqGPzKV39mUL/hao58rY8KDoovGimeF
NNyYXE+qEqtBnJHS6N58HqKV381ouNHh/ldTpDSgFuuD1yjUavdCJfa4FGMT
A0zlvZ67VzRAKDThYEBxL85/D74y/oMBx7K1S4SoTWjOLmWH7u/DGaYf78pX
wk9bHRHzsRVmO1yTKtl9KJ4/pcd9xoKxq+/eF+bt8HhKX3ztaj8GVBRPmHiz
IbYplbH2CwnFlstnaUsGIJuu90VpXwd0dn5YX7uFgnynP3VLnw/gUoJtyhKJ
TpTMxfJJsVSoXX+lMq7Gh0y48c6g5k4wtEb1b9Jp8I0omT6XyUeZqtmcmh/B
dT/IdWFzdCQGsANeqRD8turI4gXC3dCJ89Nk/GUg8bdvLOPeIE4fPT3v/a1u
6O1/68FpZiLb0ill7P//t+361de67G5kCiz5mODKwt6akPwehSFk5TYuGF1C
9NV+2yLxJhZer3+f+vHAEAb9LfMdpHqQy809e+Y7C3LlFZQTx4dw2EJB8a5I
D9wiF0dtoLKg+W+Tiv2hIZAMtAonBwiPK/ppVXKTBcnFZjvJm4bgI7n1Xszj
brAj3M9qTzCx6XvMePL4ILozNJ5qKHfj0kqdR5IaTHToxT4dSx1E/VgH//WT
Lqz6FXXl73YGxpPOP/EzGIRD56U9EhOd2KEYs3TlSjpC97q5yjTw4XJUMahG
txMulMAlgxQq4h2SRLr2EXxlnDbW6dmBm4cWZUgEUPDwtr7h8lLC+7g2nJoU
NhbHFjBui5OxN/qfmvzGAfzJ0Y0NrWfh023nR7sT25GvLfOI9qAfweYRMyeJ
c+dPWIgrK7Uh88whiZSZPpQuE951VZ4JOT/b+1SXZhx69XXu3IU+8IVPbbpg
zQA3paPY9GUD7O6rfp+l9eJGT5NdwgM67v5TzbASqANtdgvlq0UvRtrp+QId
NHClXUzZd2pwSedWpEorDxTB58/Vt9GgGFUll7unCmvubVccsONhYWCBXE8y
Fa02h48+2FEJ2pkloQ/GuKgFec15aSp2RI119BWVYa+rh/XrWC687N55DT2j
QE/JJ3aedwma/80P+K3HhVl8UaGiDgUHC1w+mDwtRMuvgwG24xx8V5/IjGKS
UX1CfmiHcj7O7ZGIf5/FwbWUkIqAaDKeDB7MMBLNBXP6YtytAA6u81T635mT
IVIyUnXFLBsKuyYMJg9xoDuaKNUuTQZj81mf7+RMnL4ZpLBKleCoc6n8+EES
vJxOXEw1/IQgP9MVC5cQnhBoy2PTSLiU5XlCeVcGrhjcaWLP9iClu1dxJ+Gb
7fGZCszNmcgzZmmFE77pvdmgfZcmGdYrL9bX3cjCZ9+aIdOdHIzID5Sru5Ax
3HLpU8myHCStOvPjzxkOOIocfyOih9esYd/ZPJ6Lv9KGP+8QPbzldNlb/zky
FFPLg8U3FEBdcvW3540cfNP8ktx4koKMO4ezRfKLMGFrMs0X5SLdPbxZo57w
sYLQrcy0UixRYO2RtudiSEBxeJkpFb06Z0mhc+XQSyqS8Mrk4o5T76FLzVQc
ZZRsGO2oRGUQ7+efZTxkL67MnzxPw7LLgQbM4SoYOp3fGxDAQ5BgLW9qCR2/
9qoVvN34Fbvy+0O9xnhYl5GlPl1MR7bLagf1B3UgdVP8mG698E3SVLvrw4Dc
2rDPf2Ub8er44lsz33rxJ7WzgbOdCZq+Ur1NcTNkv66P7vDtg3vo403P/jAx
Yq66fFqnDYWivA9kgX5oNqtuEaxioXJzpc5ITDtatNw9TGIIP+18cUsjjA2a
2FhLRDcJgePBRsXSA3CcrN81btCBXt0PZ8IVKfhcLT+yP2EAtDqX3UojHTBX
i9V6f5iKh/7vFQUl+eAqL9ThRHSiX5hm5uNAQ861oY1+N/l4dJfX6CfWhckU
p/Br++kIMn24XYzguiH5P+m9AV3Y/dLmRMkiBg5YnJ6a2jSI92G7jvs1dyG6
5/3H+3EMmI44h5qdJ3pvuO3h03ndiJG2jAgcZeBRm1+3fuQg7D9VLWUS/BMj
yL+uLcrEUFRUimj8IGyk4z/5zic886p5qdcEA5IrKLm77w5iQOTnvHXULozb
qpdyUhnYK6Z5I911EHf3Wu77HdkF3Td66f5rGBjZsee8is4gsX8LBqPku9A7
76r3pgt0XCgJmxUbIn5XwAJVW8L7dmud115IeJ9Gdf9SOuF9IsX3tvwT7IQQ
+byKqx8VpAU+E5KKfPhUbWz+eKwD68cF5905REFlUnXIh3cDsHcL6FtB9FWP
EjXBSoyM0AsCWq9UBzCjWCGq282ClP01qd9l7fhCqhRamdqPC61lZ9/IsOCy
0Ey8wKkNTrsvJkZK90NqjeI+eysmYsXzf7FlW6D9ylxU7W4feidrbsrfZ+C0
yO95l30b0fv44cl3An2wed0YcoRCR8db1TK7wTp85bu9+XCjF+G2cjwRRTos
rKK1PW58hawbr/zMvF4Ir8xLEg+g4ZnFtgMlutWoip+WWxjFwyOFCVY5h4oA
8r62BKUv6HLSdNwjz8P9i/Nn649S0TIctNLBsAJieb8znn7mYvJUx2c/JgUO
pKB6RdnPoE2tnIwguGuVmK9e70Wix727D62QKUaCYZ9C+0ouLreFyX4RpuBr
0UtqYEABQvT1ewwpxPz2j6R9KiDjaBbdvXhnHg4Uv0joSuTAf2DXDVFPMrzF
1rpct8jBYGuIsZ4LB+Gv2HbvtpExTgljXMzKQpRPS2qgAdFXIzq3jy4gg+OU
ouZonwmWKtWetIoDj224SGeTICP5ocTrVgbE/LMNT/7rQdA9SVntFhKu9xVu
zK76iNv3W9pqpnrQtOKsqcwkCUECBpP91Z/wU6J2JkecA0HRSgmpdWQc7Lz/
w2IV4ZspM85HNnNwY0XXsmNHyTDlvS/MisvG3UtD671tifOwWobmPyFDSknJ
/NbRXKg+l/Tn3+aAV7BrcgGPjNa2406rnPOhYu8iZV3IwcKtWuzd+hSsUO1O
+tRUiKANEn+tpzkwFbfPe0T4eNlCmpxfTAnc733WiiZ8/NXY6Y3uy6kwjsru
00kvwxh53XqTe1wsURNo+fyICqfUF1XWUpWwrJvZfpXPxdWVdrt2KdBAHr7d
dmpeFZZfli3kmfNgL7nl9M4SGnIHCvXZK2uwhxVvsaaQB0n/D+7mjnR8/eQ0
xLGtReb1l3nr1HsRlcL6z1CMgcjeFpu27HrIGi9Yfe5NLxip9xWufWFg6KVl
7m3lJlzUSExZqtyHoBk+79F1ghvcz9/6/LoFuRGuVlfe9OHe1+WHZbRZmLtS
sC77URvePw9+uFa1H7ML7q3/b4CFbaJaBvHN7VDxSKDPvelHuusRF504NuzT
GyLe/iYhOORn34F1AxCbmeob1OlA8krGtRUSFIQ9rXuw68EA5NrfyaGmAwz6
/Y1LRagYecFmp08P4KmauF6dUSdYkmvIj3qpkH4iCG0LPh4scjjf9KYTHJLw
hx1xNDy6nCy8NZ4P1gIjgdrxTng7hgzFr6DDOdR3R289HytlZrOOr+vCdwep
0HvOdNj8pQ88J/qkXu5mst2WLhiwxX6cCaHj955HJl1TfLTdfF+qqNAFimVH
66gLHeGMFQPqw3zI9UUd+v2jE1JJ8gXrVxP75IqutVITH0GPkwN/pXfi8eLM
RZPPaaDt94yOTORDd27z7bEDnSjPNFhaOUHFgbz3275Z89HTdENreWsHImcN
pxXWUPF5k7VW/N8BPF6VLf4BHTD5lnK9XomCe63eYY1E/5d+0P+Y9x8bNnG8
e+9EyTDz2995muirCyrTBtE/WEg6vIUj1tsO69jiEKnMfqiO8Fd3G7KQnPXs
wJsPbTihaopmrX68kbHOH4tgQnLHnSYtSgs8RgRbyZ/68Cc4M9yplYFpGaU5
X6sm6AQY3FLQ7IPY7lcCNXIM0F4OXDnWVY/tl2s0N3/qRc+3b3w9dzrOXrY1
OHezFjZn/imG6vRi8mCqe9pXGqzbX/smoQZfmzyrlSt4+HTw3ESSGvF8uYHf
pfVV8CDZXdew5mGF7uYRO4K7rp3MLyrbVonyI/LbtQnuUrihnxCwmopTCzUc
dIfL8E3Z2iQ1jvDEe3Jlh95S8HbhLXWdqhJ4V6Q6zhhz8d8tBX+aEQWHbDhN
sTOFiHRTrZ6e4WDZ+LYnDXwy3veeMTWMzYd/eHHcmVIOFrhKP+E8JUOAe4R5
/Fouaq/xx63DOagdTl8WZk/GUveJ61VZ2Tgllbrh/HEOBK74acQrkeH002NP
hnYW5vL0B2q1iH6I3TL+a4oEd5Lp7OjIJzC+/SwskuAQ56lOuttGwoaozTp7
ej/CLqNYxe1nDyyPfvE8WktCdU/7eZz/iFV6SbqT33swlHONZzpEgvmA8wkl
s08ga8YsCyb4LUQqfY4mRUaqpYCicnMmti/Y7uCmwkF9Tudp9f1kzFx7e3rT
1mzknvQzvWnOQfZE2z/bMDIaur/0RbFzoLfG8FmALwc7J47FazSTEbIujKfd
mod9t+Jcfr/lQFxhYVYE4ZsH95IL+IRvvl87J3qP8E3tZdEK+sEUrIp8Yh+c
XgzX5IjQtg1cvBi2OvhqhIKzE4edbzz/jIRTIqUCXlyozJcqLXSi4t449765
dwU2jn2zl6vjYow1Ia45TEXDDxX586ZfcNlRYlW/Mg9p6zcbWAfSkETpLVq3
uxoWccxYPrHXKBzd+GbCQ0r7lKsb7b7C1eb4Ms3fPBxONRNIKaHjMVd/4vqj
OkhxXpIt3XvR8PHEE0snBmRrXOkPOA1Icwq1fsTrxdXh2SdekkzwnasPvdZv
RtSePf+MTvXhn/lDl5JyJh5/elCr+7gVmZf33xWm9yFho2HZLsLflk4szKCO
t+H2xiyKmkU/GCfu22xaykYXv2XP2aUkpC0oZvwu7yd8b/HiL6lsbIjTMdkp
Qcazu9pn2wjfucE/9Y+m2gHXyt96Mn/I2LQ1xLAicgCSJgs/6SR3QGNW1Mv9
KwUeKjcqI1kDOGfloX1qtgOJFyeylC5SMVfV/C5vNR8mNxyefjPsBJlq6inL
I7zk2+TBpEN8jH3OT8hx68SzYLNaXw0aPHlhp9658SHotmYfyb8TXytflczf
S4OMx+rmeB8+6k6p+GVf7MR9G7fsAmL+XERT3/y4yMeW3zdmNYn3b6cfN24i
OCKa/PO/5cT7x/0brjgQ57EVr2AqE+dxEmRG5hPnsZiu1zpPnH/zFEmsnDj/
PLVnyu+J87/1W2e9bWMHXr122V1K/F6j4tYowTsD2GXrnVxG3M/E3oM22sT9
OJcb/Gkm7uf+S+7tfmE2lhTcsR8RJgGVlZoNxH3KgHHzE3H/KoVF25In2vC9
7GFAIHH/ZUI3Xz2tYILzzTXKNLEVOn9PKr4lvldIj6hJPvF9/yS0K8XsasaG
0s2sK8T3fTMQar6fyIO2FvOvN5GHtrMdQTFEHoyt3sg9I/KTsPvmmUtEfnwr
66QtiPyEZWwbrCfytoVs9q+MyBu1KitAjcjb19q639eIfGourv7+kshnObtA
an40D8lpU06yRJ4HLnuYrCby7LhnWzydyHN4RVJ/w//zXzRQepfIf5f+aXkV
Iv+L1kn3SY9SwIhI83mU+pnw2sMPjxDzksnzYVoT87WntNBU/WMxLkeweBxi
voY0o0uvEvM4lWA3c5SYx4x59dY3iXm0yraXVSXml6nJKxMl5vdwAD1miphf
mkaMAIh5l9ExmR1m5QAXrLzciHn3faQhq0b0w4byBzcViH5II3c6BBH9MJjR
9YJF9Im93ykfA6JPTtx1GL1E9ImHpdH+//dP5qLTI3JE/2wp9X15k+gfX87i
AWuir04Jmi9ZTfRVcajJ5XGir/4HHocGiw==
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell[TextData[{
 "case III (",
 Cell[BoxData[
  FormBox[
   RowBox[{"f", "=", "1"}], TraditionalForm]], "None",
  FormatType->"TraditionalForm"],
 ")"
}], "Subsection"],

Cell[BoxData[
 RowBox[{
  RowBox[{"params", "=", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"\[Gamma]t", "\[Rule]", 
      RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",", 
     RowBox[{"c", "\[Rule]", 
      RowBox[{"3.", " ", 
       SuperscriptBox["10", "8"]}]}], ",", 
     RowBox[{"\[Eta]", "\[Rule]", 
      RowBox[{"2", " ", "3.", " ", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"794.7", " ", 
          SuperscriptBox["10", 
           RowBox[{"-", "9"}]]}], ")"}], "2"], 
       SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ", 
       RowBox[{
        SuperscriptBox["10", "6"], "/", 
        RowBox[{"(", 
         RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",", 
     RowBox[{"t0", "\[Rule]", 
      RowBox[{
       RowBox[{"-", "15."}], " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{"tp", "\[Rule]", 
      RowBox[{"4.", " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", 
      RowBox[{"3.", " ", "2", "\[Pi]", "  ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]", 
      RowBox[{"1.", " ", "2", "\[Pi]", " ", 
       SuperscriptBox["10", "3"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]", 
      RowBox[{"6.", " ", "2", "\[Pi]", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]", " ", 
      RowBox[{"1.", " ", "2", "\[Pi]", "  ", 
       SuperscriptBox["10", "3"]}]}], ",", 
     RowBox[{"h", "\[Rule]", 
      RowBox[{"1.5", " ", 
       RowBox[{
        SuperscriptBox["10", 
         RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"alleqs1", "=", 
   RowBox[{"Expand", "[", 
    RowBox[{"alleqs", "/.", "params"}], "]"}]}], ";"}], "\n", 
 RowBox[{
  RowBox[{"sol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"alleqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "15."}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"15.", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"TableForm", "[", 
   RowBox[{"allcountereqs1", "=", 
    RowBox[{"Expand", "[", 
     RowBox[{"allcountereqs", "/.", "params"}], "]"}]}], "]"}], ";"}], "\n", 
 RowBox[{
  RowBox[{"countersol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"allcountereqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "15."}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"15.", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[TextData[{
 "Time dependence before and after the cell. ",
 " Black is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse before the medium, blue is  ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse after the medium, red is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]]],
 " pulse after the medium. Solid lines are co-propagating, dashed lines are \
fields 1 and 2 forward propagating, fields 3 and 4 backward propagating. "
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->42364272],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"sol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}], ",", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"countersol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{
      RowBox[{"-", "5."}], " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}], ",", 
     RowBox[{"5.", " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}]}], "}"}], ",", 
   RowBox[{"PlotStyle", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"Black", ",", "Blue", ",", "Red", ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Blue", ",", "Dashed"}], "]"}], ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",", 
   RowBox[{"FrameLabel", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Time (\[Mu]s)\>\"", ",", 
      "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {}, 
   {GrayLevel[0], LineBox[CompressedData["
1:eJwt2Hk0Vd3/B/CbMTKUkKSSCiFJE2I/PnkMX5SSIUMSMmSeMufeY8qUMXMi
QlfmND21I0Pm4d5LgzI8SZHKkAbj7zxr/f4667X2H2ftsz/vz/6ss8vO0/gS
G4VCEVxHofz3jKHEBNf/ZmEcc+VoWKAaBE+YeV5eYGGzaA73yFQ18OiSdtg5
x8IZYvHchffUwCyr9WTsFxYWecSXJz6mBtJKXLvOD7Mwb07lvY0Gx6H5QtRL
jmYWvqY63b55tzqsex4hbJLEwlPqZxn9HzQgJIxaObeXhRtVe/MSBzRhxq/l
sa0UCz/U3l7eNqEJDm68LT07WFhR5pu20G9NMLRKH6JvYWGFL+N/94sDSKiW
rbfnIdflfO3XbAGe/ui1Y04zsV6C2Po9MwDLrju33K9jYllXPWfmVi24aonD
/YGJqxMPmffmacP4qZVtkoiJ1a0Ns69Xa4OBlvqjDjUm3lexEmLdrA1iCk9m
dh5m4um8O2jPtDbUrdRf7JBm4vBT6UEO6jrwuaBCaycfE/t6BHdVjOjA2U95
3O2DDNxzLVEj/aAeyPqFJEm4MbBbfxD3EQ4D0B08tTKX048VZ/fJvis5Df5Z
jusFH/XhuY7dm+7RTSBdcakov60XLycfnjjLZQHW0zXe9JVu7P0hcrNrgA3w
H7+xJHy8C+9+EjRzUM8O+NkD2NoyOnC0P4Mp5ncJ5OPHtLh623B0z+WDS2ou
kJmgz5a49yU+61R+rGKjO0zvGA31iWzBd7ealFLivcDWe/Xgh+dNmMoX/VFx
wAekNLY55G19gY1vjYnP8/gDW3tD36hRA173v0d5HwICIKNz7zz39md4ifGA
02cwCFp+taKRwcdYUb98uGk5BJSKg9a6/vcA68qsDVOUr4KK1r4nBn9qcXpT
/JLuBirU634W+DZVi4NqHDTkBKmgbFhqn/yuFnNoqQfwbqaCgule/oHn5Hrt
iY5mcSpIOu2ytYmuxTmZ8jWSclTgid/K5b25FvP+vpjvq0eFtwwe44z9Nfgq
dU0nIIIKi80sZmNTJU7cW0GvnqMCe6aIS0JpJaZcK2+ZX6ACn4vZqll8JY54
1ks9/IcK2/lfy04bV2KuEaW+yjUqaJoOhYn+W4GtpxduRfPRIPrjmIwrpQKL
JVq6NO6lwSau7yHCGuU4JV1i1MyMBuKvD2wakSzHvYKP/PUtaCBF9yq5y1GO
azqOeB+3psHhU3N9qIuOB8eKUkXsaGCWsbDXxYqOo7fOGtLdaZAnvdz7LOgu
7luu5DeJpIGsLs8epwel+OH9WJ28Khq0UsRBNK8U+zmtmvPV0sD+iZxNC60U
Rzw2+BF0nwb5+w2zdp8sxT95G16efEwDEeEkvtEPJTg86Eztqxc0YBsTXji3
qQTHWxlb+A7Q4F2wZKu+WzFOEurs7PxNg+DDBz/8OVOMnSgZVdOLNNjyDSh3
jxVj6k253RtWaGB80V6Nm70Yfx+m1muuI6Bdt6SyKbsIh1qWuVznIeCBsEKm
+svbWGpzoEzdVgKSKo85K0oV4jfpCl3iKgQo/phRKeEsxKNbd9YIqRHQo0rn
2TFZgHe+fZnCrU4Af4tEOX91AZ5W3w+f/yIgfmjdt2mNAmz4if1IlC4BApuy
PpnV5WPDhYlzCmYEnMzjjdUJzsdfZN7YzZsTkCATJncU8rG9RKrJQwsCeJGd
u0jvTfyxyXfqyHkCuFwV5plTeTi55t0zfgcCVpsbVk9L5eIBmYYf0t4EaJw+
VKA5mYOvdjdP/uNDQOjQHVCqzsFhZafqTvoRsDgbFymIcvAnR7XnTgEE/Nxh
yttjkY0PJ97I9g8j4FvgpIhBSiZOnR85++saASMKQvu1Ken4FufFf+NuEqAX
s2d4pSMNE7pD+sX5BFSPHU16cCMNH0iz6ntyiwAiw2pWRj4Nv38/oThSSIA0
5U49r1kq1hzN2MVZQoAb8xjqK0/G9Nd921sqCBjYr//92pVk/HzzxV9VlQSg
a9YFAMn4Id+GT5lVBOwIZuN0rEjCisOZ3BdqCHA4eSNRnv06llhT0Om4T8DM
/JP8B5Vx2OyODlX4HwJelI1QZP+Ow3NeoXl9pNPOc9hnv4nFBcYdHbFPCTj6
8qRMKEcsfsvVaj3/jICwnNEqsIzB67J4Thc1EHDKiFOo7ns0vlHy8qduIwGS
HHJ+e6KisZzYSMUk6WZ3XxXu6iic+VnXcE8TeT7A1djFGYknTjn/faWFgHcL
crtRbgTOrT7rzN5KQAXdKKpKKQI3/uTMTSR9Wjj7f6lWBK4UYVfIfklAxid5
hnkNFfPTL/5KaCfAOe/04XYdKvawpyWwdRDgc3tKwf9ROJbrWXfAn/Rj/7B6
NYGrOKr9au6ZTgJ0JIpaWx4H45EqLoFPXQTY9LBNvvochBu7UlS0ugnwp9pt
mNoShHv87ibkkS4e33Va4EoAtpj4Wa3TQ8DTDJqP5J0ruCtuippJmqU3lq7M
8sd2XhNBH0mzVxS8MVP2w8stQROBvQSIX6AsO1/0xeOHWRaYtPIm2x0hyT64
9d+nC5Q+Auz8d9rf+uaFlfhaS8JIB8uER9Vs98KD5ZX/PCQtVffMKCbbA3cy
6n9/I00NUX/Ta+qKszY/nDLpJ6BqZGn7jzoXvC3w6q0I0sNa/9iJCTlj0z+r
IVWkBcqCS9W9HPHya0nqa9IafGrTtj0OuHOlq3yVtJvXH6UoBXscMz+9uotB
QB7rkf/duItY9MvloBOkM7xn/HL7L2DiycFttqR/qHqufki0xqvvFMaDSRuz
fYtR0LfAbL56rFTSNR1um/y5zDA64f2llPTGtC85z14Y4yf16fuekH73gKXH
t3oK970vuN5OOluXYXXzih7W9IoUHyRt9rrXQ/E7YPU2xe4R0tKMHPbw3qPY
aSKpZIK05if5sydou/G0V1bJFGkl84CIj968iFqn2v2FtFu7b5z4eSXkd+uS
+H/rc6WBDr9dNVBdp8D1j6TVm9BOVw1tNOwnKztMOlwZ+N42GyDdsJLPTNJj
fYWhe6TPIHb3sN5W0sT63fNDLiZozvv2uwek92gWu6RVmKOOCxs2FpNuDdg7
qj9riaSrK12uk3aqKjFjO2KDooiISX/SkfNpE9ZPbdHFPFqSJWnTJFahio0d
OuxSaKX+3/7kRc4LUxxQ+OLQyW2kf7aais0UXkJvueUdf5Hnk7U6eL30ozN6
WTezvpS0S84W/YiYy8iYYpMWTFrt6DnOC/vc0Nc93VoGpIfc34SIunsi6YA7
ouNkvQxyJG4LivFC66J4Ve+Rxsb7/zie80ZR8i40b9JJ39zvn1j0QZX7hCLn
yfoMVBdIVer0RfI3zqNq0rZxlZ478vyQaGPxjsuklaS/yy1qXEGW9ANnBsh6
Z5z3KqyhBaHYyzevxpJ5KTfoGrNwCEZ0nobbMqQjVWWl2HRD0FOXcdcXZN6O
iYzeNuYLQ+EeFl+/knk8NSHDCDKgohlllUoJMq9q703nup9S0bsDJUu3yHzL
sCKEpBRpyMUn5NtO0pQXI8YdGwn058mtZpE2AmpvZjLFByPQqAVd5w3ZT/LT
W+Y9dCNRKdHBAtLx8fObmx5FIs/UgI2lzWQ/DDIycc2NQlMgmOpE9qMtptwD
/9jGoNXsqPYGsp+F8gUMWn+JQ9SxaUfWE7K/sN/5WW0djwqsTde4SZsuMkQ5
e+JRdBOvocpj8n77rGheUZ2AVGPlOJIekvXTNPFqxf86eu64aVmY7LdFGuVu
RpQUZPHzo2/EPbIfqL4I/aOSgtTv8cUS5QQkH36TUOSdgmaPSlhepZPvl+eu
+PVvClqNWDzoVkbmYav911stqeieKcdLyWIC1i+Ie8zEpSPX+6lLX3MIMNmV
6tH/PB2ptxR0dGcTUHiSx7P2Rzpy95hoo2eR37Pkl6efzQ002/bJxDqDzIc5
y/v3wQzUX5b88GYKAX2PE/0pbzKRftGSYE4MWW9XKWEbZXJRmq2gTyh5P47T
A8JmrXLRPQ0DYXYvAg6++hbGSM5FK+MuC9EeBHQceH81fTEXxQR6XIl2JWB5
9DFVrCcPrTdMIhwukfWj5Rsp6Z+PYl04NW6eI0CYY147a6wAnYs33sepQYCK
QLSQ5moBilPmq+Q/TsB5sa0jn8QLkfa+oQ2bVQkoUfgr8JhJIRra0msqfISs
H9N4+mBrIaI7v1KZVSDAsmS3oMi922j0u3K0qAQBBXomr1OuFKMIzmVvCXK+
aTb+VKyaVozOnGJeaVqgwaR1sPdYVTGyHp6LcZqngbJ3Ae/ByWIkEKXPKvlG
g6bsafU+qzvIzVJdje0jDSamIgsFoASd3KbosL+fBvKJ9ZfjN5Sh8C+VmTal
NNDsiTKokClDlXN/OT8oJuc7QTOFXq0yxKGzFLvhNg2IlJ9fhULL0H2GYmtF
Hg3e3jjmnTNdhi4yzXUYKTS4lv844G73XaR4pjUxL4QG41XPIl8mlaOHl4+k
/XWSnO8YLfnswlVI1OFc+4ZJKrhv9fh+r78W7a2obS4SocKpdqccsH2AXtO7
1oz2XIXUaAcD7drH6McIRURYOBQ4pNZHxs8/RZP2KSEGc0Fwc0d30XuNBtT9
YlFPLzkApmoz11d8aESfEpoMTc/6g1jMG+XZe01o7ePFxY9ffeD3mMTotHkL
Ym4I2Tn+wgu+lx/qj11sRbqW7Q4fAt2hrb4xJrehDWlWpLhLWLuAsc6ZRgfn
DsQYcPvC3X8JsOi5htuHupCMBT1TzdQOwEyZnfjZjW5yxOuyJ9vAFQmBdrHc
XnSofa1KKs4CdFKU5FJr+lB81cEwxQ4ToL+yrPGN7kdhYoNcqsunIWfA4+1e
cwZie1HvCdkGICScn1BlyUDHOF+lDIUbQKxxN1K1YaCQ2dPDMY4GENgrX2R4
iYG4EkzHRA8bgFn7Z1dfXwYqqWMs8ffpg9Azu5WGJAbKLHIesNqgD3HFZpLW
bQzUP3qu0yhJD4J9kWOqKhMpO4Tmn+vUhrX7vjEj6kz0mn2B8eihNkT+LCtT
0GSiPdqQJVOsDdeDNn9p1WGiu5v4G5XCtKEw/LPn0lkmWvP+ujxzQBva4lOD
HDyYyKAtbFoy628QLZ5IOFrERCvpUl1dPlpQx7pe95aPhcqYKTbLRgB29fQd
cRtZyIglK/BaA0AoozVWVZiFBDwfxjXJA3iZr17I2sZCejy3O9u5ARTfuvOZ
ybGQ0HRjamqDJpSNGF7q12Uhc+tSe4EjmnBzindLG8FCvfJ8eTPGCAw7pYmA
aBbKtutYCFVGsFx+4qt0HAsdvR77Q1oIgaV7cFNUCgt5vOC/zezXALGZSU+t
Ahb6IRvrGGWsAakLbW34GQtR+tiMBS3UAQbHD3k0spCcoz6/lZo6zDyg3Nre
wkKu30MHGrepg1Ggin9oFws1x545Nzp8HPiWSnepDbEQD+/XRxccj8PToaaE
yWEWEjViuhF6x8H16civrH9ZyLscNz+XOw4dYVt6fk2ykCEfm0LcdzUIsjmk
WvqV3O9Ttl1bGGog+5dRsdksC4l8tojC99Xg9U5XQa4FFqJTBg2omWrw//83
UKmMlpN1sBr8H16yWmY=
     "]]}, 
   {RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwt2Hk0Vev/B/BjKgmVa74yJEORNBGX5/ZJIRWZDpmSoZI5s1DmzPM5eyMR
IUOU+FJ6kilkPqdBKiREkhLN9dt3rd9fe73WXuvZa+/n/f6sZ205J28zV04a
jSbOQaP9d42nxYfWf2VjxF8wv9PNFEKn6d5nl9nYTu6Sq0uoKXj1KrrIfGJj
h4c/N5YkmQKd6Dya8I6Ne995+hjfMAVF9VVy9q/Y+N6hiHSTz6bQfiL2IXc7
G3OFBfisjTYDjvvRwhZpbNweU7RUVmkO58Mv3vikwMZOqYmvfVTosOjf0eS4
iY0XZDpL0X46uHjwdfRLs/FXsBuROU6HI7bZoxVibKzxQu+OVDwdpLTKeZ3X
sHHEP3UtHG/o0Px5wIk1z8L/KLXmRxdZwU93GbHbdSys4C1XeEflOETY4AsB
wMJcXZsfnb5gB2+Mf/0ti1jY9+YKO520g8N6Oo092ixcuTBv3FdnB+KqdxZl
drPwxKd/Gi++tYO6X/UnexRZWH/FynnYzB7eFlbryfCzcOGOSo0tKg5gPpO/
uvvJMF4IiJmYmjsByv7n06Q8hnHki+oIc/ZJMHhi/OtT7hCWX7kmPfTHFQKI
U7zrGgdxx9VLPzdYuUO22o/igq4BHDAw9nQoywfs5m/6Vvzqw1+FUN7Ibn8Q
+Cfnh/A/vTjFvGiQeSAYBLiCOLsYPdh326ShQGQYqCRN6K0a6MKuCUkunl0X
gZlsxJmi8BATcmtmeGyjYV56POxcTAd+NKU9c14wDhx9f++YvN+GRfhGvXvl
E2CT7t8u+RKteJnV/6/jxmTg7G4ZHDdpwc9OXJ0Ldk0DxiOFpdUb7+FkG3uD
dUczoONLJxp70oQfmo1rZbRmgnpJyJ/eQw048euelka9bNirt+XO4W+3sLSM
p7xHag58b2ezHrTdwHcFaKUOjxjAxRRxSy67gYXPdX0ZHWAAvxv9Nz3pBmaf
qNpLZzNgo8Az5XmzG3hsq304vGTAPsvRcNHX1VhsVWL3pwUGxE1NKLnTqnFw
FKcS3sCEDas+nBfWrcTTqyeHpyyYIPls+4Yx2UrMzX2U46c1EzZV+JRe567E
H3N+PhK0Z8Ju40+DqLcCL+ZOqWx1ZQKdsazgZluBs39x9msGMCFf8efAvZDr
+FdJq31VNhOUDdZsPt1QhsUaDrDeDjKhkyYJovllOJ7/oIwJmwnOd7Y6dESW
4bpLVjtuPWVCwbYjhPzRMhwVH3/F6xUTRITT+McnS/HA3W9nW94xgXNCeNl6
Qyl+f6JqpYOHgBehsp1GHiV4e2VokakmAaG7d0x+My3Bqm8yJIy1CRBbANp1
zRKs0Oe110CXALOTztqruUpwZdMm1+16BHQblN5oI4txhPFuy6fGBDQIqzJ1
Hl7FA1f4z8S4EpB2Q/OM2qYibLH9tZZROgFqnxf3lvIUYVbkye/rsgjo16pY
Iz1biCUq9HKHcggQ6JCqFKgtxNxVPb6GeQQkjXIszOsW4rQ7xubcpQQIbiBm
6HUF+EhWfkTdHQKO5vMl6IcWYI9woyCNewQkK4Vv1YACfPWTukb9fQL4kJOn
yMBl/NE2glbaTsAqd9Ul1lw+vv56R75FPwG/21t+H9uUhyey3+e9GSdA99iu
wn2zufj9KVuQnyQgbPQaqNfm4td9A9n2UwR8/5gYsw7lYjGOyX87ZglYkbbk
6z9OYuPFxHDHTwQsBM+KHM5g4rN9PKYdnCSMqQptO0jLxvYcm08iWRIM4ze/
+tWThTVSpRxYciTUTmikNeRk4RumWd4u8iREMWw/Kqlk4f2TuY9CFUlQpF2r
56NnYoXHlw8Fq5LgwdJEg5XpeOULX1S9JgmPtxl9uBSYjtfqa8et1SIBXbIr
BEjHrQJ1TfbaJEiHcvKcqk7DOXmbq1Z0SHA5mpOiwpWKU71qb3wHEhaX7hQ0
3EjEZysuVBgdJqG1fIymfCARt3VrODgfISHLntuZHEnAPj+U9wYfJUHj4VGl
MO4ErLqRtGOYkBCeO14DNvE4hzlsXWJOgrEJj1DdhzjsFRq3vcCCBFnurf6b
Y+OwhCAoZ1uS0O7pt3d1bSzeeaUl3N+KBD5Y9aCXJwbbND6pWGVLwovlrfIo
Lxr3WJdFT1CurjCJrVGPxn6iUaGNdiQcEyYPZdpGYbdDZ1psHEhgzKgMW928
iBUirl/xOUnCmfxju7v1L2JgBdqqOpFw7uqcakDjBcz8mLDjDeWmgPB6bcEI
HKZSu9XQhQR9qeLOjqZQHFDnf2DiFAkO/ZyzT9+GYL0Tzc2hp0kIuOi0dk4s
BEdcrj23/gwJJW/kjgkGBmFjfi6GuhsJzYzIc7LXAvG7szmcdymzDSeyd7ID
sE+jTiWcJYGrunCEvtMfb2H8U6PnToLkCdrPMyf98POlvjX3Ke/c4Ch9Pv0c
fjk6V6DhQYJTgIzzlQUfnMerFyTpScLF8zojA5buOOOa0JPbXiTUjP3Y+LnO
DZfRye8bvEl4pXfXSVzoDI5sukd3p6zLrz3v2O+C53lDbgv5UHnx+aYeq+qM
j3Q51DtSzmc3BlxPPImDxy7MV1D+rOX9ezLFDrt+lfy5y5cEM86FeFWj4/hU
3BzrHOWbPR4bAlbRsVRs4Xg15fVZ73LvtZrhvU9m5aYov2hgG/L/NsZXd/kz
xc+RQBoM214ONMQl2xf2GVKmPxvwUvsAWHnPaml/yorDuVwXBjTwRLy3Wj7l
fTMq5vsj5XHygWe+LZTVrYKip3z5kOjJpZlxyh7dfomS9uroRZVf+i/Kn8qC
Xb6666KXg/zuon4k6LQhGXfdg2jKxC9IhfKFncD/vP0w6ouzq9ehPDFYFLZZ
0RTVVEVsNqIcxSu/NOpmgday0tvNKW/eV+KWVW2FNkwb5Ryn3BmkMG700Qa1
VrkybCmfrimlc+5xQHu6cx/+dz9mKWvartkRNTeWKFtQtkxjF+11cELybNT0
3/qKKiL2wjQXNGGiEKJLeaXTUnyxyBUd1RE5o0r5oROD9UjvNBqM7Y0Vo0z8
fpJaNnUGSS+vGf5NvZ9brphRdPxZ5Lo95chrytoa1jwntnig6AbR5QeU+YaJ
Fu1HnujA7OlHlymPeo6cF/X0Rhe59AYCKD/hTvk7JN4HuUm704woY7Nt305Z
+6Lb6iUOkpTTFjxv7/9+Di2dtS+qofYvWEcwU/2RH6p/7BbrT9kx8Ya3dL4/
Grl3JWcPZXXFD1u/6waiY5IVWlVUXsT903jfCgah9o4NfScpc7Run348FoQ0
7LuT/qI8bO9TdDMyBI1YWif+l8fKw70Tx11CESOY888ayjFayps4Dc4j2R1J
i8VUnjVFxq+a8YcjPSc41EPlfT2XzuT3hXBU6rxSQ6c8t8iULx6KQNwCZOYr
qh/G00rDIYcvouretp5xqj/aLy0/9TVfRBxbX8rYUlZiRwttUotEv+6tWhyk
+kdrHTPrWR+F1ifcodVQ/bx1mcmSfBKNajZzpuym+l2Q3bHkZRCDkhYdHROp
/iclLf3V1hiD/kj4po+6UvMyxMTCPS8W1XwQW+NDzQsxy9WP7zrGo9n4ac+T
1LzhPrJned1wPCq0Udub6UjN0/3OIi56l5DlkKoLPkFCj/p9S37FBLRlcWaS
l5pXYfxBT+zeJaJkZXb2KRtqXnFdW6m1S0LqBQcvnDtO5en7sChPfxJ66tI6
GGJNgtpbNavq2mRkW3ylMpRO5blt+umvgFSUdSfE4qAZCcW6lR4mtAwk47v7
rz+G1HzRag37tjcDnRxntD0wICF990hysW8GeilBTl/Qp56vsrr6y+sMxPJL
jl/Qo/op4fz+SkcmutT1yigHkcC7LOm1mJiNov2vXFqziwQLuUyvofvZ6HnU
5g+Xd5BQdHSN963P2ajv1pibmjr1/Uu/ePs75KBXLbcK9LZRfbVi+37dwUC7
rohI/KtEwmBTSgBthIn47fkWQiVJkJrmDpwQIJC1YcG7QXEq70Jhga37CfS2
tJFXXowETvezQTFVBDr+wK/k7l8k7JYyCOG9SKL/5Y0EYn6qLxG08PVKeeg3
x5L62t8EvKkICv9om4fWsjUj5X8SsOPpQvhweh4ycNr9S/M7AT3bX0Zkf89D
nQ4XzluuEPBzvOmieH8++lT7vzKnBQIc9fxiZAMK0IKUtX/nSwKEuZcOEhOF
SNlGrbGpiYC9gnFC+34XIrfUhVmF/xFgLy4xNiNZhPa/XrybcpuAUtV/gzUt
itC1f40PHqshQNMyqeJJZxGS3VAlUFRCgE2p/DqRqqvIYr3BTEgqAYWGFs8y
AksQK8NVfcsJAtrNZkq0skrQpHWCt5AdAbN2ob4TNSVIYZtUyxdrAnb6FvLt
mC1BcUOn8hrMCGgj53UGba+hK8Nlzjz6BEzPxRQJQinKbfaOe6tCgEpK/dmk
teVo2bW4YOAzE/b1xx6uVipHx1jSZcYfqfPmOrrqgF45cjzCL9zznglRGSvv
hcLKUXbVVrmGaSY8z9H0zZ0vR3/WSu10fsaESwVNQdf7rqO4D4ERQneZ8Kbm
XszDtEpU6RTuMhhOnTeHOwq4hGvQpjf63bLfGCCj2vlln1oN2pNSKLF+mQGF
sZ3HIgxrUImM9qWfiwy4uvch57ewGiRWrNLd+5YB1wq6Ti1M1SA56TUSh58x
gF7vypy3rUUpAYdmWxoY4BB55sTTbTcRaxyLF/kywFPC60PV0C0k273Z/9ZY
Dhh3n84Fxwa0YcpJ6U5MNmTGuRw+eKsJRcYaZm7ZlAXcm3hjkpaaUf67ut0q
tzLgsnRf8UvdFnQ0fNgyRDQd5m4xeasnH6DxUztr25VSQDx+ZOfHqjbkd4vz
mv5sAnydkBqft+pAW17sv5nwJQ4+VO4aSvjeiQ4X4DdMjRjoqn8Qn9fShVKf
8n11c4sEM33TBy5netCscZ6+4a9wwKLWLVd39aKHfXXXXmqHANB3ckWt9CGj
fJHwcoEACJQS7BbPG0DjKz/6vfJ9QT9DfWvmzUGUJmk6J3rbAyqe2tz0ixtC
BqlRc5dDTkPuY6/nClbD6NGcBc1FzBmEhAuSa2yGUSCv/McZHmdIMOtDWg7D
yCTruFHwZycIHlApPuI6jK4/3amMh5yA3v3W3c9vGG1rPqD+KtkJhO45/WpJ
G0aTyY/tPHicILGELmvXNYx+r25+XvbHEUL90KlMLRYKfBsalLrdAf7c9osf
02EhnrGv3y4IO0DMSnm56j4W2q2zyTv2mz2khvz1rlOfhXRrXUR72+yh6MJb
7x/mLHQ/0DrX4Lg9dCVlhrh4sVDN9P198/F2IFoynaxRzEJy6wqR8ZIN1LFT
657zs5GzKxfHNZo1ONVXSCeuZyOedA5BcsYKhBidCVrCbFTbHdl+td8KfKx+
nyD+ZiMXkZ3cX/KtQO25Jz99KxsZP5W4XqRtBeVjR1yHDNhIU/Zvm5UQOlye
4xPrimKjD5NLOea8lnDkkWJUUBwb6d//ee7tRwv4Wbn/vWIiGzkJCpdnjFqA
jWdoW2wGG8XoLXyQrbEA8cVZb71CNuJIEzBTtbKAzOWuLnyPjQ6b/s03WGEO
8OTNLq8HbJSeEvaZyDGHxQbalY0dbORYOhPjf9EcTIL3BoT1shHfTICfM90c
+H+UyWmPstFfDeaXZLjMoXm0LXn2FRuBxWJx2IIZuDePfSFes5G/VbHU/IgZ
9ISL9X+ZZSMunQYa500zCHHYpVX2no2G7B4eL883A+V/TUroH6n13E3fOV4y
g2cy7utWLbPRUvSWKhV/M/j//y1oylU+i9fRDP4PMRGDZg==
     "]]}, 
   {RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwt2Hk0Vd/7B3Ah5GMoc2VoEIUK9TGEXQ8NEjJe8ywlc+YxITJk5p5DAxkj
U8Uvqk3hkspwXQoVUookJQ0qfc9nrd9fZ73WWWvvs/Z+P8/e62x29TM7wc7G
xrZ2FRvbf88ktqSIxh8sPMT5iFNLygQipml+p5dYeGp5wdZipwn4PpFzl/nC
wjHvVXQjdUyARjCMkj+wsFid0vRnBxOQU+ba7PCKcj9nUPxVE+hwOt/F2cHC
BksGqvu3mcKq1ngRiwwWHtH00KNpmUFkdGztl20sfPDqpOa3HAtYCOpsdt7C
wm6XDM67XbcAd2/ezl5pajwmeWIKW4ChXe5YlTgLq/56JrJx1gIkNSt53Naw
8FyUfYwXWMK9r32ug3OD+J1V6brCRUv47SUjfvvWIP6nB/tc8LCCGFt8NhgG
MZNX7oZQsi28Mf6zcRMaxJrzY/WtxbZwTE/7Ts++QXxQU9HrbIstSCi1LMjs
HcS1svvl1Ods4dafRpceuUH8wlELXzCxg/dFNXoyfINY9AbP3XuS9mD+7hL3
o2Em1vub51XV7gDbgyIzJL2ZeDbRi2+s3BnqH6jOPDvFxDSfWmO3RmfQFJzV
zTnBxH19pk1L7c5gUGX9bY0TEz8z0eDRnHQG74l/Hb6bMrGCi7TGPkkXqDdc
UGCqM7Fwk9UzhVwX0Nh2gpHEwcSvr7+tepvqCkeGjf98KRjAzTf3BNQWukMw
4cEjeKcfc/WN3VrV4Am5u36VXOnuw2lDAkNKyA/s5xoCqv48xWE7n4yJbggE
fq28XyJaT3CzohFDlTMU+DlC2bvze7Cy4EnbCKlIUEyd1OPq68YXK/J1DnPG
Aj3NgP3iti68yTOnYEdSHMxJT0SdSejEnhnnpleUzoNzwIrKVGs7FthTMnpJ
7QJs0dnofmn9Q9zmHJT+dXsqsD9q65843oZt1uwQqfNJh/zH2xa5pe5joUEl
KSVmJnR+Z6Dx4Wac4pN2wepYNiiXhv99crQJmwYJQt5gDmjo7Wg59vMm/tJ2
5qiHfB4sd7AGH7TXYlf5Iytf/POBgy7qmVZRi+fX8FVVBucDnydthZZai5VT
BSLtIvJBiv/59jmzWqxb8eLcnfh8OGA5Fi32ugYbz68bPp6fD4lvJ+W92Grw
oc+tez+35MM6rk+RIjrVeCrDte7DKjpsP7JG9mRTBba0iD4on0gHBtsGELtU
gQOvazc+TaaDW4uCY+e5CtwX8V4o4CIdruw0JLYaVWBhbpO02lw6iIpk8E1M
lWMj+7B9nCV0YJ8UWbJeV44zJX9dlmilw4uITQwD71K8kafLceQrHSL2qkz9
NC3FB6zvjK3/QQfxeWC7rl6Kf2/+I2T1iw5mLm77uDlKscP1VdVdqwh4dKS8
tp0swYP8hbbnBAhoElGia3ddw2MfZZMs5QnIqFU/tWtLMY4++KsmlEbArq8L
GuWri/Fsknxrsg0BvZpVa6RnirCR9fZOuj0B/J2S1fz1RTgghfd6hSsBqWOr
5ud0irBZt/q1fF8CBNYR72i3ruD7l13n6s4TsNLRtmKypRA7j48Wd9QToGOy
p+jATAH2LH6kYHaLgKixMlCuL8A6yR7BY40ELH9OSRBEBVjsw/mjky0EfJO2
5O21IfEWs8yHzR0EzIfNiB7LouMPJxill54RMK4ktPMQWy6+toPBkFkmQD9J
9tWfnhx86XJDAdtvAuon1TKa8nJw2a7M7Jd/CIjLt/ssr5iDAyazZlJXkSDH
VtbIS8vGczYdIi08JHgPqqP+6kxcYEBE24mRMLTT4NOFkEw8VNtntSJOArpg
XwSQif/MC4ZfXk+CdAT7ao+aDFzF5XWxX5IEd6O8i4oc6ThZ/8f0mq0kLCy2
XGmqTcFNXsHV3btIeFg5zrb9YArueeWav1uZhBwHTjdyJBkHazbdzVYhQa3L
SD6KMxkfVYu7abSXhOiCiTqwTcKN/Ila+Zok8ALXgyerE7BsaZlIgB4JL5YU
tqLCeLxwdbdh4UESaqqOn69Tjsdv1I1uPjhEgokIeTTbLg47Nnpxc+iTkP9O
kWnVEIvPqMQ+sDIk4bBkCaOzOQI7vJIa1bcgwbGXfebZ+3Acr+LLq2JJQnCs
6z+z4uGYzeNRgiiNhNI3m00EQkKx5s9tloNWJHDUFI3QVIOw+5KB+RY7EjY4
sf0+5RKI/b+1PpyjrLrOWToy8ww2J5xCb9mT4Bos43Z13h/39t6v+deRhNhI
7ZE+Sy8cnxCF+F1IqBv/JfX1lic29+tiNFN+pXfXVULoFDYVzMxwdSVBh2/f
nHOvO56wNp+odCPhq6bfytRFe6wv9MqXx4MEM/b5JCUDGzz+0/BDPuWGHu91
wVw0vKaorWTzSWq9mlj6fCvGOFQ7maF4ioQD7xTNdc9txW6nczqETpOgbBUa
/zaAF+3VEROKp+z9KDBlg4MyWvaxoX+irN2OZLx0DqGSMIEj971IOKsKfKMd
x5DT7nB/aW8SJvuLo2TlTJHPSl5fJGXZA6WeOTVWKKh/QknRhwRG6LYJg8+2
yNhFQCGa8sm6chr7v45oRu6j7WPKlhmsYg1HV2RczbC096XyqSjqIMLmjhRu
dUlfpfyNYSmxUHwCJcYlrn9FmVgZTq94ewpxW5lfM/EjwbNA3CA+6TS6eNp3
dwLlfWrWq512eKNVbi5ztyjzMom2fY99UMe728/HKY/5jESK+fihcxFfFrn9
SRjmvLgxPMkf+YWW6ihRxmY7f3pYB6B6UVqjIeXyoqfDFjvOoMyTObaelDPm
fW7rLp9Bn2xnlOIoh2kLZCs/DkTRzW8V6ZSdU2r9pC8FoQ07xK0qKes/Nzbi
8wlGMkr8tY2UleU+KSzrhKD6zdbKrZQlgjJ43guEovWHk192UF71cPf00Hgo
WntLtZFBeVawv729PgwJOb9r+u8908G/uOFcOKrdovUaU64+9mTSxj0CPWCF
qN+mnKC5fQv7kUikIBPHXUbZUT7BtWpHFBJwGTbNoqwuOnHNjC8a8e6eFw2n
vJZDe2p5PhrVmB8yt/9vvgX61pKBGPShz3qNFuX2V4tux26fRWVj5eqilI2n
5Znhx2LR+unal7P/rfdLyy9P78Uir/zPy3cpy7PihbbsOocEniykX6As8rhB
NeTqOWR6dTf5336xPRw361kbh1guqutFKM/d4Q+UjotDf6/ECAxS+ztSp5Vz
ZjEOCclxhF6kfPMyfXDDcDx6YlVg8JXKy5XczkXfIwno2HO7miLKqamLwu13
EtB3TnMXfcru4cctvArPI83jV3EylUdT/+igVr5ENCQxfGorZXSyOlc4JhEJ
Tq/2uEPlWdySe+iucxJ69XuzHYvKO6fhv0uCzCQ0p7Jsbkd5QddN1F3vAlo6
UFL80pOEHuVWSz65ZFTZZ6TDouopii902P5DCopTy4tPpurvFEfZt3r7VIQG
IpU/nKDyvcwUW92bil7KbFLTp7zr/S6rmvo0ZOtab/SVqufJ9ulnf4LTURjP
pXsiVP33toj8MH2XjhjzwsjUmYSWBl2JcusMJO+fJJnsRM1//LhShVQmMtxG
fJl1IKFEp9r7OFsWimuVEw61pfqR5sOonxpZ6IKYZlq6DQmZe0fSSgKyEOk4
5FFsTX2vInfN99dZyK+aV6+Z6m+09W4fr3ZmowXjw5UNZiTwLG3wXUjJRcKd
nA2dR0mw2JztO9Cai64tpslWUv202GiN382vuWici7cw8Qi1/+Xf/YIc89C5
ecEcdar/eluxAn6o5KNGWgv2PEBCf/PFYLYROpK/uzZeUI0EyWnOkEl+Auly
bfS8SfV7T6GokIe6BCr/pmlnuocEdq/ToQk3CHRjWcojnjov9koeCeeJJVGj
Xqr8HQWq/mPYotfKFyKL605v3KVJeFMVGv3ZrhAJN/UOdVPnkcqz+WhmZiGa
E3d4uX0jtV67X8bkLhcibtMIlZfUefZ7ojlWovcSynG0ZRNfR9WrXmDCpuAr
aGDhYX8fO5VXzsVDxGQRWrUeK9pNEaAhkCh0YKUIKSxXbBKbJMBBYv34uw3F
KGd/Gv3JKwLKlfaHqVsUo5s0ZUGlUQLULVOrhhnFKOJnETT2E2BbvlVQ9MY1
xGoXbFm+R0CRvsXzrJBSNKGlvC8km4AOs3elmjmlSMbfgqzOIGDGPiJgsq4U
deubLb1II0A1oIhXZaYUXb/8pHJPEgHt5Jx2v10ZaohL29QQScD0bEKxAJQj
bad+749uBChebDyd+k8legm1wUEqBBzoPX+sRr4S9d0YOaK1iwCaIE2pT68S
mRxlua0oUPeDrG8fhaIqUWCSeUy4LAGjeeoBBXOVKPGwn4ueOAEXrjSHXn96
HSXVBbHL/6bDm7r7CV0Z1cg0/uucWjt1v2N2XuEQqUO0211jnYfpIKPE+H5g
Vx0qGg4JXNClQ9F5hkmMfh2q85PikNhPh2saXew/o+pQ7F4NYUd1OpRd6faY
f1uHIIXzX4Y8HWiNJ+hzdvWoLrHrDA8PHRzPnXJ6trMBDciNx7oz8sFnve+n
GwM3kSAbO+PHvnwwfnSyAJybkLH5KUnOuVzITnQ/duhmMzLJbRvnzs4Bzi08
CamL99C2mzk7JuWz4bL005KXOm3oOC12dWVGJszepPPUTD1Af8lOfG5jOkgk
jah+vtGOGj7OFK4bSYEfk5ITc1ad6LWOWzzXeBJ8qt4zkLzMQI+3qs5OCp2H
7sYHSYVt3Uj2no5pg1ocmB02feB+qgcx59OyVMLOAhazbru25wlKfzzExZMV
AUBT5Yj79hRtrRD8poNCIERS4JFEYR/aKqxq8PP6GTicpayQ3dCP9L/fc2Kd
94WqZ7YNgYkDKNDgmkw7rycUDPmObrNiork+3w3Cvu4gJHIlrc6WiX7kW+SW
2rlDstlTpOnIRA09QwO6R90hrE+xxPAEE3VNHUwtk3UH2qP3XoGBTBS2W6OI
44UbCN13/dOWwUR64SLJMkZukFJK22TfzUQrkQz9Vg1XiAhEHtmag+j/uAa8
Rvc6w9/bgUnj2oPIaeUf3wtyzpDwrbJS6cAg2txT131AwhnSw4U/MA4Pokbd
+q9F352g+Ox7v1/mgyjmWuDMcKITdKdmh7v7DiLnS+xTwtcdQax0Ok2tZBCJ
nI7Xk/9tD7dY6bdG+VjohGpZ6syoDbg2VkmnrGWhXZjubtBmA0L5jGRNERbq
aFnDeFBmA/5WK07ERhY6wwj+uehvA7tGffhoCiz0PEKe4wSPDVSOG54YOMJC
O+aGrvprWcPlWV7x7jgWlfe6kLcNNDB8LBcXmshC/Bu07TkKaPC7WvejXAoL
KavoxajF0cDWJ6L9fBYLVUs0G70wo4HEwoyfXhE1v2D/2k1LlpC91N2N77PQ
iLlVp7uOJcDwmz2+D1jo8XMZI4acJSw0sV2V6mSh0cb+MK21lnA8TCM46gk1
nvrFPOcpC+D7VbF53xgL5cxlPctNsYB7Y+1pM69YqLOgKyA7yAK87o1/J16z
0MlkLrcSRwvoiRbv/T7DQnkgIftX1QLCHfdoVnxkoVm+0omjUhawff/xUtpn
ForfVv20gtsCnst4CXItsdBGsaRJiS/m8P//O9AN3Uyhyy/M4X8T4iUm
     "]]}, 
   {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Gk0Ve/bB3ChSChFFIpkCBWlDOXOhTSQ2ZExGUohSeYhs1DJ0Dl7mzJl
/BmiAekuyZjIcaJSIaKQoUxpevZ/refVXp8Xe+217vX9Xte9tqSjp6kLOxsb
m8gKNrb/PWPZYgPvL7Gwb1/X+C9VEwgcpXmen2fh+Q4eOvsxE7jQIeO89TsL
H5/tOSFsbQI0ovlE3AQLO++IXu0WbAIySqsk7T6ycJdKzZP6BhN4fiq6hfM5
C5PFVqUCRqaw4kmkoHkiC/+yX/+w+bIZBIWElX+XZmHpmLsrgqYsYOZyU63D
Nhb+8G635PqVNHB252nq3MLCE61j1+tFaWBgk9pfIszCO0rarugfo4GYehG3
02oWthRtFDW7Q4P6uS7HnskejMNiFzectoTfbluF71X34B/Gtycyxk5CqDW+
4gM9+IbxOku1vbYwYvhHVAL1YPaTshulTtiCvs7BmnaNHnzJQ1tD8qwtiCjW
zWxV6cGlJiPvLdNtofrP/dPtMj1YtMK4voLTDr5kl+ls5e3BhoI3L2/otwOz
sQyutl4mbuIXk1yinwK5y0GJYu5MfD5BPs2h4DQc6TX88z2tG5/ijoo53OYC
PsQZ7rU1r7DFsAJpLeQGqbt+5WW1dmH/avdUNo+LYDt516vkz0tsv/zSQY7r
MvAduPVL8EAH/izu33tonT/wcfixt9LbsdWaTz/S9YJBIWFIZ1VXK+7VnNjr
VhQGjGvH2a9Lt+CmNOGjG9QiYXLLYPClqCb8a+ifMedYNDh4/VUeftKIu7wK
gmWXrsI2TVHnjE3PcK1rRe3umQRgb3v6atDoKZYVahys2Z8I9BfSP7jEH+Mr
r+XmDfYlQdNiMxrorcW3dapulJYkg1J+wL+OYw+ww+4jLmIKqaCms6NO/2cV
tk83Hdf0vQXLz1k9DY3lmFEdq+tyjw4cDKFz1wrL8aB0YPGnGjrwnqP9pSWU
4/cu2pO2j+kgzvdGbtK0HF+/UeVwtJkOWhb9IRs/leG81XyNy310iPk8JOvG
Vob9z3nZv1img8Cq6SBBzVJcGioTswYxYPOb3QIDEqX4wP24SSltBmwruVhQ
zFmKb0h6rFTXY4CK4fdXqKMEl3zwOGxlyAAafV76nE0JNpkKeexlz4AMmd9d
jwOK8b+Ec1fZQhkgd2T19rMPCjE8Gb4cXceAZrbNsDGjEP/71PRh5jEDnOrk
7ZvCC/GosaCsVQMDsnYaEFInCnFiZKaZRCsDhAQTeQeHC/DFHbxDV18zgH1I
cP6kQAE24eRTaZhmwPtAiebj7vk48OjEqmeSBASqKA//NMnHGu98Fpq2EyA8
BWzFqvn4vHPQtWZZAkxPO2lwceTjn+5v8h/vJKDtSEF5I5mHlfvFLSLVCXgg
qMg42JKL4WeurJsxAYnlqq67tuVg11wBo+wgAnbNzagVrMzBcYuNCh6hBHSq
l6ze8jUb+60N790XTgBfk1gpX2U2tnjueL0uhoCE/hVTk5rZOHHbqE5SEgH8
AsQYrToLB/m/nPYqIOBEBk+cXmAWrvQ+XrxcRMA12RD5/ZCFOXeb8V8pJYAH
OXoIdWXidL1YZmAlAavcFH/0jGdgwXzh7YfqCPj7/Olf423p2FBZ6tK/DgI0
jfdma31Nw32oNVO3i4Dg/jugVJmGL7k3pkR3E7A8Gx+1FqXh/9wy3y6/JmBh
iwVPpxWJy/9qFVd9JGDK/6uQfhID11ndRrRpAgYU1+88zJaKA7VMSpz5SDga
u/3jn/YULLTzzhmOtSRUDu1PfHArBauJpltkrSMhgm4zK6uQgteMlLW0biBB
hu3OfR5aMn7m4vRpehMJ7j2q6FXpTZy53WV7jDQJr3cen77qexPnzshljMmQ
gK7aZgPcxNJ7v6seliNhSyD7yjNliVho35o3c/IkOJ+4dV2B4waeM2jIkVYi
YeZHXdaD8njs9c2a7FAn4VnRAJucbjxmR+u+TmuQkGLH6US+jcN6nquM1h4k
YX/LCdlgzjjsH+5orY1ICEkbrADrWByOmywDtEkwNFq5vno6BheddNUO0SFB
glP+8vboGPygtv5giC4Jzz281bgqo3Egu66dlx4JPLCqoWNlFBbpClWVP07C
+3l5KZQeiaeSbOL49UkoKzGKrlCKxK6FKSNTlI0FyWPJNhH4XfKv6rwTJNDH
FJiWd8Mwn7d0zgdjElwzjFXa9MIwLd5ELteEhEu544o+NVfwWZ76KkdTEmp9
Qu5r8Idi1kajzj4zEvTE8pqbagOxuve9Nck0Euw72b/2fQnAMjvwmb2WJPiE
Oa4ZFw7AJ5UFx15Rzh+RNOb39cNHxqbN2axIqKeHX5K444sXBMQhmTLr6FDq
HpYPzoz7bCRhTQJHWfZb2p7LOJ2VzVSyIWHzKbbfrqe9MTuv9uFqynsEHLYE
3byELaz6+5RtSXD02ep0e+oiZsbbWkvZkRAWdPBtl4UbHvenP+uzJ6Fi4Jf4
XPU5HBo8ve3AKRI+6jxyFFnvipm/pLLSKGvyakw6dDrjAGbOpxMOVF4u/lSK
VnTCKsnlJTmUM1g1PsXxp/GJ2+IJs5Tn1D3/Dl+3xX37qpOjT5Ngyj4Vq3jc
Csfp5Ne0Ub7b7i7gs4qGFwqvza12JGFdykTa42emWG+o57Ae5fcPWEd5/xpi
ebNPpaGUySNMm0zfo9jsiKRMNWXam64Lu6YBd35brh6mLMNM47jStR/72b0z
X+dEgtaYgpl2uBR2SVXgVqesZOkX+dmLBx3zt3lpR9m9zTt+s50Smujtywul
/L3Q33nJTROFnFmbkE75YCPa6qZ5GIk3e0Xco3xlD/C+e66P9oR6xrVRHnqV
E7xdxgT1sQXefkc5glvqR/85c2RYwvF8jPJ2rfxzKWWW6HTDlYUZys1+0oPH
Z63Raz/H/QuUz1YU0Nj32aPucYnIRcpRP1JGbesdED/9wfs5yhaJrBw1e0dU
9+2e9RRlGQUhO0E2ZzT7SIJnhPJCs4XITI4L8ljimXhNucWR3vNC5yzi8I3+
00iZ+Nt7o/CzK2J8yoVyyufShI9Hxp5Hwi2+D1Mpa+w/ufLUDnfkEit0yo8y
D5N4qvHCA1k6pqrRKPd7vA3a6OGJCrxW6ypT7uW8LhoQexENFyeEc1PGpjt/
njnphTzf7Zntp84/ccrjnvbyJfSk0OysH2X/g/zJSi+80bjciguHKDvEl3tu
ybiMxN0OFHJQVpKZll/W9EXqDi13w6g8iFxO5P7C74d0O8wi1SmveLZ79PWA
H0pw+xQ7ReWJaXcx5254AFoSiZb/X/5K9TuGrJwD0aN/1UemqXxGqcttYz8S
hB6kOk5eo6wqNJhryhuC5tu+d9RR+V7HcXB4eSoE8dkrr9anPD7DkMrrDkWD
scUve6k+GI7KMgP0w9DeK3wzg1RfND5YfH9ZH4Y6K08ZnqIsy4pcv21XODqg
VbPvLdUvtmcDpu3rItAjNVr2E6qPVZmMns29kUi9M2iCdpKErNSmHxeORCHj
iV3EXarfCQk/NjTWRKG02LouLsrOAUbmbunRSKTMerDAggRhC67XjxxiUS79
940Kap5wGuybX8uMRe+ti8lRat7MaDsJOetcRdHrDJQ3UW5XemLBKxOHttoT
3F5GJATz+vXaTsSjDYVJpyaoeebKcWeh0jYBVQ7Jv/tLzT+LZebGlZ0J6GvF
thE+yru+7LIsq7yGaHn+hVuOUnluHO3743MDWXWvnueh5mmeZqm7EVsSiq5c
+sl/gJov6s+Cf6olofueBSn91Dy/qfL2Wp5XEuLf4PIsT436vgJX2eKnJHTx
esmgzH6qn5ucvt1uSkbbLpYrLFH7gHt+84WZ+FR0NXW3dQu1X8wlky90P0lF
xj2+b85sJyHnxGrPqrlUNBX2KpJdijr/gkXPy/a3UNucltMuCaqvliyvJWU6
atCbMTq5mYRXtdd92N4ykK8A0pin9p/YKKfvEB+BvL/trLXkpfK+Ptj3mTaB
PJ+VuT3gIYHd7bxf1H8E2poi6uHKRYKK2JEA7jASXX0kOJXFRvUllC1knWw6
OuEaa0j7TsBIiV/IrE06EhVOPRg8Q4By31QI82Y60q1OdMmaIqB994fQ1OV0
FKp0/HzfOAG/B2vDRDozkFl7nYHYMAEOOt5REj5ZaIE2MDbLJECQ88dhYigb
zbweV31VQYAaf8x6rb/ZyCe0usSgjAA7kU0DY5tzEOdh36HnJQQUKB7yVzXP
QaFrDHKK7hCgapFQ0tucg8QCRBma6QRYF0itFfovF0keC2/KiiYg+6j5myTf
fGQkvrHymCUBz03H8tVT8hHfbfMXYE7AV9tAr6GKfOSc6DSwz4SAPV7ZPMpf
89GW9rYlAX0CGsnJg69s7iDyWJtEGiJgdDwqhx8K0HLfZOsEdV9TuH7/fMKa
InRdHT3NnmKAVme0fplsEUosFO1RmKDum2tpil06RSjtvIVG9RgDIpIWvq0P
LkLyjFreh4MMeHdL1SttsgjNvfWYTWYy4GpWrV/xy2JUul0cZd5nwEjF46iW
xFKUxr9fmjuAum8ym7I4BCuQgkSgSfo8HbYqNi9q7apADxsXvqTM0iE7utk4
9GgF6vreURX3jQ65ai3sP4MrUGgwMez+mQ53slrPTH2uQHJM3RGB13Sg3Xdh
TNpUorlk7pq+ajrYh7ue6tt5F3H35VfbeNLBY9OF6f+6q9Bt/4Etdz/eAsO2
s2ng8ABJ8KXvXRmTCskxzvqHq2pRpd3SyhLpFODcxh2V8KMedf173fX4YRJk
bnmZ90HzKdr135UaP/GbMF7F4C4bbkDddTsV9fZdB5HYt3tm/2tEgvVZyvqL
cbA0JDY4admEMjpkc4S5YmG6dG933HIz+jj6KWK3XhS03m+ITX/ainbKl2cf
8g8HUz2TBmfXdqR5MThMenMo4I0nn+bu7UAfzTXPiFsEAND2cEQsvESHrFok
A2V8wFeMv00kvQtlNsyc16/yAr0kJfnku6+QRfPml0H97lDSZ33XO6YbjSzu
tvqcfhbSXl94J23JRL3FQhOFKk6wXjDrWoU1E+WFZdA2SjlBnOlLpG7PRKwu
5ZAkASfw71LIM3BhoqebTg+XTTkCre2Lm7c3E9EEl8+HFjvC+seOf54mMtEZ
jZtSAZKOEJ9Pk7BtpcyRbFq6+TQEeqMzyeo9iN2cK8HjtD38u+cdO3CwBy1d
bN1/UM8eohaKihS1elD7pbygLQr2cCNgw0SzXg/SsxUpFZ+3g5wrXzx/mfWg
L2qX01bG20FrQnKA84Ue9MRA6Zr3Q1vYmD96bX9eD3KWFbgdI2ED1awb1e94
WUil4XBV4o6T4Hi/ZEv8OhbaNNfCf2rdSVhPb45TF2Qh+YXfqrqLlnDR8u8p
QpSFhjNUa4yaLGHXOw9emjwLDSKNsXOOllA0YODSfYSFHhXe6sjKpkHmOI9w
awQLaW+SO1aiaAEGL2Qi/GJYaNFExUVkowX8LtX+JhPPQhFqt+hp/8zB2iOw
MTqJev/3CEc/0xxEZr566mSzEMeL0ZTjgeaQPN/aih+zUNyc0vybDjOA3pG9
FxpYCD1euTvioRnMPGC7Ld7EQvpFP0tQrhkY+av5BHewEJfSvn2zfmbA+6tQ
UqOfhQLbpmQPbDeD+v7Ga18/stC8XRxXyFozcKsfWCQ+sZDYsacN3cum0B4i
3Ln4lYWsUWlydbcpBNjvVS/8xkKZuxsStR6bgtwho3zaLAut1lVVGSwyhTdb
3daummehNl0D7+RUU/j//y1IKEJXyzLMFP4Pw5p3TA==
     "]]}, 
   {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hk0VtsbB/A3VJI5U5KKDEUydKXSzkNFpmR4jSEkmWcRJZlllvccSqYk
hXC5SDslYxHeN5EKt5JKogxJ9Dt3rd9fZ33WOX+ctffzfJ99zjYnH9PTbDQa
jXcVjfbfNY4WF1b7k4X5O8priVATCBun+7jPsbDOkmrUqkQT8H4m67LlOwvH
HU2incsxATrRZpTwhYWfn/DVSLlvArLKa7adfMvC7MSxPMcVE3jiENPO8YSF
VavXX78ZewJWPbwsZJ7Kwmlf3YxnC0zhfERkxXcZ6vlzOWL1qy1gOrC1wVGK
hdW7SzkTN1mAiydXa48kC5sk0fu9VSzA0DZruEyUhZvyYqX9TlqAxL5STud1
LBxYIyRsU2cBTbPPnZiTTCwYnM/R4UGH3x5bRP+uYeJNanKRZh8s4YINvhgE
TJydaMafKmwL742XN21FTNz7kLmrRMkWDHQ067v2M7HV4Wq9Xl1bEFNsnN6y
h4mV7iwVnAyzhZrl2lNdskws1/14g/2oLUzkl+ts4WbiWePxhD+VdmD28dra
zoF+3MEWoy9obw/ygedTJTz7sTXPBoP4JUfQHTBe/p7Th93rLg4K0k5DEOHK
yVffi58c9ElzkHeHLKWloryO53iyuUknstMH7Car/MqWu/Hx9Q98vrkHAM+B
q0tCB57huc9j/x51DAEe9hC2juwuvM6H6wOOPg8KSWM6a5534GvRAy8voUhg
XNFnS5Zpx8Xqb/pft0XBpORouH90K/ZZerlujW8MOPqtqLx72IJ3RapzzoXH
g9TBTS7XNj7G/bt3zzsFJAFbZ3Pv6PFmrD/KuiVxPwWyn8r8WLv5AR72M8p+
tJgGrQttaGSgAf92tsnt8M8A5eLQP8+O1WHeUPa07z8zQUNnR6PBYjW+07ZT
UMTgKvx6wmI+aqnAB11e703JyAZ2hvDZK7cq8CaLnBQ1RjZwn6Wv0JMq8MPu
8FcvcrNhM8+g/KRpBf7QkFAocDMbtCyGI0T+LccG1d8rT/+TDbEfxuQ8aOW4
4L56YcRwNgis+XZe6OAd/MXnGLvdNgbI667bfqbuFi77GllmWMSANpo4iFy7
hTtvR38fK2GAc+NO+9ZLt/BCucjOwDIG5O0yJKSNbmH/BUPH1CoGCAulco++
K8HFHz/X5D9kANuY0JyVQAmuqHQ32TXMgNdhW9v0PYsxx5zK3jE+AsL2qLxb
PFGMVb47dvFvIEB0Cmi39xZjzj3iAgdFCDA95bx/LXsx7m1vr0qSIKBTt6Si
hSzCh7R8uFftIKBOSJGh2V6IPauikvSBgNSKvW5KUgW4kyv7m4EPAUqz0xol
qwvwCQHPB8f8CejZV7ZO8lM+JrS5XHWCCOBplbjDcy8fOwoloJ3nCUgaXjU1
eTAf89yW6m6NJYBXgPhIr8nDWzeyu6leJ2DlSfOKiVQufmy3aX60jYCDJmr5
Wp9yMD/yK7bqJCB8+CYo38vB+dsFdj57SsCvmcRoPpSD6RLJtSW9BMxLWnD1
WJO4+hAq2fGKgKlzn4QN0hn4Z9PCP6cnCRhRFNx1hJaFBSxFJcp5SNCL2/52
uSsTnz+0Vi+cj4R7Y+qpdVczcY+EdoWuAAlR2bYzcgqZ+MYHdxmmEAmytJu1
XPQM/NQ/sKBpEwmezL2o904aPnnj9OdBeRJe7NL/Fh+chiNuGx3y2EkCirfL
B0jDpJUsXlQgQTKMbbVreSrWPVf51/rdJLgYXU1WYE/BFWUh03/2kDD9ozGv
riIRf102adytRcLj0hGa/OFE/DPotkY0kJB5ksOZHErAv2zc+1jaJKi3G8mF
cyRgjZeOxu5HSIjIGa0EmzjM4TVt66pPAhesefRsdTTmsZqcLzAj4fXcTmmU
exlz0BLv/mNOQnnZ8ZhK5ctY6cWYV6cFCSZC5LEM2ygsukaNf8yShOyPCv2W
VZE4XbK6cdSWhKMSRW2tDWF46H3r+63OJNj3sH16ORGKqxQPtHynHBTptP6z
aCgWSk9ob3Yhofj9NhPe4BAsY5qKTriSwF6eP0RXDcQ6BRG9OmdJEHeg/XY7
FYBrmLPt85RVBRwlz6f540ORIiM33UlwCtrifGPKFxuqmZ796UFC5HnNoecW
Hvhz/e1Bb28SKkeWNs/WnMXDgV71bD4kvNW57yQm6IaZi++qMigf5N4/6djj
gpc4V6ZKfKn98l1UjlF0xhfFlFQU/Ei4xqoPup14Ct/4vSPxDuXZfT4r75Lt
8KmftyLy/UkwZZuKU9S3xi03HogIB5BQ1eUpELSGjmU021piKL+uY+lxrxjj
V6pjdNtAEkjdftvrwXpYRj3lQDNl+uBzb6VvgE0uOatsCyJB66OCmfYlabxJ
uM3oJWVly5DLH/y4UKfSnL9iMPV+nQGJ4ieV0Vm1tJIIypotaIvHwSPoR5yl
ulAICRdVgfvVEwM0OaKYbk15rLcgfLvsCfRarXkhh/J2reKzmeWWqPR1+AeB
cyS0hciM6s/YoNCLdA9dymcqS+hsf9kj6fvGv85Rjv6ROW7X5Iga/xhllFC2
SGUVaNg7oS2u5oa9lGUVhE8K0VxQ7HYZ9XnK820WYtMFp9FEZuNxsVAS2p2y
mU91zqCECT5SnTKxMpBy64MbWlLZJniC8tkcUf3Lce5IxPZL4xnK+9WtVjvs
8EQLOzwzwyhz9RPN+596ITatwtwEysNeQ+dFvHzQ0MZkZhblAY7kTaFxvsiR
b9eBa5Sx6a5FVys/1GB2uf8G5ZL87gHzHf5Iey6d/M+pU15/a//yR+lvbNNy
KZ/T5M1QfhqA/Pve12VSdkys8JG8Foje+6rwxFPWGzQ24vYKQlJ7dTPPUVaW
/bbz18FglBymeOw0ZbHAVM4J3hD0wHNCyZjyqse7x1+MhCBf8cuH1Sh/5utt
abl3DqV5rE4Uotx/0reg6lIoUpUO/TNDrdcdg2dj1i5hSFHijXrHf+u9T16K
Tfc8omUXzpCU7eWincp2hKMz/kO7z1DeKzxaaModgXIfZ8zspszPrvnu11QE
Mm8fVZ+l9vfzNEO6qO8Capke+FND2Xhcrj/UIBK9deDbLEt5/xuL791NkQgF
XPAbpOpHjnVZUErpEio7+u1YLGXa4xHTLv4o9KhfM45F1d9kPU+AZFQU8mMd
nwykPFR5INP/RxQ6JN/3gp9y9XUGU3zgMrI4RagfoOo5L6v1h7duNMrhkqzo
pOo/KenHhpb6aDSRnF5mRtkl9Li5R24M2lbTo2pD9c8J34jAh9yxKC1zDA9Q
/YXO3MnacCEW8TwN7DWmLGqx9sV9xzik9uR+tArVnxyGf83x9cehePRY7hrV
v9PazsIuOvFI+dKUyX/93aX80IJbNgEZDbqrP/IiIZw7ZMDuSyJa9hIxW0fl
gxv7zfl7dknobqSrogmVHxa/+kVW9yShf0UdkzOofFGaULIsv3cFPVSR/7jO
jeqflvGXy0EpSG5Gg9ZC5VVPo9DPEx9TkEzTosQ4lWeNVdpiJVapyCxVrYVK
Xug6flzx1uY0NJPMX77nFAlFB+94HqelI7WZm8v2J6k82/c4fFEjHeU32HnZ
25GQtmfoSpFfOvrWc8vNmsrPcIW15Qv/pqPQFUl2bWsqHzY6f73RmoGGYnuf
v6HymHNO3Hs6MQtJFYvzahmQYL4tw7vvYRbi3mDnzEvleYHROp/q2Sw0JPth
eFCP2u+SBZ9A+6vItvbnXqejVH5Ysvx+qmSj31ORxUepedHbkBxEG2Igw1Xv
sujqJEiMcwSP8RBIiDtQ5yM1b84Khgc/1iZQ1HV78UA1Etg83EOi7xIoWLFY
O0qZhD0SuqGckSTqFHwb60vNM+ICLYJfLheZ+bgqX91MwvuykIgZ21z0U0oy
bYKahyovpyL603IRZ4WspIY4tV6731zI+pWLDoW2tz0VIeH3aEOkWM81lGnW
ZtFKzVtHnYDorUF5CHde61y1igQhjh9HiLF8ZCc5olQ0SoAGb6yg1ko+evZn
w7LxWwJOim0c+ShegMaz9MPnhwkoUTx0bq95AWITbMzUeEnAXouksoG2AuRl
1G6S0E2ATYk0n/DdQpTRz2ll30BAvp75YHpwMfJbzeE/lkzAE9OPxfsyi5G5
+GPrNUkEfLIL8xurLEZ4/th2uXgCVP3yuVQ+FSPnjN1udlEEtJCTmr22NxE/
9A1eDSZg/HN0AS+UoMuH7Z4dsSdAIbnWPWl9KdpY71d4cycBWj0xBuVypYio
/6fXWo4AOh9d8blOKdqd53CAazsBUenzXwXDSxE8OPnMYTMBr67u9cuZLEX/
ePziekud3+LzGkJud99GE19cPeVnGfC+8kF0e+odNHDxcCCtkTof9rfmsQtV
oo2MRwmbDzBgi2LbgpZSJdrZ13FCfS8D8mPaTC7oVaIPCjvUDNUYUKjRzrYY
Xom2zT3X9VFgwM28DtepD5Vomq9rLGMTA+i1pxmTtvdQZVeC1ImlbLC/5Obw
clcVeuPBfFZTnw1eG72/3e2rRpIX2VQvKGSDceeZHHCsQ/yFK1tmB7MgI9bF
4Eh1A4rXPKSUGJ4JHFKc0Uk/mpAU2++MVv4MuC7ZXfTmYDOieZTWrg9Jg8/V
DM7yd4/Qvbt3Vx0eTwaxuCHVmbstaIpba7izMBF+jkmMTlq2olRV6YaZsjj4
dketL+FXG9Kzka0lRqOho/ZRXG5zB7JPnqu/vyYKTI+eeOTi1oVUjfSU30he
BCxi1Vyo9gz99UDuwHkUBkBXZY+a70Y/Jg35X8wGQbAEb6dY7nO0/0G0tKyb
PxxNV96ZUdWLbggSYbVC3lD20qYqILYPiRtuoz8sdYOcF96vZCz7UZ3m9cLD
G11AUCjvSqVNP/JaYFZyr3WBBNNutM++Hw0lqDaPzTrDuecKRYan+5F01kJf
da8z0DsnPAIC+tE94R7e6XhnEHzgtNyc2o/ejF/K6VtygsRi+la7jn7EGyNJ
rPlyCsICkGvGPib6w/ZRv2/YAf78HRA3oslEukkXJBMfOkD0fGmpohYT4fUp
qyyLHCAldMOXtqNM1P1he6+ihwMUXJzwWTJjIhs29tj2JXvoSMoIdfFmovzl
J/xVW+1BpHj8inoREz00WjcmGGoHNayUmlfcLERoBE+IOVmDU22ZZCI/C00u
1nKwdK1BMLstYZ8QC1X9/aPs5i5r8LVccSA2sZBMQZvdlUUrUHrlxU3fyUIa
wZe6TmdYQemI4ek+XRYq2G8Xo9lhCdc/c4l2RLFQqafoUbHDdDB8KhsVEkt5
WYqRoEh9H9/R/iqbyEJRS7L/8AnTwcYrrCUmnYWYRaJKNuMWIDb9yUcnn4V8
QpoujCdYQMZcRwd+wELy0jDXyzIHGHiv5v2Ihf62z5qMx+YwXUe7sbmVhVw6
D7wxLzWH4+c0gsKfsVDcbVaQfLg5cC/d2rZ/mIVUnHyFHmw3h6bhliuf3rKQ
nneU6wY+c/BoGlkg/mUhzrdcxyIWzaArQrRn4RN1v8k/KanHDELt1fbd+spC
SzzWfbsbzED+0PFi+gwLtcS3BHwsMoPBLR58a+ZYyPrq49PVKWbw//8ZyPKp
R05aqBn8D3RjH+4=
     "]]}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->True,
  AxesOrigin->{0, 0},
  Frame->True,
  FrameLabel->{
    FormBox["\"Time (\[Mu]s)\"", TraditionalForm], 
    FormBox[
    "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for co-propagating case.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->574469730],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUWHc81e8fDaU0yQwhI5Qiq5I6MlKRVUlIRkllV1IplCJaiKb4JpWGSEZG
RhHZ7rXX3fcaVypSKn7P7y8v79fn9Xg/53mf8z7HCs8Ah8OCs2bN0p49a5YQ
+RlCn8vd/bkVBwStROQPvUZRlFnAtzEaqreorNw+mwL/8F7rv/uzUZNnYlYj
R4e1vqd4sg0FNxtXbvvk9hZHuyOXCtjRUbo1dpvacwpuuVPlMhreYVvCuWvf
b9BhP2PTWb2Uiqh0x0tbcwswcWdZPLOLjn1/2wOW3KLCTqil+Y5sMb7ts7k8
to6BpgV3//NZ0QaHxmfVZxeV4VfdwRjpuwx8k/V+5VHThqSR+BsedRVYWbJX
N2gRE6Gpm97SL7djgbHrale3TzBZFTqemsDEpQMTO8/u74CdndXONVs+w1Eo
2NBRnYXn18z7/27txO2M/c8Lvb8gcCJmV9kXFhQyhIWKt3TBWWr8Y2pbA2Re
9mS4h7Hh1vbOzcqmGx3ObwT/VTbj7PWe7cabOCg9m13u69sDU+fX3PPvWjHH
Z0HhntlcRNHU2q/e7oW8v/4Z5wIqFvc/3R1E5UI1JkflamUfQu4Z/wj61A6p
nuOXs5/zMNWr63psrB/Ptm5W3NvSCd/0loTusEGkPLmyQ2ghDftjhFLtKd3g
e25/+NB6CGK7Nq90v0dD/V/GV86HXoyVKQfYiQ/j1a5lIRR5Oio7lIRnx/Tj
rvtVX8n6YZT2ZB5mJ9Ch/t2p3FqMhvt2yx8vCB6B9OmrhYd/0XFEd9GZmgoa
ZszcPxTM4kMPNlmnNzLgQK2q+qhFx+MgdcfXcnzEC13923mYgcmuXKOlJ+mY
2tznmC3PR/mRkqXKkQzU/jdqP5hKR6DaYKLtcj5eur5L3BPLwB4lY+fsLDrO
+LSaXCb1dLH/eLrk+0vri91mp9Fxq1jz5/+/3yxzhD3Hm4E3hr88ncn53dIT
rjnk/LsdSz1iST8G7OpmOunnibjlx//3w5odqKFH+j+kWXkjkPRPpdNeBpL+
ZSxUi0vJfT32u9fMJfdlZLyjUYJGoLlX1CSL4LPL4n3qxeh+JJTFKtDrhtEv
ITGxm+DZ9lIrtoTg6ek1aQWCp+qi1L9/F9BQ2auXv4ngrxG4siKR4K+UZGFw
lryXeOOh14HkvbJVtfLZ5L2K/6YJXyHv67/D5aoved8V3sZ7s8j7vrgU7FpM
5sF5eF9SNpkHw3Fp5dtkHmI6+p8qkfnZrrs4+XduK17cmW2sSOZHOexQnByZ
N6p7f3cmmTfPNqVXsmTeFK7yty5FF84WvNZoam+AZ96SyRQynwlmL85KmXYi
NGiiQOzIF9CSAne1kHn+ZLLcfRGZ/3XXW2PeGn/GsiXSL0TI/BtV1C34QvhS
dMKaL0L4Uv3Hae9NwhflH7t9bxN+iXqfE1laXwGpYd2+24Rfj75dLn5J+Jh8
uPrUriVlaJ3Sy9lG+Dg+fUlNgPBXSu20nz7h70ys7lkO4e+j9dOeWYTvV9Ye
8rnztgCR/NvurYTv7mVNQopEHxav+XPrDNGHP2fEVo4SfVBqkQpNIHqy6Hi+
zkuiJ8naD65O29Kx0y190U6iP16OXnEiztm4Hzdwr5boz3PFOf5eRK+c7Spm
jxO9Uo/hO/0levWpE24rWlph4a26K2TkNYwGRJa3TdIgnjjFaBKlgCb2rmdF
TjacDlTmJKvSIXlS92GQGwVfrt8TXNzwFtw9XeorXeiQoj10FCyh4Mzur7Z1
+/IwGu/iyXtIx4qj6+74rKaCv/Hz6Xi3QhiLPLDVG6ajKk81bW8WFUJboyvU
+MVQDzINWG/JQJhO88Ed29qQcctv3R/hctyXmkkSfMuAqeHe4arxNph8n2de
frgS+6KS5Z5oMbGygKaVUdQOucQqRodkFcZeqarnFTBxu2r5h+d3OqAXErvk
qFQNbs8t6RPZzYKjxoua8thOOLskhlV61WE65aIu8x8Lo1Luu4QSu7DwuuSJ
/KlGbJs1mP2wgI1m0eWcgqxuhD7wKX1yrAWzfW5TZ4VzcH/kbWtuVw9U5Kxm
LgRTUL1uO2uFPRe5CWkc/SV9OBY8OJx+rQ36cY1Fz1bx8KVt+u/nnf0Q2mjR
5ZjTgSr2SGnQvEEIXuWp6F8ZgFXYkHh1Wxe+Upq8lDiDiFrV8DnxAA1/nClv
x0d70DFy4qVp2RD0/Xb2HftGQ6TznGOi3/owsFZxt9jNYWi/ZF37cpaOuvuh
/1U3DmDr6alKTTvCX8XcRxMTdFjxTuyJK6VBpyj2ws5/I9hk7UIL2cHAsevF
D09vo+Ou0sec+UQ3ZDcKaz2KYUDORn3i60s6qHN3mJ4jOvOE0W+oUsAAd9a9
M1k/6bD9eYcoAR8Hpn6seUVhwPLomcvRqgwEO5y0XKfIx6ZHTsxDfQyIN/1b
u1KfgaylyULHSL3iwKrRSfL9l+UHNgmoMWAWflVAj9Rlq79fjSXnFyconN8z
SUd0xV3Z6+R81+87TzBIP+7HzmQeeEWH6JbK5jDSz4YfRZ05pP/E2COu7aT/
jpJBkYWk//278gIPkf62HjSebf2BBi+nOeYcct+ZQQfbbwSf97t3H9vVNIDV
Wepb3Ak+O5+YGcQTPBsqXpUnETzDJ59vsCR40itnCgXdaMCnrgshYz24f7/q
YT/B3/vThadN0QMQkVmbFN/ZhUD/8PtbuYNQ3ePwRte6H06nBs825HagpEDu
aaDIIO57HDezEe2D2slo5es32uCcf/iM32oezs8xuW7a3YNNdpOap09QYBI2
oXeFzM82+ZUL3d90Y7i0Xbb2eAvE2DUCp8m8GeYsfiFzuwuPNs+ePDvdCKe6
D6kHC9loP7BOrDqOkDiiTMr2SB3WKoVS70+zIDon8qrm3Q7EDK4f05CpwVG5
g56HyPzPK5Oe3lHcDp2GP3MlZapQrTn1V6OQ6FUGpzBiog2FJx717fCpxC1v
qcPqa5igHY/HbMs2zD6+df5lkXL4LrccuUz4WGBgtraM8NevSJchNFaMgzrZ
jyIJf9OtP2qWEr4niVRk9rkX4p5Pd5k/4TtPL2iTI9GHfPObtUud8+CdEe6k
kkKHUHYno4DoiYK5YvXPxre4ld0Xt4/oibiCe91iMQqa9px373ibjZ9yy3iV
RH/mtA+YehG9Uvou0Dd/7DW+rgnzFfpFQ62ArkxFTyuiG5RMN0dkIdq04Zb1
DA2jHq7dhxQosNDbQb+zJAcvF5fvU15LB0vM5r/HARR8Zq0pf2SeCwMF6c2b
jtCx98sLk7gWCtzDLXTi+XlkTy8ank/mblhl8pj8NiqKHs5atl3mPV7sVLg/
+Y8Ojp61snoTFW+/PUg43FIC1zcOstvdGKhpNT1q5t+Gx+ttMmbiy8Fb9URL
rpEBmY6DFJ5qOwSinrxWXfQR2Z9vVIfaMHHCa30T90c7jlT+9/ZnbxX2nJ9/
+McAE8/Wlp9b2dOBooLfeXICtdij/b0j9CIL5jfDix93deKDNmvF0pB6ZNF2
F+w2YCP/gvxnm9EuZPx5zZOWb0ZIeqlP9SQbpnrNLXule3CC52Eep9SKicTv
QdE1HDgvuybladeL8KL517tMqBD8/aEv9gkX7a+Wu+y73Yena43klE62I9Pv
mvHGGB4Y8o9/pfb3Y6J0noX3206IF13M3R84iENTvTHuEjSsiJZ/f2SsG026
cYfcnIaQYoElkvk05MSuO1uk3If12d7rX2waRs3t5Yk/iP+VvhH5xHLzAKiU
KzrOkiPo9ZLUqaXR8azpZmbRXRrcHDuPRw+MIK9rc8f9nQxsdiovsN5OR2fI
y/1ihO/JYlfCTR4yoBl4vu9cHR0/b/zp4BN9eFqVs+9mPwMnx6MK5hgycKvI
rSWQ6Myhd6tfOS9hwmnsR+PxKAZOHRq6fV2JD6br62p9Mu8OmztjPd8x4DVg
X79pBR93Wo9Lha1nIpXO2835xECo3Jua06S+NuzV8UbyvU68sM/+PLK3cv5Z
g9QvPXpfJSpK+KR56NCtywywfj8tjifnP8lSXLd0gAHrnfHjHaSfDHnBhhOk
nyBlqWoG6T9iI/VuRD0dDf7Ccd9I/x8lXDmHrcj3rhpTCTvo0Ix9PyVJ7ktb
a6Z/hE5HNuO3TwPxXx+ztsUcpo2guDHoZpI9HekV42NnMYDYZEv6ZqkRLJus
dZcroMEwa+z1zpV9WDRK+Sq7eRjjU/JfyiRpOLL/qe6aiW5QlpUqWjsPQauH
s1OPTnTsbtVTWn4nXmhYSGgGD6JkFjMjJ7kPt+977Fkf2o6nFWkxtKs8aCVV
Zok69EJTQnpztRkVFxnLLrzP4OLtnm17BZb1oMxK4F6wSiselk1wc2s50A0V
nQkb68JQ5JIIhmIzqPoqxTa/2ZAypp5s6ulE4eVlCo/P16NkS/PfbkM2ONea
9Up7O3C5xn7JY+FaeB5/lJ18iQWTr/t2hEyQPOBa4enOIHz5QwleQGeinqH3
yWllO7LtfNeoLv2IYLaZ2zlbJgykKywfBbTh3O2I/rzkcuy3Vp9Y3MTA/d2X
1q9uJnOv+8gvpLMEsWnWrGnC37k35y78Q/i+2V/n9B6F9/AVChK7PU1Hgted
fPtWCj5cP3x64nseZsn+O5xM9KE2s2loWyAF6wIrnSV35CJ6Ii43i+hJrxi3
7BvRH07Nosbj4jm4fqzhwGWiP+0n5piY9bYid97NXNvoLAyv3j3/OdGrK/IV
5lbcVrgYeTlVKL1BWcK2Lz5z6VCr1mCoraFA9y+tVT8kB141ivSIDXR81H75
0/YiBdarr8RGVedCf1zloQvJAfN3jfl+41EgGLDL1eZWPrJk6ANhJXQUZ+yY
tcKLCtkeJ+tljPc4+HI6zHUp2dOR1cmN36mYtlHe6VZbCovf9r8dTzMgP+vi
38x7bbAxStk4olGBT+x7DQ9GyP4+9aFxzf52FF+7FMmr/IhJab6YwQnCn9yE
HVq6HchymRQLz6vG462PovMXsPDLTOBwsmonmBdLM87N+oJdM+aPJPNZUIWx
7wHtLqTyxPp10hpw2+GaxO0gNkQfyzgH2Hfj69js4eCaZshLMvYEbeYg+oOp
wKKrPTgu8LLCjNMKqcc+0idkuAj+nBQW0tKLtopZ7duJ77YX5zWbznBx66y3
1jK1fvy+9+BJSwDpK/x3zwSfh3+JkVJHwgdwof1xz/faLviPxlc60ckeF9y1
oM6X+Ibjjg79Kr2IzFn+NYM6hFNyvoJuUnRsVFtheCOoHwcTFa0FPg7jrhE3
vaOQjksq+3Utd9NwINJpjeezEeRrrGs+v5kBDvcBz0iP+K/C2a2fSP5awNbq
a0wj/mrRFLOhlY4SPZ7/POJzxF7b4+xPBqaeH718wpWBc+fyvf8SfejUKp2R
MGaCuUnQekc9Awnz1FMSiM7oCeozLQOY4OSePH5NgQkBquzRUmU+Vl74EH3r
BhM1i2Mkmu2Y2Nr8+M8JFT4eK5jD5x4TKy5GMzZ5MiHmV26aS+qpLz//9L/J
xFsTtVADByayhD8uOkPqhh8rs+wCmRgZ0h0wUGIioO5E8Edy/mRrjCGH9NMi
LR18r4GB+s9KnndIP9prloZfnGTgLPuKjDzhT1LsgK8g0b2H7Z2/JR6T75DS
20WlY+jdsv4l5L7XKKEVIVsIDpuozC/6dPyJ7rrwheCTG/ru0N4i4ucO7PvZ
v5eGZVUz1WczR6B+vP7+Whk6HDvut/ad7sfj28n7blQNQ7BGX/GxPw27rCrP
mK/qReY4pI07hjBe9tF18aUBhKStW7iruQtWqS8khpiDkLlp+UBdsx8bZ6Xp
DoR0oPDR7qymMR7CGtVPvaGS+aF3GjNXtsEwzDTligDRN7FLPjLXesDWfsW/
MdwK7TaTvmRZLrYEJW9fvbcbhq2ewt8am8EZvr9azISDevbTrB+6XaDdHBZ/
8aoBK3TsgpadZOPuIYdcX/VOjD7uc9o//wv0T/YslShkIZsn6t6t34E5f6sH
mz9UQ9dzXeHdRSzcnb3qVYJLO6KlpQo31X3EfHfzeuZJJqyKVHb2P2gDf41q
fLJOBVrWl3trjDKwgcpPvjNORaK2Vk5NWylufv9P424oAxdjQj6/OETFN3XN
6bqR9yjM2bs5SJyBFx1/N1oOUbDTSvzmnXv52FcUI+NXSsfBiajMY5couO39
541uYy72yipbKZ+i476MtIXkWgoqCz+U5IXlwGzFUUXNjXQ8encjVIHXivnX
upQ3ab3B+facjf+IXvmWnovr/tGKC+kRDqea3uBIptJlY1Hi3wOvTepvpuD1
1xMSbHYOTD011n0xI/t84ozPk2QKNkssEBnc/Q7Pbijuz7hIR0vCb7njglTU
91eqhW0tQNx4t8ehRjq+Z91jFl2kIi21sYVeWoTRKyFqCRoMnDFvnp+6rA1v
Uq2v2Hd8QLnMwLFHCYSHts9L+khOr952949oQwXsZT571ZCc/vPlh465Ce0Q
eb319oOYT0iR9a/XfMDE9/sM+sypDizrd9vm+t9nUKpfdXpsIv75se3eJyc7
MWCnHd4vVYd7fPXfTqMsNF7451h+rQtK4eaGY6xGnO4vljfMZWPOcvHDTqXd
kNph4CMe1YJzc1wjtl/lYGzfKSf67F48kj8hlVBKAXe1s+/ZAC68F88vFHHr
g8iqycF3ku34Fb92zhJPHv4o7pH+VNmP1GV6PRORnXjLst9X5TqIs2GcO1bS
NFipCN65PtWN6wyvM6GuQ7i2tjB4TQMN3rlImH+iD3v5+nVKrsMY3Rrd5hRO
8tHC4b2P+gfQudtuebzjCNi1hZtqVzAg7btGrkCYDi4tfYUK4WOGa9Zjn2QG
cRTy/jKVdFQfkv9QR/zJWZG8g4PTDATx/j6edYyBnCPeqWsI3/+ti2iccWJi
gfPVa2VTxL+MzXHfRHSDpVgRtugxE6uvrf2uSHTlsB4K2ERnKk+vu9DcwYTx
bUPzyGomrF1sQhXV+Lh+P/pvzi8mqrGsfe8fJiRXsF0HSH2s48eg7GwWQuQN
x18QnixcHPJjxUqib8tbq9//ZuKWR9irf3+Z8Hzj7s4m36ss/rVQrYuJhJpX
wU9qmBCZ37hJndRlrvOpSGfi0GcBjYXBTETdFs8dIf0EXymb9nNmYqn8qcEF
/xiYFSz73oz0n/tMMfr1LCby99kodvgSnZ61ZnQ9ua9/ce7pZXeJX7jwvb/p
Ex0hVYoP2wg+zxYsnftFhYEb15WFv4rQMe1g17qW4Hls1JKjT+Z6VfZe0Vu8
ATi8+quQ7DwC40T1sAdNNKRMfX99/lwfaJ9tVOMODmPNGpUdTctomM5dLGAt
1IPa/N+mAu5DqMyb8VtQ249L2ueSaNc6cUetc3qtxyCOqjV17vHqw9/dScsH
Fdqx1Xb58c+HeXi3Vehku0gv/htVeK9TTXKYZtyBn8FcGOZ20lU/dqNR6WG0
xo0W3K+81exynYOoE3aHRBO6MP1wbunRyUao9t399S2fjb8dBxf8CCV/TzNk
RZdaHe7v9Px18BsLoytyZcTOduDUyxWLI998xs+vHqmbt7CwT0SWlZPUjqzJ
vPv7kz7h3d47YqUpTIQcTnmmV9+GY+YPgl90VqAzwihGifjmY9rN693l26DB
WDt5ZugDov4Wz7lxm4GhoG9HpC9Tka1Vrm3TWAThiQ6BTasYKKn8Mhk8m4rV
6+a+f2BbgMMlNz60NNFRkTxlvfsuBf/EKD0pB9+h7JSMNvUSyRWbBDNSt1BQ
oLbmTNnXHFDzhyVrzekoNBZTEJ9ohZGhpkYQ7Q32LZirJyNGh9nW7a/iBCgo
ri2LG9+WjYbBXxM9y8i+OhNBzbchObHvt/jzg29RIPBcWobkGdrF3/aNryho
/HEuffHoO8w0hczbmECHnlF5ka4CFXfPGLCzBQthZcSJGCI+/tC9Glu9DCr8
lfx/PXpdjFSO8IJ6E8KrCyf7v5u1wd3ej5r7rwz8KaMfB7LJnJV7Z1n/bYN1
PzViJLwSWZcebh1dx8Smk/fkp5raIVGYu1TYvQrX/wpo5BI+cZ7r/DdV1oGl
BTqCqY9rcEx4t657AAuhdacFZ9d3IpeRti5vWz2u3f1pULGaDa+Az2tffu/C
xDwFkdcqzTgU+2FuxxQbD2WvXJXW64EfjafTaNeKtyUzx0R6OaCKWd/7HteL
IZ2WO8eeU6FlN/b6SCMXQ7UWv3ZP9iF0tcIdY6UOzBUoZXxp4CHDruPEJ/8B
zDws2Cz8ugv1cyTLnrUNYlBlII0dQkP07auiApa9WC82mt3FGMLK43KJxwyJ
b/X/tlWA5JJOyuHGRWPD+PbaNnDmGx35c3d/e0by5ZkjqWOFkyPoZHCdnocx
cPyq+KnCu3TIfw88ZUD4eHjRuMt54k+y34R3iBN/0hvOsvm/P/E17jCtOMxE
ccSnjVtILrxbadJymfB98JZ3TPYnJkxUVFqrnzFxcpVfzxtVPh6IZzYcE2PB
oJR/brEKC6yL39IDiP6EPD09Or6DBRGmrwfnPAvdeooP3quTHOonNJTuy8JU
pGtAWh7ZHwGTs6M0+NARk2Okh7IwErfImFfDQn+Y0KIv/6+bfXIu8CP5xrLk
n3MBCwdeBVrHkvrjnDePrlux8JThP/d0BAur9m8aqSTn/zZc8UZCnIX4Y5cr
itRYyDjitf8M6Ud+LFfxFnn/9KcMr9oXTKhs2f2liPTfOrEwSdyHievbDin/
XsrEhy8FBxLJfQ8Ot6UsI3rdop8WZ+HJgHFGV6wYwadk3FWgPpwBEwH7/I8p
dGy3vPfZkuBZePdlq+5POpIiWj9MlNIgrlB1Oe0f2SNGm92aiC+4Xll0onGk
H302K2dRxoehVBFuF3KW5E2xWpb37l70B3693csdgqaLW1rH6QGo75l82FDS
RfyqY/i83kEMnHvlYDPTBymF7my5tR1ws++18KbwoF/0LuxcYi/OL3/tE5VH
hUJptEMuhYvkmA3Hwjb1IJTqcNH7IMkFqb9efqVzUBPm1iA31QWxPzefPdRp
Rn4zJ0VsFgdbTy1YrdTaCddQ4QvjLvWYtfhG1EIdNvqFVsVXVXVgZINa38f8
GrySf348+AQLPrG+bpZt7Sgb3kc/FVyF+1mCi/y+MJGiLz0pLdCOqm9n9969
VYmYXm6DtQETrnrf/g5atsH3yJEf6QvL8WfpV0/1XAbCfGc+JhKeyJ95vkau
qhivXVXurDZjYK1i32HpFSR/9VhqN0sVYtdw4qIfTDqaDvn9MnhDgeOV/ICa
6Xe4fHW0YDCR+LHW9z+L7CjEV0iUvfZ7i4cNmu0XSf5v63bfYypEgVOmpNuA
QzZi0ztNROXoJF9W54SJUvDuP2ezgaxs9Fv0bnRVpWNKcuF4iwfJlawbwVdZ
byFwXTjt8gE6bBdqnpr+RIGytvKp7cl5CFr9ZHRDOh01qzK9LxtTYbhW7llS
WyGSV1XqGE3SoWxE02n/QkXkm1017rkluNBw9SpcGJBNKVLSDG7DkL/Tquup
5XgZYevR2cyAqpNkjr9+Ow6U7UlXNPuIeTj/1GM/E7ojTs63xTsgJy/RJmdV
jXuKAqsMfzIhY//vTKkoea8voRMhxbUopS9/q/yc+ICT6XsDVnchKc3T+EpC
A544vvjX7M+Gwcord4Q9u/E87GmhFbsZlppyjrI7OIjLvcL7nNuDO40rb9zU
oWDjenOxc4ZcnFcoKz+l2Ic956ajOM/bEFWoMUfCkIdjs9eVvnhE8iN/zpN1
Zp1YekPI19tsEJdsLyrZS9JgdCv54Ksf3Ri4uigxe/8QZtbeMHMZoMGzxnOu
6ds+KBw8Y5V1ahhvrr/ID8ikI873R9X5DTSctqBcLIofQd+2eFrhHgZCai9r
33CiQ+bnysPW8nxomr+d/W+AgbvFt7bab2Bg6Y5T6mdIHhxuV7vzwIOJhfIJ
x27PY+Lrsz0pfoS/m9pep+u2M3FmaYY97yPJf5aLRKSIz0nZGRcWaMSCxDmr
T5OHiF+SZi44SHTj1Z1f0mvjWHCYmlj6lsOC2KcfMNTkY6Q9emdNNQunjoeU
n9rGxpGhSamEVXzEJaQdCR9m4etj2UsnItmYrN/l6rOajxdKIifUfrFQIyux
sjqJjZii+DVvSX1mZG7X9REWZrkPi6y8xEZ36cMr/qSuqH1a4RnRuwobW5nT
O9jIoBwVSCHnWy/TGD12nfQTmxiyc4iF93fm2ZqRfmRe0UcGjIl+Fqadovuw
IBi+3dSP9G8k6jGwgfi6neIdVp+Ir5vlEvbm/76u2+18/V6i548bd9yKX0zy
6zxZt0sEn760xOFAFgMTuvTKUJC53DGmkkjwDPW7qTZ/PwOSya0LLhykQz02
6s5hgn9H95k1bll0MK6H9YhupUFH4sHizLsjsHr7SuciiwbqZEms1qc+1E3F
6I+EDUPb9+WuRDkaxq49owWI9ED94M20MM8htF/ZP2/2i34I3vLQ5Dt2os9k
bKe71SCsI97ttF3Vh5SHHbyPxW2I+XBF9t1mHrbYJ22wL+vBb//Y+EfmFESM
fXqTvIULG2wTk/ftxouyBgPqz2ZUT/am6thxUHWFp0HR68LP4J2GuW8aMEt4
e2Q+yZu3juqp5Mh0wkDzEHN5Ry2cf+p4vH/NAu+WQcBX2Q7U79DTyj5UjfkW
i1M8iL/etyj778JN7WjW8j6n4vwRj7ZvOj7PjYnOlYYNaafbcO5LzJlbb8tR
v58lmU1lYHxRWVZoExVHLR+XPKSUEB5cPBZJ9mp15vJFYSZUxPi/Cln5rRAt
K2WthaaI71p1vdeqhoLCL8FaJq/zsE3FQjoug/BB7JH/7UMU9M72/lE0+RbD
23erhZB3WOhfltK0lIJHEcHseWXZ+DGXvm9ajQ7JVtVDdUoUfOI+/7ZDKQd1
6ivRqk38lWvavVchFLwdybNJPJULZtf9rDW+dPh3q106PEBBUlSvyuCufBxP
Mjf/nEdHqx2Xn3qAin+zFOxbit+jaOvlNRcWk/wTJRM9+oOKqZEjdJ2WUpg+
l9+3guToC9c/XUh70gancL2yBbYV+LpoI+zGCQ4/3j8pDWpHQOWwnoPMJ7js
Xm4UGsWEXUVq8dEDHfi97Xhqr9Vn1EReM5FdxcK2sb6SYZ9OsHiMBfKjX2C3
4paiPOGfsbNAYVpiF5b2/ejp+tuI6fcGuxcUsmF+7e32wp5uxN9fcJtZ2AJW
2+6z/z3iYHrD96vhJr3w2RE7bKRGhZ2dTbf7PS6G/9x/9KS8D8+kNkeoV7Tj
Grd72uUZDwbyV2SD9g6g8URl8L+ILqz137m25+MgBGRB+XmOhk6vl0JpTr04
GkZf/HtwCK9Z/6nGkH0S0Ruz3ZqkvwZ74zmrpUYwT2vkQqYiAxmqz0J3CdER
WeFRIkVyTbnbszln3zMwv/X5nUDy3u8ktnjfVSA6dprj+NCaiaa5GxgdHAZe
9+8S/7GCj2sn5+VltDGxocCaPofolTQzvnUp4a+b3pKVcvbEF4mWz/W6ysIe
2517mITv/tmLPqoVs+CrFSf5SY+NgU5jHRuiGx88VY+6irIh5PRIPauEjU2B
ny9Ai+TNdblv3W3ZeK7vazK6goOkA9Omb9aQ88uKw1xD2FgZ+Gv6ljsH6hEa
VQlrSZ49lTtUQXQqLzleWTqEg4DN+3/QSD07wHDn8dMk95S/X2buyUFq3a1v
d0k91DpP/K49yfd5mgPn1Tiox0bdEnL+rcSBWBtxNqZOv2o7WsGGz23OGzvS
j3ntqoD9H1i4EPhFbHADG3at3QPupP9pSmev+F4WzmU5Pvh0kwVn287IKXJf
rvuzvLfdRMeSFrqr1DExKXDNWofgs3/fDVaMAxOtobK3XMcYkLDmZ0gSfbM7
O/7ZqoxBdD90wxchBvyNL7gWEfw90wOPDqky0B8e7/5hAR1VfbsPG5D3+rmK
bcgl+yYu7Gr4qNMAyUfzo6OVRlBs81++QxQN1wurvHJO9aJ1zqLRwokhMG/u
Xj92aAD5DyK0vz7ogsWYkm1Z4yCubkuIvdvUh2FR2Y3qPe0A5aZ1fw4P212u
hlfb9iKg/eWcOlDht1gmavkTLtalrj+2bLAbryeLx1c2t4BXrvB23nPix7o0
db4+6kL2xTTT1apNWHElI/lfGRusayKsxBOdmG1fJ7VavA7bNgaH3+OzQDuu
fs7qSAf0LgcUbvT/jMftMdoL17HwU6606c5ZkoNWLc6XXf8JJ7zYg9mxTKLX
O9f/eNmGZn0voUs+FejlzGk99ZuBvwkT8iumqPhh4XXS6m8pnp0q9Qkj+YH5
UeP2kCcVrxZfqntEe48Z6/2bDZcSf6y2Y6iJSUHKLNdZqb75aEiqek8vJDww
MXrsfJb4rjmO4qtv5iKF01D+0Z/klnPHIgZUKNjCctTJNchBcnqCyt91dHDu
iJ9N0KVgeq2Wx+iDHNiaqdTbGdPxUJmqf/Q6BQyZlRp54u9gpiV5WiOMjg/P
H0Rq/6Xg3LBDj7JUARqP1/4W/ELeL1dz/ftIKlYdDSyk5xdh2/efC/vUGais
yq4oU2rD9jfG5qx5ZWidHduZdoeBfOqMXVZPG9KrmoIuLK7E6UiLGAE5JryF
QzY+f9eO+ZUu8nMEqnCg+tjn8FwmIoJbhmdldeDb/Mhy+UM1ULayEfvgycJV
Q8Mr8rWdsDvXWf7AmPhnrVNZ+ZpsjMA/wnxON2ze/MgSMm/Gh+K6vYNzOeho
VG2/4d4DXqLwl57UVty+W5T+7w8Hft6Dx/W7Sd57LD4rTKcNDc+mnx+Zw0NE
u4l3amA/tM5Mpiv/6MDypu/q81UG0fj0pO/ZxTS0qgYeZBFdlNKqKhO3G4Jy
W1j4whEaYhaulT/c34fvlCthl6OHMRM7dNqwkQ7N/O3nA0JpaNgQJeVbNYIr
ZtfiH0QxMHax8/wFsoc+i87u8SK55p+q4qYodSaWPr1tueUl2Wft3DuyRK+U
dOY37iA6dfrgQNCVDCaOfWa8fkbyVPDr6iHfPSRPx688WHiDhbcB13J/Ev56
Wkaetepg4YqL34t/7mzI/6Gf/E74vniZmMULS+KfpsXZVyU5kFIzMLlIdMP1
2LYdvP/YKNmn7xPzlAOjIx3cW9p87OSz95ey2Nh+YXhwUIyLrPjYMal1fKw8
b121cTEH1cNzf8fv4UIhwX+RiC4fn3bcN42Q52Db4aDCyONcHBEXP+BK6kP/
ReUfWsJBr+K6ncGOXBT+XtK/hNQfr/xyJ4jLxmPbveqmUlyo0UMLV5Lz5R8M
DhdlsHHd1ajh1SsOtkitXv+M9HPjfPLXISs2Qi4ukjhI/g59+JXYA9L/tJCa
/LVeomOxWO5/lI0L1avkxYjfu9J+xmO+C8lPbnyr/fdYmI1Um+Ukz4YFU/xp
JD89U1HNK8ghe2BEcpJC8NwXd3pQXZsJrmTjpagCBuC6fY0lwf95c9m36TgG
Gi3+HjmQQ/LJbrnfN8h7jSgLrgvppOPX/sMBW2NpCLLYtZBKGUGVWe/U5E8a
Eox27nCb3Y+Lu3sH+pOHMV/oXG25DA3C8+RdUme6wd0ye8FltyF0fm/fcTWq
H+++Kl+olOzEe+ZFAZF1g1jrXRH4ld+LuqOvXL44tGFArSDeQpyHnEgBv3nB
JG/qKqhv+dCKVqeH7y3mcfHuuFjydolubHsnd1HRrRlbXSNmQpZycKNjX55q
Ryc6GcN+R/zqMT3gZpNI9phqetjweFEHbA2VBDTia9AYKJnceZwFyTuvqYbl
7UjKfhpnoFmFmTX7FFKLmRA7vWF0B7sNuS8Dn3G1K/Gr77NW5Qom3F5yphga
bXDfrzUctrUMF+/Pm3BKYaC54cPX5zFU1Ce/L1DkFkE1t3pBqRYDnJmrRlMC
xKctPrb0+JYCjK4LWChJeNIsYDG9MYGC/7z1pPUM3mHcM4QeG06Hl/zP+tuG
FHSGzvVoLsjBnOnPcsqgo8jzYifLgoLf7d5Ttspv8b11mwZ7Bx2l8e5mSk8p
GD9ntede2Tu4sRna0dfp+HarcPKcHBVOZqP05q8F6Nmct16QRvxYUdjjXyQX
S/6eye/8XIxil5PngkkutkbX6rP2beihM33Ya8pR51k/PUB8RrKc5Ieb0u2o
5aby3vdXonlWgaG0BRPmkcmU8//a8cEyKch6ugpnt0XLZnOYWPtR82LxHKJX
F64kayeR/DhZruudxiK8uW9dvq4LohEBq84/b4DyDsWjW0+wsXYtk98T0Y33
3/xkebItKAq26qly4+B5i90VxW89MLfW565/QEHrUmrxHQ8uPg9xRhIj+9Aq
zDOO2N2OSeHGvSLneHif7/+fkc4A1j0TDtth0oXvG9fQcjMHYSJeuG8Z8V20
W44tKXt7sf1PW0kFbwiTdUaR8t50vJ9VWt97ZQBreyT2yeiNQHjvDjMpUwYc
rlYopxjRcTrnS/oA2eMX5lueif7OQMS5zeflHBlgJ1Bc2CTXNKa7uDinMuEe
MnC+9jgTv/QbJtpUiJ/Z8Vr1jjkLjwO+SFqeIj+vvt5xn+iVaE1n/Y1+8vuL
eRKZvsS/lHE75Al/NT2VzngTPtsk9/eXWnGgm6yzwpL4H6lA7SeZNIJT4+Gf
rgu4OLYnUG1Ghw9qx5zDsSYcCK5Uu340gwu7ck72Wj0+1v2IMU+J5iDQzebp
A2keQuleZxv0+bgUqDFFzeXgyUGmxTM3Hvp3OMU0GfAh5u7BUP7IwaDZCdMt
p3lYUGHVpWHIx8ZvO4Ys8zjINT1s/sedh6vvVP91kO8v/k1NEIgjvjhYr3rx
cpLbl1At6OT8hYdrBE5YcHB/mp1o/ZqLFO9IRyvSTz24w7YckpNwqjhQgosp
i+/LlYjufTg0re8YSO4/KPGH4Uj83sNDDwP+7w8nlVfM57IQEttVv+MsG8H1
jftsCD5ra/QyFW1YkB45ZH83iui/dvxIC8FTXure+LpMJv67tKz23jkmrLcY
eC8h+padsvvC1b8MqMRpfNP2ZuDj7YaPikp86LltdFhvzYDZzchTzJ107Jnh
lcuSHJp+JdFB/SQdS7rdHucUDODkmns727aNoII1sy0whga3nPzlAlG9SBI4
1hH5ZwixtVmSkjsHcKTRXmezXxfi/wkfHigehHGJVOOz+31waS9/JRtO+OG2
2SrzGg/q13T/PJ3bi7PdnT+8KinI2/hE0y+ICweu7PvLt7vhk0K7KLO5Bat2
Mp7f8eVgDlv02IRZF3I2Zgg0chvw83PczkURbCT3cTZ5S3WCuyFwXLWpFvlu
zWz5VywUuP3na7uwA/45ytHUddWQDcrZLvuNiVvJz7N+qbQjLomaTBf5iNwK
8VnNu5i4U7i+VdC1Dbyj1ZwrDuUwSXpmZFnBQFxZ4+avOVQckzS6rC1cgkc5
g+plOxhQuJI4MalMxX9fdp/oVynEtt7ROnM2HY/iP/s6vqLA9H51df3QO6z6
/fMTK56ODg/xdwusKDBcNTdaddtbpF8NFY3aRcecFRSNamcKmsM+6cfkvoXk
RjdOPPHHjzT31raXU3CA8ibP80weNsWcPrgrjY6XhwM/2W+mgj9vsYBKTyGM
eje31k7SkbzzHs+bQsUtKf2J76MluP9+9X1zDwaGT/7107jShnlvfu+RZpdD
5XewJaefgZdTjwodnNpxK9XiyWjZRyhUCso8CGaikS4ebW/dgdB1PnHHRD/j
lu34AykFFk6G/Lj29lAntCX4pr4DX/AqY8RElcmCi7DwgsnHXTh0+PoFbd0m
eNSeqG2tZGO0VrbwmnAPjm5eXuUi1Irgl92Hi0s4OChw+s/N671gHfzmvPEl
FVt6XxvENnHxTLHOscqwH3OKJ77F3eiAlWvUeY8pHhKsE/fnzgygtrVVQziz
GwvZWxdFbRoCu3aZ3IcxGsodNjwrGCX6F997XuHGMNbbPk61H6IjlVozvCuT
6Ny6ojL+yAgWez3/op/FwPNXJ6l7eHSEKwikOZKcohN2XSPxKBNVUZsDPCSZ
2DpgIf+Q5Bq9dZZeaitYSDErltxjzMLzCeWAupV86Bc/xttmFqpuiMZ5ObKh
cDzqex3xV1O1H41xko3Armcuqw9wQOMf879C+DtVt/DJM+JD5dZJmArt5OJx
ZsQ7BuH7Cc6+0kNXOLD5KhiZIcmD279Q52qiG4Hd23ZfGuGgbNznwPv3PARb
cx1k1/MxOzz9tMkGLsoidRyO6Q3iaY+GI3UDH9UvZ9N9j3DBUJauMAgfxJ2n
xk+4G4n+7AwxHzzNhVt+5Ie39waRNRHabWnEx+8um6fOR7nQ5K2Xs704CD93
Jvs7+b63e/PjeGMumtKkZjsbDYLqOxLNJ+dH0M5MVXznYCAmfbziIw/LnTM/
bSH9jDA+lVCuc/DG9KL0nRU8nMrxKvlG+rdZnH3nvSgHWRki/5KcuLhwMTBd
mvg9xzBoTl1gY/2vII6PPwcS4uGLqgg+I4mlSQnEvx1aExcVSvR+85Xxrf/3
bz+C3HY/W8PCShPzPF87FlI/Z/lJEH0TXrvU5lUIE1v4iwT9VjFh57LtOo+8
19yFxtY+xQxsfXG5IvYf8QH7O16kk/ddH8aJVf9LxylLvVa7GhqWzLHPnZnD
h0PGk/YaAToErp2iT2n2Y5y/uGPp02GYHHkvtFuUhmITTq0toxvTjV7zXjkM
oaeA2WTn2I9m/jyhw1UdmHIOmX1ddBCXPSYum7/oRfGCj+eU+4i/GPTsyGdy
YRhjNH9UsQc7zLV6wrRbMSs8pCa+kYOdzWawLOrCkWijN1svNeF5/9NdBhQ2
Mj+q5rWf6YTS098tYxp1EF7t+3vmG9H3Fzpyogc7UNqd7XPP/jM+nyxZZraa
BS/O4S41n3bc0KZt+/nzI7R/0MyLzjNR1hE3Ly2xDbeY9sYj4hUYGr268wCP
AXmXoocd/VQEO5n3XNpSipOZs/k2RxkQS/jn3r+NilkiHyWuL3+Pi+yw4fBp
Ouhi2eIVNRSYuL46HJCdB7En90L7SF655RTz2d6DgmRRdcHF9Lf41rYgbvUB
OoZK9oUpBVFgK5B6ZdomFwxFl4eWPnSU1zXNDuqj4KHoWdiZ5OPmxpJLR97R
kav/fd0NDyoSam80q3e8x/PGfYe2ijFQe+ARu3NWG2JmVx6dvfoDts1zlTaI
ZGDF6wCHpA9tuPwjoc8mswLpF+bvuiHMRFibS3deSju0sow2bMz5BKGnVwwO
pjNRU7xdkZLWAe1w94jthjWI+ajMP7ufhTTaKa3oL52o3LyiO2ZrPZ7PUb+R
t4oNreTYRY7y3dhal9Ch6NuM2JwrLYoyHMSKWnJ7kojfvqNEi/nbCh8Nlasn
VnCxmp//drtBH76ccczrbGzDmNSppGMWPPz6oTW59Hc/ftps1vOidaKGZ+c3
RnhmKXJ+n0oADd+G5NvmaPWiOiX5/bcOomNWD5bMkLyeYoSzlRkDMDopHJlE
0uzcEw7UzS4MOO0wKJrrRccuhTVBwWQvW/MZfGNlJhjDSss/PmZAKzyn9g/Z
4+7Gvmp7B5nYm7Cx5ymDiXnmde8uq/ExThd/E0z2YfYT7z41eTYkfvd7/9Lk
49TBvo8KR9ho/5cqJLGdg785ma0bCR+Phbb4/5XgYFxnzwv/g1wceHE3Uofw
d5fXtVc3czgItqFYCrjw8GZ/t2Ul8T+mwkei9xNd8vS6mpxAdMlqz3He/3XJ
Y+pHrRnxYceZMqnxjEE4/nlw1W4TH3ZlPowlP7mwlFc18Do0BMO7Rks1NvMx
/MV1l48GD0/i59la5g2heHwtc9cW0n9l0IP1Rjz8EOzvYLUMYWL2Pkoeqc+k
7H8nuJqHFBGVeSHvh+D/0E7iAKkXdp1i3/jDRfqwK2O93xDElsSrbSfnBx9Z
PL6C+LBlllWtBl8HUddtdfIC6WfA+Bj791YuNK5NqMw3GwTr5QWpRUQPF1ya
KtlcSvLTSftzVX48TDE4QcLEB36fMXDxU+ZAiZ5kMfcUFyf8+75fIPi8kwoo
6z7Fhn1aYGz5QQ4id8003SR4jq8VNlpVwkL0dZnb3gZsHJKyU9pD9oVp3pu9
AlNMxG1qzAj8x0Rm3T8BLnmvmw6KdEE9JiReTVvllzJwwtX49QGSQyMaZ+vl
H2fgVlO+6YXzdORlTNxsJfMw4xvJPRNFh1uYaNjJsQF837SyrvrACCLtih3b
L9EglNlAn3WyF5caNsjNnxiClUvyggClASzrka5pVe3CQhuvWfcfDaJ9+Exe
4P4+6KXYHc1f1A6bd2qNFOKLaz43JKnk92DFhbfamfoUuG0Kd1Qh713r0f2o
YWM3/m3NEHNNbUaj/O6oNi0OWktLfwmzO/H94gfjNyn1ENVPtty7mY1K1rFI
i8IOKGWeuNYSXYMtw10hE0dZ+HJcz+xZTjtSLseLJ/78BKmKNU5eJJcfLDN1
u9vUhtp16gdOsyrwif5u6aWlTOhpewpaLmnDIReRl+43P+B020rn/SSfP/bn
7brrR0XYR9F05qoi7H7cGV2wjIG3xkXxR7nEdzkvmZd5OR8/BKzPHC2m47yo
hI/zGQr851uJGMTk4t6ha6+WEB7ygnXkC2MoqOZPpYn/yIWZ8GmH3lA6aMZV
9Y//UPBOcedWu6UF4DB/SqbVkvw/V062JZqKDA+ZB6b0ImTYjzmrkZxr3bH4
XrtOG1bprjj7JbQMz2scH34lfLVLE0nVmmqDBN//RkxoJW6uSWEE6DBhoK3u
K8htx4v3zVsVsqswqqKnxmxnQmNr1cCKqQ68rShv6PStxR2LV3K4y4KWWebn
1YZdcJul3dlT0IDKpLi0//9/2dx6Xmf6Q7K3Tjo2GFi1IHCprbZ1MAdj9Kx/
Lmt6YcD/xv8hRMWrTVre/Dgu6tpTVt7l9OFyUKq2qlAHWA3GWvMqefhvMNYh
snoAnsqf0hItunGRuuGcvfgQHM+OxvWwaBAtvLLNq6oPEb1nGo+eH0a8W0j6
vXE6lLmV29cW0zAZvO2Ax58RPJr5uOlxLQOtaVZ7vSUYuLR5Q85PspcbTgx3
zUthorDuDWuJD/Hf8TL+NSQnzt//fcO1QBbut/x4yi0mOVnkc+t9DT5+OZtI
scGG9a5u6iIRDhq32HH3rOHD2aB2jqcwBzcl4iR+WXLRM6CzvYf4qwDu2SD9
Mg7OjLjo8AN5iGrM4YoR/vrrVn2IOMzFql9b5imGDWLtKRXfXsL3PyvtqV3j
XHAeLREJ8hzCi7MfZq0gurH65cytHh/iQ1VHP4jJDSNHMGelIvh4On30oGk+
DytDX56k6w/jg0ax8v/1eW/jYo1wDg/tfrrBk+bD0DxqwmoTJjmUpSD3ZZKH
VYnGBcU7h3H93I5UqZkRnHrhPnZnkAdNC6+WGYthqDjUvQ8m/sTg9PmF50p4
eOSgkDBuOAwlLbNHz5fxyRy3amYG8VAy9tRUQGEYf4WyYtcQHYtKjxKXFCD1
BaPiMiFDuPykxNOH9O/+ckPqtpNcNFx6e7IncRA604bpusQHhofbX6c3cWC9
P+hUYRwPeupmRicIPoNMjlci2XsaoolaegSnm25PTloQfesuHTnjt5uNbtl2
0UANDpa+esKuJvgLqrF5tpdZGK2PPmfex0Jigo6ABNkv0UnTa4YIj4PzLfY/
vMrE5fALO0xJDnUWkqqXIPkjmru01cSAAe3MdcL+inyslJurp7yY7P9sv8cq
XBqWtZ4OzJYlOnktelvcNA0pFX1y+Qr9cOj4Uxv13zCaH2j81p0cwI1J47lb
7ndD1vRtaKzBEGhLPBKTxfuxzrYo5aB9B/6rtw56RudBf9Hw8fq9vbD+/lrQ
fCcV9OyVuvufcxEx7z+DQxXdEFXO95GPa4Hbk3vnlK5xsCz8z3+C+7oQtSXU
cfGqRrQUrl4UdJ2NQj7nq5p0J2Ivmt4ta6nFa5Fvaelkv36adlbtmGlH1OdL
F04LV6NalZvvyGNibW4279CSdnhT/BV2V1ZiVuLsiv0gvF6yj9ts2oaRwSlV
ykQZtEUoGglvGCh50+rRlExF8hrzq1d3FGPRP4exLEMGPHec4C+YR4WQvelI
mk8B7p5QFtjfSkefy/X4sQQKxqc1mBpG77Be2EF3QQQdw/f7nVf8R0Hn1flp
3Q/fodXO3WV2LB3Vz7oiGLJUGHaxr2UMF2BN3jnX5AE6BtTqbHzfUJGt+nWy
YLwYHttTrf5YMnDx4l7NK55tOLb7leCao+X46ZG5qKeKgU9ZXhW09e2YZ/1s
Stb2I6bMvyY0uDAR6uvqMqLbgVvbRv/IFlZj56rMqM0LWfDVL3/z1JH4ocmO
2sSsL3DyHppv0cXCT7GjzvkZXaj0W25UuqkJGdQnEhWf2Jga2r4gdUUPsj99
KPbTbUXMtX2ylWRev7/mNB350gtvSdsoIck2GC0eF901xYXy2JwNXo/6YTbt
sCPPtBN3AlQ09Mk+T5/QMC7aRUO+mFFZe0EPlAZDrf88H0LVPr7kdzc6tp62
zPrmNwDtgaSOOZoj2CRj3nvYnYGYk55P7Y7TMe88K+YW4bXofolULWMm6n97
mwTUM8DwEFJPJHv5l12mbYg80WP+w4gGfRZCKm2XZZOcuFxwjTX9LwuFjkdN
PFLYKODyGxpIrtGf0q4f62QTHl96Pz7NgdPuGxKtOnzYL/t7tOglB3vCfwk/
tudh8O7qzWnEXz23OLt8MoCL+mY/v9FrgyjhKZ9bRvireKQ930eJ6IlRwhE/
ch/pvAADReJ/NDLcjx7NJv7s9x7TUV2Sh1f3VokSfu1M1dKIUhzEn2FljT/7
huHAbQreyR+BqrzFhsmgQRxnV9SfOTEMBQolwrlmBCOBYxWuGYMQUvsRlhI1
jPYg9bHdOSNQ+bNtm0jhIGxMKjI7YochXO1g8fP5CMaPPXy0L3MQ5Y9cTb5d
HoZXgur5uDcjGE15w886MwjbcY+MhSHDkGnW92J/GsETodBHjqsGMT/JYN4d
l2Esl87ZHsQbQYf+UJbUB8JXllDH+fXDQHyr/pgMH0O3lXeV6vIQOy4jRa8a
wq9SP+1Yct/QTSE/j0dx8fTMvaT618RnBwT23SL46DhNBwtWcvBgtizF/xQP
Clv+WigTfUs5biA2NMbGYObEgzNqXET5FP87QPbFyFqFM9vIhuFU8qlrq9nI
cOkT9NTiI8nAtXqWIeG3Q+R0+wEWql161S1IDk3at77RaC8TchNXl+SMM/Bo
2sxdjeTQW1+Vbl0KZSBtd+hS0QQ6firmbFu+nA/qs6GSoxfouOfix3TrGUBK
kr7I1r0j2Bf4Tj/6OA0RS5jaoYq96J1zvrS/dQgVkbzetLZ+6Gpa11Y87oTX
lxOL5h4bxMN4dQPzv70I1j7rnHe8DeZRx2Y7Lefh+9K75fU2PRCBl/ufiFZ0
7Hlw/+JXDqpKYkx4DV3IZs4eu/S5CfNWjvNn0dmobhPbqHy2Eyc5v45Patbh
u6PsQoPvLLjtYqv6Ed1M2XS6aI3yZ8QIp6e8XsHC5DXbTVP27fBaFxDXl/kR
ki1vPdX8mXh3sPJmSmgbqLITATN55dgstrfIo42B0T8qpzoqqGAoTZxsOVmC
+9u/reTvYYCmkrlaaRUV1/i6ezP2FqLsXuAF6yE6XOeJjGS+pqD4ZNKPOePv
kL5L7iCF4Nf+ps+u7D0FDru+bRXdngdp/tdA+wd02Ea4eBwxoqIyXfdbT3Uh
1r94aVI6QUfRCsnTHh1UmA4wvz6aXwozF6eToodITlq1XTDzdhuaW4++vixd
gb6s+ijpQQba+i9yVoa0g8JbsDJT/RNOeQfT46OZ2CkUfvt6eAe2GKySTqr8
DJ6yU56MKQuqkxnbl7zrhNS1jwzvH3V4elVKbFiWDYa7bLqzVDdo/k8V33s0
o9Di3+VhcQ5q1vRRJp71wG7V09mC8hRUhXjaaK3l4vEBX2Hpo30Y6NGzG9Fo
x0WNC2GUozwIcpTcpJ0GIMz8XwVnHg5lF8ZhS1plqahQUqQoFFEqP0XqE6VF
KUVJtAghe9ImKlRI1qQISVIhZMueiuy72cfMO5KQlPpOf85cc817znmf83vu
+3oXjYoH1zsQxtPty6scgPgs9/Hdb/txaw176tjqHjz+rXFTx5APb51fuUc6
Sd7fWGkTHtoP5hJr3qVWCs2Pj+2/UE1H3cpVtzhSpN/uVfw7QLgrg7ZkyZRs
BnaULjwZHkT6k02/jh7py56PrlkfSWBik9FBDa4oC6UqpoeTSB8XNVrl1HWT
hef3zx25dJmNJiNLu5maAhj7bC356M5G9tLwJdU/OPgqPNR9SEeAi/esp0nv
4yBau7P8ks0AelMbm1wJX9mOSDuxl/57nmD+VOdMHl64y5esJvs3weH5xuRG
Lvo6R06IGPAxadyeqCElwAPlNUfC7QaQr5KTdMCZD1k980NbPlPoXtv2JKR9
AKqiXTuyovjIXf2m1CGW5MmLyKFFWjzckV7YRc/hY3rqqK+aO0X2yd2Mdw48
pCpbSchV8pGeebPm5WEKe5Pus9t8yTg0VbU+feDDN9DOJHsPBW5I6eycszwE
fwmZVlbFx5QQ0ds+ViQnNY2DrmzgIebPtfwpuXyoiQXqjzpT+CYqeySZNYDc
Ze77xGP5cJzQeRccSSG48t7BTe4DqGOvXs8muVq1dntHTTUFsWOuymkswpOs
hOIXhA+XWhXr6U4jeX7tRf2TjVxYnJeK02zmIXlX3PJisj4uZyS7xZw5OH2W
7fM5hORunoqKBMk3j3Mlbz/cYeOKkKvGkeVcFF/IlhQl/WI1KyHEPp2FWb6r
TMNz2JDVkY8uIufrvNvkchnioVMmqvKMiYeujdubso94qFiOVOWWTwzMalGT
Wp7HQFWs9ksOqYerx7c/j2HScSHiq0EB6Ph08YN0JOkjk9nquYeE6Dh+s/5K
/Od+iDC1IlizSN7eHnTe2dOPTsnBa7LPetCv6H20xo2cn0KvdX2xfag8rtX4
5mcHlm5WEXk6MgArO1O76yk92CPUJ/v3bitEOH56ZpFcOGe2GsX3duHX8Pb4
aX5NiIt9Nhi5n4Owp5nqHSadKN81NWVmbgNem3ncF9JlY9dAZXNbbztyrUUG
VwfXQ/He+0e/17NQV1b9wu1JG5R0GqTpW2vwacXs5qlHmHjG3fC8+N9zATm9
UkFRFdi4bmJ2FfGQ/x4qqtu9aMH7d3+D3T3KEB6QE9b3i47hH0raaYJmhG24
+/d2yjs87zl1Mt+dDs455bUtZs2Ycuf6+LTtbxEfnPArW4QOFaZVLr2mCW/s
F+8/9PINbGcbKYym0PDO+Nn1L41NkAr90B349Q2Si5qFN2fSEG+x6r9Nh5qx
t8DTyzThLZYYqXmfmkXHi96ocp8/zcj10Gu6LlcM5QPxJ25eosNk9wOHt5Ut
iI5J+LqsvAyLaqcuiJhFeLLropP8q1Z0LE4wfPSrAn6LwTmVwwB78anae3WE
xx5InvOsrsGmFRv3f/Fk4ojwwJ9rkuR8jKxUcl/zEcVGc73XWrMQz52vkXmt
Ex4mq26GKDXijEzrT/fjbChavzSPVO+GUkFWfJdQM6SiFi97fpODO6NdM2Kn
9CLYX4hnodeG5yWXZRTbuDBdregwc1o/2LqiOtPKO1G/1/v0w208BL6iG5Yu
JX0xMSIuMb4XHv4eF04389H+2CZ4hSEdYSd3dlzVo2HB5WN2zfICtB9+mB6y
ioFpQbvjd7+iI1v6FUvv330RHxLkU0lfur9/nL10MxN2modsPhHuus+wWtws
z0KSi56Y/Gcyn/DYs1dIH3cW3nBJU5YN3TMrpx85zsGgXtJlPeI127JUfn2c
xUGRmO9WIYqLrFKNbw16AjRZfiw9QHLNnzH9pCvJj8dprdc1iU9dOt2yL6ua
i6VGVoXZ+nxoH/Sc92SeAI8PTNrEew+g7fQT2ZcX+Ni0L+rEsUoKkeeq62Ol
eejVvCyem8ZHWOmqnpZACp++L5Q9EMbDKubaHbu+8KGQpfh8ZAeFHF9n/Z88
HvxS7VLXfiO5Z2pj4aFIYUan19qPynz8oIsf95tC8k5OY/ltMQqyS77sPEDG
cdumtiN9FgWPCOX/2L/4oC5cf1CrxoflZLq971QKBoUfkntEKFzbFzOoPsbD
2PbgxMERPnLeB053laNgF7DJgpPAg5Lce1xq42PONguzX1soBLkaHriswkNV
9rchqxd8PHGTucb3ojAeev+7150BbJtb+TGF+P/Krg9rswsoqJpOl1lE5+L5
3mSjy0Z8ZC32iKyfLkBHckqiy3wuXCvZ8SKxPPwQudvGI+t5bknpPWPSD/ck
9L6xXTaAsaeD0rHrCVdnXHlvpM+Geo2/8v44DtYURUnN1BYgxnzuCWVDFvqH
A0LcZ7DBrSm0OkA89HxYhHPQNiYknmqFVZP6nmelXvyQcNrGh8+/K+9moD/g
pxiPR7hdLqFbmHBaVbzjXIvjdNQ4zhivcaJhT25VXxTh/IM2He3+5jScpzbK
bFrTB96O47V+UhTKs/bcfq3RDyrfv2N0ZxcaomabHbvIg+6Hz6IBZr1QSXa+
YPG6Dfab3KNTZgxgrYOC61WnbuxwYJeWn2+GfhBb3CKfA/kTdXN1izvRef5Y
Z+T1RvhGWJszQ9hwf+e40GhrByok3V9yaB9xXVAv3h3AQnvGn5lOY+R/S758
/GZbi/fXboY9jmJi6IPrk2ftrXjI22C8JaASjK79Oz7XMxCrPu2ZH6sFRkeM
EyK1ytE6JViJpcTAicY5F4cXtCA50u/coy/FmB4up6Jyj47k6QHpSi7N8CiM
PhWxrgArv9/9/UGODu9M9+E6RhOyDna5+TvlwosxsLE3n4YrI9N6o7lNKJAI
vNgXmouOnLjBzUU0vDW8u8XRsxmJOrtSlp8qwDqbeEuuIh2C98ekvZe1oP7e
JonP8iWYe+7y+psxdEyW9OxcOdKCOY/SEh6eKMfapjnTdck+Nx7IbvlMtZK+
NJa3s6ISsws+yf/oZJC82qgeJ92OW5P36T7FtThUzAgsTmNiv2L9UiWHDkj8
udD1yOYTGBXyO6QfsDDvQEW6mqATvgEfHTe0NSLzxo8AZgYbmwz3XDFL68bl
NTeX5XY0Q1L/VMJ+OgeqMyZvCT3oxb2Rq9Pj9NoxPlZnmmcwANv0liTTo/3Y
/+m2xZigC3MDXNq7ink4E3dn7qsgGm6a/SnTHO8DfZ5HC/sYhYH93rpBkXT8
yUreLV1CQ8S7F8Wl/95jk6Hdc/Y2Aw7Pi4JszBlgKSf4OC4TwPV8Yv6FUCb2
pch8tOYxkXtYJOzf/eeRI8UO7REsBOp/sB8KZ2OHVl+rAenjpQNnWC6xbJxI
3tLesY6Lxrlj+zaSvm+0extHIZ4DGYWULT1NA7DODlwiv1GA/KBu/c4wLqa3
6Ox/p8qHrdyBhIUaAlyZUmZ7++gAXKBfm+HEx/J7i5YENlJIftfvtW0+Dya9
vZ9iMkiOHdnyY2cABfopo9SfeTxMyB0a0+rnw/RNtLa5LoUJd/3AJRv5SNvb
ul1A8ufBvKKcWyR/mOcqZ0bH8/Ht9KyH51ZRWPCgrp/2mU/W7cLuSx18WAhp
6r8zpDD0xSzswWs+RA42X3caIsdTnuphR3LQ4OUZ1X3k+E5P7j8OJseTkFCi
ZIwohAV8DT//ko/xqZMP0tL5YJ+zNanVopCx23/OtDo+QtlztU3M+Qg3tLg0
IU2O68s7d+Y7HwUuRVJ6n3lwmFzwdYhDPl+06mWoU6iuFzspr83DYNihRfRX
fGhpp4b9e//YkP8O51P+A3D1jjIYJd4aK7Kem/meQsjPUf/bxK9fJ9WM/CR+
PVIlKilMuKjzvJzF7goO4hur5rnP48HD3T1PbJMA8sclgndUsGGy7ZG0rA8X
I1pTb2kSD536Lapx4h0LDjsN1R43sfFd8kaRjpYA6iHTmvXzmBCakE31Xs2C
N09unx7htPudXVNKXjPQsaJobEUYA4FqGZ/3Ek4Tf6OVqlpIx94SHfrSSRqE
5ELXJBPO13lUIXmD7FfVyOj5hXv7oZAozBtKpTD62m329Vv9yC9pEc8P64aE
lFd4618eUkze7u3k9yKgNHa9Q2076JnaGSnE2xPi6rInvnfj1sE3cWZHW7Cu
cuWfayTH02Jm3NTU6sLj1VaRpTu/QN7d6MafDjZSX+26pfeoA4eSiyzlV32G
XF7W9gdlLKzIkdlTaNwOgxqGvZFrHeGDN5OZ9YRHN/iuS1zQBt8julseHamC
rIx+dulPBiRq97VrLmyFdYMH4xizHDy7jKcbTRjI6pg4u39rC5J0xO3OD5dg
wxSFTP0XdMyesFcRhDdjWNhlX/rCQhj/yj/bvoZ4n4Pi46DJJnL+RHZdUMzD
Dfe3SiN1NATMmJh2jnzvcD5A7/3iPJSM5yylk+/V3aRWLrjbDF0ry+EapUJc
NNG/l7GWDid5/SX7t7VAo2Dq4VTRUhyIn77hwEs6bMxoTzMXt4JeUSLp+aMc
hycvjsuaMiBul6PyVKkNbrEvHcX9q5BpxzGQE2LCbZIvSN/bDsbZiyq5SXUY
+t3wxKuVCZMRW67nmw4cdBY3ueb2GbJR1dpNhF+S1By3cc26oD475k/2xS8I
Ff8rpzHIxlLuhu8Jcj14EmDZ6pvUgq2NPpmZa7kwqW+nqyj2Qf6sl+f9pR1I
TTbIyEkYwKz4CZptZj96/Ti240I92NE++HeKBvGbiLyDh+g0KOw86+QW14+V
nsqMtzQKXpfFRXk0OhR8JI6c3khHp0iE/TVS5xfMit0dmQy43tiSUUhy2d4l
+NspFQFu37P87jjEhP+WC84HQljoFFwTvq5OuCvs5yExETamZ15ljxpy0DXj
v6ayNQLoPt5Y2jeXA2nG9WM/xrk4MmfmDCHS9yd3zaxNWcKFTKDdjc9pPKxf
0BGzhHiQSWT8uyBJkldOoQqpe/k42fNgp8cIBZsnr9MNOAPQ9HFpjCL+ZXtm
zrSGCApO7t1lCuk8hEQ2KW3qIvNUXVs3uonMa7bX5DcLwkU3PJnacylQ85wd
KwlnXX2lbiPUycfM1FwjLskl+6zfRTYkl9LeDv5HaAq3LXWYTDsKix2dp+UG
8fEoaXx/9iUKS6UKulZ4U5APfeSkfIZPcuEVjR9NoWr8WcRmwnmh9Qc3/2fL
R4rK8+6yGxQ0cyzTOnwp8GvuS99w4GNJuKhi5y6SdwpGr/scyf5s3O0oFki8
qelUddEgmY/7Kd8v24mXnlCNmPeMj71uOk5Xz/JRN7FqUlKBwmEvU5teFh/V
w165/BoeDpUguo18XvuspvSNBuHP70MfImby4JQ2R8kmlY9yj46GX1cpOIvv
sFuhOwAt+rZZwWR8Chs9i1UYFP7LYp9J3MWFncZmt8xhHvY9z2esggBy+0Np
F404ONOwLshn2wCu+FYPyhCv/zk2Z+vvNWzwDBpeTA3jQGntkpKOf9dDx4/m
yC1hocp57NXPFhaMl0bYxhEONxw69d1vDhMGacutK5WZcJqc3nuBcDtLk79M
SoKB85s0iqyu0FExTs0K+vcej4zvj0dl6SjI8hXsGe3HrZToYYacANHRv7fp
0PqhaBnIzsrvwZf9b9W2e/Px9F6Eu/ClPohdKl62tbYDN6+s2S9NG0CZdujn
Bed7ME9gdKBdtxVWqn0LPFy4aFu34K5vTBd0XpXNbxZpgnOv4OOfZRw8sdc/
ODbeAae/Fx0TNRrgZ+hpY/SXBdvHSwIUQtuxxlGpe/TsB+SaB1y89ZeJHbIu
DkX72rBxpnL9OrVq2I4prDBfxsTKy9Gqf3e0wjM4/0Hyzfe4Qv92t8WRgST2
9trYUy2Yp3FAYW9AKYwL66SU6ug4ZL1a1DirGWZ507Y+owqhdWe3hPp2Ovpi
Q/0PyDTj/r37btKVeZgb/sE6u4sGb0NhQ55kMwK1ym0PP8xDjfLf7P42Gipr
6WW1ac2wolW/uFdViEWHd4XsMaJjfZLXNfsTLfDIiTJY61SK3NWt+7yq6LBb
99XY2bgVzQbr2st832P4TrZUkj0Du0zO5kVbtIGxq+XmdsVqdNu1J8wn3mW2
q2WX1+12jP0qd8k7/QHli26enE/WQXwilD76qwNB39pGmrUb0O+c9MlGmI3H
o8WPhJK7sHrDwUWp0k1Q8B8+/nslB21+YleMA3vwWDt6xoY9rTiqlB6zyJcL
e6X36Yej+9DdzxZ58L0Dk1udFmgMD0BPKzM0b7gfTlmp+6JGe6DKjxpl3uHD
aq66pvBKOiBaC4s5NHxNMt9qTvwx/OXdaTXLGXim5MaUzKDD/Uy4uey/6+le
R37kr2XidUbd07tWTEycLhBZS3zBmLVrZeAOFoTXK4bTiC+qafstuUH8YpeV
mM8yezampJwrjOvlYMfiQdc/xEfyx4IuigeSut9+mFOZ+u96oqaVl74Ab1+v
OcG7y8WO5PlN5SuI9ylKWBSQ+t+1IIWl+e++q9WOcXRSr/UbguVlyyh4blm4
ZuI4D+2LPttffc/HFanD8s1HKASP7Lmrps6Ha+acwljiccnsXWtyiMd1uHkZ
niQcJdcUFfKa5FX7Irb+E5JX717KNOeRHPE/63VJzZXCFbPgezQPPuZJqT5/
SPhu3tOnEX4kH2ONll102cZHjeHJv+NzBeh1jyyISyf/43JlXi7hxIWhpo/t
ybwDeb6dMjkUXnWVp+9VIHkoZWwgRnjWT+PO0qRMCutueTmmLSMclqgseohO
waek5j/JGAoy6cYe3zbz8TtpsHmE8KO76p/9POKNrVPinLxJTi6eYvd45Q/i
z8dzCx+ZUoivqTTf9ZSP0pTN1h93kcQ1kBjyn0OR+hReUzhMxq+i/zIjhAf2
OvvUkgbChYHauuI7iS/fid/8+PkAjO8oDNve4MNbbHZ34nOSi2KfmzaWEt7a
93dMZz0fLOM3WhPzBbhqUTJ14xsO0h6WZq7/TTxNtyr3OeFkt2SXxoIYNr4V
zufk6nCxYIaWth7hasbxov7hiyyciI/oL3Ni4yd3XLyE8HPSM13bEw5M3J5c
/DnyGRNiMprBtivI72vzj5laMSAnmD8r/icdD1q1N+sR3zwu8iVA1IqO4YD+
Ge1HaajzzYq1Jb5pWilhOLyaBhO9BX9vv+9FSlfVmAqTj+3z1G+cEe7HlgJF
Be+sToSu+nQpbzMPceeXVK+j9eCp3e671T+J/8XMdUUxF6XhCz91/OiC+dfP
frzUJrBTH6nvdeDAqUX/Y9L2ThyNryk5mdcAb7+fjNu6bAg9f/xH9FM7Vpl/
jUk3r0e2i/jMlYQ3TabmXy8PboPBDgOjGHo1fk/TXHN3BxPLV7lbMNxbsbRD
O71WsQJXKmJuTlxnQLPPQ/f7TeJxviVny0ZLEbn5kY8xnQ521iKdS7XN8Kw3
sJTMKILPU2e/XYfpEJ9hpJqnRnwz+pdjyaF8VJRpxeXyaNgg9m49V7EZvjM2
JEZI5OOU49aJRQwaPq5/uf+/d81QNQxftsyyCFXFU+6/3UPHq5f7z5+62IIX
b6f0pleVYsMN1T8l7XToKAhpKpxsRW9508+T1HsU3M/Ki/Zj4EMyd0Dfpw3n
I7cYPMisxvkdBfOfbmZiZoOqyLXidiQaxsm+n1+PubuEzYyXshC0dVm28IZO
qJgb+/9MaIDNR5aWySo2NEU/xL7hd4GXE7fy090mBF5teFl7lINAa+Oz1u09
eOC/+5cdrxWjQ2MJU/O5SGifnRf2tw/xD+Q9q9I6obX6q/mZjTwc19DKe6lJ
I947e+aj2l7E38VgLJuPrIF9lj+O0CFk/W3hx5M0GB6uv+xP6uTuolPHLtsx
UFNgnyg2kwGDW0c73Uhdmdt4KWV4MtG5/PajwkomAjJdrheTOvzVWL58KJIF
88sf+17eZePV3Et624g/2rXJvt35lo0IhQXPnB25uDD7/NmvpM5pdWUSYz0c
bBYzEs0gdRZ+RfxsHPEXibvJ/kKDXNzmRq/w3s6Hmq3qMh9RAf6YC6u9Zw3g
2INBo/mEuwath2f6RlJo3jI0Nbqehzkzi5ukiGdJvOYNSa2mENTd9XAt8UHT
sz5LzYgPqkp59UiQfTzR2O8iZkGhpjX+mtEpClpjrrsvXeLj9EpJIT7JkyLO
03GQPDHbsGl2NsmTC5yfAjMLAcqeHe19+46CmoOd7gtxPhovnzsxEClA4oFa
lbhmCnc93x8aFvCgvZf9+fgLAdRcr3KceyiUPG+5Jkv/d/3Bn9WVKMC5+bIH
qTYKR/84X7s4wMNW3Vc7s+2IV8lbpXYR31t8RHKP2xQyblM/vUu/KZhPXkuq
fkR4zYbuoU/8b7b3ZdEKkrMNMKNruFMw3XqaanIlHLk+NN+R5Lh4jOpm2w0U
CpqwJaCYD99FbGX7cR6oQ5ZymaN8pPZf9zm/kELlgcieShke8XgxxkLivSoz
6ht/kNx8vWpZu7jSAArCg+UDrMj6f7UNiqUoMB8Kq1gu4MJdd9NJ9zgeJH3m
zh3aLECy8uNLyiNsMN4o3/tVyYWHVkqHiZ4Amg6rR2uJT7jFNjgbDrHBWp73
LJ74poJpzWTkCyYkmArfNZRY2H9R5eVM4pvDQx/LJWIYkAoQls88zsDh41fW
v1wmQM0L3ai6O3Ro2K+jSb+l4Uxo4mgG6QebSg7YDbrSYMtI++af2YdUVuw7
862kf03qOY/p98PFPudNlGcX/qafG48N4+HBJeXoRUa9mDjYUCHypA1LNlvc
lhAdgLbXzMQdpt1I260bYaDbDLe6IrctSRx4HHoWdOR2J65+2TjG0WjEJdPk
Q10ObAhC+gqLpnZgaWYigzvnI+RejB6dasmCmGoQSz6vDWenKyRVXa2B7Qlt
c+XTTGTLmTufiGmFQ7Fd1prkCrQ3PIq1TGIg2M/s5O+0FpisF4GOTRkqi7yu
HvtBx027E6v30JpRF6NtWLD7HR4F5GuLn6XD8oyx99nNzTA5tPF9S1c+bFck
0Lt+0CASFbXywupmPBl49qXRKR8np5j/fkzR0MLoKEr71IwgW7VLYx+LcCBK
fdvXo3RkGcYu9IxoAZv26/ThuWVg2HMbwaXDyN8wtzGwFSsM413KzCqgYP1E
UTqcgfZCv4mXcW2YUlG5wE25BvUyk9P7LQmPxawY+8FtR3px2OiJZ/X4Mi/4
lJwhC2HfD6fUOnWirUFlish4A0YKhRMzLNg4M1+4zUCtG++jVNghf5qwjrZC
9V0IB9Vc9VfLlvXi3neTvNNObRB7pnA2iuLCIW7N66mr+pGRFdb5ZGsX/NLv
bo334SHCbN4nnxM0uM3kheVc7MNS//ofJzRJ3Wpf/29+CB33c63DcjJpsPBc
JBZA6qTA5ZuSQRQDl7f6fr1pzUD0QtZILKmrYo9NjQ7ZTAzfZs8LJPn7O+Cl
jySpw/Rjp6W5xB+EtgYWzZtgY+JBqG0pqdvYP+fMcoQ5eD8guFfexUWxjOv3
KFLnHv0hCc2ruVhuOO/b5DsegleeDDlH/PF+K2fCctMAzqu3eUYf52PV/Xyt
4/0UpOtMON76POyUzqYdyOXDcGFHR5AzBfFfo7a7CQd9/rTxxh4xCptXG3o4
TaHQO9b4weU38byE+z9PmFF4Fqvm8u0JH5pDshOz31D4ELTs6UgIhXurp4pt
Ip6a6NHi0LpTgMN3cno2FVHY8uKI1AsJPjSG7O5rFglg6xc48or4dtoz2XmH
u3mw/c9gskhkEA63Qr7r/6RgrKJ5v7iIh1tj3kqLFg8iMubLhLWIALkpEsO+
2TxkJeeF+88eRI7Gn6AGkk82Hy/TBXk8eItY2s1tIPtyjdBXSy4Fk+Hto65N
PPDKaYxbjgLMOPjrsG8lhQPdvzS3iZC8qfR+HdBOYaacn1pVFIWtf6XdrLfy
cSZafitjOYXiX6xftw5TSHyp/oW6S3j0uPwV5gE+2nuj4jVlKCzH+j3yX/kw
+bZwe7YzD7pLPW6VVvNRqXdx+9KDFA6VXc/LdR+Ap5beNEnCo96hdlPvVVP4
0558xNqJC/VcQ+9NhC/jTbktoSTHMo9cV9m7hYOHC+ck/N4ygLD4y0YziG/2
U0acVzJsHKOHukcd42CtlGW2DvHNSI2vmkqDZH+7Ns7Pus5C6a3L+V7qZJ24
V7PPNDDQfT/YPbGAgbHl4mYjyoRrTW6EW5bRkZ2ECKlpdHAaY7dULRZgoYye
sU4GDResIoOaNvTj8Tr9uk/3KEzXWmu52qkfOmoijLdK3Yj3OGdYQ9bT/snN
iJ77vVBdtGHRo3XtKBYK/sDbPADZO35FDXe68eL8IlNadjNMj1n5NjVy8PzP
6CGt6k5Izjo4qBXVCPbu1FDtO2w8+dZweqdeB25kC82rKPwI13qH6uVeLEx3
zXjwobcN4ze679XMrsW7eJWU6deZWHBwx77Lb1vxRNFgsl+6EhVLU2ZwcxlQ
GBXfklfeAvFqtZrneWVwnv646cIMBr5XYGPBaDOuADJZPe+woafCyd6Hjr+i
yVbu5s0YcGlg7tv5FkfFh5WWiNLxP7A69to=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUm3c81e8bxq0iURKVlVk0lPqKjLqUFUpSpNKgtAihEmU0FCKjqbSUVMje
ZBOZ59jrTOccoySpJH7P769er/v16XE/476u99VQdvawdRHg4+NbL8THJ0h+
vUgX5uytacVhAat58idSUHDD2OP7GA1ON1SLHYUomF1tFBR+MA1SwZWF7XJ0
nPDsrqiwpkDxi4aowLEMhL/hrlO2oWNHdqLu+STy/ZWN5tlNWVhnMjisfpeO
5fL7G3UWU6E3dGnDzpxcJN1dvG1jNx0fw8pz30VRse9kFaV2eSE6vnn/cNzI
gJT7NQFtlTYs501u41/8CZbRar6JjxgodzP3cfncBsaU2jduYxkexfysUl/A
RPlaxasrbrWj5L7MinLnSmivXnDzeiwTT+c+uTvnUAdipkpbwo1rYLSVKeCm
wUKMzaaUduNO/D2SYK1xrg6rlVk7xb6w8PwQfcOQURdsRKx3be5rAB7VvOFd
ZWNil4hFu003Vr6srj5d04yGuE1lc7YMgo+paOvg0YMm44P50fmtmGLLL3ee
y8GUzb9zXQ970Xg2eJN8MRWv69fMrWrnYPWmwpKt1X2weti0gF3Xjj/n/vCs
PnBx19V07OZEPxI3ut6+3NkJycfGr4oDecj6PstnvIAGx9XKb1V7utHz4X5X
1e4hCJqIPWt6QsO3tFdzjtb0gsK3ub5oyTCM3RfbeSjSYTP+6caS6H7Qeu9s
LG0axuyP4pXv7tOhdcrEQW4JDe1r3136emEEtk5fy63+0hFtdzC1tZoGbceg
qjqhUXTySu6nGDDgld83Z48WHd/aqg0L5EYRziqmK5xm4PtnoejcS3RIMv7c
K5YfhYGhz3rP6wzsebf3UnwCHRdHmoQPK4zicUVZ/Zs7DEy9vXb1TAYdkxXd
1TGk3v9JZH4w+f7FCeOIPPL9eMaGs///XuV2TZclWb9tPKlllqzvaXL2SQlZ
P+c81bqU9ONTJiTnQfo5uW/++//3w7tWqixD+tdrd0z0I/3/5J+Nu076T9/S
6h5M9uv0aXZHuzQNP8RdE3LIfr1f+UpakvOZe+PV+L2ofgxoMVvDyfk8Ka48
XUHOs3dRXLQ2OU+JtO2vPpDzPBnyK92QnL8GfShHnJz/t8ELf4vI+fc9yGi8
T+4r6QFd8T65r0kTp8+15L4SXONfGJD7dVSVTRgg9yv0SSzfgtyv1UOhOfMf
9eLxtkJ3L/IesiuO0DjkPXx0f7xcjLwfr04RA3HyfryF5kStJe+HZRTlkkje
27Xa/mvS5L1tM1WSYRkOYqjZKHLbti6UPry+7HR/AwznZcxXD2AjvHCb7Rh5
z6+z910JJu+ZYUqzXU7ec5zl78BHBzuw0H5/lMT2GhytTXZUJO/fa1VGoziZ
lzzWtnoPMi/7Xu2heZF5Mew6YPqIzJdY1Ic3j5vKcH7ZwBUrMl9mXNn/LpF5
1J7Kj6RKfcKOvsG0NjKP3+qfnH5C5rf3R6e1C5lfj1c/WLZkfkN3VdgsJ/P+
PH5h38vsXLxzLxVVJvMu0dQ4fpbow/nJhJRQog+mKbPXVYk+nFizX72U6Mki
K4xwj2Zg/ueVb5YTPblss+PNEaI/EbuMKh4R/ZmW7JDsJPrztNPY+zjRqw1H
cnZNEL1aohPvOE30quiO6ERNcyvyTOZExnFSUHLmrumDXzTk+k9kX5SgoLcj
+U12ahoq1uyY46BGx+8/QQayRyjYvErFOrUuAzHR7BLuQToW2292Sy2kYKXc
s4/X7bIhGm59OuUpHXvEdn2RXUOF67ld53wc89A3silheoiO9PV62lKpVIgW
Lyk7MlwIc+s3PvPMGdB/mrVEwawNXli6wWluKfZd07jITGeA9+yOzseJNojo
21ifdylHZcCulffWMqFCV/wdX9AOMadcSol0FdyfvVySlsvEDeNtrMKHHeDj
v534YUktLloI7F26lwU1sZepwuGd8NU9IJJ/oh7snoC50jMsfJ1n1Bke2wWP
DdtNo6cbUbMg6u10LhtbI6+vvvmxG9sTGa/nubWg/9qKZdGBg7BxS73R0t2D
KfWAEg8fCt5buqUO7eHAJOL0t5cSfdjGlX22/G4b1kk/NE9aw8WdXxtqQnf2
g2/9Wd6JLPK+Gug9KfN4uOP2/PqB2wM4/8nFMrirC8altIBXHB4Wno/ZQztC
w/ma9Usu/+hBfcvrpUvKhjD6Tk1A4AcNjzcnb3k02QdlQef4XdHDWCmc4vT6
Ch1nNy521GkbQPp8zucK2xFE3HrtOPWLjogDfxvEy2hokPJsV+IbRW90F/9y
KwbqjQ0uKVrQ0fREY78U0Y07/F7ywWEM/IsV5/5KpUPfON8khOiMZKiliX4+
AzquVeqiU3RkuK4ef7B8FJTR20vH2xgQkFcLWKfBwIobQeFbFUdhVnUwpXWA
Ab5D5XrimxlYUnFQy5fUe4dDcbWdgV25fFILVjHAePosdxupH3iR5axUwEC0
2VmWP9GnKTO1DU/J+gcMpxcEhTPwpH9zaHQaHQFhj6XukH7+ljXk2+xkYOnX
cTMxKzrCJ9fYyZH+qyt9hSf+0LHRU3Du1Uqizz8N4zkCoyhS2D7hEUD0bcYo
2KdnAMtshast7EZQ0za7/ccEDduTnVwP/CM+E3A9SuTeMJx7i05YOdHAWjSP
Tf/bg+u1HLMrlUN4tedI/trIAcS+kpN9xeyC7ua42wXDPEikMiZ0bPthLlv2
yLikA67/8a/5IM6D/qdjxX3SfRCyFdHc/KgNfHGhXLv1XKjN52rbDvRgi5re
T+MrFOS8vtkgZcch8xW+jpnZDakom5iX3i14PzbZ+eraIHbSt8eoPupC2GOR
5lCxJrwXTvulU8iGLX31xLG7ndjyo+t4p3c9vkuUnVflZ2PJnkPGNk86YOqW
bLVctRaeLsscn9ixIJE1qy5Y0o6nntTjEcpVSDuwe1KygInx0tPbm361YYGl
vcduz3JEl+m5V69jwqf4iOq3HW2QujyzREuiFDfNR0f6M8n70JUX3JtGRceu
jMDpqUJ4CbV5xO9gwFzCVExQk4pdg2dW553Jw6sQWu3eETps5xmH7i+mQNK5
30bCKRtxbwLXdcbT0ascu/rqUQq2lwZ22FIz8Mv77EbGITp+hJe6vVhEgdmA
r96XnDTIru/YtmoFHXGSUPjc0gopI/vnsT9TkFNK4bf6TcOz3B9r+Htacezl
tddNF1Ix78iK1KoZGpTf1Q1EKFAwoG6WVzovHQMFNKNwTTqqn1LbM9wpcNfQ
nCu3NRMbzUVyYk7S0cP3ZyywmYJlK/YttB7MxoZNYWK7P9DxS0feZsKECrPr
+jmGEvnQfrc4UP0fHR4spb/cBiqePpPuLK0twvS0S9Dpw8TXJRkGf93acLZI
3S0sohQfrmvc0m5gwPXf/idRqu3Iyaj6cEmkAv07aN0hu5hof9v4zG28HfSb
etLNHVVITbnN5vYzcUWxrC62qwP86UpHEv7WIkZ2mHI4mIVBscJLssRHv3M0
xUo8v4ApZixspM3G91qFCdZIF0RrDtS/kmnGFu8bCrWTbFQmO0QuX9KDnHMH
JdyXt+K2RczH5JpBFLmnsM7v7sWi4oohXVARbTVnASOBg7grdjkJsX0orVIv
43i144bfyr8Ft7h46ts6R7u/Hwaxd2Pfp3diWfnlNnFPHk68Thyyl6LB4V+f
mdlYN1jmTwZsHIawRCLTzSKHhrqPCrGeqn34RHFu/WEwjPZZ/tcRe+gotHxx
8igG4Nvu+2njkhEUtTp/+kSnoyT4r+OpOBreLXr3j04bQftEtoc/0av36vfu
ZRO9Ur55xncJmfeG4JMKJ+IZmNwReMamgY7153uvThB9+DAu2iJJY+CLzEtz
H6I/9kbJiZeJzhxNOeCnu4iJSCve4JlbDDinRHo/UhpFRWBK8+n1THTYUupH
chkYGV6QtEN5FM2pSg6C+kwkvRaynKxlwJYqFRZC6jsXlkQ/1GLCZJZtSCG6
KHD0W+RuUvcLYX0QW0zuLfNHxSGio6fTq1ckkPXPPR3sW8NgoO9k2BoK4bLl
lzism6SfjowT+6VfMOC54WNjQgvhyu8btIWI7il6dD1Is2bAYWvz915rOqav
fNBaRfbrNl+5bohNh07k5neJL2kwGxnrLB4cQfhxNz9pezpMtgWlKe0eQP0p
PdFo+RFQRxxL7hbSkBqqv612Ux9OGtf2HDYexvH6BxEKsjTciRLUdBTqgV3z
SzOPY0No5a4d/8Drh8z7hINPqjqRo2dmoODLg6V5i33Dsz4E3T7kYhPSDsUt
3AOxd7kIGnEVfnSgFxYyD4/22VAxFbNdXOgDB0Wd9QcaFHuwP6FAyGR9K5wv
iDb5NQ7i2rk1ESmTXVi3dUn8m9XN8HW6fDTpHxsRBhJtJ+idCKgQzhWL/gKP
jSeia/TZuL052DCb3gHDQ6XBvKWf4XB7d5rULRbCvk//7PjTjj3Fryeffq/C
IxlulSKLiTj5ISGl1e04IRBXbq5YAR1x5ipVWyY41rL3Wr3aUH3zmFv3y1KM
Lq7z3d3CgJ0Cz6y3lYoJmH5eN1yEtD1v1jCPMVBm+bhK24KK0BbDnkbNfPjY
i/mp8TGw8E9yijKVAgmjWOuo2WxA7LBfbwodR3pPCuSfpyCOj2qjujcT+8bt
GjNO09FcvVhZUol83697cZtcOoJquaI26+k4f/LhJYW+VryZ1y2xJjYVwjzK
qW18hJf2OB6THmyFj39I/dDCj8henzATOZeOFarqiiVrKCT3pWa7u6Xj6twp
kRu6dJzeYFSZFkT0s3Aj3bAwE60lyxt1venw2vtLdjGHghndmNTd13OQurIs
a20h4fgd53L+HaPid9C+H/qUfDidUerqkWCAWt5g7TZGxRrv3W2f84qxbHX3
wvcXGJAd6Nu15GEbuB+HtCcVy/CpbXjNlyEGHhbLzByxb4fWwTk9avkVuHJB
hm5wnolL8bzQees7oN1hEP7wfTUqHlw9cG0eC3Xai3s0lDtRUvdcNGriMzae
+j6QnMlCoMeNNeVrujC0f8oyMbYBQUpOm+Z7sDGY7mJVsqsb9ReHcoXLm5H3
KUGlS38QAm/1rfxu9iC9Q9NWnNaKB6MSemPSHLxY7N2k1NiLOol/N6/ItWFr
PKdjaJoDs2mL2THlfhx55Xh+39kOJEfu7Sse5uLMu32Hr10ZwJvq92NDlV04
ICew1maAh9c7l64KcqXh81nWx6OKvUjxt2yntg7hs6tl1T5pkpv2fej+ca4f
7537fe+UDSNdYfyVZR4dNzqvCNva0hARljX1JHEEV/k/WHlsYcD6uNZ91f8I
N4taXa0k+cu8U5wy9yXRhcspDeoUOiY2BGTPI/O+yzCzV+oXA3MyU767Ev8o
p80fnSX6sDAqrFZzCxODf308xRpJztdrFnxMdGbKtmVrvycTRsMMWxllJkTW
xydXq4wiS3b1z7dRTLho/3Bcu4+JLbdctIJUR2HD/8pI4CkTrpsO/T5zkokd
c6LPl5P6aM1zz2sxTOTyDuWv3M/EoTn+/OGkXsrYVF7uzcTCd4cVP61g4qHg
9sgOsr71Arvz0UZkHfWKkAAKAxtz/euTST/RuqcXn/jLwCEd5yCHEwy0zz+7
WIbo3jJPEYtViQz8jMuvPtVDByM+M1md7FfhIJ/Pu+0MpMutexlqQIdvTf0M
g5zPt+aj5zVK6bCIeBkwe5QGE2r2i/fpI1BgSn/7p0DHwEqbH4vu9MPh8NPJ
vIZhsM7c2bbbh4YS6p80/q29WGsT/kZnYAgHz9z4z4Bw2oYIGbNCwmlDj22z
Kwmn7Rhu1VXR7kef3b2lk6EdYJySEbj1m4tckfx2kYFejLhX1NM3t+HWh/AX
X0S4EImRzY683wPvnfPfCky3IkRk8Y4tyhyMifX96T7cjXTzSbf5/c2wHdrE
v9ZsEG3zSh5+0e/C++XVf3/UNGA+w2dv/GU23DZ7Bfmu64QF7+hMl0odXv7s
ahAuZsHy2q+DSgYdqHaffv2SWo1/yrtc+SVZuJh+jybi1I5P7jeH9forYPMm
3LfAl4lr3lLfI160ISJJfjfDqAyFO8NueX9nYKjqYFjUbyp0b/8NOvO9GE//
49Gd/RlgJQwemj5FuGXn01KaYAH2CO2yq5Zm4ODZzbJCoxR0P9RZ9io5B0Ib
KlMOfKKD7/Ea9qubFCxMacl81ZeJYJrt2/SLdIgPHwroWk9BUXvu0MztdChY
m/w4qU/HLpbZ8QBeK473W209iI8QSXSJnBChQybhoJH8eCuuqb/y3pT7ERuP
GPYKLCS+fUulbIUBBR8+0Q7FdKRjzxeHd/u30zH+lQ39exR0/aHXKRhnIe6r
4+B4EB2PzKf/PJqlwPLo66o+zVwcPSfTe/oLHUsM1g9fCKTCcuRfmdrbApiY
rR8yXcnAZ3O/PJ50Gx5fSFh0q7gEtoJn9QSjGGibeKxZUdkG80luVn1JGdol
a+YPijLhFMy5FhDRjg9p15e1+VbitdKOuD8PCY/5MT1/eJJ7Ofa8t+FuDVRV
LYLbdFnoumcQJePRibZ0mdpHgvWI8W7p9B5iIVgm4WRFSBfCRa75KTQ34ovm
qk98Hwmfix4ME8jtxvmhHM+Fl0l+9Fd/Q70xiLcaN2PDZ3rQc77NJDKDglXK
F17MdeWgucsuo29/H07ti0r9I9qODJ3jUXmHuag+/FKqoKgfgezR8guXOuEe
PPg5xIGHmmobHVfCXSoL7nffIdz1or/45DnCXWNJ7u996mjYtbM/NPZMHyZe
ljntchjGZ5NFRVySE+tDhReotQ9go75Av+reEay6cPOyixIDO0+YB/kL0dFS
f26OHJlHP+mJ+RfuM3DzzrRYNJnLDWohWtWErwZmuNxTMwxU/1f0XOsMA3+T
Oj+sJvNufGxMbt4BJoL3dwY0TjEgI2rzwIDoxtNMyuuPr5jolb59RY34hI3K
ozM8ojM+UmULpLuY8DM4UxpWy8Qrdd/+lStGcX9plFHCFBPFkdQGnxkmAh58
zxgi9eH/1rSWzmWh28Jv1cgiFlbKFJ3asHIUploLk2X+MdF97mXOGQEWRgek
JP+Q71dHFj1f1sfEpPDnin+NTGgXHrLaSurRsk3rYt4ysdVfq+wfmauvUmXD
c9RGcazkt4TCUaK3LvZXYoSYKLnOXnCU9B8QPuyTOoes8+unLt2HgZx56cp2
ZL83S9YdtCP8+eKaQ/pmwp8ajCz1//OnhuTScF2Sb7+///LgrSQdnXLhgdbk
PE+eWPEzLpQOzrMoixX8NKx+xvSaPjECT4uW283tNAy4USsi7vUhxpz/fvKZ
YTh6PFWcUKJB3rI1R1W+B0ecpYbmnx2Cc4Ofv2lHP3Q/GynHv+nEnT6pD+tc
eajYq5vD8uyDbOqW0qs67Tj3ysh/twcXIVMqp04t6YVtOJRFeylQ7rhsWu/P
wcelwpuKGruxZo4od/erFszyq+4Ivj+IGUH1gNCnXbisU6PRJtcEzxmWmXUJ
G/Y/kx+5XOtE94nddzLN6kF14y8T/M0Ca4xf7/q1DlxxWlkx8KUGzRmCWpom
LAx57Ji3LL4da0XlXaU+VqJpWM9qjLwDow3plMetbYhcqKk0/LUMGldte55L
MTHvRdkKqnIbVvydCTsp8QmHeK+XHX/EgNDZskvJoVToU98Vrf1agGNLrnt5
azJgqnTRcpsIFU5JAQulzuYiJMTwWkArHa2blf7zfEKBloS2vsmFLLBMy4yE
QujQ3cecVdpGwYmAkvlr+TOw69S69nAzOk5ER/mL/2qF1/538RN/P2Kfy+zi
K+TeKksVy9fNtmL3wrQzN3XSsJAn0rpxGR0/Z543s6wosA63uCm6MwNGNhJv
5Qmnl106xbr0jgK3uAWrOtuzwHdX9zbtLh3h/oXbTGWpuJZZyzvKyUVzYkWn
+gDhwyshEc9eEN2+MBhSHlEIadO+5ljCDdo0cZeMrW3If/VguWbXJ6yUVBRN
SWagztN46vgkyeM/Fqoecy2Hhu8n+RpNJpY7XfM+/rkd60eP1chbVCFGZbh0
UTkTvKl7SMvrwK+QpSUmobWQt/vlb3SWhZNCAgNzKjuR/M2Kylv9BVGZ1atU
V7LBCPHpHeV1wdNdeMxPqhmLW2fjMybYsMl815K5qgeLj26q9jNqRaPM9oWe
bYOobN4we/RaL2gRF5KqHlLRGcE+klLDgbOV/N2a0T58Xhru+mphB8qHnoxK
1XDh+so/c7fLADr4LDfdJ+/r7N+iswJNPGQmNQXZe9HwdPFP95W6vRCq/Kx+
vncIyqdLhkU3Eh7QomfVt/RjLHT/LIc3jHni0ssnR+mws8gwS/hIw+4gZ3+x
8RHsvrG4UtGPgbjTS48k3iO+sswmeSWZx+k27W9XfzLAt7dXsf8gAyfW6CRO
Er4aOmBw3+0EE9t/VXTJipPcpiIuHkDm/VWha8aSSiZof40SmxKZuOiXcCCZ
6MOOygOdIUR3NGSWhBmosiDu/sjck+jPmtno5F5LFnYs+JV/MJCFZ3NimSXq
oxBq2lhwyp2Fsz03j17MY+HneOmeSI1RfL7m+GGPPwtiQ6qyOg0szJs1+dhF
6tdXmnifOM9CDt/3RcaED8z8P5Y+J/Vplbh7822I7g3JZ6SS/DO146xqH1mf
y72/XW0ZC4db25x7NVmICnBmPCD9tA5PB2l+YWLERrW3MZPomB4rsof0Tz0s
fGyVOxOL3k1Ilsoz0TwgSM8h++1/9aXuDh8T1SM+Ia/cGMiyU16vS/QtIGjy
XmQIA17bXUxeJNGh5G1s4EHO09cxI/DSLPGJDkWtxY00XHkj+OSt6CgEEDfQ
R/z8T8jSyZ1iA1hulDsWwT+C9+kyIheu0xCrKh2U6tWLdo7NvuCJIQhws259
Dh2A6ZPKNfy9Xcjau1ztDZcHdcfrEWES/WDZfzu8eGcHXuRMGVwf4EJrw8nk
xIReXPaZY/+yhYrAunpniQEOtK/nLfWx7MHjbpEKt8utOG/gE+8zMoiGlXqu
ScLd2Nt69PWaHc2oehDv8nDeIB5ORfkd6+9Equ5fRmTIFxh5jn9K2syGv0bR
ZGFzB0Lifs0wemtxI0zh80pyT1/Pc/1H+ttRen6RMt+9KohdGzui3cLEH88W
cf957VhZW/SpPKUcH+UEGzYYMLHT7+ueJbvbIJpRkHd/RSlKK9qnNuQx0BTI
sn6ZSsXB+wcVtb8VomDvvBdu5gzMrD31UnUlFbXG05HDenmYDndBIIeOHQZR
zx0zKXggKSn7Vi4bwSnMu9QHJMeZfOVbto/kzeDXmyRvZkBkUmB6YC/hK+VK
pbE5FFx5uFs02CUNF+rtt4zLk/kJ1ZM5KU7BfMrZwhOP0zCqsO2BlgrRK9uk
VrkjFPA1dx/Or8tApbdYH+8gHbUhEVqxpRRE/Nt3786lbMheutKn8IIO7crU
ozt1qVDq3VG0PT0PHV1B1yN/0HE3o90+v5LUz1sc7rtdBHaZXskPewYY8maN
Mq5t+JofYMZ3qxR6It1rGfUMHC94yTm+th0xFwQtNdQrcP7ek5yCvUwk2X41
ihTtgKXf3MiCNdWQbFeO6/9G8srYg+f1cztxSm1/D/3RZ6zm3T6/4iULQXRz
mUilLrA8stLS3BrQLecfuOYUG4+v5yQstu/GUz4/4ZvNzdBf9ds3y2gQQ96y
e3sSe9D04VjrElkKfK48KnfR5KBLd3RmiWQfEo5+NXkb3Yby7ou+qWu5eD/n
bo5sdD8cHT7mP13TCYXBwa39ejyEyD7Xj1xAQ7V/0dZVvd0oPhv0YL3NEBLO
jGrXd9Iw+Tw2w+NJH0Rbzlf5uA3jzrkJZcUEOhK3Vvy5pknDvXEhne7bIxjv
vsJ3woaB3ypStx/toSPasEThP/lRyFh4jC3vZaDAy/uy7EYGhHc43HcmepXk
/8zB+Qjhlkxfv5OCTDjIbWw4SOZ3uRTjDJNC8vfTTc4bS5mQ/pwYKUI4xymx
UGKxHgs+XEWHamcW/CzfSe0nunHWN304JYyFO2nlKiw2C/u+fd3736pRiJy4
UWBWw8KMb9OgkTkbt3t6ft9bPYrKitJtEqMkl3TTon9dZ0PqcGrg+TWjmJvP
v7dnioX+Qn1B5Tg26ieEZ8tI3Z76NS1sjIUwqVlEhrJRLmny5Sape+hLH8kn
evctgi4Uv4eN9jT+uAKy/uvdO3fZxJI++/ziKn4QbjhXkutC+llrSL1/15iF
3hDes+feLMSx7pjfI/0f43bpR9OYcLPoDo6mEn5sNI2wJftV4+f7oH2OiRVH
KGwdOSYmKgZ3ppPzub9kr3jJCAPnPxdua9rJADfQ4EEFOU8Bv5kcXycG3Eqy
jUXP0dGrOf7lATn/YKdXFcn5dKgcmy7P30f0jfHmU0TSCGZjZpYVfaMhwPCF
p85wH7xOe1Ez7wxDDxlp2StpiEso+quu1YPu/mYtVa8hxAxW7w/41I8vT/i2
mF75/5+nLYnyPchD/OYwxtutfegeFIPaQBs683hlfDu52Dzl4a3T2oPtRy5p
X3ahIIeXsr/fiviptG7HjqvdWPiIK5Au1QKLTSL52x0H8Yv/7fujxl1Y7lFr
XMVugNaIoNjrQDZEhoqEH6/sRPuLXNPLwnVQs9y2OzCXhcspl2K11TvgXt9z
+NDdakikJmzhF2IhId05q8y0HRXfE3WPBFZg4f7855Eu5H3JdA02BbUh/V7V
vqDWUmxd+eyiWg8DglUBhuigwtn5Cy1tXjHUNLguv48T3jdujp02o+L3D0H5
o8vz8fhBndr9GeLDF7KfvmugIPhZbmBMazZUaqtibd7RwdVOdxo/TYHzybX/
yS7JxLF4ve5bznTMkVRdv3sJBauXUAMPd6Rh7sfZMm8NOtpt/Ia65CmIamAp
9gmlw/8WvVpMk46Lxz2CeOcpCPnlHuuzLxONrmJM6mk6tPzLMjK7KLA/u2SV
9cocfDi9PLM6nY6vOksW0OypqHYWXEq7kw9ZWdOmT/MYeGi0aFpwhIr+7c89
VOKKYRMdIhHtxUDP8q4+jydt2NhqGbtkfRls6gPru0cZyHOomdQ81Y4lFEmT
Rz8q0N8XIC52lYl7d799DdrTgdbMs+FeKjVY4iAbUqjMAi/vvUvzoU5MqQz/
vVVaB7rR6Ql2L/F5n2/i1je7cH7Scd38+ka4m3QfnEpho4it5z1d343J/bbG
t+NbIBV2OzkmdhDv/pk8817fi3/TT7c8FKYi3vtnh0sEB7/H7AsaU/vQkzzz
Ru1VO+Lm/J1HiePC5nho0XLjAVxqerlaxakLn491F0/l8KBwzVewlnCXy2vz
VembeyHXj2yJviHUJ5seid5B/OdCqZWS0gAcDFs9oueN4IV/+oE9Mgz0DXOH
5f7QcCG3K/u77ChYZ778u5XJwNaHVHnmGB0vT77NvLCccIvi/fa15kxYHuhV
ku9noDXxykGK8ig+bLvXNNXMxJyoV4IhhUzCY2r3fxE+UVqwv+TxLhZSC4+u
LLvOgpDA3IFGMu+FpTc3Uwg/hTmcaxXRYmNA8eorI6IbB+XWxCotZEOQWpOe
UcBGTG6k1ea1o1hHg77LbjZuCgTe+qk8iMhr5w5/1BxFVdiihqxLbJybOa5T
4DyI3u7YZ3HrRuFW79V/PYTolLDDqZt+g1CQt5r/ndRdt983LfFnY/zosRyd
M4NYXTqimUHqzBvyozv3E15WrBN7t24QmSllgX1k/TTWlrfqsmy8kLj76OwX
NlgHFr/1Jf348jt+NakmHKF/IP2VKRsXbh5Ydpf03y+2yIF5mIXXf9+EjsSz
oL6id0ST8F7KUFK3HouJtJ6ek17dTHitd+OcIvrWzr+R/dyRifsqyQUxhNf8
fx26bUP0zYg/qOnlZwYkive/dZFi4O3J0tRJcv5jxyjheusZsDS1LbQmHBAS
5nD3PMmhJ95Gvm8+SUd6e8Ou3YS/VrWuvyetTTgtQmK1QAwN86NGAne86UVd
sK7PT5FhpKb1UZwCB+BktiGH97kLAYqqEnZ0Ht7/J3ehkduHoni5jum5HbAz
pmo+qOCiIsCjePupXuj/6f744jQVtxpD/z7LIj67v/T93ZluOG7mm7r0swWs
x4oKy3MHYbap4J1TRhcG08ay6k814cqw2fWkBjbEkjfUT9zoRMSkz+/Hu+uh
0VFl0PyHhZ1Sfs5JFzvwQVbVMDGhBnHLQ0w7DQhHJ/kGz7ndDgnFj+oNLpXQ
frt4UukeEzPbOnsCc9twOi31WXJUGVrEP9TE8jPBHr136Zsg8fu9zIoAoxL8
2Gifc+w68eMDXxRVXKnoThmurZQpQJjK6lfTSxmoeinv+XSIghhO5EbuE6In
WQV/k4r/nzMq1nICKTBK20Ypz87E1+k2xfdexO/tV83YaVBg0X5fsXhfOv50
zy5V3ETO/UIw4jUp2GldNeN1OR1KDSuqqJvp6Hxq03fyFgVhOT3yQ7xMnP16
ete3S3Q8V5ycPzVBwXbq6bZZZg7Rl7e/vlfSIa5ZunfVZSrsH6vZ2PkXYG5P
eHSnMgPLV6avSF/ShrSwNxLj5SWYO2el890oBpi/TLV+NbVhqGaBTBm7DPE5
RTlVkkyUl43TFd62Iyi9Yf63lkqcjJp69PcdExkXvUaSn3XgzdGtm5rW1cK0
Om3L7/0kz+Sc2a2X14n7ypo/6PyEn3cI7uhUYGO5wrXJxvEu/E48g2HVZsTt
3Kk5NsVGq0XgrM3OHhyqz/r97korVs+fW1cxSuaJdqjeqrIXD6kV8idE25A7
8rGHf5JD3mf++2sH+tHSeVT0R10HerX8m+sleXir51gdKEDDwivBeoYZ3ZiS
nqu9BUOEg6Q3/B2ggaPDWeOe1YewbSVL714chkbrhQWHy+n4Zhau3Xachm6t
9O2VWSN4drufo3OFgVo5HS2BR3TsVnQZ2EhyTc/CALuXikwc97G9HPOMgRtX
HkePkBx0opWe/I/o1ELfU/Qvj0mupl1YepXolYx3v858axaah80uXbrBwu3I
LRdaiF7tm6c4aN1K6ldzI6cc2BBq/3Swjcz7LpkffxVNiD5w/5Z0LRyEhYnC
w3NEN/66ytKqnrMhf1baTzZhEDD763VjPclfWb+NtVhs+G24qC+8iOj711X5
izeMYnzhPuM95PdbTwuJ7rXn4OvhCLeFG0mfew1W7VMcxKzUEEXMkwPbgso+
N1I3jBvoXyY1iN/mhvP4j3AgsytszxpSPyzSe6p/lI2LK6a595Q4sNj7THcn
WT+/Z0YrlfjPxvBpnlf+IGhNc+PbSD9Pu892mtixoZ5b7OayZhB7F9x93UL6
9/4pVyrBIfn370bPfX5svEvxCrAmvGfDcmwOPsmCiFp4XtUHFgr+degdI/oW
nRBXurCDCW1jgQdWVUzomfkuliP6tlJERrmY5KesVU4KRSQneIk5PI0ifvFX
kEFNfcRAqsiFnk9VdAifbBbsIvfVvOKBxX0eHS/exfrMTaLhwHzxOezhERgb
NGpmCNMRVKR6MXRrP0YefpvjnDqM/bYim4Y1CJ9P5Ie36/YgemnX0q0XhqC7
zXPhxYR+1G//9eyWVScyQubOVprxII2KZRTRPjyav+n0nJttuBrkZBOrzkVQ
2f5LsXd6UOX6gHVipBVaQ1UHRmU5WKuwxvbQWpI7sn60T91qRuOpKANn1UF8
ZR+dkzjSibw7A1/X533BXTOnwLTtbLwffnbgXwPJO7r7P+6n1GKZvu7fzZdZ
UF16drK3uR0tqyTGZI9XYWUn64FtDRPU+bvTEn60QU10FV+TUzlKT/ood65h
QtVu3SuZTW1Y1tsR5v7gExTucE9+fcNA5o7KQF4MFcoT0/bn1hVidF1+/Pf/
GBg/ODPPT5RK3klk0q3LuYjeqWCwgEpHt/paH83HFOgPxiwLd8lC16clwedu
EO5iuMzRMqTg9KmezY396Ziic+oljcn5Fn6KzQcFh9IzLU//SoditbTBXVM6
VtPPtb94RvhVlE7zDs+CwFHKhu236Uje9bHikiQVoo1x1+XSc3HQ5tf0hy46
Gla5RGx9RsWV1Ddft1wtxIbh/GCuAQMDyuaPe03aoBV/OnOuQCmkLlTpCqQz
oC57/l6bSDskbUr3XP9QDn+FmaBifSZaX3bj7Eg77IKzLwyVV4Hv28ucj8Q/
3f77stlhvAMOqiY/K/Z8xiv9uvGqGBbmuxnvtpPvIny51FLgSAPGV17g/neC
jbb9oZpnz3QjflVaitp4My4u31FhZT0I7k2RdN+OHlytXDMR704B9cajgKjd
HPxb8Cug36UPlxOFU21V29HY9mr27ikuTEJGVTskB2CZlbZaS7wLVlvTLMTu
8xARvv5+tSsN/lv7Y/cp9SI88GerLmUIkivounH2dNCeJlp8tRmA4y3T51YK
I3BfJv2tVYeBI6Lp524QDs54m8iN///fJ1K86t9yGEifZ8R6ZcIA5djWwTck
17zwCKLK3WeiT3RF695DTJQGZ62NUx2FJ+O070Lik11ubzf9cmHhyJ/cD85E
rwz/cHMU21nIsTASlj/Kxr5Wn+fDRK+G9ogr3nNm4yBV+ncNyc/J1At7FAn/
JB/XWHW/h+TAtALv/wQ5iMtuCaRrjcLF0NffYgvhU2FBq/UvOFjwWzBL7r9R
7LSwFTgcMogWBTPpx9JcKLgc0qzWJly07vtIfNYgYlqU1IaOciH6W0qBumkU
ityqGfHqQYwXpiZ99efi3JPzdD2dUdSsOdXqVjCIGx2X1uAMFxe3vxCYJN9b
iL31NIkZRNiuEZ98DS5eCf2XOJ/UBd/wD6aTe8u/E3JdvYiDWrUcq2DSj8ax
smP7v7MJfxZuWbWSA9/sD/7HiO5t1poU6LnCxsMvpZv4XAcx6PDhQx7Z7/mm
jD2fJ8hc5r7VOBbFxgitPfoZ0beV7jXDnx1ZMN8fckTjKQuh3b7X1Im+XXRV
ifLMY0JNNUFrGeGPi4z+w6eJXxhR1h4SEWNCuXHVA+lABooeXdjoR/zFMPKV
5ZNDDMI7Kuz443TIH3oe40NyqLOwvOstMjcfdcdc7swMwHDbihWXjxP/6r4V
o/SUBi3bDWG+tb1wuDF9f93SYUzWSYnXeQzgYp3q0obULpRoVT4+2s6DDaPS
crK4D9+9klcFFLVjaGh1wuU3XMhHf/xloNELX9GWZNG/FPhJP7Lae5uDPObs
dVnir6LVJyNuebYgRa+F7RQ8iM0G596dOELypn1Ye4FxI5IC9J1fxrBR8mS5
VLNmJ7K2Se2OUqqDTeZWj+giFiYz9tLrlTrQZfuSt+hyNW7bXVELmmWisfiM
4rtN7bjbo7zQxbwCnDufXm09yMSXI9oblrm2wXelxPupkFIUNYeJ0okPsFg7
ouNLqHC5rnXB6UgRNLz0s5NsGdhsq3Y0UJMKae0yyrJzeRgcV1n1YYQOF7G5
9pNZFJzL+fusdmU2ToRuuD7xkOiP+yZTIVsKJClSYi8uZmCrRJvZWVs6+sZf
7FffS8EWa9a52wEZ0JE50Kmzl46HgZrPI3Mp8D7UkUzdnI3i+Sucah7TMSaw
8ofKRipsZwLtHSPyMJd6v2H0Gx1KU0EaUtVU1FldvGgRU4SffXlXOfsZiMo1
/eh7sQ1W29yKw1JLYdqZ+nuAwsAnHdROk9x97odp0pqgCpinfVXLI7nbdJ5c
6FzdDmTybR47Ul2N6h8mjxQXsmCveT3Ad2cnokN+9KwNr4ObjoqzAuGMZL0d
XvK3uzC5ZbtjA7URJzdH48dHNtaFHxlZyuvG64oGR7XmFvj2lb4RThqEYaGR
7/FzJD/qfN6xw5uKtfYPgkbzOOi9wrssLdWPul8ixoa2Hdi+QPMlH4MLj4/u
3l+6B/Bg5H1E7+luPNy8MPme8hDsVJsMPPpokNvhJhj7oQ97lJo/TnkNI8fO
qDG9nfjygsqedbdocO0yXe3QMoLWhAt/B54zcKfwt6R1C8mJZ+qmBUhOEdyf
djSd6JTTudari2dJ3t7tsMyK5JqD2YtvzpViYd/Ze3ugzkJddElvwMpRBOl8
m7pUycLU1xTJEuKjLWsNH9wgerVRtdzV/gwbr5W2S722GsQ+k2sVZmR+v9vT
+2Jm2HDerTPjasDBVvll2Slk3u+Fd7WfCBxEyWtN15OiXFSzhoPiiS7dTlLP
6uMMIvTswT/bMrg4rbJde5boz/GF4Z6KOhzURfx+OrOeh2uKR3k1m0cx53hO
Q8spDsqEfHkdgTxsZRt85+mNovoJ5+eoHwcf3LfgzjMeqtWGLx3QH4VKsPAv
QQ8OVo9llZ4K5+HZsNzYYlKP9Dy4pdWEg1VqVc5PzXk4mKyQrkDWeTtidzfs
3yBy+pTPS7dx0XvcK/Oq7ijJWenbO+JI/uxdNRKow4Xk8Y0ftxDd85tXahFH
OLAqPz7oKuHACarwJXfCe2bJQfPd7rLxb720YNttortbz81dQbhO8Zaj1cav
LKRV2t/7fJON3q/75X2Jvrll0lUkjFi4KK3K4HMneVw2sy+Q+MVnubusy6FM
XF2UKZuwg+TR+nMW9sRfdJvihhQaGVgtr7I/To6BbDv5HgniR/ryFY+3SDII
5z/7XjRKONzywulaWcKHdSWd2TJ0CLl2Hlh3tR/TzAzzrJphaLb4Rhqq02B2
uejP9IYehJ74XU7zGsK+knqZncH9yNV0KleS6MSQVsDW8nU8bInsdhBr7YXf
T9lTu1Ta4HMjVzV5loMQ2rOSJSY9+GTOV3nIvRXLts9c/Uvu1ba5VeR5dxeu
7BKzKfjRBNGGPLcxHhuHPT8nBD3oRLrhwfXP7tRjvPnkyhVz2fhvzKtihW8H
1q6jX6Qm1eCtCt9uliELDrmOau1X22HZyqfuvL0S4wNhfr/vMOGuLbh+RWIb
7JZtdtm7rwwafl2uTj8Z8L5fv9jjKxUa98Q0J94Xo6PfcY2JDwNnnivVUvdS
URodap11KR+Ola1KT4UZuLRl6IczhYIu6X0Up6lsfDko52GfQofF8hqf0TMU
woeGp0bkM7GJcW73ZuIbTTyd+opTFDin9OTTxTPxOaJWK9OJjjus42+EWimw
7nT27RvLhuJJGcNjyXQMX/3veRX5uXzv+Qcsyc+1umZyOZr83Be5n2tOjVFR
3uLl8D6vGA0JO+iJFxiYNtGN0v7QBo570dwRlzL4VLMp334zMKhZ2CN6qx0Z
jexQF+dKVJbnNXjGkny93f35lZAOvNg1UZDeXQOjbQr6v81YiPSd+HM9uRNS
Otc6VnfVo7x8W368NOGMyJazP6e6ID0F4aUbm2FrtOTue75BTH/TL1p1vgd8
TUYTBUWtqGreqvtOmIPr/n9NtogT3VkntXVzaBuWW2VWma7iYm4yd93Phn7Y
nN7h53q/E83rdX++OsGD3yfz7jUONKz6oLZCo7cH5XpWJ97lDmGB6bZ3w4S7
Un1uBM2zHUDQ7ocyJYS7tr3Z0bvegoEfImevzTGjY6egzeJ5xJevz4p060ow
cTbp9rqmmwykbc17HkN8/MHwxTuNJNcEnAtSC6hmQuvJTzdFkmu8NHOOtj4h
78UiQ8ODn40p9dkjD1eR+bqf3f5sPxvxejLv1q4fhFnAl8MDJE/9lJ1Xu1iY
+O09tzRpC5Lv+h/aDRC9Kv7e/jDvzSDKrllr/jXnwnCR+7qrZN63Bwqpzazj
oOR6fF+oGg9C3zk7nxFdEi4YKWc+40CO3+b03k6iS/Ol7NYYjIIiwxxsHefg
wmVX4/VHh3B5jvla6S2j+HVL3NyS8NPvL6aLlmYPITTq53+7to7iT+iT4r1b
uNDNXiLAah+Cvt/9PzWk/trjcLH5Bi6SOd602xVDiH6550Mwqe86/KBwRogL
sfEFF52uDMH04tnNgWT96K7f2z/lc7CFaevmJzgEoQexkrWkn4vUA0MOezjI
oMk9LzrEg4iITf1JonvWLwy+8RoHcalK58nqMC7CGavunyM6XH5775XFOoNY
7m9k+fgeB5YzZc++E32zpTbKCoWz4bW9K7+U8AptQ9nu+UTf7k8PUfYTn6xR
OcQROcBGdFVP5P/z+G21t3rZEiwcWyJRPKTMAsfaKMiV+Et0odS/RAsmmEel
RZYyGLDb79JEJzn0pmGAW20wA/PHTjyeeEGHr0LRkb0kh35OoEcEvaRDa/CT
SsZqGjZKRvjGhowguk4/6cVzGqB1JeE1tRdzhbXVZOWHIbZ8z6MX+wZQpnKZ
GxPYhdKxkIQdFTw40xL/tIT2wbzCY36bUzv8Smg7qUFcJM7ata5m9MBIJ6ZV
J5iCJ9V36FL7Ofhzr/mhoVM3Di6dCBxhNiNpSeyROzsGoR7xYWBGuAtf/kku
t1jagKKNG6q4JLenmL9cxGjvgOd+aYbJeC1GtllIXw5kYT3j7eEVX9ohvS4m
OtO2Cpv0cmn8lUyIy+eHbRlsw9qsgAad/8oRLbjp+DkVJpz9RU4cJjqbv1ly
obLUJ5ykO0VUkHy+cDJ1r/9VKsRSqd5OjwvQ/dWLRldj4F2tQ9iFCQruue0y
PknLgdkKrY57lXT42YtZfr1OwfqMV2rVLZnQ++90Q8AFOnTXjd41vUpB6Ygx
50JCJvaKf8ls9qSjUn6q980oBZysTCXh9ByUaqYerv9E6gKZv4cuUtG6c1Vu
gWsBjmyo4pgoMQjP+UUnyZP+Hw2onx8pgZftRH/pPQbipOfFHGG0of+DcXHp
inJoy6mOZCky0W8up7KynpyDEo/fcHcV3mi7BFpXMDH9Z//q8q4OGB+WfWky
XYsbe11cA4JZmOVvurNlUResH6Speug24OnOY8tOO7Kxg29FqLd3N1AuLvNI
sAVTkq23D9gNQsNd1Hhqtgcvghe0z8+mwKHAwV7EjQP5Y+NLpbL7sClZbnx+
Sjs+3A+zNnjOhf54aPDmaMLzf158HeV2wUMiKqZ/lIfVJq17LtbSMCQXTX3t
3IcNa/YJB9kNg3tARaKZcFfF24pLxwl35R4Sy7hGuGvn2du/DDIZ8Ihynjw9
RscClz+/vAl33cm21X4YwkT82yZDPhMmtu/08DIlPq5+4deRFwdZEOSwfqU+
YmHi4ThTluSatb+CLwqtYSPRXODaNQ4bnQVzJXrWktz07OnvoXE2KtfOZKZr
cHD13vyPZ4he6a794vMuZRBRbxTdivdxYS21NeQD0SvL4/e/2NpzcGD7mEvh
cR4svXLarpN5X/fXTzqBy0FBYp5ei/UQdG/Nye8yHMXvLHet68e4aJIt9HVb
OAxVaOy5j1EEKDQULiN8pq3wbWnAf8PYbhsctpvsK+GowZnPbC623yhuLzAZ
RrWDvo268Ciu1q6wSpjiQkbLmZ5qNYx1DOfxpn8j0L2TPt37jYs7dXMXLt0x
jAVvT71PECAcNeJQpFfNxYRTgL+2/jCqCjX5rKRH8cjkpOtYANG3jkOt7irD
ePgwOkWf7OtRXmA6FnORtHLf3h2xQ4jKqzvVSnTvqbmbtXEo4evxQ32x2Tw4
GBkvTyG8d6z05wE7wiMmt5pYJ9O5aNYMXjZN9E1cJbP+x4ZBrLsqvvRPBAct
m4ojuoi+sSrF7aTd2TDKuSZrsncQB2tLLjgTvr3VMmb/7AULJ2KDNdTmsbHa
0PVwJvEXw52KZToNTOSNrp9/OZuJwdvsODrJoRIjf27XEN+e+JW2f+UxBu4G
N7TN+/+/37NauO6POgPGtraLkiTosNGI2WIuR3LuQX89LSU6RAyVrbJj+yFq
8HFfU/MwTBz66nXlaFCPPfR+g0gPrnSX8U07DaH0/d9Dhtb9+PXu1y2H3A54
iV+zGBDlgSbm8sYgvBfvGNQra99SYcpaK8Np4ICakjW553s3PiambPTqb8G8
Fu/6JvJumo4dGg4N7sJOh3ee48WNCOldXbrvAxvjXRRXF8NObDqe2GO2tw6W
r21NWqpZGHgvKy1D8ubF8bsrX1+sBifOwl+A5E1BH4+o6dXt+NW+J8NMpQIB
3/VXl9gysUlD8c+yg224IhJ4ecCqFEnzvH9+/cSA/gHxRZvek1xkqnH5fHMh
9lXkDtiYMFB4tDp4ZikVSw7YfQvryMWVkZwdkX10zDyh3mI8p+A4c63+hntZ
eEtP2qEWSofyjfY52rEUSL3OnDtjkIWjMm/j9IPoGAg48bBzHhUb68Ia1C7k
4lj/7YqnFDrcLfKWtMRR4Wizb+spl0Isf/K1OVCPgUdil0ZZFm1YOSDeHLK4
FGlrDD+EZzGge85+boNsO9rl7bL+8coh3vBJ9Ig5E1OfdUXoEkSvbIrqcrdV
Q3jXsJXNBBMhHXXDS9d3wvbShiNCK+rQtDeg81Lx//9fpLlghG8XarZtVU5/
1ojw0q2Jgm/Y2DOpvEb1Wzf2GLyIS+xuwZcb1ovMkwfxu6nLNSWmF5GbshWW
Z1Hx28A0UIXCQVbSSEGkUz8+Z2t8G+vsQPhy/kTvZTwY1m/rmVlLg0zrkXpB
sx68igtb9MdvCBObElUXGtLxu9s6+cVEP765iO6Z/jUMpcRnJ66YMuDn77Rh
sREdRdn0yz/IOxy6znv7UImJOfOTti5/wYD9StX14+TdnpnYNFvMx8Lu9vWZ
xiIsaDWq7l1AfPyKXuKdDDoL/UG1flnn2di399Hq9STXPFvbZjNRwkZHfMw8
7bZByLg8ctPXIhyiY0S7EjuIm7a7fT6u5oKle69Kksz1w3lnBeYf5EC/7Itd
9hmS4xJawx4TvZqtDPbRF+fCyF94+knoEGRi5Uw/knlXlj+gcPQVFwruK5Ow
bhhXqisFDxEOPHnfujRCmoewecveJ+0jOblHQ7js+whilA86bHHjQdFny++o
8yT//MjXGa4bwbqvAk59CTy0mRq8VrgxjB+nZtJm00egImJ7jlXAQ+r4a//6
8GFQHCVzU9+OwHNwfN7BNB5CXC++Nr89jIbJDQ9PJY+gLD1p/9cbPCRbPej+
cnkYRvcSzvR8GoHoTZdkjh4PY73C32uODSMt8+PfS/QRCFX32xxq4SKO3lQ8
tGUYq1+sO2EtMYq5i/55JFhx8Wn0/R3G6BCseT8D5IgOv9RuHXR8QXiEMnQ4
vZuHzBTJr/8RrnsZvUTxMI1wWuJvZe1ELuwbcl0pRN++/1G065YYxJ3W5Id1
Dhx4J19zXkb0zb3+jDy/Lhs3uj7+rpxi4450upAy4WG+2fMtDfYslDp/yQqL
YaFNTfa+EPGjf6tk09wuMLFsbMjXVYOJ1FPTxnQVcu/UZfNyHjJw5IufvBbh
jA2n2vdTCKflfDkBkbd0hDqPvt6tTUPT0k0nD0SOYOF+n4m8aBoOCxcMWbzu
xfWm+DuRIsN4/kx87LI88d+83u3fFbrgaPl4quUJyf21oRuYhn2IKj6quqi3
DZKm3MflllycFspC1+0eOAmZVPLYrbgp6Z9rvYwD2SfKKt783YgYrtx1bEsz
tPasd9efMwhFCf2iXW870X/MRXJ+TT0MBXfwTyxiw7P3+bYokjeXbeKrM3tf
g+l0NfX1W1jo44698fVux75xXqH9cpKzqnbGfrzJxIu5TT2D99rweGF/meOy
MvDeVU5v5zFwTCpxsXsXFbXRd6IHlhXjAt8GjWAXBr6eM18QtoWKQardlfe9
eZjf8cLp+y86BNf+5+FZTIFj3DL/YqdsvLNck8qLp2OC23SIm0TB66NH2N9b
sxASVPjW/y4d95/GF9asoOJ9+RxXN908jAvov9vKoYNZJn7gbAkV9v3J+v8c
i2Ae15x9w5YBI4dDTfUX23BLTKLxw8dSSKXcOSFLZeBZYqLagG078qy2xv5J
rkBniZ1JtTsTkvEsEwP7DjBDd3oyN9ZAZ/vSVQtWsND8x8hG7EYnmDMJt87v
rIfWZbHOtX9Y2Oo5SQse6ELO/yo473iq/jiMl5SMNiorSUiFBll5SqQoSZTV
EKUkVJRSwk9llSI0aIkoLatIskeE7O0u1x3nSooy0u/bn+6L13HO/Xye5/2+
46w+LuokVI9DgePXDgqID5QmrAp378T3zrYmnbcNCPWsvDF1Wj/erI4111je
jU7H+p9tGc1I1VezWqzPQVn2enHurF6Y+316nyjcDsRQprG3yN6mbE8/ROZk
pPA6XzqpC7dl7H3nkzlhX/po/eU1nZyXl17UFhqMhZlLXt6jsGD+ArdHKQw4
qqurq3bR8WZNr4s64ZMbzLxqqxtMCD82fHnciszvgVfXThPuWvZbca27PwvW
dgeD939hIeSnm1EHmfOcrsOyPsf7kE4rKG+0YMO8ssjbjPT+7zGTqGLCAYcb
1jLNS/vRHyLW+WCdAAdyNxUpa/djjKbUfEKDiy8uB9cWEx+ct1c9qFiEgxYt
i2cNgTxkU2MOUSSv9sSW6Kvlc6DhzPnRpsPHqt7E918WC3DEJMaJZcVFrIOI
zeljfNy4xUte2Upy5qQUVVHNhf0a2qaTt/hQy5aoln9EwUM7c+N5NR4Ul9ra
733Dh/PtQ5LxZyloTv9WZOjKwyKtABuTUj58dL9x6h0pDHqpqCdd4kFub3J2
fg0fi885tXhZUfidxBuLOMODzzHL7Qer+EgNmikzbEMh4/zxLcFbeWiT7PB0
yOPDqCvSTek4BVP/LYFtv0i+DT+cseQRH96cBJlDkRTaT2uGD4Rx0bB8ouSc
Px+HVVMZiR/J4/kefgpTuIhL9P4SvJOPwGG1PY7jFA4lZJ1qcOLA09j/WoAo
Hw1bEysuk3yLPpHRvSq6H4tmG2T0EU/rTPRbSif89p97TA4rhw31nMqQaBcO
gj4YHqWTvtDzXLLPt74PHoGiNXu+s/FoCifmEemXWaWSJXuYLPw39rfB2qcP
oqwzL3VJHw1o3LHnkH5eV+PPxjATbTQp4yrSFz8YA5cXizFRde3UpTF/BhZ8
9ON5kr6jVnbrTCecZmC6TkpxDh1BvMqXm0k/3q2O1dYXpyPkTrfWV/MeHI7a
8ckuk1y/tqiCeYO9GLiWd7rtegdyDvu8uqbFgyBhtd6uH91oai4n5dyKaP/1
vb8+c9Dgs2h6nHIXMh+0f84g3uZurcspvtKPmwnvs6Zf6cDo0gvrlit9hVb5
9r4MZzYKslUM9ku1g7fUWr/c9AvhjhFRy4N92G8g9SirsRUDtb7quv2VGDn9
/fDGSyxsmsbRXF/QAum4WNYGpTL8nUed0M5j4nmPpsHtr82YmMr02s8vwpQo
1amcBUw8g6jZWrFmbK8u1hDzKECuQEWz4hoDfho23/e5NuHV/HW9Ebxc7Bnx
nr5hAQPb2LlyQl2NUDHUOGWnk4OvlxamHMkknBFjVvSA5FtArnTS38PZCKOr
GIo9oCPH7FOS36Ym/GWfzZ/9/T2yZM3ZU8b+ff6//JcfrQlrfiwM7dj+Eeld
nvBxZ+CGoJ5Z+7gZ6Yw8VyPTItSeObjIdoiBzR6pPSmhLVAWyjWfdCuFsM79
A9G3mYiuvTe9+U4ryuJmm16SqYTSvYb+rj0s+KZ8+57b3Ab90I3fzh+rwQma
hsPttX3g3W3zfWDcAenYeJk3r+qJf1Yki6xjI6d00i+Q3gnjc1mPZwc2YvL5
abVE4lGPjshrx2V044BbeHNOaguGuccmLyRycPKvV93xrF7sfkp7qaDSQXJv
yO3eDB6E+d/mnB6iofZAVHrSz27Ydw2b/XeTj22lF6V3yTAQtMPtfuYYDYFW
zwN+yQgwelJud6MwEx5+q5cEnWFAnlOlZEXmcMRBNKzlNxPnG45G3Rxn4nbd
mrW0f9+7yRQNThliIVisO/Z7ZB8aHz6ViSZzniR6NzWS5HFDbcbNeYr9qI8N
dzAnnvj86/YLWSw2RkJoZatfclC76H4R9Y8TNOlNpQ39WGhr6vpqJQ9pPjcW
OxAfvEvtEP+axsGYSZXBBy2y77EjatNJ79sWxvZpHuBi/aGZu+kefJwKnNWj
Q/xXsv6o3/txLuRP6Tccf8zHse7uzKRwCosqNidtC+ChV3+I+YPkz6JbD7OW
k/wRkd3VMYPOg//vo4F0AeHR/ABp7jIKe0bnJogvJbxlL/9OfxqFp4KgQX0R
CpltGZZjhnzwHu7aFiFBoTyD7/lujI8LLN7aGOKltbO8Yo6JUtCKbaoXTPIh
LKe2d+V0PlIq9g0PjPJxZ0bx+LsFFOLeeknJZ/LgbVg9cKuHj5bSOaUXdCkc
zN7ZKbuJhw8XT8zTfU8816L42BQPkrchRs+TXnNx3cOxUYzw3q33Rha5hPeK
f0ycsZzOBatSP2XjLuJpNVUuM0cpyBXJe+kZcyAUvcGuuIcHjprqDZaRAJMH
BrtPOhIPk5gX8O0EF8yA8sePCd9+fJiX+vgYGwldI8WNff0YsPFMW7RegKwj
/scaiYdqzEsP9LVhY3apSPVR0kfri8PHn5xhIbBPWLOnkIWxtLT2dNJfqR1X
/gz4M+GYkF1EW8uEek3EJhHSdzbyfnO0Ihl4c8THOv0tHYszPy28STjtjp37
skMh5OcfHgwZklvsHxExT/ZTmHbmRkOCMw3jN0Ln/JnohHyGXv5AKQ/33D/u
DE/rQXGRcPDivW04EHXto5gF4WARqWHrwi7I3AqQvTitGX5yfTobfvQjzF2j
PJf4qmL0rb3KIg1QusBmGxewcWPA9PXT/9ohfydidEtZLbzLw4/WpfehY9mC
SjniTX9SlUyliDcdHpsw9ife5CTyrURXtBWrJqeJL1QtB2/+x7sDA0xcpIWJ
RM5uwccVnYJDn4pxPG6lTZERE1EpwV5GBs1YtlF184qiT//ue1OJ58Tv1pgW
HYtoQvi6H++MxvIgpOCZ8UKDeOjFysq6sUZQMxNTb0u8w9wHKpXiVXQYbXAb
jqtvxNGSbOUBdjY4Jl/0Dr6g46iL2vufdk1ILTPNs7ufC8tHIyt1xBngVbm/
LvlLvDXvysmLywpw4+mtLacDGSjc1XrOtaoZK3R3BvXVFuHUvAjJf/cHm//9
kbd+Xgu2F35+5ypZhr7Og8vc3zGxbWA1zbqlFSGKpt+sByvR+lT8tORlFjIq
vMs3LW3HvfhCEQWvL+BNts1Pc+vDH9uEuuMPOrAjs1XRwvIrWoVaDCPOsImX
zfjZs6sLvpO/wofRhJIqkSyNp/04uY1mO67dg2vxK96tut6K/QKlK42jHETl
XepLVaXBYIZqru+6TryT6RM/T/jgw8GXiT076KC7rmyV0uzFpHXKwcQ5xGt2
pr7QdmPAqzTznPFZOiraq7a/lxMg1CS2pteJCUoi1W10ChPZ4Tv/7Ca5cff3
8fFIJxauaEv6lt//d3+BJgUVMrcSjj72nof7YBf1wSxiExvlQ9N9Fcicp122
ULh5nA3J3nVs6/5+TBmWXKxA9qKt5b7UL49+fCn3cpcL5eKCF/u3COEE7oLV
LsvcONjls+3zPBk+ll/RmvhAuEJk67RFh4l//X5++sh94l9y7580ZhL/8jkZ
VLKO8IwElBZyHvLhEPS7P43wzI2HzvHbEnkYTK7abd7Kx5mv1W7GxhTGfC/f
N1HlY3bTjMGd0ylQpcpmp4SJxyUalg5G8ZHvtaRAW43kko3rw8hmPl5pXY3W
a+JjRFFNcdyIQkBTgeFwDsmhrdaTNUMk7xyfO63eTiH3oWmUcRrhrO19gbY8
PoK3NkU5bKXgHtoVP+slH2LTKRadcNhTXbfUazoUThtJ5+wqJpzYvjq07ggf
rzmBqitkKOTt6D/iweHjUX60rMYAD1urtFxNyHEaAkKjhBUoDMwUS4rexwNj
ndVK8UI+pghfO3TJmYLl5qYFL5K54JbPuv+O+G+4aUO7FvHfpDdpomndHKg8
HJOebszHt5n3d1eLCaDN73R3H+3H0+d3Hpcf5+HsqqSnBoRvp7Qtl+GMkX55
kFzeXs/BSPbOPZ4bBHiw+cCShcN9CNdJ2Ka5qh8zdxQ6nSV9FKL6bla1gIXT
gZsyl13pg9CGpiJf0l9FV/p9arhMWHUsvnGUyYTuoYUnQ0nfUXP1C78JGKgI
muaZZ8nAPQeLG5+XCKD638Xn0aN0eI2tyW8socGep1p8QEiAvPC/f7sqaLhR
QX8edagb2aY/Q/69HiA159pqI4de1M/6fX5vWDvmn387oV/BhZfy0U1X93Vj
w55zSc5iLZCV2i3rv58D/d0lJgXEN9caj3TkEd+UGtIuMiC+mRe/UX9koB3U
IbE5BvL1SDmlvcjwdx/K5fM2q4e2oTl+c0yxQzUOfR29OW+ChUPRZZdcrFtx
4r6Y69XlFbgtbFHooMSCuPdZc0nzFpj8Stxz9EYJ0qxU7O4cY6Lb+9KMNSea
ceGhyfTd1wphbxscMFTNwOuMZ/5P3zZhzI97W1U4H3aqJxLDtzPQFmIs+LOo
CXYS4k7+Pe9wJzi3enMPHamu83106Y0w7op+ecchBwU2873nvKNj7bSOL+c8
ye/fdJozopUH5NXdtyFcEuwp8tBKthlvKubNXMwswPLRVcp1MQyUsg6f2001
gzmUdc5+WzH+FNhyMlSYuBo5dnYuuwVLp/Z0NqWXYc+Y+SK9FiYSHK8IaiXa
4B/Dyv38sgpbz7tuO5jMgit/6ppdru14VttwfaddLTweJtZVxfXBZUOVitRg
B074d9tZdH0lz3up0vd0NuaXdeRvzehCyOFXm+bwmyBjyi3cx+3H+FkVi/0v
eiClrXbB1L4NLW2yQ9Y7uFiSvbnwlwcNA/tyqs4TvrapO1zOauKhMlncnCKe
fWBp3F8/ZRqWrsqKjAgivFG9Rd88nQHxr2aPN/XRsUBt3ikL4o8P+77Tl6aT
Hk21o3YHMpH0+Gy44r/vJ25R2X8+hwXh7FW1m1f1wfO8OG+tugBiHgc5Jyv6
IPeq5tdXBhtCdEfGCeIjMzfJbGxoZ+PUGu6ct/c50DKQ2viScFeC9mvaFU4/
OrXidzyx5MGpK3r2v9fhC4uYB7RoHHitMB7uIns38dHLKk1UgBWX14QJ5XMx
suEqSz2S5EQPPUzjGQVp5xkH84MJzxyfPeJVS7hnbKmsqiUFJyPPxQzCbe6z
oiuCZ1L4ZrckVGkK8a/IoLltRcQDd9aPtBPu8dn4c8eaT4TXYj4JrdaiEKLx
kv2UcMDsK6LxJdcJr+k0qj7xo/D1yLeIWl8K7P2/43ae5OPEiy3ZnLsUHrSV
bO4PpBA6vGr7kQN8/Plk0/ogmuTXN0Ox8wEkDzUs1qQ58zH4NWplwGEK1kYv
PTw8CVd53W7VPceHzDUFOYYYBbMXcVu0d1NQV/ga7/eAj7kq99s2klw9KtO8
YEyVQuLDQxVdJFfXJ56u1/7BwwV+Uu33H8Qrse9FiSwFv5iEG//p80Dz0PBy
IDmbJj9VMpgc55DFzsWJ7lx87n6yYsYpPtrapN4mV1NQ2BL3KSuUgw2azolv
lvPxfdnJ0A7yfJVb3TMx/q8fIRVRpgMvuBj+Ki0ZTvqlJ9Jo3Ps0GxOn/xTF
DffD81wYdzfpox7uSS/RQ30I7j92OcOQjcO3JS7OJf0lt4JTnmnFwhZa42B+
KAsKEtNGaaoC+MRuyUrczoSQ1jr5mQwG3mvr3P33vme1a5P1gl0MPO40i/Xf
RYfvUYb3StKnZ7bWmoip0fF+p7HytNc9+PZD8Katk3j/7OgtdlNo6N0kd6Dg
eQfE9bgT2oY88BJeTVNjd2NQT1jHWagV235kOuUWcaDrq2D9cmoXdhpu3D7l
fSMkjvAX65/sx6XrEx3+Nh240/5uSuGXegQ9eU6LBRsdQXL/Xelqw71LMdqy
gTVQCls76LChD1m3i5Z+jm+FTUziym7pSjz5I2O7lHhWqrTel4fBLWBLPLKd
uacUtNtxDNubTAT8brxafacZjL0uj9nLi5DXVerzl8/Amc9mRrNbmmBdK/nS
bepH5E15L67kwgAladZapt2EJx7HE1JS3oMdLyp+cYiOgZ5fyurfGtFVlRYf
8yEHE/tFN3cV0qGdEZ18I7AJ/PKfa8te5UGt84mOOPH20+HF6pFryXHjNue/
DPmEx2PXly17ysDVG//d7RBtwa3Z9lPnvC6G2Uj4Dx8DJtYOK0duFG+Fn0/F
UjmNcrjL9NfYDzKhKCxSpWzQBslnU7v4lp8hdv0F/1sZCxVpsVsDEttx93aj
s9qSOvjslbcaKyAcU/3yEV+7E9dLbLRybRtglDtmNaOHjV5F2cjUGd3IYa/9
VX6pGdwRhw/JyhzkpW/u3Dq3F18Gx+d+mNmOgixPccRwYS676eqrVBrqQpsE
ij+78Oj7Ss0mNT42ng3I4TLpmM1VjVJ/QMPQ7h/PKCaFF0+/KMpyiDcmmK1z
MmXA4I3NtVTSj4aTko7fyXmoBFhI0wk3G9jcUsggfWpDWcXmCfdhxNY+8U9a
H5j1ygnjpH816u/tDlvCxrKgSsPD3v04bv93wb/PNVXKde6eMOjHit9Kcu6E
p5z8rirydAV4+tR+ep0NB/PeXjr7YIKHiVkXp+0m3GXcML3R15wLsfhLm3Ye
5cNKI8FiVgfxwTvqeuMaPLRY9nKCMsg+Ksa+Tz9D8uPE+XHGHx6mrPhpFPSL
j3uWLjrj0hQ8y9IkfDJJDrlcODVrPdlzdY/8pDI+Qo/JJ9eZU2h6RP9w9SgF
5fIF7U1BfMzrlpbyKKCwttbTUfI6hbvXnr0QtSR8l6MdSCP8Mjn7vWFMCgUr
uwdGVSv5ePN6jnUn2VfN0Oaa6AzigSOGtc9l+Sj4o733F+HTC7KXBfffUPge
HOZsqcBH1/LwzMjfFIwOpySffURB/uxT9b/EP19dMD0w+IDCxe7NqbeDSf6V
7HBXdiKP566lTSwhuWZr9t3IjsKxuUlqwrF8MFt1rztd5mMyevzYKyUK55q/
zRjr4uOyRcObmkIeagSt5kpMwne2Wqr2aync25syVYjHxabosoyg+2QO9pxY
FkNy9nCw9C+zKVxsSK5PurmTj9GjG/K3jVOIWqylyZ/sh1TWK8UHp3l48mhD
sSPhtD/ap7/bsthIvdZJj00nnprFvssjfeS50mTqrMo+zPOoif/KZOPxyo5g
r3/9NUTri3rFgrfHxKmIJX1oE3P7KEz6zgQ5Q4cSmaiJ/uSdSHjFmdL3/kx8
k35Kd1TlLgNbT9iyAsvpWP5xpLCT+GbhCXUTnUA65n3wcHxE70Xa+Y37K/dR
kFLQO1e2gwY5B9vo/7I6MWX8u1HSMx5eDpU9djreg1fFVEEwuxUJhr7V3+S5
OPxjYJHcqS4kLwxJLjzfhDirbuGID/2IjNiWqpnRAckC9q5076+gwh4VeQex
EWq/0DtIvR2hTRnD5lFfULDvRPUK4tXx30qfSbS1AprJ6/eMVMKVVjdgHsiC
1b39mPuuBQlr3CxdRMsQt+J3rlY2E+JaqyNUS5rx6fbzLetzizCq+a6gVJSJ
IV2zwIFfTeAF+4UKCT7CyK337+AFBs52GtPjrJpAXZx0U3POxcyPVt020xm4
vm+Nqy3xTYVNIx6bRd/BRMasJLuSjqzfH4Rlo5oQ/aKm/8eCD9hm/vKjyRoG
xi6/8bY0bcb1H2duR08rRIjEPH3rtwyYNF9Nq17agoCuGTFWQiV4ZrH7yrYd
TNyP2v3z0opWTHET/2sZX47V0vdTEqazwImaxvtzqA0OmWHuYQ2fEaj7MTyM
xoKKwWsJ55p2CEmyItYV12HK88kJQW8fQjpYjke8OmEo2uyamtuA2SkDZidm
9EOCcmh12tGN8YTUg6MjzUgRusp8YsvBzl2FQpRLL/bt0CtWv9cOxwI5r5m1
XFz8XeRr3UHDjA1tWwofdSM2/37uPU8+WDaLzRQWM0ArSO+q+k1DtcHniEEZ
Mj8Bl9zUZJgY1m27VRHLIDxZ9LhGUYCdufpz36uzsHwwICnbggWbXMud00if
jm2U3pW0tQ9LO+pdmAvYeJl0c/PF1cQXFt4tHyP+OFn2wGSS+KOaZtg1RdLX
LtFyEZpR/TAbUBFd9IkLW1Wx13Wk38PfhBgcTONg4YUKs1jCTXIXS5frEm/V
MBt2mk786P0SNbtA4kfsUv2F/sSPfvzm8w1v8RBQ6fnXtJGP0xlTmc/MKER7
OigHuvHhFD3vRC7xMkm5hrjn/XzC8ev2FS2jMG2o/WagPQU9MStJmxjyd5dX
b+guJDl2MayBRfJqSs7VhO87+NA12OtipSeABYNxbU4OBWP9vf7j0oRT7Fyc
wsIE0BFxnVtfT6EnIuubGOGhojeZ7RpvBHjx8axZZjfhq21n0vLoPKiXx2+g
vSDnx751e0sXheCIv0mpTB5MCxTaI/wFiPeOy11eQ2Gr94kzu0Z5GCk7H3OR
XO/oe96ilS8pLL29kS6jRHiq48+SHyTfKh/ciYkl+TZj+zKNZSTfDC0nf8aN
Ee/0yrAotyB8ZylqUpbMx6YZXe7KG/iIU1WRu0v4juff/NbmDx86O4Jjrjnw
sNfkXpwI4VDjrFYT9UMUIq+a3FQgnOa3zONXpzcfHnlKzj2E0za+Ev4wz4OD
Z7uP8ZbJEW8eDGl4RXIsadqv2lvb+9H43Pfcxl1cDPlruemR6zV78pxPrjIb
Bc4VGu/9+jFtbJpjJOmv12cU1Q8K9SH9W6b0+pQ+mDbHdghI3xkdeiluw2Ei
ffREqSidCc3lDm2XST96Rt+Oj+5koCq4YlSX7CFnvtnhg6RPjeUjAzzq6Khg
nAgPv0DD0R+87iUVFL741NvdukWDwkCoRmFSF0aVFWl7Z/KhuUi4PaO3B5fr
ktebZLUhn7acKXOKi/UluTV1zV2I2KEV16bWjJH6xC27hTj4HJflNVOkE1EB
5+lrhRvQVDRhN/8jG3LMgIJNp9rh4SnYYXWlFvTXlgmMh3145OSyxWd+GxgP
Tjd4FFVBw/mI5L40wptFzz7UES+7mXpz4uTrMlyz17jyiXhZwMSasGpuM0Jz
DUxjUEz4uXuQUmaia+Tye6Z0M9KFUmt2lxagSHinIOMmA3p/t6YvO96E9KUr
ktjieaCVijJipRnIOtt1r02oCccc9rzyNXmHA7c2731bS4eUr/o743tNeLMu
RCLM+QO0z2sXyeox8HS97PeyPc2g/33rSNcuxJW0ldKXPjBgvvv1/P3rW9DA
uHuAYVwCh+ehJrb2TBx0TNGR2twKC1MRMztuOY6W/JFZI028S9MVzwPaMLbd
2ylXrxr1Xcv3uA6zcNVv46jN93ZsiCyY4bC0HgeUnl1hj/YhQFc+fyChE2dd
Fnk0z2yE6/DEeg+Vfrj7GebT/utGRPZ34cB9LXBPXa327CIHOen8qM6UXnhx
uzoiZ3cge/LthQV/uLgrZshZJ0SHyV0dba+VPSgTvbE3LYWPIWeXWbkGDGR4
PjrtokWHi1nm5X/3gRdfFEF/b8zEHoma0J8tDGhOf70/l3D+SFHTpyJ7FlJ2
/t26PZ6FFy9y66UIZxQEW14PuUj4uk3Rwted5JbkwswcwiVeQa9bFj5j44lO
7zVNcw6yL+7UuqItQMrlvD1ljf34lL022Hw1D0N3zg0dJP447BgsWybg4O42
D0dXMz5+3DX6GDNNAH7jOrN1g1z0qcjbRSfyQb1WHqyJopCjskdHluTBorOX
RGIGCHdVH4ofIzyi5zeFySReuKZCYuU64onTn+k5zyskfjl1/IE02f/9KlLZ
w8QLFeZo6s07zoeL2EitBfFjnXq9TbNeU5D4PG3siCLxOLPAFUsfCyDzyHj1
qzYK1VsOyJ3nkLzSvTq956cACz3tau79pNB/5JP7cDEPkSN+S+UVBhB7t2HM
UUiA7OTZQxfe8OAnEz47THYAA7T2rstTBdhadC71yVuSv1IcxSQ+8aow2Zar
3wkvpr/6s7CCh9mrRs6lRQlwY4PvREcD+X9iBR47BnmIuyX4aiAhgLvKgjki
xJ+VDBySVxMOlMxYsO+XKwXLItoteFHIHMjVkD/Lh9lD3w3x5HpF9/tIlKwi
efg8U86rjg/p483rdfIJx5ZIPrlH5+NnxGprN8Kn5+ZveWZQTjhtydvHMcRf
z0mGzL/3hPj4xPngP8TD7E9PpT7rEk5jJ3/QWiiA0/6/X2SfEJ90c3e/3M1F
+9b1CkYGAvxeauky5Swbi9huSrvG+/FtRsibo6S/LlY+FJq3ow8ew42bEuTY
qMynfbtP+u6VTMDQUdKPycvzLdeRflySzD0zlfRjA5f3x0SaCfc1s3VDoxjo
mnJlMJvku+2kT+SH+QzM/5pqeW2Ahg6RALNq0r8Byke6k2ppCPJTjFf064aF
gUBSk3i9W4XNsvFtvajLSB22PtEOmdV7Ni7+wMXADJW1CZrd2Fowbd14aTPi
FIQKT24mPvBTz7DHuhOTZymD2aENYKm8unVgiI2Eg2HtD9+0Q8n56+XXznXQ
kpdz9qjpQ/a5NZ/pW4lnvXR5+vHcZ5w+FN6jWcvCgomnv4vntcLQ8/LFKpNy
cEQqpL/9ZCJKy2juI4kW9FxavCzjfTG8Ctm33DYy8XZu+pwO4n0zDDP9q69+
Qt1DQ4Y98b5i+aQSx8tNCD3yt8MzJQ+j7f6h61QY+B/eOh2g
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for counter-propagating case.", \
"MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->199787901],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", "5."}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{"5.", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".2", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwcmnk81N/3x2VLKIqECm1SVJaiRV5aEEWLVktJyZaUCpGihaKkUFGEVKhs
2ZMkS/Zl7OvsM8yMD9Im9Lvf31/zmPt4z3Xuuee8zvM1Y4mj5wEnYSEhoXWi
QkIi5HWuxOSWY1UtUL8epXfm9HsEmT9c+2OEilJh36oLohRsPVfSttg2E0u3
HL7NWkiD4c0lAwIrCp6FazLUT2ajuiC70mgfDVuGTz/MSKHAt6Gdd6Y5B75d
E5+sH9Bwa83o5G25Vgg/pLK8CvKxpNaH49pNQ//snfEaD1vB+97osmXpR7w8
tHdZni4dB7o/9akua0NfyPt4V6XP2MPYs2VPDB28dbtGI2raEHQv+PREyxe8
nftp28QcBnqWna1beacdQseXuuw8Uw6usKjspigG4iWeDcnYdaD85F6Z1WZV
0FnusWHlKiYOJHivvGHSCS3n/o6fXjVYzjlXvLGeifERn3dbd3RBN918zl5W
PXYEzNS4d50F6bQthlLW3fhh4j4PtU2YnipoeGTExsLkrRSfCz3QLNn4cfun
FkQtWaZEnclBZrRTQkxsL+ofi8Qzv7SiaMvQyIdODozDpzSiq/vQIJL6Jrup
HVJDTOfk91xw1Y/nKP3ux1krv/qs/k5ob3c12nZjEGfv2k6Yy1JxzG+7vTa9
G/MOvTv44sAQcm+Uto/HUTEsMzrU2tCLZtdbNaVKPGyWzN0VsoSG6CUDO48/
7UeaUndoVgsPEkmGhxue0HDOnbu5XYkKqRIRtzFfPjIrzmnvmKIhrPn2DKMa
Krxeu58JnymAmeN+k4tb6bg0vPP3Kj0aNstciypfKEAAQ1tc3I2OD4OLqVV+
NNR3VuV+WyRAurXJ4JHbdKx4rbjw/Wsa9katU3dZLMCriRuhseF0eBk7Sofn
0rDn6gadeLLeZVOgfJI8f2WLJ/UjeV73cLvt/543vdu9SIPsvzDI89U02V+3
tOBqNdn/YTWOBpN4FH9Vxe0i8UhxGkQqSDwle7gJHiR+53/c2hASv4HEl9k1
JP6v6wzjKOS8ghaB8wA5L+/BjLY/5LxubzrVI0l+ljCod0NIfgrHDmwqI/l5
p5t45n/5/HpB0olC8nnKc0jrf/mcGpphbUvyf1j6QsZZkn+rTWF5+ST/53O2
p+8n97U50mKJ3EAnotY+j3Yh97XDQeTNU3K/8S2qRQXkftXFN/W+Jvd79OGF
hI+kHng6QsWqZa3Y2rWhvZbUw/ltT4UfkvrZ1OJx+xypnxcfnetGSf2MUSR6
5Ei9tTpelLEi9fYjIqPvKak3xyunffeS+nwQf3D0HqnP9ImJ1KekPmH25/ED
Us+GFQkRKy7WwLfty5rtpJ6F7DftkyT1P3+vVaQCqf/hcWuTZaT+e7Sqji4m
/RKinSmjRvol8GJYvg7pF675tU3BpL/u7luk2kb6q07coXCM9Nfl5GY5adKP
apFPpgYUP2NG5tABI9KPSyM7lOVI/7JMVatfLfkIlWtJom9I/wbNeJF6gfT7
nxDdu6z8fDT+vBVvS/pd7P7E7gSiD99GVudNNuWgpfmMsDnRh6v41TtE9CS7
9ePPuURPykXcUw2JnvxVWx7jQvQn54Dz3z6bTGwNCJw7QPTHmzaTY030yl54
96xFRK+Kbu3wHCV6Fab+hmXV2YKWiDgJq33pELmw+x51koqdfu8bVytTkLW5
x153LBNicnYDqzRpMBX9Q7niRoF3auL7YrUPME6U+RV7iobR1jXeJrUUjJ98
IDn6JRehs34fS3pDw0/1/HM3jVqRaedFO88oQJex7auE3zRoBrvOk61sxaKn
E5JrHhXDLfZWPPMIHeU9ml7Rp9qQVGlwuvdsKfadlsiPqaRDovgw7YBiOwxU
xK850MogO1Fjm2DCgFXOBR0xVju2CxWd00utwORnnnFAGwPZaQ69/dUdiNuS
/km04hsuhc6hWnszMfLq6mvpyk6cy/7T+0OnDloDO8ofrGTh53gVy6CzC/sO
cXVP8Bpx88hzJWMuC4v+vaqZnupGrm2D3NXxZvRuNdhdkMfG592hm9/q9WKx
x47T/DmtcN8zGGsXwYEGV19M/HIf1i4RVnu3tR1jy94+1Pfi4pGVx5Xm4n6U
7G71jPfpBD+XsfnJ0UHUXNlrqSJMhU6V6c7BzG6EHL+mk2M0BKWumKMJSVSs
8BPGvIFezHgQu3G/Gg99/OSBBYY0NM9mSn0e70dGsNBTid88UNMoh3NrSL10
5r844kXFji0XZa+X8sF3XxIospmOd8cCziavoUEvfnlwJtEBtMy2Ew6jo3ll
0qOqDBq8BKIGd4me+GepvGXV0SGzavarZCU6GHxK8SxVAUb3wuLKFB1b1vps
znKmw0Zn+5YVagIY97vddl7IgMfsbZbfntDh/l6NSyHrd92l1jSsYEDZz8fr
Wgodfx1dn8kuESBze7rd+kUM8KUenJ1L+sG4JSqykzw/MmpzVuUfHZXX9g4c
Inq2adO/1rVk/YnN5QdajXSkmMdpWy6mo+nuE/EFJB7Jk0oXf9+nw/5o/fO7
OTS0V229HkviP67UkuVKdG/rRqdoZaJ73xc8s/ufDh8TXr1gspGGt3XrDW75
U7HAyTV3sIqPnMklJg3baCg59873ucQAOJmbNWWF+OjuN9ItS6GifJnlYafx
XmzYNtD2nwaZCyvlYq5LUNGwnTGpWEXuK1N86q3ZEDbvf9V6rbofjLOrDVPv
d0Lje6FS4MlBSHJSduYF9WGp/JnvH63bIXy/xHeJPxcddcKdf9CLBXW0yweW
t+JLxg+GcAwHB0/ftMqe1QP5U0q+rRItaPT//Gi0hA27L/LUnYwuRDYGeLAl
mqAbSTkkOsLCZuuU1WZNndB8Ivo65FAdXrbbK5SuZaH6wPX4ZZQOuLYkDYL1
DcOcwCsdV5lg8oSyjwnacflChKpmZQUsXOL+HelhILTb50ShajvWXyy+uehv
GZRlRykUCwYkbgzUSLi14fqCcZrFzVJ0bbqwZ2ktHZOnwo4m1bbidAg/lV9Q
jMsq06KNtnQUyA6dMdnRijOSDWUhooVQ2t/w6vdfGm6vyxfsbqTAUXx1z399
uXj/TjrSO42GtINBs6keFCSeCBA7ufED/p73ejjtREN10kHx0UUU+PRrdQaI
ZaEhP1Z0Manf/oPLxyO7W0DfIHme6pmOqZJsnu80FWUir1L5gy2Y17lG/ahJ
BqS6pudsn0WD5Mz4TR+1Kdgu492r9iALR8TKnoptIf3z9PykQggFm+seRZRw
PoDbX7gq34eGNd3LvHX/o0Crm+ZZ/zEP6D2vRC+lYUMs/DXdWxGROL9PTLkI
NXvyNogo0jF4dW2K6FQrpDes5zvKlkBNQkHz1jU6zraPzwx73YYzdW0RuYe+
4L2StlDqDzKn3SznKrm2Q7dEWWbnxFcMBceud7rGgGfYGZUAkw4MR7bdTvtd
iccP1BrNlZjo7BYfHdnSicshv+qz9tfgk4Ot8/VKJtxffv0StbsLt7QaC/YK
N4Dtq5jvcpuF9Qckt/716saTWWPDlcLNCKVOT4oeYqNUcfLY44wejA7KDO9c
RUFwn9+DO3qEuxKmLd2mehE05pmb49GGyCa9PHUVLihVv0P/O9KP47kDi/W/
dcC/9Pm1zLmD2N7mcOxG4QAemQTyJtZ2Y+gtG+skh1CW27f1zH0qZIJy7LdF
98J31txhP2EeDL9/SHmzmYa4R7uflvzXDx5bQlzkJw+W+wvfnaQSPfpxMF38
KRUP5Wp4P/r5uKpeUMa1o+NcAjMjl9TBfb9SrauEZ6htUiGsMsJLuwUbImfR
4c1qOtGoIsB6lfsmYcoM6I7OPXvmMZkT1Z/pDUQ3Yv9KVgtOkvkcKumvOIuB
fiexAM+lAnA/uV1Me8yAxe3lu1vtGYjwk9nxchl5PtPu0N58so9OkJ/ZIwbS
XfkVJ5cLYMWhvWOVMfDE/XYEK5mBVIcQp1dkvfuTuwi3gIGyDMnFnYQDir7/
VXAn63J7r7bSYxhQrXbrEDrFQFj0ijl5ZH+34SWLAs8woGjU0XdeloG1ftKa
oSSeXrlvWd5qDCzIEOwafEE4XrXy3CiJvzdtv3VLNdE3g7uxH+TpCHtGr/5F
zqt4f9e12tN0ZIRFbD7pRUPqYSXdNJKfpg6BljSfhnSHzWf2vqNCOkuj0fY/
PlqrRCQXmtEQL9MWJblwAAvoz01uzuTj5PTE/H2xVHCX+VutKuvFEcekrER5
HhKN1DxOUgYglB+Z+tO2G3rpwaLHFw3hX5DHl5wL/ZCu3ssQ/dEBW/vC+fXL
BvE07LXVBYU+FA4EfdkY0wY98fr4T+u4iNAK6LtQ1YODXWtReoACtWadyT07
Odi1JmzBlbvd+NqyxJy+qhn7uyXeUk6zMevwa1tXhy5kVnckfLZowFTwyG3p
KBZG8oruM6w6IXlrblx0ZA0uG055N1GYaNJJNA493IFbq18o/dSrgnf3x7cm
K5g4N7E5xNi3HUF0y6Kfa8ux3WL1R6m7DNhxPwfWfmhDgLZqac3NL+Cf+bPj
zzQdfErfKX+JNmgNPfqy2KEEbYVlRY+C6Vjd1ZX061Irwv0o1FXHi3Cy6vkv
lgodUUXvPP1+UcDW/JHp9CMPVqbrJXMqaSho+jEmGU6BiK+vrLJiDqzEPi+L
vUrDvb8r+8/pU9D1SOPBt7wsJAj4XjNBQ/bzygdRwy1oDs8wWRicARnljuIQ
aRpmxq/crjvZgu3rXzuULsmEgdnz20oKNBicdk9auouCIxIjiWydbDz8LHXW
dzfhvcSMxvJkCvazt7Zq5OWgSP3W9KN7xDcUv+m4LN+Kpphm2V8l+fAzH7ky
r4eGV95pqwJiWuEiR5+vafcR8z1eDEZspKNI2HGBmH4bHEtHl7Q+/4zFL23p
ka/puFHnNj7NawOD53F3s1kZ3sxkDvmqM6A01GNPK27HM7+glLjFFdDYf3O3
WSEDTpwH/fdSO5CScWtnwsFv4HMqKc9PMGHZLlG1PbsTwgy7aysEtVg+PdP9
jRIL5ccrLBXau/BqTJH3g9EIC7OU16VsFtwnBXE35HpQsqEgm6nUgup6K+OO
CjaKJpvqa517UdQ4b8YD11YM6Yrt+5fDQeWpozXvG/og/GR69oOudjyts9y3
KYuLsm9z0yx3DGCimVd28WQXPsxYULgwfxB35GaMNpygIqHFjJH3swe7Pd2D
nMqGECEZPdW/mAaFc7FHX4f1Y+23CZ/79Ty0ctSuHOukQc7BO1AmlIqn7kfT
31L46JO/O8J1oUP1JKdlypeGL7Li+mWkHwcHdNK+04nvG47Tlic84nFd4BVK
uOXXIvci2j4GUlbmv8kR0DHz+CEhaaIDY1Y/mB4ZDDy2GRKJv83Alg1q3/SI
nhgvWrjo1iQDptJhLldmMKEwsiX1xwoBRGPtQx9uYOLi6SCT5fZMOKplx29f
KUBRff6U+DEmAtheGxY/ZqJ/T334XA2iVx+/23c6MXFnJMgnN40JLYXvdnZk
3ffyeo2LtkwMtj1OnhFLfL6QUrYqWe80+WtxdjN5z3aYOXqaiU3lrt+Pk/3d
XJQHfUSYGKt8MPuVNBPXhLUMVdQFoBgunOdO9NA8JtRe5v99UfNWFxJ/hfbz
f962DLQGdWbnkn5Tu5721ZycN81n0bXpYTro1nmeHvvomPXyaFETyY9ezJH9
M73pUOZG1c8Np0H4TXjFHMJ1P9Ii5tnyaNDPnuOz8C0VxaGx/Y7DfJhVX1we
oUPDTQ3KZ7WmfpwQ6XXbMsiDzY+iT48vUrFl/z7pwC29CNVhmOv1D8HLYPGT
V24DeErtU+l91YVNY00OZS2D4NsmunLG+wh305+JLerAPXOXUoU6LnLUf8zb
ea8XS+hvtv1OaUVqG28koYEDrtDk2oENPTCq3Xn/5aEW7NGXfDTVx8ZaD/Hc
oR9d+H17svXAqibEXl3nqTrFgqLhRnnjxk7U5DyqGN9fh9TKinUzCafZXfy+
//XXDgjUo0scM76hW+17/PgFJooKTm6Rb23HzsgfLebnKnCkXEknupqByCOS
NEuhdpSGOD3uuk84bcO7ypL1DMgfzOY9NWvDOCiSoVKlmGg55DqcTUfgsr6R
myTuH5VHVd6Xf8Qqzx8+ajvoSLr5QlNjSSvKTSXady4owEqGacc0g4b1Xx4/
csmgwGSs77iGUC4Gnhnvmh1Fg+ieswUD+yhICi93fH8uG3lpTm+f76fByiSj
3lqEAnOtR6yj1plojP14ZxHxmwkvlaoXy1BQILO/4PCrTOjSbsY6LSM+MfjJ
w+MOFDzVsLnu1Z2NX+Efngfa0VDltmVJ4FcKLl7hOrHCcrHluetmrSQadv5+
GyG1hfBkVFzb/toCjMwrSNb+ScNu72THi9Wt8O3fv+xTajFiRZXWmNrQsVEq
SVzqQhtWHmNtS3tWismj/yxlmugYuNzkMKjXjp4Fr6T2bfuKQ2nfxkWOMeC1
Ul03Sa4D+vlBv3fvrkSkYgITPxm41bKyW2NuJy4d9LHhF1ejN0xh1bkUJlRO
RfhXanUhiyl7e92TesyZ+KBR5snCFdWlrYFO3RBI7og9wmvC4r1SM+7tZmOP
+VheUWEPfH7TLDmbKZjuqN2bupmDAbXHOXfU+/D2QL+pXm4bZifUVUpv4WKN
zG6q7Zt+GJ9JuG91oBMlnndNbpgPIqXpTGDQQipUF4781iH+oLe0PPaU4xA2
nTf2D+JQITTLrPwp0b+aqa7CpUE8NAy5yHt/IPPBIWOKZ07FtX2nuppf8PG0
Ypn0V3s6Ph2udpV3psFhwXv1IKJX7nOuVL4coqPK8YDTOXM6cpo69uWTfmwM
NqR/8iB8qnfbXo74tsyCLI8c0r9lh4eVWAwGXucZbx7qIvmi1P92IrrkYyUj
/9icidv2NhOWAYRfa8Iv5BPdWBunFRD5nAn6sdHzr4RZoHwRrXy2ivBV1rwo
xW4mVl+93hngxEJvFb1eWFOApx95NB8hFrZfuLJqxUsWNPTrS+hkfWeFy6YH
c1hoWjlbo7qQBa+lFn/XawlQPIsaVSLCQv+LhnyXFBZafC73/SDPV2Y8e/WS
ysRvyR/6M86zQO+KndIg68YPO+WmXjFho102UT6XhasFzjktJJ4kqpPu50NM
yPi/YnZEMBFMKXWdJvErZK2W2j7GwAbBlPT0CAMMa//aQnLevRdMjeUJv0+o
ye601mdgdfmsSjnCe73LSq5enKSj41p4tPQZOrJ5J3aoEq576DrHIf88HdoN
E6V3btPQ9GWo/D+Sf7OJzXYaDTSw39/9cdiXikWC7m1HK/hoklIbtxWm4Ylz
qc+EZj886ygJtNc8vAwpLtXWp2JqO//ElFMPYk/qfmGFDOGGweuPG3v6sVNp
3N3/XSdO361y/OExCGqIlMWso33w/rvLz0SqHUke9/Q67Llw9DinacslftPb
I/JPGAX3zyc6nLPlwEP/QUF2RDeWGvhZeOk3Q2ij9TOOKxsmj0/+WXawC9S+
sCdyag04vq2y8GwYC+OJ7jnP1hOfclukRmdjDWzLGDJHv5C54fxTcoVeB7T3
XFhILaiEsvhDWycyN1pLTcZu7G1HukGAqUXiVwiNa+a5nmXgtHrd8pE7bXB/
P9OibLgUv9Zl+HVT6bjFrXSn9bWC+aQmjmLwCWd/u7MTydyVphb0We5phf5m
u682Owqx4sDKgf3CdPy0bpb+3kxBk4rXglMjubgpsbXf+h0NxqXhdKOzFDif
1HsjteYDPG+3O3SdpuGB/5af9YoUyA+9XlHAzQT1VHj2+tU0rPg+2p22lIKK
2qnIfWuyUJ4lt3EZmTf7KpKOu16hYN32m8pxdz7g0r4cbeVzNBx5a1i0jUHB
mUWjimUueeBEetYGFNDQ2bjy5pBjK3rijA/FUwvB+Oekoz+PDlZoXYnw31Yw
uo7mnhUuwXmG/aRyAB1bTNYfkUhvww+H+uFSzy+w1LsbxJ+gw0Z3cGrjtXZs
fyTBLtxRjoer7n3fep+Bn05DYaYeHcBpzxGxm1UwfC9laEz4YLvnUIvB1U7I
i7r+09epRYTcvrnvvjOhvpAmfvxtF+wCdl1y3tuIsY5jt4u+seBjn/wr8083
PttethQSNEO6K4KX9YEN4eZASz+nXjjf7ZENcWpFp/RjneMfOLDMnfaO4/Vh
482Jf/1SHXCR3xn0oIKLRpr/GqOQAfhdVHkV1dGFjTRV+x72IGq+S4q6xlDx
6uSsCrHPvTA4H8+yk+MhOHru4byLNNgfDy/SyBtAxbqcK/qmfCR57nTfbEjH
MlqHpR7JO2IzvD4tFGDclWVW10XHXoaK+Im1hNc9B8UPEb1a0TO94f15BtSu
Tt+tIb6KX+4VXkH06sVrEbtlU8QHnt5sdkWYiShenMUf0r/cHTaG1f5MZL81
0f9Zz0Svu4xrL+EfuYDz+3u4TBxOiNu8IYAF9aA3Y0eJbugOP0oc3cbC44jq
hKPSbDC3P+h1WEN0hru6W+4WC4OxVt9ivdn4bhncTF8rwLLV1aaX37OQl5Xn
s6CQDV92/77WdQK8U5ce7i1m4cjg1paOZja0PsttXKstgJb3lfbnWSxcfxS+
r/wzG/RnlAd88nzYwO8y23ssPE2UZXBvsjFP+cgKObL+WF0GDEsWRk+52N9V
ZUNhZ3vEaxKPQB8ss99MuNwJuDYVzYLx4NOf2ST+TVO7emaFM6Fcv63JnMdE
kG/IsCnRPefS3/KsuUzs+fjye8syJsanH3h4Ea47U6kiuj+Egac+4tWrTRhw
vdGWbk70LdAv8jp1lI7nVTXrZQ4RXtO0vU8j+Z9x7U3RSvI+V19/t/ExGs7U
z+dbEX2rC/Xid0ST+02xentWgfjOKXV9bW8+fD+0P9r7kbyfo7VwcH0fIrq4
KSI7/sdvkyeWVQ+Aw3nwYqVFN9b7Oetrzh9Cet9xbvDqfmje+Suy/UoHxGcg
qnKU+M16s0uFCb342eL6KrSuFUv3pFJm9HFgkLvKI0q7BxlRn6Y997SAHdp+
zqSbDe8JJ0+Xvi44zw5b6j7VCIMs50YWjwWZ77NMzFM74bs5QWikvhY1nOc5
R+VYYHYOjh6O7kDs+/Urj875hjndP++67GdiyNbL2DqxHQ1FH7fVfiqH2Ia6
x4OvyDxsQ7xHXRvSW+xELnV9wbGJPzvNie/XKviwWGh+G1qw9Pja/BLc93KS
OvGA+Pu82tB+31boxd7StrxShPfnTISTl9ARomU5/OIH4SsXp7Agbh72PLpw
/0wF8ZXLt0jeukPB6hrtq6mjH5DROLMon/iPxIEQv8m1FJx8e79y6kYWJL8e
j6/dRMNs+q6jzcSHcvSjLl8uJD50W3/KHuJDVzXkxmyMpCA0fqJ3sWEOukq2
tWwNpKE20t56UqQVT/dujXTck49gt+t21xppKLusNTbjXitqIuzVXaaL0Kbh
b7dgHek/qQP2CmvbsNZ//ZMUp89IS531ViiRjlB3VWMGvw0XRud6HLQog53L
J3ullQxw5HfubKhph9Fd/0uSVhWgTl8tkf3KQFNpFVKqOyDKyWs1Lf8Gn/dH
r63xJtzl/mnWvaFOmNIuq9Ay61A2+NVJn/ShW8tKNcqabrwMXrvjTmgTEsSW
27gtZ8OCnfj9zKMeTHqPrw3+2QLmc7loMVUOHCyLDHwU+pAkckRiR0wb/ihs
qPyyjgsVsdj0nLx+eJkEZ0ydJXMsaqff7oODKDILffuHzNm0m6fmFLj0oE91
lqbQ3SHo6R3xJBoKz9/zlLVv9ON3hIpDUTUP//IXLtYWpWPrwcjkXe1U+P3+
fNlirgCsc9/6DmTRsUJDY/ERAQ2nuyObXVQE+B22/uIzwqFllYwXhX/pKF5g
xzcienVeuPp79QQDdl0Tf7OnGThuXBfFI3oVsWXLBSbhkuzaw6kD/zFRdsrw
8RHSv44hbv4Wiiz4LVs25F7NwkTYnkoPwkXVS1M9fxLdiP+P70y7xcZIq9g7
BaIbcx2THQ/ySb3v2Ni6UIUDN9dFhjt0BBh1d2Do67GhwvqwQSiCg/U39vKo
ugLC1ccVsk6wcYtPT/Xu4OBS054App4A5UExYV7n2TDfLZroOMbBdaMEU9P1
AjzbOkdQcpqNJu3owOgBDrQNNSZnkPWpyFO2plvZuLMpyGR1AgdHMisTF5J9
isL8E/omWNiVt7LVewMHi5r2z31K4pGgbX9c9IKFR2cGD0u8ZCNWVVnnFon/
eeimwmDin1TGjL+uELAwqWwe+h85r19sRL4W8beLuo41XCP5MPYLWsoj+fFk
aUecUGCSejeYKaZJuK/5fMQ9om955cqL/vMm/vTqjqOdqxm4JKYuN0Ty3xTw
39H3jXSc55xavEiFDuNqnZ9KRN9mdkrE3VpOx7G7n5uUpWgwl9wip0fmUc6R
v9Xnd9Jw4+HV+ZVzB3Bt1jnzchE+JqjWaQtPULHwsqO32XgPjh1m33D9MgQ1
50c3jokM4Gf/hxnbxjoR9ChEb1XoIGKXb3mfdLwPyQaf+0oU2mFsvfO2nyMX
fjXPKDvaemDKOtVQ5UZB6axTgSJWHFxtuy9S59aNucE2nLDxJhiIm17YuZeN
n0mHNvks6UKzXfaJHs966MfhSKMzCzFxpV1+Ex1QOmJiMOdcNZpnmiUHPGUi
bYP9hSc/2lHwIiiDQq/AEtM9pUtpDFDVVlSNzG3H8VkRv9bUliFz+Rhz2TYG
eJE/D1dYtmHbzEb6jCWlKNt1Y4VJPh0vZt4KLX/disGpFQG3Cz4iLEJUgr2N
+HuWfLO9citCl9UWSnLzcdYiauGmAeI/Fh6wS3xFwdeksx/Vi3Mw4pn8b819
GvY4fPZrNaFgcnBUvX9JNs5Jv33TZU7Dyy8uyTd3U+A3rZd1xjwb8afrbDst
aejSlKstek+BxTENC//xHHxKf7R54BENljpzC2JWtGLXtg1OWvoFmJPveUCF
Q/xjw8OhDXmtcFBwY/GXFWPuJQSV7qGj5nPK2TDHNuRuHt0L11JInYss7a8g
vtLwYcP5Ne24tuO1Y+Pqr3jseOiDz0EGElirSi8pdWB07+t9YScqcd7Px/cI
6dtr6/7QQjQ68fbyQmXdOTXYWdOj2FPAxL//3kR22XZhk+KufPrmBuRyj9R2
RLCwp0a3vvZDN3gSrjzfi82gLz/j9ugGGzs3KupvWteLnpzmDJ2ZrXDqdq01
vM/BdC6vRb+uD1ULPP6YtLUjuX1pX0AGF69XL9i7jXDXsUsshVjCXWW3AyP6
CHfVH3p80uM9FUMKl8ISRftwefZk4/V1PNRcEjM8kUDmdM5GhY8aVLw9KF43
eYuPsyfKJUUv0vFyBTVy810ahlY7ak+ROb7LWexF+CoGQpbeibudTod5SVSg
+hIBDv4nUd7ey0Be3H9jkQ1k/u0XrjUkesUXCit9eocJlqS3fxidcL+wrdZK
0o/f6wx7n2qwsC8reiKewcLP96IjdaR/Pat3LJ8oYKGuRvtKTC0bA1b+oQsI
F33f07zg4gY27EPORz+J5MDqdM5PAdGlpPVymdufET0x3RKiZcCFbfnypcYb
iP58Xf5blMPGr32Tn1iZXOxpOL1jQl8AoaEVi94pcJDZOWDvPUV0f06BvexG
AVL1uXGNGhyU89K1nykPwmKP2SY/sm53PP5c8iIOlj68OT575iC6LcU36JF1
Rc1X1swxNtRjmpb/+Ur+7imV+zAQQDTjSZrnOzbWyLej4gAXovI/jyeTeBj2
0+fid7Nx+VqvqX4+B4bv5hz1JLr3bqFS5E4K0W0LCZeOH2ysT7b/k0nOK6Y/
UXXVlAUthbCrr+TY2Oie7+BPuO5A62F9g1QmxlSWHhtXYGH/u+K7LJLP2sez
j934x8Ai2TWhu8SZSFomvGQm0bfGH0tiPS0ZwHv+AU0uHRGGhsxf5L5e1ofY
az6hw7TvvtX+rzQYBoevbVoswLVGNm9dM+GCcruLzwKoGGcJOcdW84GXt/ZR
e6mo0H0smpTah+tS32t1vHhYpqx2m0YbwOWU91Nal7vRLHt7KFx9CKw/6l9D
l/Rj5oP5GUmuHRjTMxXx5nHR1B2uY3atF1F6d+e9jmiFdG/p9rpyDu68+PSX
9bcbGx7557WPNCP59rgoctlwQtOJuudduN+bVvxpUSNMPNbsCihhQeeo/D0T
x07UaRh+nmyvQUnv3gZPGhNn3G8VyO7pwJ7lZ9belamCgeF/MoOLmQhxYXww
OdaOpaYvY7Z8/YqD91T6TC4S3jiu90Sc+E2hHQtVHvNKsb5UcEif+M2Xln9d
+9paSX6D5skLfUJUpkPRP0c6kgLk5s41boWu1hwno+EC9GkELiz4Q8PRoHbO
/76/cp2nWzsUlguvtOmK/31/5aQcUbDTnoIMpcfHaOXZmK8olnnAhgZawlyj
dw4UFC/dnRfem40tzgV6+XbEbw4b27d+oyBdSzr0R2YuZo9ViPNe0eD3IKH3
p1kr/EstmjVXFGK7bruUyT/Cab7cYza0ViTP+D17Yu8nZE3sej3PnQ6Jitky
mk/b0KCh+rxg2RfIylx5H86jw/b80ZMenu2QLXyWaCpbDrb32YmOGwxULZ/m
dJF7mvymcXmxTxXmtR1X7dRlIiFgRkHQ3U7Ifrb7fvZELVZEXR0XnmIizy1x
eWpjF5Inl4w8r2/E1wltN0M6C+PPDL8WGfbg1n8vZkacbEF5vsClkc7GYUGz
/I3GXvBp6uX0xYQTPxiqMaY4sDvr3PD7dj88R78FbVPsxCb9JZZSuoNwn7Jc
qbeWih9ro+h6Fj1YFtbulnZ1CLsK6T5X1Wl4+vFSw7PUfhTHNN9J7eLBQlUp
OEWNDsHuic0cURqqvYvuLSJzWbRYN9CfTof+wCsVa+Ij45a8zg353/8PCH12
8UhmIPG6TO4IqYPo7/Mjv//vd7prg1OjjkzY7tN+L/2aiay758/v/t/35ypX
KEFKLAiJntRwqGXB8IjVwCWiV0UG5b/jvhI+WT5vMKuXjSyZ6qRDpH9D616m
atqzYfZ99ytXCgdzZJ5WtpF+59w/JfucxsZQ2vvo9SlcRMnMy+omuvR7yT85
ITLP43tU+baHB9HRXrfdepMA+keo84rjOShYOPpSrnMQPvTLHqu3EL/2wyoq
oZmDiN6els5VQ6ic/9vT2lCAowuGIrRYpJ+OB7cbmw+hbv7umxVk/Yyi9a/b
nRyoFSvvFawfwi3H6nR/si4/3O15/h3hv4ToWMXhQZz+Y+XiR/YPXWdg0HmS
g6chGyyMvAcx/SJ0XhWJx3RN0OqNf9nQbnrsZtPMhVVGuPp5onteV98kP/An
vPe7m7tVlPgx+9dLQwjvzbLb57mazcKpIpfA9fIcRPpo7VAlXKeyOnCjAVgo
vTLX7+dMNtiUhJF9RN9c9e9eEQ1jYvVDrPdkM6FnJ2u5gehbv3uFE7OezNvH
myQj8hiIzTGLYC0X4Afz24CpNAM5qiqz/K7TUZG+74W/mgClKySOLLcgereD
sz/cjIb0acXXc8j8urrnZv9BexrW3f5QfNBlAA9W6Il+UedD81BSUJQjFcKT
SidshHqxVyOMblE5BL7vlT8x3H5ci+uZKvnaiZQVPul2PoOQk3u6irG6DyGH
TUQritvg1n145iIjLmIXD2ydH9EDzZYGWsBYCxatld9/ejEHp/jujz8rd8Po
RMtCe9cmlK65ri68gI3GeP/LO+o6UfNSpv2hWR1afQvrBZosyJmqJx9P7sBz
foXd8+3fUFFz9dNvWyakuYtyFiW14/OspXUhpeWIb+Bo+rxmgPmv+f2Nr204
t0Vq3YWiL2A/Ka4VlWTA4i7NblysDcF7Cj/etSrBYOvoVO0tOpJzPh59cKYV
zL9UlZ9/ChHj5V1XIU/6Q+SUwgw6BYvEbOZJO+QhL1zK63k+DQdVC5t1L1Pw
1n/dwF73D0iQ9dFa7k7Dm/mpiau9KaCl9ThKeX1ADDP/cAtZ73s9HGfLpKAr
8HWc2/k8NHm0c3cU0jCn/Hd9v1srztlKRo8sKILwuPSB+gXE56pZf9Ca3Yb5
xUKVpYEl2NrJERu4S8c5p8UXkxqIf+zV0FGjfQH8Nbe2z2XgcmrRsFd2O77e
zTh45E85yhscr45lMXD3ocH2oI8dCHNniMtGfsOWjeUGW84ycSGz6Ow/Xic2
pPBi+Ll1+DXp7bplOwt2PLtJU5NuCF16bLP3QxM2zn4kYK1nY2nEEv3aqh7w
WkOe2lpTYFhvXRW2k4PH90pW7/LqQxw7oYazsR3c+Q/3mJ/nYnPiscpn2wfA
6X112cihC/Faez7E5w3CvkP4mXssFXXdFjPulvWi5Lupwzd5HoIP2Pa7JtLw
4KhEVuhqKpocTkRfDOZj9kDjYctgOm4VZ5w3SCFzOSioxIPM5QnfE3dTrRn4
Gb/nkNYYHeEJlzYvIj4laeGpxLVLmHCc7fqfoyGZfzFyr2rJ3A8dfp+izGPC
T2dzcnMgC+Z3jsme0RRAyeCxb+I74g+1i1Z+zSf9erviaiPxU62rfjH+ObAR
FG0XE9HFwbCIgSqf6JV0gMClV4SDLYZnqYYDXDiyDKOTSL/HRPa1niT+UFKu
caXol0GYngxNa98sgD81dL+XCBezTr2+w7wyhJvyI2u9twpwtkWhbNMx8vnA
DUb5Ijw4j/nVuIHwjN/K9INhXCgHvcmIUOeBNTj7xnsSz6xCh+pV8VyoTYQ6
dWrxIFOyOGXrSgF2njvgYPuIi/FZ3YFcDR7Ksl9khRAd/uuwUz/JhQuec2L8
tDIPUV9DOzeS/ectCC35qcRFg2K63bz4Ifx3WufpHxJPW4n/yvPvOfjl5O77
4b9B6Hm/Nwwkuvd67rY4W3UO5LbrrE5TGETfY3DdCe8JP9eo1b/DxlRmxoFH
ilz0Xzg+0UT07ZLwvz7PDhbkExMROslG+E9Fq2qi/2e9g00eE/9JDRNksIgf
f+r3LNCTxPlSyXx86z4mVA8yEv+FMOGQ7GTeT86lf6ts38KbDKw877DR2YiB
Xhu7xTpkHmlbezqcyqXDRe49v/87DSpSwqGBKgIkpPo2pBH/lG09VfDtMRWe
2VnU8T4+QpsezaW1UXHYaLuE5cM+rFxB+2vrwkOTo07Qg+wB3Gt3nGIt7YZH
pYqMpdgQ3Aw3bJ7R3Qflq/6njQXtOCdyY+66Qi7SXVzc3NR7caC6bD3tFwV2
k5+UpEM4mKfat+Z2bDd2HV6/LdisGTaKNrUNxP9ve/7u7zeDLlCX/vfJ91M9
HES6Zl73YeGMaKDs2FQH4jrcfRb6VcPP6fA6QSwTKjMnw//x2nF3kaWXz5cK
sG/3Fp3uZiCl3/m/zn9toG64wtt+rwxWrtqPz65nYESydslH/TZ8yPy1oTLx
M2aZilHk3tCxr91iJOZ+K6a5xTkBsz6COmWlrK9Nh3VkyaoRoVZs/XX6mbZB
PsJ2S8+xqSf+kYc8n/sU3MvIklSWJz7x92CK7lUaBnS/JzSGUfAk5HNklEQO
ZuvPfy7hT0Mse52MPNknY+/z+g06+aCVKNp/rqMhpiD0q2h4K2SZqWmnpT/i
rYTR2iDyd5040gF7NrXhy/eb85I+fAZ1zfYWWgod+Z07H10RIz76QOK71hdl
iL6UK39yIwP6+40TBcR3P+yodvrHqED8lZnWJ4jv1rBuCM6b3YlD0ULKI5nV
0JILni1MeGQ+I/nwyr1dYHQELi+e04CxO8uu8UJYWGuoOJz+sRvep269XBfU
jJRdP/wWk3o1ldHdWm3di7Ue5ig3bUX+3SqV/15z0F6+oGCpQj/EdS/dqj/U
gW37nlVeYHBR5yKZaCRExQP5NZuc0rpxbKv/+FzDITQI1eQcm0nDh+8L6g9t
7Uddu1Aa6z3p4y0nb1oo0jHRFhx3+RcV5qLD+TxlAZRZn3Nj+XQ8sarzfUx8
tf/nP1VlhLuO1Z9UeVRB7rnG3FQnlYGGgrF/OWSOdw2GGxTHM9Grf+X2YnEW
ToyXnEghc1948/NptUssHOSsLp+wY8Mqgffp9loBHD4WL88wZkP5cuHT5Fcc
0M2Oh6wjepUVurbt+D/CXcFXKGKdXJjQLBzuEL26P6Bx4clbDtbx5o1/5A/i
2xX+5cuk32UOHxLaaszFyyUmng97hmA047+fnUYCbFbQ5z7N4kJRJcDHWo8H
VXZywx3Sd0qSL3XXiQxii9ifq3eseGA6BZf//cPH+kSV7lr9Qdy57BpecoKH
az/TbvTS+djdO/M412IQE1nDXhfP8LC+QjDR1cXHKokjUa+MBmEyqf3ZzpGH
J7E3Vh4d4CPXc+OZinlEj67rLv5oTfyVkP4qoe98FB7mdOp84yJt8fwnvZt5
GC37rOEqL0B6d/OeHAcu8hfInPwow8N4R7nnY6J78WybKvUW0q/CvRcyVw/B
4Y7G9cOE96yNVz7U0+Sg0SzwrJfKIPZ4J2jdIfrWPvTwyx3Sx1f+Vu8LHiP6
n4hv//ser13q44pfr1n4NnqVkZLOhmVg2tl0os+xYbLNBylMCP3hO76wYaFl
0NK6Z7UA4m7bFJ9NMFBzMjDbeZqBcr3DN4dWCLCKocnbsoSB8J0HNdUTSZ98
qxT8IJxWY/Y74uJuOkJPXPwvxZwGMV9/CwXCafpcN7Um8t5ywcjXS8sHoKV2
I2C/FB/tNX8LGo2oaND6Lfb7Zg9K3DhDIlFDmNVZbTQvtB9/6tJ1HVU7gbNv
evjrB+F7ixUW/qkXxst3nXg33Ypd5/8cMhnlYOSZqvMf5R4UrR6eNaDeguIU
vqZCLRsVwczT1JddsDzw9KfNhkbsc+2u9iZ8f9jdYf70kU7sXyk5svVDDaJ+
FTjqdzPBPuc430S/A9O7fQxKvlZCOMov6ckcwq8ZcrLXDduRXtDivPrEVxjZ
zL0pfYKBXRf+a/ji3IYDmupRJ/xLETdg+OhONR26/KVrO3JaEXl9briTcjHs
OqeFakheJgYTZs1Ua8XYupYRV5kC1Hi/SdJj0KBZbxzd84qCQ+ck0j5+ysFS
ncmhw/dpKJtnzTqWSMGbrLzeU/E5QI2WolYo0b3IzpHUha24pWf8QnY0HzIr
tUKWUmlwUXX2nc5sxTUp8Ynkfx8R/PT6yHxzOp4+phqsd2rDnf72kmtepfir
+3rjpyo6ZPeOOUiSc62/tjo5yv4rFv05EFR0nPho02XCczd1oGO3WLNPfSUc
HljWhssy4VOq4hl4ohPZx9+02dTXIPCUlGfAABNurLZHdVldaJ5W3lbh1IhX
rus+op4FtvY61ys6PYh2Vls2bdmC0KhYe3Y3G+rfa9ykBnpRf9rLjL2xDeKq
F883SHBxMvWeh2phP/TNb93SudCJzy9yD08fGsSNtuXp749TMfLOcfrbWA8s
dCcGG0qHIM74lpF1kYblOqcfKOYNYCghbmSdKR/z+1NVyr2ITgXvG6DcoUFn
3qGPf0kdHnow8fToAQbkHE1/zRmh4/R+uXvyhLuoZq73u/SZKLJ8vlvvBBMB
iycULcgcPyBh/frxQhbazzVsK2hgweJ7v2gQmfs5msVLHCdZkFY0l+YYcPDc
/yU/gfgg3e+9wywKG7d0eVVa/+MaNudtKPGDHzZV/257Tvza7CXPxdsG0eka
cVSV6JWu/0yOzQEuxL4fNH7/ewjf9aqytpN+fyTKETemcfHY5dA9gx08xP6s
er5ulgB7/u03e3JwELPv31dKd+VB/Y3KuZttfFTQJahZaYPIWDmUfzqYBy2r
PvuRdD5mJA+c30obRNveObrRT3lYQkn6EPiYj+1aOqZxPwdxnPqLk/uCB+MW
U2vBPT7Kbrx5xxwcRGVdwZDPMx4EOy+YJTziw6mzI7v/4yAM/FRHVe7xwH/5
94nRGz42ZujYB3oM4sIlpczJCzxkbnMJtKnhY/mjPY9OzRjEefXZBv9Z8hDw
RzK9eoLo4dMHSZl+XNQeVpATXcIDJU59xlKi598rH55fVc/B/ed1i98tHYJ2
zxOHTUTfZD5rV6ZIcOCtoHVrjM1FzYXJ6BLy/LdT2nXnCNevTAu2+/GQg2LF
+JlcXcJvjbMsIw+xsNt5mT9Dk9zDUo9zFOJDN1Z2qh28wMSefY6dGp+Y8F1z
7uQLDQEkhYuKTtxjYBHn2szdlgxIF9TqOhNOG551KEHrLembsTufL5P+vOK8
e3gnmRcm6990/ymmYd+ruSt8bKhY8mX4hc57PuLEje6lvqTiTqXPlXf0XgxW
3ZquIOcLEh6eGNs4gBp9kREvMudvvrSvbc0YxH+SL0PfWvch6YeWaLpIO4wE
P5IqbLi4umbbpXuxPbCPnL83U5SC//bH7P68nJz/b/HMTTLdKJBj0A8cagJl
uNiHO4eNEqPXM92yOlGuveGr3lAtlu8Ymi+jRPpOtCRGLLADNal/LumXVyE2
6riMx3YmIiw3fMz3bceZgNPG0drlyLFYfOPEXQYytTI3eT5tQ8YroZRXy79g
y/qf0SU8OkT0d5yu62mF3vDL80dXfYKE+pxdms50ZNZsu8w0asXRazcy5NgF
kOha3s78TcPCEz6K80oo+O1s2bLkTC7MFmjusY2n4dpdsY2X8igwNmqL1tDJ
hRXlGEcohgZd0QOymfqt+FX2+rnI+wJ8CjBPUSNcTBMXc95GaYVp7pTysKAY
1vfljVafpCP4myh3Q0QbFNlnr0lLfIHReemxnyw6zJ5a3bp6oR1zzxoXeS4o
h/zmiEsWtxhwjrye1+LXgXuiG44tza5C2kBJdoUREybdKQdiMzohmnh5K4dR
C/EZ0+uqF5C8/VM74jyvG88+nS3ttmlC/MfpiuVz2dh169WhluQeKKSP/7in
QEE742DsLzJ3l8jmznRx7kN8o0AwvaIdJ/iKUcnEt/SLSfblHh2Ad9b00XfB
XUjjZ+xYWTkI/x6fJcs+UuGU3BJu9b/fx6Nfalds5yH5rap4eR8NM741HfaL
pKIo6cirXT18wuPIPlxLfLPorWfLiK/uHXdPFiLcdaMs9sBoLgP1+g0L50cw
YJK5rfYY4a7jcxU5H18xIW0wY4fdXBbG90ltbCbcxd3/7W5tNAvPn6gfnxfJ
Bm1xh4EFmfsrDsb2fQoi59vVqKQ1h4vJzFvr3xJOcGyRvPvnFAfn/133Sbsy
CIlrEkGUTQL8rH+R8Z8+F9LxnQde1A2hZeDe+yTCV527pnbLcrhIqM7tXGnC
Q8slj/4ocQGm29alMPwG4eCwK+aiN9GlRS1ytuV8HMweqJg3PghjNf2/vfE8
aDg2fZYN5+ON2fM9j62GcMX35FzpTzzsTVER3HTiw6Dwk+R0yBDMTPpytJt4
OCuzEnW7+bi2rjDlCfGBu+hGc4o6eNiZ9WL3u218TDb8MnN9OAQv1RM1Byk8
2My7IRJlxsfqjVl/TE8OwZGKRLOvPFiwdzktt+ejcYNajLbMECSi1VicNzys
um/bPBTEx/g2u70DcYOgXRWfp3KDhyszR7+n5/Dht/PhviTZQeRrzXovSrhu
YpPqth+E676neq1a6s7FDJNE8daFPFQnLVJXJvlpofqaucdxYJN8LOgn0X+1
i/zPS4n+v9N4rP21hI2vuZ0bDc5zsXOs5IAMmRdeBW/28lvJfJl4tyXwN5v0
/Z6kIuJDixQdg5xZTBhNKWinEj92LjyvbqemAE0eSo4qPxjo2eub/5i8at89
G1BDOC249tKpUgkGZDaKTzdeoeO98BlpZ8Jp+68Ms22W0/FVRLiuQ5IG+Rv1
qroLBZg0e3NzqzgNNuy/d65s6kfLzbe6h9/x4OGwaR6VMQBZuycfkn27wXB4
Ufxj5RDEDtkwTrL7MCfQp71CuAMVdXtn0b9wcTrd8OumBb2Q7wli+PRRcGly
9+ITVzmwGx6ZViWf378W7gVSzZiW2+eedJSNIzYv3GslumD6N85dVrkegTfV
QnwPs/ABRb/mf+sA7Wv9YGPJNwRMzSufd5mJCWu3u+Ef2nFpZtx9nalybM/Y
11CYzYBjsFT+VFUbtC/Hj4vVfMERx/7R1bMZBB9/mvfMaMOqiXU3ZumWACsW
ZQ0F0fHRMPq3pH0rFJqHD1TkF2KsTyxg/hw6unMiagvaKOhquljxQjIP+BAT
O5FOw4llccsLaijQdL6+VrkkF/NX/puJNzTYpkxovtzXiiqj1ayAk4WYH9cb
aC9Gx+b9LQtWjrfCVyrLvKjlE1wc9iua+xKfu+pHUGBhGyzlxg+9fPIF69O1
5SaFiX+8xFOoS26H4d77K/ury/EwTcLUJoWB+IsJ3WOFHZDo3fTk9f1vcOub
YbDMnYlA8z/21yY7oZpVkmf+Xx0mWXJHKJYsDLgWWC3x7Ib8kXNp8pNNsDFu
lN13gI2DG3SYIXK9CL+3wlSqg4KNaxKOVl7hQFym6ZXpUB/6qX+HQ2d1QMO1
+mF8ORdOUeqLe0cHcHGwzuNHRDdO+81prdYZwgOpmIW9cjS0LdIRb3fpR44P
U9z/Mw+8L/evBa+n46K+2e+W5TRU1964FkHq6tLz1RP71RjIq7azSH9Bh0lv
wNMRUodb/I4kXJvPRMfH6bhnq5gIaszxDFEXYLR2OnqhLNGvprZ/JsUseP2+
LGpEuEsxxb5MTIoNo/kWF87u5UCC12b7k3DX4rpN1ikzOChTS76X3cNFafiW
wmjCCbu4fJdVwxzED9u+yToyhDFLqV9/CFd8P5aq9ryUi3tqc+UPbeTh9F1j
6cYFAkT+us14dnEQeZ948uKXeBiWNZKKryK6oSd2y2DOEDTYq9qiiD5MHpnr
YnODD9Edkrum7w1hbUV3Yk8zDxfVj34IN+djX1DYxULeEMq37iv1GuXB7VuR
rooqHzs751v1ruRBJdU6OFCMj9c3d+1fI8rHu+2fOl6A6NTX0Y0es/nwGOSw
Qv7wwN0gnDKlQ+bDvKeHaRJ8hNU8u/7yH4/4tM7bLf+GUGbecU39Nw9We75v
WKzAx5jn8m8aaUNIc+m9Ed3DwwJ9mfwAQz6+bRhN7NAbQrLkPIZaDg9XveZs
vn6BD6+1qxKtEwiPtq+I+Y/om6SIg0/0Bz4O3y8I8fzOhd3hZold5jzUxFz/
PmuGACpqlzvHNYnOj1fO/1s0BDfexRhHom9NQ4a83Ts4eC1UjFUmg2DP0auV
J/PCh19uILBio0WjpSW4mIOl59ivbhBfz86taY85yMKTtWZpB1azse9gREk9
4bTgkKK5l44xccYxwqfuMRPtKxyl5AmnHfV70HPSkQGRHKGJllkMyKe5L/Ui
3K6tpX814SId6me0RzYQX9S+7tQXocUC3MwKiH91moavIUfVK4IGcGRdzOlZ
Onwkualvr9pBRfa50eKt0T2Y/X6Wwb/YISTepBX3efUjdf3t7bN+dWA8LK4h
bvkgmi+++RUT3gtRRn/rzPet8LsYvcKkidTTqjeHHvR2w+bkzmvHiprhZqAa
v/EF4U2670svuy6snH/u70/DBqjwlx3f8ZBFOF1Ibt7sTugqJ2zKSa9G6Ioj
V8LJnKbG/4uh8tpxUsy/VupLBeYuVfpj1c1AMcdz/o0fbRDJfRlj5VIGyS5J
G401DEwb0qLN1NvQH6lqZLvuMwQLPnFuPqNj1OLWCdaVVlist9G4EFgEsy/v
i+yW0vEpUve5DZ+CV5YKFjNT8uDwpj6cXkLDnpao2/lElwciNz7ZvD0Pufdj
ZGNyaLhqcVbnpwvxjwukDqZJFqHOfT/vsgId9gs4aZPz2hBrq+izJrUEc36v
+TZ+n46jb5y99KgknmcV+/VVykidP6lcq8LAB57fT1prO9I2phvNv1ABo98K
31bUEL88z2tM6UcHlgY3KNjYVqPfL3AkN4qJ9XFRCqE7u3D6XbgIZbAedf8N
VF0OJHkb2J09o7Ibmp/Vspf+X8VmHhXT/8dhRYSECllaREkhkRbhVUKiLEW0
iJJEC8qSVCJriFRKpUQlS4S+2jMtWiilpn2frZm5d5JIm+r3+f3ZmTln7r3z
/jzv5zmnCfuBtWKLGx3u87AgPWYrLrVC947JnyN3mDisbvXzVWE3zop53Wh3
bgevZ4/Ex/YGGGk0+pUuEMB899jvF0ad8KqJ1nIKbsGD4ob3MY+EyGTaave7
dGFaZa3l99sd8FzZRm3XodHNDdaJ8SWcuoCP7hFdsC9L91tO5spHVJ3JO8XG
hTu28XeU2FjuM0uygMwhQ/bprQFPDnxVZ3keyuJgqYP441Ayt++GBQHp3lzM
XWt72tyeh+oDmVuCVokgdfhXxxcfHu77z51TNN6N8sa5beeJd42HysQdJzzO
ZU6SnR8rwHqNjtA960Vwnjaa/N6TDztR9chEBQrsB7srrxCODe16/7N+gwBS
b7MuFDpS0E+ScFvWScNvBrxVBwSQOLN2L5v03T3DkL1ppO8WsOsWzIsS4kP9
k8GQOgr5Rc8nPtpCw6Gp9tHcRRTSt3bdDBOj0fPi2TnvqTSCr3/jMQIo3Krd
fMVXhcbljPmFaKOwsMLngyfxswDtFzaOejRiJoUZaxZQuNtg+nlrPYUPUrfo
l6CREmThOu0TBclX+8R1yiiMiy1qGFxPQ0XnyciBXMKtK0N+iuEUdDY7Xohe
TuP8wuNHU4mvDZ7+4DnfkMJBJVdaOJ3G19XH20JGKHScKzCQJ90fmvBuEY9F
IXn1vgmv1tDQXcQ6/UFNiLuv3d/lv6NwVdyJ6XSBhtGnGEeWlwDdH8z1y7zJ
/d59q/aL8Fyxqqwu/SUfSYeja9+vpvB8+ZqK2eR7fD1y2GvtZ+L1WqbpG6WE
+JKazesmntb3w2RsiMHDZKd24RdvPjjicZsWEU8LcH2nGkz2k97aidWWP3g4
2fln3wriab5Wj1YaZnDwt29k3cWVXPiGqe7X0xDhUrJVv+onNt6Y/0w9Qbw9
zPL0mC3x9rZUqZD0PBaWruqiDMVYCHoklH1PejP3uNbJVtKbJbla/SakN9dy
gjZJkt78lb4ocNODTnw8s6dFNZ6cg9+/I3wnU8joOVKx6G87ZuYX/t7Q0ogl
xVvCWwIFeHJ7gZPiGOFYquwPkWcdhK8atiYp8hFaLaZ8ZH0LCpa/0vE5VAMZ
KrV9WRcP3qOOGeGvmhBw6eXx1+ZV8Gl/OXVlGRfh9XIHL1s0YuWSbH5+yFcw
SvsU6ms4yDrkVOaj3ACOTe2v3gslCPV6nrd1nI2pFS5nxJXr4Xu8PXbBv0JI
/Hm1aspONoy3WZuZba/DTHP2wZ8zGKhvHrI/+ZEFyxgF/bpwJvZpfdItN8xB
wRvG2p3rWLiVHLnpkhgTrXOM+QPrM3BR62plTmUXNg7NnTLjZy0mH7g9tzz7
E64cPfy1lNEFjVNzjy27zMTyW9cTxJOy4emgny2txsLR8ZpUBa06cFb1UlXu
n7GJfzo7K4GFC7odVoGkwxnhz/4biCqErfS10VFdNs6UFL/Nm0D2wbPU1Y+n
lkD36cu8QT4b/y7cvyal2Qjur9Pffs/9Cvct25Y9zeZAuWXEeCPpPb9nJhN2
fv+O0durfZ695aKxU03bYE4L/p4QN+lYVANX4VW/6aU8BG4YsK9qasWLmf5m
FeS6VI7FP1OW4GPaGhVOArMdTqOh5yYnNEL0Y2aL1QkB2bNJStOukv01HhbI
8GgFItr1gvqEUORO3vzxQxdaEI3H28lclPMnMOJoLL9x2tw3m4Wd267aSf3r
wvOpnRvjyFzJqYiHu2eyYSgXXj47nHjZySfb/v/7vmJJ+78BDNIXZQvF7Tdw
IbeO7+JB5lZli1eY93cutMTmWi7o4UF9z8O2cDLnJXar/yts5UGNISNz8ikf
bItA53xyLvz/Xd7uz+uG6eRtTYd2CvG55cjqSsKry+sjPl5p5CP8k5WyhREF
QYa144IZIghnWdr8SxVgn/u6l/43KRwbcu89T+Y8kWrO/ukphJr0nvS6UgpH
d1k0SxygoW7p6/Z8DumrIT7fnfjQjfQHqw5I0Thyay/rCOnJu2efm09eSYNj
LiySq6JwxzeUG0s8Szq8bUBhN43HT5WzTRNIR772+BW5lXDRe+GecmcaH+Yx
NmpeI5y4+dDZ5TDxskvmR509aAR2MUJifChsPq+ZQe2hMXuV+e4HrjTkC/eo
yl+mUJjm7y+3kIbL/TeDMdY0qh9+mKQXSfzN99i8sXwKXLfY2zzCSc/QXisf
BoU/pd+S/iO+t8P+RMBZ4nsnt6otDiC+93L8alrfUyE+qpxTC2qkIPXBdUmc
EbnuUe+wWp4A/xC00CuacJFOmDAhnIadzaHGh3MFuNLqkzO+j/A/pUPa/Be5
rpdPI7hafPA7ZjTtLhBiyaQLUReJp82XNv73Qb0bzNODWh5kL3LstB5e1BfB
YVAjVXohD7HlwzytE91YObKy12qNCGbL3isESnHhp3Rxo+8nLoyc5QbUiYe/
Svt6bpc4B+XrJVRKp3EQ4o6z84i3n9PaHyQlxkaIclruKQ8W5N5elV9PPP+6
crniOSkWljB2GnhxOrHxvl1K8gIRnnZFBebXdULW35zJfNCG6GcPj2m6kud5
rG+es0cHHEOvRCQQDjl21C9IYwpASzqpnDvaBqaMlvFipXqEz8Gi9mN8XJWK
Lou734IdgbbCd79qsH7r8lmzFbpxf+T949BfTdheFX+6aHE1QtwiF88e5qIs
WjFr8q1GPNbVFDe1/QY1Tlnk4AgHkj33pbCnAbvW+ejIKpbiWXGTeZMyB4dW
NNyI3VaPiczw5QeuFuEYW+6kugsbmnLbD2ser8OH5W5n9l1k4M1wQ4NiOQtf
Z9xbupP44qLpeUf53BzsDq5W9dvGQmIjz+SVHBOHjoW8PMrIQLsSc69eSxcY
+YIqz7Fa3HVSmFWsmgFT1Ru7Ir91Ibqp2rTxIROL5aY/6l+Zg12i4iDuWhZk
7T65yhB+bv1nF7Sa8FPxztlvJoSfC48yhqpV6mFS+de0TaIIeyLerZhgwUZD
mVFh4rIGBHhs9+16UIK+ksA5eyZxkJisY8a1bURyQb+zdd5XDO23yjBq5UAl
w68skNGE8i0OS7ujqlAzwjSOaOCiJniG1wW7FnzhWt0Ri6wB783O6BODPOy9
P9ycvLINncbdgWEFddilMef4DCM+PCeHvfmk1wEZGd8Bc4smqNvm+f99K0Db
zZJD4zmdYOrJuZnrtWEBRgqGTSh4zQg6WNffhY9WebpWeZ34FzV1scIo6a+Q
F8ZzfrOgq+S2c9yahbqkrZF8JdKVycnBaYNslHh9D7IaYcMk6Py+DlWyf+fG
9OdIcpH8pHGhRxoX0lpG/2TI3H7umS/TpMiDU85OadNT3XB3PTHzJJlztavp
z/ev68aWsSNHsleRfdn5cncRORcLJUr9F5ny4ZwywyuWJ8R7d2tZMYjgtcXU
Tl9XgK/ajQ73DlM4axb1SJFNwze2t2OVjBBTj9zy6E4hnTVScSMskEbCCvZ5
sSYh/H5bMnQoCpOdp4hdWUbjkXTT6m+EN+vT09UClhKPeZUgcaeZgsN1hzWZ
s2msXy7T4WdFY3CeUYhrDPGqVy3Z8y/ReKBMqSecJ+8vVkha406h6rT87wX5
ND75a1sMEc+79CNy0qpdFB6WZIoYjTTiFveiNYL40N0ppRs3Ez/y2d7PLacx
X/niTP4D0offDK9wt5Ou1Qg57v+QRp2glO0RQDhZMmtFJvFKZkls7Zu1pC9/
5SVUOZDrchCYrLlLIVA/Yn1UGoVQ53su88nrk86YR1IlFN6PWF2RnUHBcuTP
39B/FM5FOqivnEVj1e/9I/YWpBtDsyKeE/87H1K5Y5YLDZ/9u7Mbzgvw8EzL
0gXnKGx3MlyhWUKDn9hyUuo+H4X5r2d9J918R8Jr8UTiz/tZVyRcrnVDb3fT
1CKyN84pF2c/IJ68S/yiWKwnDwbzraI9f3Yjav29u4bEq7fVdtu2H+CiJ/6/
Tw+1eLindam6k/Tm4uJqhSdbOeh+/30CfZ4Dy3Mhm58uE+Gi01qF+xvYUH7t
GzijkoXs7T+ORSwW4b5LWNhdIxZCrY9ELtUn/lFh+Kp+oQidCTZ2qrJdoGY2
Bdm6tKNuwpCqL+F+fbT2ocJ60hXHDUPqHZtRUfu2O09RiG+DGBnIbUOOy4Z/
Rdn1iLPI6S5J5OP7LsqS39yC1ZGxxyLP1uKk5OP/hvd2ozN8rMF4dTOiOrdO
KAqphuQjEzFlNR6OzKotTM9pRHjy2p+jMypQX+VUuUOZiwwT4Xd33wZ8ELwd
/pxWiqIDinIBmzjQkpUbfedKPOfDi+T6wSJMl2+0XRjAhud2o2SPq3XIrNmk
pNTIgCFpO9NWFhaz4990FZLulZ05JOWXC8ay60Yp+1n4Kz+yJEqViSMDP04u
1s3E70+ndRW6uxBeNVs1ZzoT1o02tNHVDNjZm/N/MrswZmpW1PaciRftMTcO
JObgpUPeeAtY4J1yt088VAc//ZVdaw4y0Llf9617IQuzn7qqdm2sR0mqVcbQ
0SKMZ4UckjjCJvzof7TZrAH80wX8UolS7MhWt+1dyIFt7++TG641ol8rqEre
4hsCy/qSdw2RDrP/4V/f14T5ZZesB5dUw7yBeaGf8D+0YsurpVEtUI3YFHdl
Qi1uXVIPkl7SjXOaJ/pnnW+Dc+2azX6oR6j9rJV9Xnwc3J3x1vReBy7abm+V
ZTXhavm9+/MpAdyar2ya3tOJ6CvR6/Zz25Dfw3OxCqYwOiv1jBjxTcGznekB
M7pQpVdUYEjmRH/9LLnfS9iIZf2VD0piIS0qt0SCzJX056XBy1dz8InWCT27
j4PKmOTZS8gchmm0lMuZcjEUvDfzsRwPliZ1DQFkbuXUp5msd+bBPEfGhtHe
Dd41Uf/YWhFEARLiRVe6MUWQ7XvjpQDBY0cOXCHnQmaZ/sptEcS79B4Fdy2n
YFDJUDbQFGHZqpv9M28K0GF0qvKqLwWTFXLDPMIRjVI6JcZViGePTc5mfaHw
rvt6YosNDTHTJX8u6ZC/D13T/kT6UCIoPfj6GIX23+/DkjgUEieESZ0jPbnJ
sq7xMemwsoO/Lmqeo3H9UUtr8lnCLYFhTbMnhYrg7INGXTROsSPev4+ioRS4
WvvUJsL/H1mTRwm/9ymmZjx5R+Po5vXc50oUtuReDrQxFiG/T/xGXibpyjU3
uY6yFNraO4zU//+7AcmZD958JPwL/rJt9QIKwUu+hzkN0XC2khnMe0rer5Vq
E7+WQk7Dy9XryOc9mPNHwppwufhr4TF1wm9hs353A+GtrkHtmZuEt1f3821s
CW9Pr21U0TtJ+nmq6qoE4ncHxwMMvXkUnkwPqnmTJISHb+CHuYTXvT5D45c3
0WgNSBH7XC6Atlt28OcHFDgXPi2fkkD42/FFYkErHwuXO04JNKZws6JYNmC6
CB/DDrQerCW9PznXMHaFECFVZy8eIp587Uxky61PPKw/8LlnzIkPv4mauzrW
ibDl46+wvCiyz2ZZ8yojeXid7u5qpyXC7npdBF/mwCtCecdYLQdb9t3a26dO
/Kppf3rxKTac72FgnxKb7OvbxgzSucUPqi44ED/zLsSvZYFdqFYbN2xdRJ7v
feuNg6Zd+PpStmK6IvGvOxprsiXJ9675+N0H+U4kR7D3eo43I+wPW/+MgxDv
PG4X/pnajpMKPuufGjVAz2fsNKuZjw0e5ze/WNgKldyWHA1uLW6P+32+dJl4
ZXzPzuUuzfho2XLdj67G48RPx8XNeehzm+20hN8IM7fOrMCUClw4c13sOsj+
njA68jaO9Nfaz4frV5Uh9j/vtKEDHETPUqeGrtejt6DGJc2hGAlL7wynPWQj
uCKY0fy4Do9yDnyPWF4AFdFV2XyaBcWsiSmedUwUsnsLZ4/mgh0sYL13YkFG
n8NeosOEavzcip0xmWhuDbGw/tWFqM8GJ4bmMtFxOlXSuzoDjvkXy+pbu3A3
+qWb8QcmDmf/mO0mmYvN6bcFg2YspEb+rO04VYfNCwTfH0cysKvn9OSNVSwU
BXqeY+yrh8j0xb6gj0WwPOEYLP//3zMXqde+OtaAvNg31Q9cSxHV1W/brcVB
5qVHjhovGnH56vLFD0q+weTTMfWW2VzExgfesVdohvTMt5v4HtXI0e03b5Tn
YdIWRsqxby14tzP7UrxNLTp/Js2RM+1Gs2rzkvUf22DSZ99e+7Ie91Jk1vU8
4aNid798cF0Hip0ZMRmHm5HW0niapSCEbUT4Bgv5LtzXnntwu087pMi39P9z
v2TpnKERcn+K+5XOW5C5yOwLyp5B5kSOkbVhLfHKGPfH+792sxA39CvoL+HY
WMz3jBEHDhrjdki8i+fAXFt5rw6Zwyht9p0Pl7g4n+zXseQED4tqAgTvyR5/
qqHn+iWOdMeTpderN/Bh5CEXv4/MOffeM5tNhd2YW31ca/FsITSl3VKGDEk/
GpkVeTD5qFZaOuEX4YWUjPWsHmkRljyrMTL6JkD6EC1uFErhUmT8Q1ty7v+W
HegPeC/EWzejuintFD5prNypY0DOOT86Nf4KBXuD27dOLaHBK1sX/reFeFxQ
Tdf5dTSC/R84upL+c+29I33sDoXItfp24sSX1izZuTyW+NL3rCM+O82I3+20
XmSnJ8LJvUYOrv/R2JubMaN1HuHhXZ/Hwf4iMAwnSlVX0FhRe+nZyUEh3Jas
7PB/LMJ56ZwlKvU0GExjOS4lRFLBOeGEYBFi8bFnoJrGRWfdI3Wk6+3+s5sv
s0cEjbkzjJLzaFyWvxlaLkV8r87LhEPTmGuQeDIslsa/5xra+gYUtELosc9H
aexOe5Xf4Emj9JbCq5TzFHyDDp9NzqSg/nf2/HJyfxYlBhm7iwgn90xiS/YK
EZ2XlsHqo+ApWNmqpUBjR+eUpuCZQvgPvhyVIB4bvJbpVHiF9PCX/Py/i4i/
v+7evPgA6dgH6itP9dC4Zz/E+DaHj/u79osdiRRC8ajB1q6NIvSqK1nP+s2D
tQO/GcV8MN703zMiz2ve8PRYqyouVscVmF79yUPtZ8mhx6tFUP533mlbGgd+
m1MGd6pwAY+TudIaxN9W/4ppjGbjR8/FvDvObOQbX0vJ+f//aSQtkJsdxoKQ
+aU8K7cL0xVkNmYqiDA6zfuD89kuyNiXzryZ2YE0l9v3NU0Jv++9HKvc1Il5
ydUT+4Ja4Dum4S8WLkS12Gzpdzva4Zgkd1nzfQMcH//UOyIpgMuVCT1ylq1Q
i74aX2nChDvLwDc3qRtn636q+IQ1w/Zu5xcTwx949mmCdrMbD0vnW6X6zmiC
/7rb5bYalZjVUXSkyIaLV4/PxqjlNaCStHB5VBns9zw6eNSDg4mRCtsi4uqR
m7pSfXN6MRLzLAz/PWfDXeqy963UOvQuL1s7ybMAX5lZ8Q+HWSgxl74wkctE
2ak1MadO5CGv1sokiXA8y5G30c6ICXmxym2bezPheXf6RnqoCxbTJhbsUWZi
x1hJwsnZmXCSeHnmOLsLe2L3BKzLZ8Lvr0/CPbtctE7b+uCwJQtfrm9NmnS5
DirJZmYmFQz43PN739XEQsGK/Qafj9djOLHGJbS/CFaXo5Z6+bMxue9tgLF/
A9JuGUpFZZeiz93u2CUjDibddL6hUdwIsSmJO05oVsDv3DV6gxoX8//k335p
1AyGQ5KK2WviYz0Lol5o89Bc732ut78Fa55eTYx8XouNQR+Nhp27cX1pzoZ/
xKum5i2TnyPegB/zDkRFF/DxdeG4OEOyE68ZopHB0mbEKcTcnLxdCOd51zPs
DbuQ/c5FT6evHTnzMq6LDVCYKKmZzjzOwij7yKjxhS7MvsUX5BCOMU3OHzxJ
9qNrUlFZkSIbld/Wrskn+zGlZ9fG6uscTI3TeyPTzoHjM6WeuctFmHAnuNPq
BRc/09W6Nr7jQfxi/e00sn/LklcZ7q7i4e7MRPvKYD6WTtvPOaUrwho78ecf
BrrhqpE6edJxIbJuysRpk3Nh+dfnagmZL3Yf++uxPcQn5t8P9h2gsTXt4eKi
iUKw/E/sk0+kcPhkkvvUmzQa7j9M5IiE+BERwtEk5/TVxRkXVRXJuQuK/3Wr
gEJ8uE34Z33iHzFKn/d9pnB01pUfJ3xoxP93sTCH+Jf+GnWmiweF5HmdUd6E
l/SS/GPFL2jMU968XUuDcHT9XrlXAYRjNT0CrUoaCwakGwUDQsRlP5wyrUSE
wtQ9SqMcGjoNNZN7G4Ronr7r+gWWCG4xBYMXyPl/1fYoY+03IUr0ViGrRoSG
nvARPQHhp2fmNuMaITI/7q7/ESnCDvlil7A6Ghu0ouoTaSHUAprNhoi/fZPX
3dpH/C18u1hCzXwKGgevqd0g1+d9R/H+mes0TreEVO08SGFf2qvq4CHSlS8S
O9130tCa98x5YzKF2PSnHXdWUtBXn0Qdm0J4Xn7YIEGMRqdk7MGtZkLMku0x
2JZD4fPXigTucfI8Oeb3oy0FmDaceHbSCQqM1L79xwmP7/bmeueZ85Eipvb6
xU8hBCqV9GLS+4zcjWoLVbuhe8lqyws5AeYMiEc764twNC6Q5/WPC+b50FEx
/W64KAXuStAWYUPYzf57jRywTjhWTjzKxeAM1vchwjHeH6m2M/ls3DLdqJP/
hI0b7Icn7iwV4cxUg3HdDyzIrZNI+dLTBcl9vyd5KoqQCu6feY+7YDB+30Z2
UScOJUrlFviS+67XUtju0Im/VfMrj/9qgftTPzUjhhBzfiY8XxrYjiKvaZJK
0o3IrFsT2bdSgDRNG/Mpl1vhm6U5708oE8xzStusvnRDX/XGcGdmM5Rmp+zZ
7fcD1X2B3KU3eAh5cWH7rhVNWDNQdfNeRCXeqpx963GKi9Yr7oHm9Q0Y+dFd
vKG3DNsnGw7MJN7Jnh32m/2hHjHBATadw4RjHu+Fxh/YcMx9tfVLXh1Cmp0c
LyUXYJJ1tdw/CTbuVk32aP/FxNHTV4YaCvPw0M1C6+15FgrP7F5xagcTupta
/G10s2A2+vu0mBgLuYyXPsPLmBi4Pl3/07ZM7HdtUP/K70KJbr3XxDIm5s7o
0MiPz4U1d+EjExsWGvXey5y+U4fte+TjvAcY8JX2XB/LYkH/uOkLywv1cHgh
ezNHsxhe85rvOt9iY4Gdn1fUgwYU22uXN46WwnXasmGZXRzEnoq41tvSiEd3
L8ydE1ABt6frDfp0uah2VImNOtSMbvMTklFt1Qh5nGw/upUHqXuj7yrlW/H7
lpeObmctcoUbx339u9Hw3PNJ2Mx2OC3aJO6yowFLJ0m/q2vnI1KnZGD34k5I
dbnPP6rQAvveLRPvnRRCZ7vPvDkHu3AgduJ3WesOdLu9W3FEicbYOebXbYEs
2LxXG78V1wVjW63wHWTfqdg2OZ26w0aH/N62sp1sbNqrlulI9uP66w5hMUkc
6OXrWaoTj9w7z+lSNeHY0PWJU6S+cXGzeOa/BD4P8Zt0xgPJ/pWuEdyfNsCD
qNSi9flXPlQ2WBcfIPs6fd2gt9cSPmrj0ybuThXiqc6+3tWbROib/e5F7FoB
RIc+/ffWgYJ2+bcMM8KJcY/GkXFt4m0nKqKDPlJwP+h6w9KL7N8zTpEWpOcW
7OcNJ4nTiC6yKRAnfVH22aOxqp8C2/+V26odNGZMH9YTvKDg3xiWr0E6cGlb
75QxwsHIzmWbO/ZRGNbf4LrBVIRdeVunpmeTzwsRVebPorBoWsSBgUzSzQLb
eQmdNPY967P+1ibEpY5jIxZiPbj70/MBY5Am+9ld7GieEHf/+ixWUOxBxOOa
YTtxEf5Lku7zTSPP/6u6wTLpHhj/NT49dZT04vxUj4QMIQq2rPXwInwLd804
pEz4Ns375wRHwjfUO0sYuovwxqXScFopjX6n/cOaEyiYH78oyW6nEbvJp747
ksZQ7KbDASCdK7g8FryK8NT1V+D8QzTsP3u0BoRQeKgdcqCU9Kg4vW2dmjzp
62/R2soUhfulA4quPkI80nq0YuwrhV9E+EstaczaqzT9WIAARkkezXEXKEw2
C5UqL6QRU7lGNv8CH99NKC9JZQqDxX+mnyW8sq7/Edtn0Y2jx3zMtlkLsFpW
74+lgQhS2q6jWxbzkCWg5ml6d4PvuEXbh3B510EfJbchDs5+dzz5I5L4mp5O
dJamCHEbJ630a2Gj1m6X7PEKNmTcdnF0SLeLPlmz4r6xQOV3RUbOY4H57z8z
cSURWPF3xSZndGE4JSlCYU8njO0mvalNJF18eiiz70InTL3VmCk7WvHrp/9P
K44QDtp/LbJft+OcWfaabptG+BZH7Qk3F6D1khH96nkroloDs1J+MGGQZnNY
tqMbFY72AQ4NzfD/5jxu+f4HFiTnvn8YQ/azcKqOx9Ym8BRVK/h0JaKULVzm
XOGCNVWMXy5sgPOLSWf99crx3TXL//w9Du5eXdPjWVQPqcVpe4/rfIHE/h4L
Vh4b1vOLhse+1sF4adG0i8wCfDhxJ9J0Jhv7Q/sjrP8x0alxY2vK9HzM7jdj
Tg1g4Z+KUDLRkgmpQ2PV7qeyMJ0t6PsymYX/AZg9Lb8=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdm0tq9NoZRe3YOC4SjB17AhlACHm1VWPIEAI3N73MJb2klzFkAGVQy+RP
OuokoEbgEJCDQKL0oAwmr1Lt/bNXNa7voko6Ryqte779nbo//NVvf/nNd66u
rn58e3X1/7/b6+VV//az8+vZ/Ovz6wfm359fT+Yv59ejeXt95e34B/Ofz5//
vvmn5/G+h/PvzP85v75r/uZ8vjuMf4v53+B81+Z/byc85Hw+D/n5D/M23mr+
yfn80yHPN+D4d/OPzp8v5t+d3/87+M3M1+X9SvzH7XjzL7bzmy/jm2/O/xzx
+cn87XZ9OP7DfLk/5uvtz178h+3+mi/33/zX7fsxb+PdmbfXvfny/Zsvz4f5
8vyYf7M9X+Ztfo/mv2zPJ+b7ZL4835j/M+b3Qn79+flzf6rki1i+iOWLWL6I
t/M94vgHs3wRy5c8/84sX8TyJce/xfxvcL5rs3zJ+Xwe8vMfhxxvNcuXPN+A
49/N8kUsX5LfDnn/rq7wfiWWL2L5gvHN8iU/P5nlC66/wv0xyxexfMH9N8uX
HO9un9d7v8f3b5YveH7M8iXn92iWLznfJ7N8wfOP+b2QL89TDV9q+FLDlxq+
1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4UsOXGr7U8KWGLzV8
qeFLDV9q+FLDlxq+1PClhi81fKnhSw1favhSw5cavtTwpYYvNXyp4UsNX2r4
UsOXGr7U8KWGLzV8qeFLDV9q+GJ+3a7ri30RyxexfBHLF7F8yeMfzPJFLF/y
/DuzfBHLlxz/FvO/wfmuzfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9
Ux3j9yuxfBHLF4xvli/5+cksX3D9Fe6PWb6I5Qvuv1m+5Hh3+7ze+32OvzPL
Fzw/ZvmS83s0y5ec75NZvuD5x/xeyJf//jZYXxqsLw3WlwbrS4P1pcH60mB9
abC+NFhfGqwvDdaXButLg/WlwfrSYH1psL40WF8arC8N1pcG60uD9aXB+tJg
fWmwvjRYXxqsLw3WlwbrS4P1pcH60mB9abC+NFhfGqwvDdaXButLg/WlwfrS
YH1psL40WF8arC8N1pcG60uD9aXB+tJgfWmwvjRYXxqsL+bXbZy/2RexfBHL
F7F8EcuXPP7BLF/E8iXPvzPLF7F8yfFvMf8bnO/aLF9yPp+H/PzHIcdbzfIl
zzfg+HezfBHLl+S3Q94/5Va/X4nli1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/
zfIlx7vb5/Xe73P8nVm+4Pkxy5ec36NZvuR8n8zyBc8/5vdCvtQrLeqxFvVY
i3qsRT3Woh5rUY+1qMda1GMt6rEW9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1
WIt6rEU91qIea1GPtajHWtRjLeqxFvVYi3qsRT3Woh5rUY+1qMda1GMt6rEW
9ViLeqxFPdaiHmtRj7Wox1rUYy3qsRb1WIt6rEU91qIea1GPtajHWtRjLeqx
FvWY+XU77z/si1i+iOWL+Ms2H7N8yeMfzPJFLF/y/DuzfBHLlxz/FvO/wfmu
zfIl5/N5yM9/HHK81Sxf8nwDjn83yxexfEl+O+T9Ux/U71di+SKWLxjfLF/y
85NZvuD6K9wfs3wRyxfcf7N8yfHu9nm993t8/2b5gufHLF9yfo9m+ZLzfTLL
Fzz/mN8L+VLfF+SXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinI
LwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5
pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/FOSXgvxSkF8K8ktBfinILwX5pSC/
FOSXgvxift3O80/7IpYvYvkili9i+ZLHP5jli1i+5Pl3Zvkili85/i3mf4Pz
XZvlS87n85Cf/zjkeKtZvuT5Bhz/bpYvYvmS/HbI+6d9Nb9fieWLWL5gfLN8
yc9PZvmC669wf8zyRSxfcP/N8iXHu9vn9d7vc/ydWb7g+THLl5zfo1m+5Hyf
zPIFzz/m90K+5OEOeb9D3u+Q9zvk/Q55v0Pe75D3O+T9zr6IM+93yPsd8n6H
vN/ZF3Hm/Q55v7MvOd5qzrzfIe939kWceb9D3u+Q9zvk/Q55v0Pe75D3Pb45
836HvN8h7/v6K9wfc+b9Dnm/Q97vkPc75P0Oed/fvznzfoe83yHvd/ZFnHm/
Q97vkPc75P0Oed/8ul3Hv+yLWL6I5YtYvoi38z3i+AezfBHLlzz/zixfxPIl
x7/F/G9wvmuzfMn5fB7y8x+HHG81y5c834Dj383yRSxfkt8Oef/0uxG/X4nl
i1i+YHyzfMnPT2b5guuvcH/M8kUsX3D/zfIlx7vb5/Xe73P8nVm+4Pkxy5ec
36NZvuR8n8znP//zBc8/5vdCvvSPevTHevTHevTHevTHevTHevTHevTHevTH
evsizv5Yj/5Yj/5Yj/5Yb1/E2R/r0R/r7UuOt5qzP9ajP9bbF3H2x3r0x3r0
x3r0x3r0x3r0x3r0xzy+OftjPfpjPfpjvv4K98ec/bEe/bEe/bEe/bEe/bEe
/TF//+bsj/Xoj/Xoj/X2RZz9sR79sR79sR79sR79sR55f0DeH5D3B+T9AXl/
QN4fkPcH5P0BeX+wL+LM+wPy/oC8PyDvD/ZFnHl/QN4f7EuOt5oz7w/I+4N9
EWfeH5D3B+T9AXl/QN4fkPcH5H2Pb868PyDvD8j7vv4K98eceX9A3h+Q9wfk
/QF5f0De9/dvzrw/IO8PyPuDfRFn3h+Q9wfk/QF5f0DeN1/6rSP6ySP6ySP6
ySP6yaN9yeMfzNlPHtFPHu2LOPvJI/rJI/rJI/rJo30RZz95RD95tC853mrO
fvKIfvJoX8TZTx7RTx7RT/76O2K8X4mznzyin+zxzdlPHtFPHu0Lrr/C/TFn
P3m0L7j/5uwnj/Ylr/d+j+/fnP3kEf3kEf3k0b6Is5882hc835j/M+b3Qn7d
/h7ti1i+iOWL+Ms2H7N8yeMfzPl7/mOVv+c/2hexfBHn7/mP9iXnf4PzXZvz
9/xH+5Kf/zDn7/mPVf6e/1jl7/mP9kWcv+c/2pfkN/NVvPx+Jc7f8x+r/D2/
xzfn7/mPVf6e/2hfcP3m/D3/0b6I8/f8vv9m+ZLj3Zm3v/dm+SLO3/P7+THn
7/mP9kWcv+c/2hexfMn5P5u3vy/kS70yoR6bUI9NqMcm1GOTfcnjH8xZj02o
xybUYxPqsQn12IR6bEI9NqEem1CPTajHJtRjE+qxCfXYhHpsQj02oR6bUI9N
qMe+/n8peL8SZz02oR6bUI9NqMcm1GMT6rEJ9diEemxCPTahHptQj02oxybU
Y5N9wfdvznpsQj02oR6bUI9NqMcm1GMT6rEJ9dhkX8CX/tGM/tiM/tiM/tiM
/tiM/tiM/tiM/tiM/thsX8TZH5vRH5vRH5vRH5vtizj7YzP6Y7N9yfFWc/bH
ZvTHZvsizv7YjP7YjP7YbF/wfiXO/tiM/pjHN2d/bEZ/bEZ/zNdf4f6Ysz82
oz82oz82oz82oz822xd8/+bsj83oj83oj83oj83oj83oj83oj83oj832BXzZ
z1uwX7lgv3LBfuWC/coF+5UL9isX7Fcu2K9c7Is49ysX7Fcu2K9c7Eue79qc
+5WLfcnPfxxyvNWc+5UL9isX+yLO/coF+5UL9isX+4L3K3HuVy7Yr/T45tyv
XLBfuWC/0tdf4f6Yc79ywX6l77859ysX+5LXe7/P8Xfm3K/082PO/crFvohz
v3KxL3i+Mf9nzO+FfMnDK/L+iry/Iu+vyPurfcnjH8yZ91fk/dW+iDPvr8j7
K/L+iry/2hdx5v0VeX+1Lzneas68vyLvr/ZFnHl/Rd5fkfe//n/BeL8SZ95f
kfc9vjnz/oq8vyLv+/or3B9z5v0VeX9F3l+R91fk/dW+4Ps3Z95fkfdX5P0V
eX9F3l+R91fk/RV5f7Uv4Mv+9wn7+yfs75+wv3/C/v4J+/sn7O+fsL9/wv7+
yb6Ic3//hP39E/b3T/Ylz3dtzv39k33Jz38ccrzVnPv7J+zvn+yLOPf3T9jf
P2F//2Rf8H4lzv39E/b3Pb459/dP2N8/YX/f11/h/phzf/+E/X3ff3Pu75/s
S17v/T7H35lzf9/Pjzn390/2RZz7+yf7gucb83/G/F7M/wUltvDM
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHncVlP3h+9zzpMhQwOVipQSmWellEQkiZAxJbMiRJIpRAPRIHPGyFyG
UiQZklmGzJlKShokKen129dvXffn6Y/1Oefsvfbaa6/vtdf9vO/n7W3Us0+X
C/NSqTR7w1KpSM99k/HN+8bJWiVrmWz/ZBXJqvjcT5+N9MPnwGRVk22SbPNk
1ZK1dayVflX1a2WsDZI1T7ZZsjbJNk12kN+bG4ux1skOSLahe/Js4frqyQ52
v8Lc9jXP/f3OHdsnWftkWyTbMlmHZLWT1XGv1ua3kWcq73mA+7VzvxrGqWms
Gr4f4rmau/cGrmvufrWSHeaZ2rjfuea2n2duu14NDtKvmmdkrl6yTsmOdM9D
3XdLY5PXVsk6JjvC83HOw83zEM9Ry7HymkONV8d1HTxrO/eu657EPcocyKWz
3/Vdu5XrGyQ7JtnRyQYlu8H3bXyyLlObfVxX1/j7Wb/zkp2QbPtkJ7rHUe5b
1yc59bLG5Vqf7/ranrGWGl6gz9buX998GpjThereSoOFPsl2SrZzsm7Jtk3W
MFkXn42SHZtsu2SNkx3vGN/HqfFFxmqjppc43sZ3dO3rXAP3oHaXOnewsZsk
66pWaNY/2Q7Jdkx2crKmfp9kzZpaNzTvp5Zbe2bOj/ZXGKuJa05wP3wvs36w
cGWyAa5hrJl1OdX9+T6lFNpf5Zp7S8H3edZiO+tDLXdJdlqy+9Wvt35od1+y
3ZKdnmxXfXl2d3x353qr6QOO7ZGspxoyjuYPqWsfnw86t2eyvZKd6Tq+z0i2
YYLy8/ScY15jzamPOj6sZherIRo9pn6NPCc8jNMH3wNd28c99052ljU/QU2P
Ufcuri/zdZIaomVb9+urNmj6uOupK4xcrt6HqmE/fbl/15eCczQ5pxR9B7/+
roOdk93zMPW+wrqftp4O1L5HKZhA62eTXVOKu8t9fMZ1rO+gD74flYIJ9OUu
7WxcGIKdMlPdHNvVfbqb+3WluP+fq+vDaranOvY0t92t75nW+zzPTF85wjzJ
dx9rcI7fVzu/h3GJB5+zS8EBup1tbHraS8kmJxuY7FrPjnVyrKv6DvW7k/mf
b070qF5+07duKoX2x3nezuqFHeOeMPVIKXga5Dis9DYW/Q3OYbyl4y38Lt+B
VubR2X3KzN1ofGLDNuzC2qPJhnkWWBxSCt66Oo/fQY4NMf/xpWAV9mDriVIl
i4zTY550rr8GM08lu6UUDJ7sPOsOcW/Gby7FnX8w2af6wc/wZLf6Dj8jSsFS
mTHebytV9rLDzfPrUtzhUaVgrUcpGEXzj5N9UgoO2PP2UjDW07j4j3QN46NL
wRHMwxJcwBZcTHT8atfD2Jhkd/gOrzepw7Hq28VvWEd3+tJdpWDwbNfwfmcp
7t0Az3eR/qzjrnxmvbhDA0uh/yVqO07N0G6w74PN5Uvn8UN/OBiqhuOtWw/P
Pco54nRVj1PU5BZ1O8kYJ/pN/4KNb5PNLQUTMNDf55PqO9wYVzjX3vM+7Rja
jlDf29zzVH1+0I84O5pTP/d93LxHqiVaF1nc+TPUZowaPqeGo9UaFrIs+hqc
TEj2cyn64Rjne6r5BMfJ8TT3u0P90O5TNaqShb53qitavZDs+WS7prl/0nNt
Ke7tpGQvJltTivFd0vyr1vdmc73a3Olx9MB7jHWtsbHrjDPJuPxWwD534Hxr
hNbc3XuNca5rrnMNd4M70tsn63sZgzXnmce17v+ga+hLsAVHX5WCO/h5uRTc
wTA9qcwxPWxqKdjEFz6+U8uhnn1asm/Mmdwne6ZBGvdpivHIg574ivsONRdy
6msOX5gHNYXB6cneVb87zYH96VWv6QOv8At335dC/6vU5Gnn4BZWYeKNUjAB
i2+VghXY5S7fqh8+b+qP74/64DvPPSaWKvvgjGQzjQmzMArXeRbf8Pl2Kfga
qJ7PqRMaVWRxH2Bzlv5jSpU96x3PD6/vleJ3eYMsOEZL+uomWeg1Rc3QYpJ6
zLG2GyWf941zt/rc5JpBPl9Sgy9c96h70J/gAF6mqvumWex9hzqR53jnvlaj
6eo0w1q9roawRC+CIZiAh1fVfrpz+Gye9qieRc9C32H6TbP+M9znKefnqt1I
9aVP/KR2Mx0bpZ7o+oM53arunG+IOe2TRd9BxxHGxWeLLNb9qHb7ZdHLRqvz
TPWdXwpe3lbTWdZoltrSg9CxuVqi/4PJFiT7RTa2SXNbJ1tkje+UgYXJfi0F
S+87Vtb1A8fYe6K50EvoDx8mq5qFnl+5xwvuOV9fxmCYfnufzw9dDx+/lSKf
A7L4Ox6uFhiHfOCT8zykL2umuGay3+Q/yW/ODf/0qdnuTV+bY6yHS5V9c6G+
+NH/OAesjnMP2FzsEy2X6LNxFn5nW6O7nH9Fn0KdZ1vXBe4JZ/C2LNlmWbAN
mzAKd3+UgjlYpT/BBRzSe1boM6MUdWqh3suNOd05+Psz2Urf3zAGsWrIfrWs
8s6QA/0WDn8sBd8wBlfl36gya7ls7psFD7WyuBPYBBl5T17WJfu3FJy953re
15Yqe+Jf7se+3KlVjnOvYBaG4Gf/LO4GjDPHnfg72f/c6wPPWMP7DUNo1FLW
F8rG7+vpSS+gDm2THZgFx/S9JfpNVael6oZebbLoU1/IAPvA/SauXyIDS9Vk
uTF+k6fF1nsz46xQ89f0ne43WhyarGaydp6Js/2ppitlhPw5xww1X2FNV65X
41WOLTW3aY69ZQ23zELHw5KtdmymOdS0N6127G21xp9152TR1+ABjc6zf9VJ
VltG3pUDdKf//GYd4Le3/epfGVmnz9HJOie7IIu+0NKeUDc9t8pCz/rpWS8L
Btatx8F/crFWduGOfkPfKZkTXNWRqcLfS2L9Kit13Y9v9oPFBfJPD//YWqyx
NlWM9alx58svviX/1tzQ+1r+va1in14kH5y7vmdjbCP74RzrBZMN0nf7LLTZ
UuZayfqm8stvZVXH6FWbyi1z22YRB04bZcHEMg3+tktjB2XBJ1xxvlnW8Q/5
auIcPvQP2DzYu9TYfoQveXA3HnM/9mooy9XsQ82yYLHMIef6SV4Z31EGa8jh
Dlmwzfz23h+47yDDtbPK3tfUdaw/REZh89xkO8s656vt2nnmwfhO5vGzeW0l
02j6Vnq+mWykWvT3ru4ux+tkj/fd0tieMgqXLdXrwmQXZdF3Wmfxm4z2izw3
ddlRvuvKJXwsloGNjdNSTRuo6zrZ38N7w/3injVU60Zq9Ic6VlM7eiD1bGJN
0RC/7ZzD51JzQgPqX8O6trPmTY2xRJ23laVL1uOvtWfu5zrWN1XTHdyPHJfZ
f9pb2w5qW0ftdlI/etbhyQZkUbO/1Y6a72Hd+c9X8Lur648wHnU9MllHdUM/
9Loni74GJ+cnuy+LvrbGWDvrR7y19kJyIJde1vx+eVinFmh7VLJOWfTLvbPo
DTCxl/nekOz6LPreg1n0Pjgp6cuafV2few7OA5td1e6ELPownJf/lmRN4Vnr
ylRH1/G9mTq1Mb965tvcWPSpA+RoQ/OD13Kf5tnA86PXln6j/zHqDatV1X8T
92qo1sfq00e/1s5fnKyLcfA9Tn8YaWlO9Mi+5g+nja0FPrAFO5dnwRh8nZQF
d/Bc3Zptb936Od7Os3J++vTJrt3RPdhrc/dpbIxTs+AP9q6wDoe5hvFTzIWc
6Efwd2UW3JyWBVO7WItGnnUnx7slG5sFi/AFl/B4r2vgsLuxahkbfY9Q455Z
sAiHu/l+ehY81lfLM7NgEBbh7oEsON7D8TOyYAOG6lmny7LoCT3MgdgXquND
6oiGF6nRo1n0goaeE20fcf5ite9jjM7mt7V1Pl5N4Q22jnE9T/g4UQ23V5++
7nWpeY43xnHGOVFfuHhC7eGE+3ed+x/iWD/9TnLd01n0fHSmT5ydxZ1s71h/
Ne2mft2tTw81Qnf6FUzAFoycqt7dnMPnmWQfZtGP0LqZfqeoe3f3Qeerk12l
1nuo11GeZaD6nqGWaHhtsmuy4KCH2hGno+OfZdGD0HF34+ILhx9n0RPZr4Pr
6F2Tk03Kok/tY13g6Sz3h6lPs+iN51o7etNj6oVW5zlH3zrfb3pQL7+bmztn
gMcbs+DgWM96lNphR5sXPMPyAdaik34XOkcvgcGHs+Cvl/uwpszZIH2Yp1cN
Vzu0GJwFV/AFx3A3zrHB5sYcHA9xHr821rqj5xmqDxzDHRw9mezmLLiDP1h8
PAumT3B8mLWjhm2dO1jfk831JOMRlz60S0X6TSwSl+l5WxZcdfM8vN+aBYfw
fJgafZXFHebvHriDv3tl4aNks7PgA31HZ8HV6cbFf4RrGB+VBT9wDkPwe4T1
YPxZ51gPe7cnG+P7Geo+SG1uUCe+H1LHz5PdmQV3Z7mG9zus8VC16KM/6+Ad
PuEUTuCsk1qh5yNqiaY3+X6TuXzh/DjjDlbzvtbuUc84MdkENR2mfiOtDTUa
r77fJPsui970pPme4JrL9Bmvruh7SxZ96Sl1RsPb1PFyYzyhz/f6neS6m/Ub
rv6M83sHO8+oxY+uhYcB6tdDna/UB1/+hwH0rDIPeR79ortrRppXN8/cU13R
l/v7YrIX1O4ONUOH55M9l+wTNarIYw37n26MM1xDn6Bn/P/vdx69DB7oT4uS
LbR26MK9ob/enUU/Qpur1Aqu4ZseNNZvYsMHjPc2L/IbqF6PW+eJxrhGX9b3
8nyc83rPOdDv5/S91j3JiT44SV8YhzW4mprsZd9hDebg68ssGJyTBdOP+KRv
DVPnV5NNy4KnYa7n/ZUs+Ods9MTyfbjQurH/IPdhP3rY19ZwvHPcg5eSTXev
Wzzj854TBuFurjWiVvQouJuhP9zAS5YHbzAFe29kwQ3M8J+/4Aiefs6CvQnG
Zo/+rmM9rN7q2tddz9o33XO48xOMg/Yw9bbx3/Yb1uCoSh78FXnw/UlW2Ztm
qeNEtXzHcZh8Lwum7/Kb93fVcYmaTraO1PBzddww7TPFsRvlAYau9/sm1z6s
P+s2zqMffalGm+TRu8c59oWaT1P3WZ6Tc9B3vk22WR7zMPKq2rymttXyYH2u
+rPHV+r5rTGmu67MwQzXv+KZh6gVMYj1Q7IaefQmdPhJ3ffOo6fAwxvq96bz
W+aVfYn131uLKdamrN9MtZ+xHgtvODZGnWap27wsmELfffPoX6OMAXew/Euy
+Wr6rlouVBs0pDfByf559BXu8gfq9muyBcla5NGb0PcdmSDW1um7fh7xPnTd
PeY0wRw542DryF3hzpR/g1lzr/k9Z77zXMc3f5PR58gLFt/3HLONNdYzwNtv
8gT3D/mEffoC3N/v94uefaG1YU/uPZxtlAeXn7jH/Z7/BdfBDXzC5WK1m+pa
1j1iLlPM5yzzpuZLrAFMbZXH3sSmrs3VYFkWHL+qH+9Lk/2RBaMwOVd2qif/
mnmwBFewDNPfqQ11+jcLvmGevvdnFly9bgxiPWVcxle4N3stN9bmecRmDRyu
TLYmC1Znqd089Zrp+OosuIfBVVncB9jcJ9k6c3vf8/9ifddmwRa5/+VexIAl
7g53iLM+7Xn3y4N7+J3l2n+S/e2+5PKruqE1tTokj3u7WH3QCabR/YA8WGJ8
kTVfbi2mqt/vWWhfNY++RV03zYMJtFqmXq2cx4/51vpMNcZi/Zao8xzZIxd6
GTU/SB5eNY9v1WIze8tfarFC7f5UxxXmfnAevQ9O5spLNXmpaR1Wug5tv/Js
j1rvLexXf6vhW+75pt/M49debZ5Vq7Pz6INovVoe1qjPWjVCu3PtWf84P0st
uA/c43Xy+5461kvjdfPoMfSN/2Tof/ru7z06P1nvPHoWmq6VKWLRrzonO8r7
xz2sk0feMFzb/v2fe7DfAvevkDd6QyHP5b8ZM/9uJNZ8mSZWLWOT+69ymLnH
R/qw73xzWyR/C2Vwa+tRJa/8Pa/wNx2+WspuA5n+XSbQaQfHmCNmG1ncTBZb
yycMNsxj7cbG+0LG4QHf7WRxuYzzvdQ7tlpGmuTBHfzBWVs5Xi6Pjd2bHL7x
3nB/vnH/Jd6J6rLZTgZryuHh8kZNd8zjjKtkeQs5rCHv35sD+3+nHzk2S99N
82C+fHd43z4PBneR2VruhXb7yOk5yXbKI85qfdfIM7rXVvvz8uB7f3ndSoZ2
k0U4hM1e8so5OA968VsKK+i/jbo1UBtqtK36tJTtPfJg/3+y8pvrDtDngmR9
8uhHB+axN/67G3Nb2anqfCu1Xq5em6sjvQh9G6sx2rWRoUZ55LZU5qgvtb0s
jx7UzpiN9GHdxa7tn0dPPjQPLbZ3n+quY/326tXUPMinr1wc6vrD5aK2GjVT
JzQ8TDbKmu0sP6vkYTfrsrs+OxsDHe/No0+tVb9dk92dR487R207Jjsij76D
pmPNo4N5odHu6oS2nZId6Tku9SzXJ7suj770QB79C+3QdU9j0FP3yiv7U8lv
zjfAM3Zw7zruUVeeOpprXXOt4zdcw3f5t5k96E/7OUef29/vCmPVN8/mztGT
WvhNrzrAb3o5LMLX0XnwuY3vh5vzYc7DYZc8GISLixxr6Dhc8o9IWupTVb9L
8uDpIH2Yp4fBGswdl+x43xvrhz99CL5gp18ejMHXifrBYNc8+EMneskJjuN7
rLmxz0muhX14rKkWfMPZye7DfvSn/vq1N/6l7nGK/s2sb31rxjc8nmq9trR+
sNw9D1676cM7XMLsPcnuy4Pj8/VlDQzDAKzU8Ru2e+TBZj33h1m465kHSzAE
P7B5fx6sn+5afM/Qf09jshe98QK1e9DzoH9ndUTnPuo4Lo++8LBjF6n9MXkw
0sWaH+vY0Y5vp8ZlrRurXV9r+5hzx6pXG/djr5bmdoH6dlXjT5N9lmyDolQ6
Mz3vTHaH2p+oLzo+mexytYWjy9TwFHW/yjpT7yvyYP5p55upKZqdpoYf5NFf
7jE+sQ9xHevb63fqenp3dz37weIO7ntlHpzAwEd59DL0HZjsWs/4gLqcroZo
PVZ9Z6v5NcmuzoMr+t4+anymmvcwhzJHpzuG71l5Zd/a2+/DrQk50vcmJXvR
WOy/h/sd4f5lXQebC2NHeoYj1zsTT7iFd/inZ/VRX3oDvHIP6FO9/W5hDvB4
tPOs39+1D7ke3gbpc5T+1zvGHGzCK0w9kgcjTdXjYuda6weHNya7yXfON8Qz
wt+jefDZ13NQ9339Zvwg497iPjAH5we7HjaHJhvme9lnvH5wCldPGINYJzvG
HLzBHrzB6q158Apzz+bBImyNyIPF0/RlTXvPMUS9rtT/cP3gZGSyUb73MC5x
bkv2cR68jnUOlkbncR/g98NktzsOKzAAE3AAz3AL0zeo1SB1Otox7jCcnam2
n+fBP7+9A9UW9mDzCLV/SB90+TKPPtVFDYn/sJp/4dixatvTvcao/yP6nmw9
h1sjfGHgMTX62vp1VcdL3Hucmg5dT1f0u1ldxxvj22SPq++JzrPumWQ/qulw
15LL93n0safM61bnnzDOZWr7lH5893N+hLp1U+dnjI+OWRF953Q1G6323dWf
Gk/Ig6nTnBvh/qcad7S+sPBCsufV/A7reob6P5dsYrJPklUU0bv+y6Oflpnp
6Rp6Pfefv1MWJvs1j/7zSrKlyZbk0YPvyqOHkd+V6+XL82prjS7cS9iEUe7r
fX7TR+ARlst/FzJ3vrlebe6cZ6Dne269sRccv87Y5HSOuTIG1w+4B+eBLxiB
Q5iamgePMAfD9DPuAMxOdvxz59D5mzwYmup62HzQPS5wvxtcS61gFBa/sg6P
uYbxl82FnOh/L7nvjXllb5qWbJbajDEH9ocvmIXP6XkwB2vlnsX3d+oKX/yD
XBiGT9h7PQ+GbnOsv+OvGXO4c7D2RrI3fR/pHGtn5MHyAPUv96y3kk2xRouT
5UWwDm8z9RmtvhPU+Hl1vdY5zvt2sletA2eld8HtJ9aZGvO7+Jka8XfIu3lw
f6cMvCAHYxx/xzpPttafux4NN0rr5+SVPWqq5+B7jiwMUdeX1RNdv/RZtYj3
tz0n56BPwcymRawbqqbjHf/aWFPlYrr1f80zT7cGr7pumPqiLT0MTaun2HPV
5HV1eV390I5+9oP64j9XPt50foTz+NVMsTYvIjZ77FVEj4AfNJnl+dDt52Q/
qfcozzzS7zfNg3MMl4F9iuh3N1rXl9R8frJ5eWj3jjqh24Jkv6j5/smKIvYf
ox99qX4aq5esShH6tyhC+/eMR3+iJ7yfxz3gPpR/I+l79/h8Xz/ONdF8ONuz
js1z/DnHqNUzfj9vnr/4Tu4wSs/51DzhdLJnYv5FbZLz+M92zcfmSh/8zBjw
CVswBo+/WT/qCLdwPMc9GF9kPGKNdQ4fGN45+a9OzzV5/K15tnXapAiOYZIe
D68w97LvS5zDhz5WRV3QZ3kejE6XGxirlsZr2Hd+kAWY+NO4+C9zDXN/5MEd
9+JxYxDrScc3K2KuzDdxVvoOx3AHg3/ncT7eYbUkd3snW5UHm2VGV7n2HXlZ
mwfXZc1hYIui8g5xFu7RfLX/xT1mWc9/fCfevkVwD7c/yQzs/Ote73m+at45
+N1QhheqJTq2LELjjYvQfZEaL7d+1JE+Sw/5PQ8+NnZN6yKY2URGNnSf3/Vf
op6b6DfFWOxDz6LmbYrgYZr7feke49QM7VaoG/6sa+uZygy0K6JPTXcNufM3
BffhRTVcqaY/WnN60V/qs8ra1zAO8+31WWEOZR7wZ91ZRfQvdP9bHlar/d/G
RKNz7E1rnEfP/WT7PHvOP+oL89xHavivvLzrOeqmsa2S9UrWXB3hpE561k52
VLJO9iv6DX3nf8Z+x1hbygoM/uc8frWKGIPJXJ652+z3i/uzx7y8cs/58olv
yb8zYW6dDBbySZ+oL3OwRX5os9AzLVCrQt8K45Hfh9akwrr8bK6co6U8w+E2
srtYNmGtVRH7Mb61vjBaZh3G8Fss1w3S+7ayC7et5XpT+w9cNZG7g2S3kewu
k2f8v3Y94w2LmGP9dkXciZed39wY3xp7hfFXyteO8geT9Ibq8j53PRabpu9D
9KnpPH4HW6P2slzuWTs5voUc/CWn7NWsiHd8t5d79tlbfs8u4r9L4r+H3VUe
aslEuTftYv47FJEb/NSRoV2L8FkrA3XlAO22Vr8G1h8dDkh2gZwTi5zIp5d3
p7maHqBPSzXvUwRvi9R9d+/SOvfmfTd1byA7m6kpvejSIvrLweq7TO0aygfa
NS5ibLk9Aw3a+eznezVjtJW3VuYIF42MB2MXJTuwCO1XWHveGxu/tfOweqia
9i+i9+xZxD1ZqYY7qOOOatneNbBB/dd69r9lAd9zk91TRJ86P9nYIvoSWvJb
vkZf+NlZDXd1Hv0PT3aYOh+RrEOyu4roj2db/93UAM2PTNaxCB17J3vAGMQq
97Hrkg0soj9xPs6JfnsYj/22dE0H17H/3talpJ59k13ifrBY1xzr+E1/hu3y
34+sz+TgINfup19h7sSoZ55wBmOwCJNVfOfZwjyvULOji2CtgSygKaxeLAfs
2aUIxhoaF//ORWVvOqYI3uG+pTFayQbfFzjPehg7NtlxvsMrbJ1YBF8n+s3d
glOYvSxZ1yLYa+Ia3o/3zPU9dzvX0GvaWufy/eEs9EK44z7UdA/YPMknfJ6S
7HJ9Di0qe9Ap1q29Gjfw3NTvVH3gEf7gsLvfsNkt2Wm+Mw9/cH13snuLYB22
4QEOYKCHcXZT60ItO6l3Pefg7vRkPX2HRRjmvnBvzkh2R7IxRTAJ07XNu7Na
jivivl+sJsepERxcqIbHqDUsPOQ4873V9wHXdFHnC5xroTZbu99x6ne8+jxW
BM9dHWusVhebU1s15HdpfBF98DL3ezDZp8mu9Fwd1O6JIvrdwfqyht4E80+p
NXqerEbd1PBUx5upEb1ib/3xhZP3i+gjd7tuZ7Vtb3z2OcQ8+rkGppuaI7kO
SPZJsvs9xx7q1FNtr012TREsXJ3sqiJ42E2tr/KsR5jjmUX0F+Ie5j5w9WER
PbS7OZbZ7OEY/ezFZC8U0cv2MtZ9RfDzcRGcUgv60GD1Q6dzndvXHMmlo3l3
9BwwAgfwA4swvr/vPOEUJmDx+iJ4YayFNSBGJ/M8St+BjvH9kPEvNDY5cVdu
MCbMwigcPew3fA4qgjkYa+M8fvStcY4zf6P+xxaVPesmzw+vQ4pgC4Zhudy/
TtB4H6YP87AME/AJl0ONc4Lao+3uroObW/THl94GW3BFXxpeBJPw+kwR7A0w
x8HmOcBxmCj3oBFqDwOjimAJJuHptiLuAL4j9ccX1uHog2QfFcHWffreZg6j
jckZYAAmOqpdZ/VFK+7sA2p0vToNVG90HWMtzrAGJ1uHz9X74aKy391exB2a
XQSvaPdFskfUepD79HHdQ451UdubfKLto+r4lfV41rqOM95F6jRM3agxHAxx
HesvcW6Iug5Ty5uTPZnsu/W0f7yIfna5uj6lPZ3se9ec6Nkvd/0T1mO4403M
qauxiPmt82hyq5qMVutR6tpdHfk/KfxQvUeo5Qh1H+n6UxxHz4nJJiT7XxF9
EB6uMOen1PD5ZM+p4+3qNFrN+P5YvfK0d0VF9EF6OH3o12QLirjH9BXuMr32
ziL6HHoMWE8fnldZ+3HWH07hld50r9/Eg1d6xFjf7/V7gjGuNu9rPMdEx67x
TIwNNDY50RNfcAzG7zc2/QvWYGZOEbzB2EtFsM8dgEO4nFzEHeD7M+fR8esi
mCozOtX4xH7A/Vg3KdnLRbA4xBpQi69cN9i1j5jTRe55g3nB6jTXvq1Ot5sD
+9O34HB6ESzDF+w+4TvPb+UAjv5LNrcIVuEBDmHodccud3y6cW9x/jZ93igq
GbzF9a8VwdcV6s8cbL7p2Tj/78myimAavt7SZ5T6PqvGz6nrNc5x3pnWYKhn
hEn4/MQ6U+MX1WeDimD1nSL4vkMGnpeD2x2f5brrrfeDrmctfQwuNqoIJtB4
ivrMcX6w55qqpl8W0dd4blwR7++4D/vBy6YVofvL6vmKGn4tD1Pca6rnRINX
fX/VGrzi2mnq+o0sVK+I3jVXTWaoy3B1m6FGPxTRu57U9zs1fV1dma9ZET6b
VUT8b9VypLrNS/azuqHP22o0Qr831POnZD+aB2e5Rb+31Ba+X7L+b6vNLDV7
1/rRV7jL7yX7Jdn8Ihipl3KrWxG96Cf3m+B+z/j9vutY/4Hf9Ab4g8P7fHIv
yn+L4XePZ5zoXhN8n+f38+byjPV62m/GYW2BT5ic5PkWJlvkO2f+db15eILb
Mn9wTQ+Zba5j9WGePlS1IjiDmcVFcAMzsAl3cDvFuZeMR6z7ncePfsPfkWdZ
Y5iEraVFaA6rcAlnsLfc+Wnr+TA/3j3Y67dkf6g1msMkjH2vLnBFvf4sgsfX
jT3d+K85vqIILuHuCdcT5ynHq1XEXLkfrfQJe6tkpKwVPMER//5wTRGcMQa/
P6nt30UwOdOz/KZWa137rrHfMv6P6v6MulWx5yxS58nqO8nvBfLxgtpsWBF6
UvMlRfRG8q2dxmupLRrTR6hZDe/j79Z5qvpsYj9ZpibTjLnUuMutLZr8tV6d
Vjj2mjXevCLu+gy1WeHaZcZEx2r2l5nWcLW+rxuXnOmDXzm/Rp9V7v2G9d4y
xdmiImr7j/VdrQYz9X/L7zVq9Y/rflI31v9oPLT5V62469zxddZ7q+RXpyL+
FlrnHP+2jH+ry7/h5LeQOe48f2fxTQ/gd6rkbxV/A/HNPSwq4pu7RNz57sP5
dqyIOixQe/oT9qsMVPFvqU/N6xd9F8nbNnKxgWwU7sOa39Qdn8VysK18bORv
zXYVoRe6oeWm9u6GFcHCUg2fRrJTVX7Kval+RayHjcZyV132Vqj39hUxv8L3
zb2L8PG73JFb04rwXynX8D3fOv2lzqvUuZnco3FZ35pqvFNF+Ky25rWt+2r5
2Lki/n3xGjn5Rxb4t8bUa+uKOBtaLPSM/G5s5W8H8/X12U0u/12v1g3Mjbzm
eT5qyhmpeSPr3sS6UJMdZIGzNna8ifWgLttb58bGaOBe5bqxlhjks6s5cT7O
yXmbWRNqs8r6sRd5LVVf/Jhf7Xl2N97/AY0XzyA=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJwUm3c4Vv8fxilKkrTsiIREyihF3QpFfEtaZJUoqdAwilKhrDSVlJJRNCUr
KrKT7bHns7cmWen3+f3les51Oc8557nfr/frNtQ8/By8pomIiOiLiYhMJ1+l
1zU5WUtTIPHLkP/vdgHaD9VOFrVTceYe7SkyKTgXfVe3pawYwe3+Z79vpmEn
p+rvC882eC+IF8/wL8Xg7IpzrtU01H3KOZRo3Y7ghwvMNkSXQ8Q0xPHaETrM
2nqu/XXswPMsk4gQs2qsXHE1dkqTgR0rHKKSkzphav7pNj/pK55W2avPmsXE
8kf5r9vndeOrprTpgFMT/JLXKZXIsJCWITi+qKwHbSIDP07YtEK5L+5YlDkb
KatX33j0qg8pcl+/LEhpRy6nzfLvfQ7SHlITz7YNwGrYhJ/k3g0jZdXO9sU8
LKLryqsrUzFjrMvsQWQ/Yl+KLVb+yscZeZ3Im/Y0fJTJfk7dSYWr5yEtI2Uh
HmhUn7nuSIeY/2mJ2eM0HFvt2GSiLkTJWofp6/wZkB7QGT5YzID4JR1horYQ
MVkHs8dvMzE5Y3qo1g0W1G+NPYK+EGW/xdM3lbBQwPjgOe0kBzNnFBjNXyOE
ysuTqgsEbBQ7ihrt283DTqfvNUIzIb5W3Y/cM52Lkz+eWyZs5yOZYnKfNyYg
z9NmYLsYD56rp4Rb0vnglcxpqb0iQJNlH+XAMA+r+kQZz3/zYWD1VPyrogDB
5hr3mpv4MKFU7uvcIMDUi6O0kEI+6lmr8lfeECD3fTMn87wA83R21Jd68OHF
a4lSJdf72tQwLitHAMen3zbGKfHB3HOIfjRTiPZqr+nKPQLo6ssWGDN5yL2o
rT0wKsTnW/89+z5Mju+w1Nb5zEPcSLDaYpUhJNxvGXeeJkRehvTPc9k8yE7f
MPlEdgjTm07s7vsngMuDZiHlHQ9LszTnbqQLke/Yolc0JMAP6rPK7loe1A9L
lfMihOicTc+xahRg8wPHj8rkPnsjZggrpwTYyeb/iE4VQGK11RHj1XxIy41w
3u8WIH9niF7bUQF8GlXyDp3nY3Cfxk/zWD4qMnxSMzQFUH+rqfG0g4+cX/Ns
5TJ5ED3d853RzUepkkDgQ54Tc+ncCypvuai4GaMVHcWH2W/3O3NfCnBfJXPT
npccqNOy5t4i7+c9/uYaY4kQb3MlrJyj2TDvH3UtyuMiiKv8/NV6IR4yfC/u
dWHB5V+51oIWNo7GJPCaDIU4bi8jvciQiQt5d4qDfjPhvXOamqSeEEnT5Cmt
8xnIF8695rCMARcmvT9IU4gZXnn9A/9oeNDz603cMRqc8HuDIXnfftH6q7Jj
VDS9TWdOlA1iR6CbVbaoEP+uO/LO5w7C/z/3pwaL+/B713zhiXV83Br75WGo
MADXq1aAfBdO+rNTI+5zkV1W9tRZvA9pIbaaESFtcAxiVRQv5WDz88KfV/V6
0KWw6bf61hb4bLzLXtLJwsU7Nx2v3ujC4SnWt/k/G6CpOFncl8dEjJfeYs8V
nfC4ssxbQ74W62quFvQVMXBcynyn7Xg7wrSOK6/8VQnv6186/Rl0RIUGbp82
1oaPIdV6IWfKyLyMr3ukT8fW8O3ZB9TboDFXOLV2YQlaNEr6KxNpcAnYt67y
JAW92vp04dYiXNV1qH6qTMPPBb9U9ada4evqrDpLowAVJ4SxPl+p2Fa30CTx
NgVSzq0XdQ2L4XHW/OhxIxr2BJaz/ba1QdCoreizqBQ5trMchbk0qDj+sE3S
aoedvoHNZdlyfPvYvM/Vng7TxreRXP0OyO6Y4Z/6qgrPH56vUJVkQFs/v3D8
SCfYV+YL2ni18J+a/eEUk4HxlUGSkpQumBu9aGrvbYTlodjV9kwmvlUxy72D
evDI2tzsXnULVtbTZ86RYoNz4JCxze4+JF5Q0C4Va8eJvbtOGTlzMN5hUZZ1
bACPrctCUp51oTvSeP3ZVi74A/2P5PsHsSSjSGqQ8O90YEc15zQfn2M6bJKV
aJjnOed23eQg1jnJLP6nKMQt76hZb5XooO3/cWwjeY6HZFcktJH87FB78Oe3
DgMy/LALcnYM7Nf7lC2mJcTm6+kXv1sx4eMlrlAxn4XxM1Irg0k+rVWPxhp6
s5Baf6tdncmG0bJ6TVkjIS4be1C/x7Ix57mxJ/U9F7WMrSUfSP5FZXT/+5bO
wcrwrecU9fnwv6gz21hDCA3fgVcqj7jomF1vaHiZj15Y3biVS+aW9Ynee5WH
opOvni4j3DJP36nQYyvA0uNnPB668KH571KVnJwAr39dvBgr4OOl6MtWZVkB
9h5oZv8ic9/5ZajQ/z4fFxIb6VrZAigcLTvlECUATT2468RuPlosoo69XCbE
u3uH2i+/IZxJqhKtUeVD59fl/junhZB0eVJ9/osAbU5u3MFJHrp2RbjeuieE
Re86swtthDerJbd8FvCQINldoX9DCLWbNytntgqQ82PnZpnvPNBL7kw3cROi
wfT3XLcyASoq9X6fmsFHbuVK0UeEg9tseEotaQL4bTgbHUqeR1vylTjviwJI
XV657XCwAD9dVzObj/JRN9Myw7OHD1n/rvnumwRQ2bZtSck7Pnzm8m15cnzs
GUq21hcRYH9L8RyH2QL0X9qXH23Kw5M8rZ63+XwsPDwtVcpXgJTQlf5/bLmo
dpborD/MB+yPxhzoEuDLxIygDXYcaM46MLN7iIfNnD5RVQjh9HCVzCkdNj4F
e0SYLubigO7e8nATIZbkTCu+PIOFOaaTT3St2firtGBm72ohePc26GxkMSAR
KCk77SwT8TLBb21WEL6tL5sqaKBjk0KBGKOADqsYnUM88rlbjjqtUqqggTN9
fmnEbBo8m0X82lWEYI29bg7IoaKocfPxldaDqGE1px99RPbD9Xi1j0GDeK59
ImjIphegr3ogweCh/6mFXeHbflTNGvdy8OyEUwrjWK09F9frKmsUXvciYU/y
kzo6BZolziHeLDbiFuyOyGZ0w2T5GaXQmmY8iHe3/ZbOwuy/dvUOu7uw2lDa
L39JA7SvT0u7FsuE+IlbQUvGO0C30+O2Hv8CSlSkysZEBh4d+5t/qKUd2yJ3
lx/1rkSgZfsarxo6rgXnzxLtasOGc9d89MXLkNPtwFVVoGPHFfOdfyTaILy4
KCvk0CeIfHzbyr1Cw4EzOh9qXSlgpv2aMfHhPS5pKVo8lKbh/mpXqwhhK25c
XhS2ODsfQM3ndyVUdGfo6RpfoCC0OGrqxKMiNLvmnfdcRkPW46tRlvptuLvs
nGb/iRLiY3Kz2p7Q8OGd0ixf8Xbs6FW7/vJxGUT+MxhzNKHDI7HgvbN4Bxzr
bHKeKVRh9rJVF9YK6NDQmr4/wrAT1pFXnQ4b1aJ/R1PR7VIGTLZyTorc6cKc
/Rs/aU41QHJqTdL2QiYCGYp/xXR6cFw4mzNzUwu8H1sqZbWxEPU4+2f2n16M
XvbuKj3Uhv62yY4lihy06O6TGfvbD06oxEc2pxMuerNaDl7hIsQXxVXJg5Ap
Lrpj1NAL0RSLiTAFssd5s+3GiYe2xpaxXl4dhOznsLmfmgX4uuHr2xu9NKzY
7I5mA+Jj/SZ6XqpCUNwuFijT6Yjc/ssis5MOyn3nIwfJnDdd0n848ZvcR4r7
SPYNJm5F7S14TPKZ499tS53DQsyjl83Td7Phs0x+1kwDIZyzMqv0tdkY39Pu
lqTAhbr8qTuBJP+bXIwrWzaSvZ+t5WvbxUOh3K/cpo1CSPUu6ZpjxEWUCP8M
xY2PrK1CUTmGAFs/HNbXk+XhyuDufWbPyRx/s4v6ckGAkIiVo8N0Ht5MJo/3
DPHx/lXi3UR1wo/MhyPO9wgf2X/nv9Eh3uVWUrOuhQ89GfsUO10BLi5P+ePk
IkBY4hG9i9f52NzyO5yaLMDM3qo96y8LIBJd/zmZ8PGiWoyxKleAx0OfEnc+
EOD3K/lozno+pg0qz/s6W4iIhBMB1KcCrIou1z6wgg+bZRVW58UIj10fD51M
F0DNfXtrxko++mU8N08Qrs1yn9VjeUeAT2+uLTpoyYfh9MUOq0MIbw91zcgK
FODK7OgF2sf5mHtN8pz0Xz6qNosxEu0E+J56yvE58dPvT//t2eRKrqvYsmY7
4fYT2aSkTYTbpZXWR6ce88BXS8le3Uleh6vfnk04Nytd0SizlouUvJvb59zk
43x9b/ajFAHO2Lheq6BxICHvo/zego+S72+uXZIQItVZ1Hr5IBt6422/DTbx
sGPrzM2ZxJ9/VGZF5lez0LD62OfECxzY907GWxDf7hWpdln7iom7c5f/fVfI
Qvy8GHYL8d2TA3Zi2+4yoDr3UVDsKPGvLpVFQcuFMJvzRa/jKh0rG345TttC
R69R40e7pUJcMy3Yx4qkIfWcwu+bz6igtfp4HVssxNgbH8Mf3lRksHJYuTcG
sM9reHL+WgFMFJW5500GIc5LWTZ1ogc8TwW6WiwP18MDw8at+lE5r13+b2YH
kvAsfZ44F/ZNzIANu3qh+e6rcbMVBetmsalxT9mYnLLMpCR2w+Cu3dq7ls3g
mm9seuTHgufy9ZTkRV1YWLG37+mWeshd9PQPcWdiW+iQamNVB7oKz+92L6rB
xXuZ0npnCMeiTZlNme2I6dD60tFRgTIri916L+h4K9IhnVnQBrOTRkdNbn6G
610biWxROlraOu1DhyjYQnkC+xcfsXjnurP/naEhmaF/Y9SagocmBsq6uu9h
hH3Lx/9RyX77NGNrbyviFKaK15rk46Gs7KK77wjfV365v8ibgvlHL26/IVaE
LvGa+Z2LaMgfvfpVe0EbOsw3uB14/gmMqJtfF8QTTipVOs6ntUEi5fnLAo0y
dJ6Ytj9MlQ7Zerlih652pP5z2XHlYiVOWDTkW9bTEWOzrMXkbweOm8puuxf0
BYlt3lM+SQxYXgzWKNzZBZ7hsGamXAMCd4wrvI9mQuyh+npOVze6vp7I+5DX
jLKS03uck1lI73Ptar3XiyeaEZfmf6RgU56K4ud2NnyLKQlecf04mO+258TS
TjT/5lteX8NFkQXCVzgPom8b/2kCqwdXHG18B4t5sL4xpvAkmkpce9uovugg
CvOyF4l7CSCsfjqi94CGd1pvysu+UGF352sCm+RHZrHvxJtEOh6UhLcsOEjH
EamDc9+QvOkMbpxQesKAlWbizCHSk+XPP1+fT/L5LWVopW02E5xci7qMjyz8
PGnVxyB5TpxIDG0qZWHVpwPrw09zcOeCh50Syf+XcCWLino2+ozODqQv5eHn
2aUcMzIvlx2ODyyu4mDBxe5VKwgvlLiFIfsWCWGk4v9xVwoXPMrt1G/E02LH
cn0S3gngVm/2Y/Aw6avSbc3LKvn4YtI4/mS/ACPe/+3+toDww8IktGeKj6TO
pjjFOQLoXP6QcDONvFb/6PF5JeGJld7lz3V8bDMqeDZnHvG58vkilrsE8Pho
M5z7gA9PLy2bcCcB0h/XN5w4JsCN9ksfN4aQHmbp/aPunIDMxetrVwl/+kdT
Z+8h/LlyevnnG6cFODxtkLn4jAC3fERab/nxkSiIj4m3JLzyG23w9xTA2lNe
IzWCD/GlC/peEP4O7XZur9tKenLrUi3lF+R6nF+vLDlDfLTEa4OGqgC7P4wc
Kaby8VRL7dW+bh420l70P+XzMefr5bds0iMDyzMUI8lzvONxJeDNaz4+XNY1
aiQed0P8S+K5PVwMdkeyx4jPHWWG3VtM/FHoOXT7WgAHw4s/Rv9HvFMtXlXT
b50QUZXXf/zwI59LloUKK44L1cjfLgrEn4ck4stWHWTheK2XykAXG/7DPmZC
0h/NbXaphtozMVusODVvKQtxz+e+zyN+PiP12CAsGPAyUrimepqBmLdugbeI
z9vd3qBuspEOY1X2ocJGGjJLzGQfqxEeRgqit1rRcOa/nVafQEXn0eNWP5WE
sD2a6HRDmYp3/OQMxav9ECvYLFfwlQ/1g0528cIBGG63eXE2uhufKn8HlK/k
gR0js2FGex887Y9k7Ga1Y+nN61yPfA6u92zyb/7dg3H25XvpT1phe0w7apUn
G2E1yPlr041ZWq5hl4qbkMOyE1tjwsK2zmgff0onBH+bp4l41iH7avjnl6uZ
SHxyoyfwZgdKmu8b94vU4MDEkm1vtjOgs9wwOvE86Wu2x/ixmyoQeu7Iyvo4
Ohweti6cvNMGMeXR+KfynyFxSpO9k0vDDEW5279aKCRHWc1N/A/4dXJP7K8D
NNCNTGk7DSkwOidtci+hEA9f2OWVfaciTMdqW3BtK87v/Svr9iEPa32TteYT
3pedsMxfv5Nwb/+uzgde75H7gyFaI07Dp2Zna5URCgLt3Ya8Bj+Cv2fo4/Oz
NPgGcByiP7bh8GAG93nGZ/R4/PrZLE6HSUTf5uYX7Xh+b1XJVhq5/nRTR5tX
dBTdb3ysVNkB57gZzDO5NQj1TJsYP8WAQPP4TeM5XRCKZgb6LK9H0HBewy0n
Jr7W7pOSv9qN0fhch5JlzfDcbpCidYiFAN/LlEKjXph4Dmh9lqHgzOfARYo3
2ShUW9T6R7YfkhOdUub7OnDh+/G4mQwODE6YqdnJDkJJvnrdoj/dYP14dmie
M+HEuZka6euoGMs+oWYi6If3e/MNd3/zYXyxYkv8PhqsjW3eKblS4bP03pCL
shDRMhe18mzpCI4a8fVk0lDWp9ggJHn7HHNQ2mkbAx5W1eZXLzAQ4HiaXkzy
+Xv4ftXZHUwUTPrEyqqz8HvCse0NyfPK4vfVvXtYOCoSkvmimo2KVYpLXpD8
U+W0Mmoc2Xg8+NzjzREuYiwurr5F5qjUelB7pQMH0uy3Ll6jPKxKzXy5ifQa
35UHP7hocsncuyRa7Odjq9FJ23U8AYYd9R/6MLnwfqH5YYz0xrLzogVPiO8o
0xO2M8l+Zu2w+3a+mfSxby9vS20TIJSepDlDlo+rrefbrv3j407+7l86UgLM
f/hTdVMYHx6aty0yiM+VqQfaz+jjQ3FfrnZLBR9F4QaKnesI91ZL0Ho+8nGM
nfAqi8GHm80bn0DCJ8eikGmJb/jQKHqxP5R8X1Zsd8G8zcQXbWTUGnP4iPmv
zkosm4+vB5/N5RgIEHtaZlCvmo+IhtNLlhC/qs1bn2dB/Er6nE2IPfGry2qm
c66xeUg/xA2S/s7HG4Fix+QS0keXGZa9d+Chtvqa24lPfAxukNuWdYjcb27g
1PVULjbe8w16HU78MmeFVEKOAK8+iQ7O6+VgVKxtx/lNfEQ+X1V0iXgk17/5
7tIxNlRen6bsPspDlbv1zPUbhCga/RWSOcECc8tBqnQLB2IaUvmn1gphL3M5
+/sIEwoOUbra+mwM2V7QvkT6o7Sr33v378S3tPvW2JB9HDx4uTmC+PmVFwvX
6AnpaKU+Hmvl0DGp2rj0IfH5K44mc9k/aDi8MbxEYQ8Ni+5lvKMS/3fZraC8
lniHQfB907T6QZxrclD4T1KICxzl0APktc7+J1IfTvdBL90gypt48uK51kPW
XgMYsSz0i37YhXDLlMy/DVyMnJj34dvBPhx4lrQ6VLkdSTmZfnWe5D7Oxqqw
b/XgprmVhNefFgxLD2W6q7IhM9vp5PrRLoyo2b/bp9cEl5LfO0qmmNi4z3pm
x41OtBdsMBEGf0Wu2wInnWlMUDo+S6vv74D96Zg3Z8yrsar1gUqdFgOlYVfW
ltsTDvi2iqRnlGPvgoX1207QcdJlpprYyTZYjS/YcutBKZ59Ug6QbCI8yc+v
88inQINxUnrZsg/4bpkuNWhHQ5TCfJseZQrcW8ctXcYKoNP1aMnYIBWxDmm+
SoWt8CqWEMk0y8Oh8Ff7dJKoOLA1sj9zHenJBj9+vf5ciNjO6S5rh6n4ZFd3
R6eTAsdSzutFMh+hXzq7PtmThqHNgfO777Xhx33XiUfqn9HbcqhsD5+Gtk0p
5oOh7ejvrlo4GxXY+WTNc1vC4ePjX2lrYzvQEefTtYxfjcCM3+G2ZP4NBuN8
r1R14qJs6P5kwzqcW6LmzNRi4tPLSP2M1d2YG2vWqXuzCQrWBp8UtFjYrO28
+EwD2SOZtiPf3FqhykkVWW9DfMzPaqI6uQ8xJkZ/oiPaUSmS8LwnnoPAzDOU
E48G0NKnqcH814WVXskiWn+4CLSuNVnIHkRdjkqLcn0fPv2YWBZ9kY+mhjsT
JfNoaDR0V/4lGIRztVNspaIQ8dK1RWaTNNxa8iAp14uGZxMN01WWkH0deeBh
5Xc6+m/J1ScN0dEeb6X6luQzp9XK7DKfAcoh77nBl5hQ7mg57k3yfCDxvuVx
NhN/ZefdXyfLxi8br/uaJP/DBaKi4wMszBehDd7J4IDjZrm8mXiaUfD0x06N
bMw3naO7SpOH9+HNy7YQTztSoME7lMmBY8p48KZVfHy+3f0hU12IBM2/+dnu
XFwqTUk/eIKPnDb14JgmAVylXQNd/3FxeebUz5RUPiwnZN+LRgugtzEq7Gs4
D+tf/HCvbeDDWkw//dV/AjAYs08+4vCgnT+RepRwQ/xwistlwg1brZ8e+qQv
ft92Zu/DGQL4K2dIZE8TQOXctuhIGz7OOFlrFMkI8PLUhgb5YT5oF1zfeG7m
gxmwPslJWoAta1z3bhvl4/Xbl3MuEX5uNL3bnE/4KXmUTf81m3BVgbsrp4qH
KcbOAgUm8bCQre25+gJ8ENO49WAPD/YGE96HSviYz51d6uYhQKRk5LSYKi6e
n+WXvSJ9eEn05J/AVAEm/qQtM1/MxaxRnY/r9vFh/6p72/YhAYbW5lrHuHLQ
xnzMyZDkkz1/aTSc7AVDB0Z+dyAbbyL9JEUSubiRFvlmE/Gugq6ux8fCWfgY
HpnUL8OBxplEkTwjIRRbB5/NJ5zadqIi8MkFFtSl0kb/rRTCwzx07mQcA9Sj
kbsSuQzI/puqNid+Hh600X/5HTrS6nxdG5zokG9WfHqH+LxotKJwNJWGx3pb
Flu3U/H92TGZRSpCNH44OXsshYo3haciq5YP4vv3H1OUSAFkqFuagkIGYTKg
s5e1txcP9mpf3cLlQUNrbJdDZz+6KQF3/J91wsAqM5l/jAudkXNGndxe7J96
EPbKlnjH6mfXvch92L/1/5qk14N5ekvfW2xtQYjuac2VnSR/Ezs+pKZ1obXU
KS7CqBEr+q3P2JaTnuxlGMvc1gnF1AvJ7yJr8Tk/TH9aMwMR72s0qEs6cOuV
RI/z2Sp07DGSvf6PDr1QpQNu6u3w7A8p3y5WDv1K6pM3dnQc0j0n/5Vch67t
lpNqiqXYfmHPfmoeDafXi39uSaQg6fUYO3pfMebkli9TMKFhue2jTw/EKfjB
6qx+sa8A4Q6BDqlNVETs2HBybUYrrPnGC7e8z8XZf4Px9Dgq1hQukjmqRoFP
q5u2hEIhavyzT+kyqBBLubbM6T0F/ZIJdiXrPkDRVWrG8HbSK+8fnruAcHVM
b51BFeHqt5/hvxYSrj6sL6+6adeOlBBj7bn3yuFBNzng6EPHP5Ww4bQdHcjk
PaX9UaqGIFPlv+NLCLf1oFx1vhM7BjvFU9Z8xZRBw2T5bwZSxqZ1ZHeRvXJJ
S+TC90YsdBgUs+Ey8b2954aeVw+W8/3NGM9aSD+pGTD7x4LlQunT4mp9kGvp
Dkl+0Qa3fKch3bUcWGl/C58rNYC7Z9Z6HBbtQpzY92DrG1x4Pj/XMe/WICbP
HBULy+hFzMn487Nn8aErFtJ7LoeKS58frFprPYiosVXF/o8EOFI8bHj4OQ13
VVnf1tCo6F1l621O8sYMbrWMJPm0b1jJPbifjkW6Mz/dJfkUiCEgLoIBJ1ud
U5K9JM+/rsbNJXmuOMBb+SKAidUflquccWfBXuRoUTzJ/++ONawo4ptr5LUO
pPWx4efXzhsnnnZi+XLJ29ZsfD9XpZr+HxdcFedEQ+JpmUnjDwjEoaetKXnj
KQ8Oe676yW8UYhrL4wG3jYOIB6ov/EC8pqKHYSEtRCf3yJKbvlz81E3O2HeK
D1tR6n+DXwSoj+JcXizkIvOS+3jMQz4ODBaXrrwpQJg1JerQfzwYNqpWZnwg
/eumjfOcwwKctCs50B3Hw9un9ZmNxOtCJWZ9eWRDeuHn1LqULB5i3mjqePcQ
nm1LSC0yEyDg1I/NManEf3fFyszu4sP1AS2WDQGexTtNWQYT76n4EvCzlo9J
kYnADgfSRwvuRT9ZwcMI9Rvj0Fs+9j/LHNENIL1vnauedgkXK14HXFt7jfhj
4auHlRkCwiPOm+lruGiVvdgQ4s7H2So1/TV0AdTvTddsuM2B0in3ZZ7L+cg3
TrhLJXukQ9nY0Y/09wV6yn7KpHcGil4fXU/2gsf+Pa3h31kYjkg5rVXKgY4k
69Vq4l3eSqsl/Way4J/Msc8k+3LaGz0fKtk7+4TH51fJMdH1Q3HFvRqyd3de
++yjK8SsoLOGoZoMJFYf1eVYEj8fHLjH0xTCguVl52xCh3+Gzh+7KuIZ+xwH
QonPXzpmZnZjJw1/qrYLzu0i3vCQM7yO+P/q1XdmVZA+eetX5okI0QG8LL+t
ZPCXDxsn76BxzUEkB7hpyq3uweh7vb7wUzycWtX4i7OlH1dGg3IfPO/A54TN
pu/FudDKspQfPtELLa3noVZnKPAOce/a9Z6NKd/KDwqV3dhi+/bg9ZvNKH2w
oqU4nniCj3SUi10XpBkLfGeIN2D6dj+V4UgmqLMfBRZP60Tuvx8fS2O+wC39
rPe2Rww8Tw6d1sBsh/efB+XCF5VYYvjhkGQ7HSoDHfJhP9vA8XS90uZaBusL
4RckV9ChOrtp8uCyNtS83eutsrwEa4Lux9CSaLBtr5i58xwF/6W/ZbuGFyFO
2d4zU52GixwRsUfCVvQKT8c1ZedjMK+0q7KECuUr0rGdN1vheH7vnmsGuejI
t/PcEkZF7huFiRgJCubsjb258HgBLFIv2uW0UDFe5/ft430Khj5U3BK6FkNK
LsjvE+Hk/NALPv/ZtMFzJ/9b0LxSHHdy1FfLpWH49UcNcaV26PgLukt5ZUh8
8yAkcisdBpvTzl2Z3wFl833OJ7dWQSjmfyF4mI5P610alxp2oiRh5xNZw1qM
d8tTd5QyEBqdrnImrAvKnN26OfkN4P02uteXxYSEH/vO8rFuHBZYsRcKmlF3
U7LS4R0LRUpZ+0Sf9OJ+Bz9tZj0FJ4ZLnIwID5oWGsf1BvTD5urfqI2THfDt
flpUSPrY1eg+R8r6QZSde6KvGkj2UgR97rF4Hib/03TU2E7Fb97WuMuGA3BL
OL7uyDwBor6W/Ti8lwa93gX6m5ypED8903AvyVsTLXwjxZhwevqu3RvKaFgm
o6bqS/KZ+kyY26PIgPvW0Kp1Bgx8+CP28SnJ874mGocuwoT60PbiljQmyGo0
ZpL5SrwoVVNFZ6JH5OUnVxk2qEXxO+eReVn/JKjA4BMLPxbOkd/hx4Gr6/2Z
UsTTknIr3Ppj2MgRCditXcjFcl+z8/nEH8JmnhRyLTlYTh24vpDOwxZfY/Pf
hG8Hki2DBro4EJE9Uf7ZnPTK7rQ356WEmBu8dY+7Axfur8Nzv3vzsUY2sv9S
uwBx1bWZI6+46K25UB5ylY/RsZ+hZ18J4JXvGG/K42LL12L6nQd8HNbTdz57
S4AFCypne4nzcGxDwNu0dNL7xIQG268I0PckrXzvFBf3hp472hAPvPt4/9Eg
4oHz693bCtu4kKns5X68w0c0t/Nl1gMB5p6Uvro7joul0x6FW4by8SW4ojnm
gwDshR35dzW4mGxmr3rpxMfQ8IocMT7xw8a/lCtPOFj039aoP3rE+7Q/cYqJ
D0ekjRjdnWDjg4jTE4sTPCzRNbW3Jj1R2WLHH5d1bKyzOeZraMzF8K6wlm4T
IYytn9wMPsxC1aEgBWcaG4el7s2RIt4VZzuaIB7FhJNUnsaPUBak/Pe1j5G9
w2+XK9ubxoDRI4FS+Bwm8srfbygne+qGSHK7xkc67uYtXPLsAR3sabNawjWE
GBDVPirSTYPKlQ01OStpSL+isXYv6Y99sycemo5RsVej0N2sfBBOl1d6MUSF
uP3bILarZxDLn6/fKPO0D96PavxL/fnY+Z9s/+aUAfA5FS8WTu9GquXjDP9R
Lvb7PZ/j97YPOvEy6XlP29FX4xf/4iEHW5bUb0ga6kFxo8RQ291WTJtZZ9Li
zkaaSVzVc6dubHqXpF3e3oRVpgGn11uw8EnksEzaT9If5Q/OnF5fh8XXcr4x
tzBhFhVHiS7sQNIX7WUlUTUosagPWebDgJhoU59MVjt+qklvzO+sgIs802b/
CzqmadyV2PK5DS2ts9uycj5DvitrzykJOnJF+XPpfynY6PC6+ITsJ9w5oHJu
SRgNtTGdMT/3U5A2/cwlg6z3+C4hHfJQiob9UW/v/qS0QmKqbPMG8XwkGnn8
5/eaiuWzdnjOv9CKpMPy52ZkvUMHLzXzwEkqMnRU2rW+tSIw0TEmvDgfDX3V
T7pLqfC53joZfJaCc1JOjmHniyBydXq8DOHko4VnTrxd0gaL/348uChRgqa3
gVV379HwrYNx6TinDYuijBMa1pdho+eU6chSOto20i0XU9ox6LjI/KhvJUpv
SMc++ELH/b9TkzxWB7Y/cL49U+cLPIosZT7FMBByRmC8bWkXogxU/jMMrIeJ
pnms3FEmFB2WbmqLIXtE7EQGdJvBiIBLjRcLM2O66WYqvSibflgti9uKg4y3
JXaX2ODETp473tuH1XJrlQJ+tENqqYENrYiDP42xp46UD6D7i7Gtvnk3IqrT
o5fO46Hg4A/vFNI3beSLd4o19mFFq6rh9kt8JDT5m9AnqVjlfUzj3pdBRBep
X5o5k/SLs0uH5rWRXPZX7arSpKHp9Ta/dSSf10/uONb9mo5x4XaZtxF0jIQE
HFtF8qzQFTY9LpoBGdbknvkMBh66SxTqkvyXOZSZGh1kovCZXcKtjSxszGm3
lSPzMikZRCtfxUKpcHGtTBwbsjuUU1oMCN9oaQWGv8jxhuZ3wRUcCM6cdNlE
/GFFtfsFahob4peU3RwHuZhh8D3A2pTM4w0pu/sbOGDQF1Xs6uDBeEHE9S+E
b0GPPl7VzeVAUzjmq2/EB1/3m+3BxUK4+26dNyrJxY+Vj6XVdpJ+uODTyIUR
AQZuDbuMWHDBFuhGqXvyEd5kcWWkV4DSWfMdgly5SPXklqcd5yPQOTs+ulmA
K39OrfLby0Vthl6wrQ8f7qIfp2dTSE80ncYM0+fCfsAnfYcrHz4RsfvVWAK0
lOc5HuOSXq148+d3Kz6Uv4jkXhEXQn/YI/jyFQ7UvLSVhzX4EKN3+bYTzp9R
u5U/7R8bbqsThsqJl/RoR9m6EF5t8zHNL9nPBiX6zMsOHy40go9kJROPbfoq
ymc/YaEQsUNdmzhYKYjhHTYWguIwlG7RxUSgmEz7WeL34nVSo62rhHgUeMrm
jTgTHm6zvlx5wcSlN2arRIl3ee9QL1inS3qVwvItatsZcFswLielJYSjaVyb
+046zHMKrcKGaPi9cNugNOn7BrWtD4LO0jCaEqWfeJsKX/Gf7erkOW/tvDhZ
G0GFITv7ZPyPAWiwHpWbuAng++qG+KOAQfw2c2y9trkXasPWhnOoPCyvEyhH
DfUjdaznsXRDJxx8tTOuhnDx2Gn+1Dn5Pszzc2ktf9iGqf6llrqrOTg3aFu9
9XgPZpnzkjfktqCl+nnxejE2ps8JFivid8El0H/GA7kmpN5eJD4yzERmQFNK
091OsMo99+Ve+4r5swZcXWcwcTE7b8eD4x1wr/tyNudiNR4qXaRXGzEw/I7W
xfJpx7fNVxnRIhWoMQ0ozQqjY3Babikjvg0SC7ZJB0//DCfJa39nMWnom1e7
OLCNgtfBVhlWfz9AboOqWoEHDRbvzg21r6fgr1l2Jf1LIeg7eE9nj1Ch1PHK
Lae4Fdc8ti59vCcP6xqCVmY/pCLhLuP7NJ9WmKnIUy4tfoessj/eWw9Rsdne
VvJwWysUX95be0AiH15P3U6WEu4d2zpjUbEjBTo7LvVV33+PukxW1pzZNKjf
1fQK/UPBG7/j3zjcjzA/Mlmfco6G25F/NBfmtaH0aGjypqjPeHrYY+PgPxrM
8/x3Vt1ph65ZgbfmrQr0MPwuySXTcYZ+cHv8/Q4IrNPuii6uQfDlBUvcdzMw
f+ORpI+VnTh1uWGctqoOx5aqr3HUYuKP89tV7YrdePwuwTviaBPaF2vOmi/H
gshYik7o/R40BbcOtE9rxX7pz8J/S9n4uKR7aYZ5HxICFuTep7Xh3PK254f/
46Bn8OhzH+kBLDzhoRAm3oV8A1/37ze5oE/I2UWFDWLN+6e3Jbx6cSPh/Zy/
QzyIPxjd6XSFihGbPal/RgbwzPf5C+8DAkTmHnndcIqGHbfPdjCiqLBbOjo6
QTxt7/PZt5dvomNj+5vhUxQaqhx3WWQTT1uwRM94jwzpzXcWBNmrMUhPZ+w4
Sjxt46lfl2+T/qlf+lL03P95TXfZOu//f78xbahC/gkTN3qXT67PYKFWuVI3
Tl8I1kgWfYkTC79Hr87h17GhvDBD/xPpoTGJz9Zai7CRnODbGEr8K39iV861
//Ot/M/ok5tkD/8MiJpRTjxLnT7SR/ytNXTVA+YsDkrkbr7dFMGDgc5A6wPC
gV97xTYpeXFAjb+/sEGWj2T7N0uyQY7bq+SJPODAf4HqvdoVfFTb3FfN1BbC
nP6ytjGH9Fn9M0uLDflQqhi/+pfMqWSJdsjXFxxon2Ms9lzNR1le+xZ18hw0
PP+evk641PLyvP8Y4ZLRBmpyE+FSyJITH2vBgViiYVdXNw90d0WXdsLb9r7g
Q4s72NgiOX8ky4AHqZzTgadJHzygK7N68S42xgV5/91246LDql7xJOHVmrBb
AShgIXz8qoOGJwfW8m1BdMKr3U+buEOkJwZa/awM2MbGDu3TuxnkfeeEn4jP
tWGCl3VIplmehfQVW7Xj9YQ4FrP/2opLDNwK96t52M7AS/MhygS535u3qZ8X
v6PDd6dLTEwsHTIekXY2ZE9d3GS46SudhpZkowTfjTRodyi7Xid7LbtGzGu7
HA3X9nKvDg4PQjDnxihTUQjBApk8D2kqFkbU5NXt6YfkfPdVXwr4+LXnmfaz
OYPQ6tHPE+/qhsPDk7W87TxQZvlX1qzrR9MB1qYvtzvQddcwK2ySg4CkpIuC
0F7sXK5iZRtPQbMikjrL2TCZjDX7wO7GXrENlOr6Zmx3UN224BkLUeYCJU5I
F5xkrZNcnjegeNMRX/dnTBzy3L3j2LpOHA0OyxBY1+JuSkbG+woGdMtV891U
O2CnGztH+UwVUjMvh4VN0SH7Ijrl+Yp2tD+2mUrTKMeu+9FhJrvI3v65PTfd
uQ0LtHSTsbMU7E7DReKfafhl0jF/70sKsrL//cJAMZJmy3MbrWjY8PSmqJ4i
BTlBl8wLWAVYL5dULztAxSOBre601Fbcqbi0diQ1F1EbrrqkxlAh8X5Oe9ue
VtIf9n9feTMHjvf/7FTYQ0WIfFX8ecK9Wsvjbfq780A/Fi0TS7hnV5uz+eta
Cnys5qzLyy3EY1tONvsXFY7lVxNmNlAQ6Vf4JuHLB7hfDZt2wZUGh6yuZccu
taHuRtDqh5RSnH7kc+tmDw2vnJNOSe5ph6Rk8+OI3HJkrPKLsfOng5dvl55r
24GqHcPj1tLVaJ9Sc8pczAArr6bx3pFOxEve+HOeW4tZJaYmekwGerM6ti9+
3oXmFbU6UraNUOmqXNxVTeb+d45T74IepBgfL7yo2AJKvtJO2SoWpGtrCihp
vThfo+D1o5kCjpR8yaoBMg+jjYprHPuxKn16Q3ZNB86kzZOlzeMisORNUZHs
ICzcn1MSRrvhVpXa9dKZ9M3CQs8pkjdKkZkib18/hk0dZqQX8jE7otiwdy4N
MdP3NXK5g/iyXSSiiOSzyNFuNKeF8F7WS/kP8dcTZ2XuryB5/nik4cqmu+S+
I5PzVrjSYZ1R2J+ylHjCa7P7U3sZeBtktKjrFgN2kl/eipN5OWVz7IyHDBPr
z2f1FXxgwsF1TiqID7TapL0QfGQiif/FN66VBZM9w0eNiD/YHf/vRbAzC74r
/IpfN7GhHvmn5yvhm2Hiu8MHGaQ3eNZsy3xJuLK2spdH+uljygfjG3vYqHu4
r+SyBxdZvrKHwwgHAmkDrtYv2OjfX8IyE3Cxzdc/8zTxOvPi0PlWdOI/cXq3
Vm/hQWnmlsNFhCfycvtH+0iPa38g/S2f9Li7DZK/bAgPGVf3D0v/ZiM6fcbC
FQd58PH7ckCZHPc/Z+h/gfB392pn1/tqPAQFpZwzJue5O+N+169INvh5I2ab
s7mQPRpWd5/w1r5s9ZYKdTZSK65IMmW4CJYf/bmX9MH6px7GbYTvk/ePaS23
5sBplm/becKrc3eOPT42nwXVgpf7dzizIdF7MkqNeGzHFKf73XEmVh6eqSO1
k4VtFl2H9xPvFaj/VftTSDg1VhG5eRUTVXbzz2zSIV537kRf/AQdXZlw+/aP
DqtLE/O+k97ak/jZ/p8JHbf2V13YXU2DIS3u4UXCZ7dzCltsA2hIeb3mxf9/
7uxzTi1UkvD85FvRFToJVNCN5OM3LhqEnb7SuGnA/38/8ql79O4g2uLnb4nN
74Wj5Zwb3+by8aFxe9p9mwG8E9sVd/h4F3ImY1OjirmwqHzaEBLeB98cl6im
ve149N583YFQDvIc34nOGOzB6+t9d0LPt6L0uuSK2+RzlZx/VF7SoxvXh+Wa
djKbEH7xVJ2yDQs6e5YcVp7dhaRzxedU1Oth+Tliq4IjE6XV3RpGPR1ovDF9
ra3oF1DsS05evkz6c69+2Onmdsx7quGj6VUJf/kfHh+q6biXGPCkn9+G2nOJ
arVbymBCW27ooUnHoh3fIr9ptUFHZFbOwPoSKNV7dr96SEOvvF5Gx2UKVnLH
mrI+FYF/ZpPzU20azs/YP9NkrBXnSuxLL4oWYOO9MSNhNRV3PsgMyka1Qmys
yzxn6B2K5HRFjwVTkf3OuLJ6UytU290E78RzENt1YbboVvJ88/cYf3jSCqu7
Ro/mPsnFe9OIVScJ93abe9lIyVFgsFDCfqSpAMctb0sxesl5ul/JN6ZTMLvD
bIL5vBi+RU4PI83J/unXZ8/e3kZ89LjlH7VSjCw2+xhYQMN2vffdzxa1Qy5h
sZ1CZxmOv1V3KLWgY/WDO7+tptphYrnZQ0y0CmGMh5/N2HQ4Naryv8/qhOax
72YtaV+gfLLhqHMaAyI/ynzH1nVBua329aLKeuSXpvMlzjIh+Jz4iRvfjVne
IcX7DJvxVMnV/6k3C5K27ne/zuzF4Kza+2llrXi1vJ5+5SQb8326IhmpfbBQ
99I5ca0dm85kOZy+xcGMQwZW3S4D8NDoVhq81oWqjbFXZb5wMa+IYW+QOIjj
Ju0O9UW9mPazcEXmPD4mWgIs82OpeNZ1UKRRbBDpFnfCfx4RwCVKYVexJw06
jlLmW09R0TH9Y2sW8bS6LSn2Bcp05I4bU+j3aaj71XK9Z4kQF27vlf7bTEf3
u/U//v/zlb87LYL/kv3e8WJbtPVFBh5tl5dY1cbA6EaZzBHCN4u1tz64LGVi
6sVgpXEPEyGhkodeE75RSvO+7ypgQlJhSvlXDQsr/S/z5hC+9ZzXfdy0loW5
NRNhnvfYCPp6u2KCzPU1jR8jQtKz5kpmZNBJz9qZTZlzhHBA09TIXOcnCzs9
eSsayjj4dERvhynxulWPBos8NdkIGX7ZWCjLhUH6qcXHCU9qG+WS5m1gI759
ToqWKRcXbEtOff//8Q8HR2FMfDHP/fq9lYQ/qYbNZeQ4bJle1+eyYVWBvxI/
OZD+Kd7LIudveZq1oaSOBYMRQ7c3xNfMZP98O0B4O9H+YI24HwtrbQ6my31n
Q9Mh9ucGIyEK3a/NUhljYivN8tUzAzbWh6/su0b8Kjq6MlrFlwndXAWmwy4W
gpKDX3gQXvnbNvB+NzNID3CfOErm9kBw8n+thFdFO0UYz7VJT+qb2XbUmoFN
WZ67/xBPNtMd2eMYSMev/C9yrOV0JDatT2ORnlgXu1XVrISG2tr0uW+nk150
XUm0SEUIv+OFbZXiNDBGFi2S7BrERcGM0ogFpD8yD/NZZA+GlM47m0j2ILfr
wsxwsgd/Lxg2pqkOYl5Gwupj8j2orH3IjPHmoWTNRO3p4H4ceLXtY4lIJzZ5
HOqL0ebiT+vUrsz6XpQYX5v1QrENPub1Oncn2ZD1iK6LtOhB65eYT+4nWrCy
7NTjBDYLMctVTF71dqHa0ElhcLwRexc9NPXgM3EuxVv0XlInNM6uoVKSvqJe
YSJWbBYTudLaBmvOd6BS/u5n/6JqlJwNOHPanPQj2yMW+eFkTmYEvGzaW4FF
vhb3FG7SIcw/smXtyzYov7v+xu/oZ9RZr3iWMUZD8OOddvt+U1Ch0Bs3i/IR
KTZOYz7BNFxODRrxc6LA+7XG4NtH77FgbveXONLvlNYsGt/d2YrE9wx+lXI+
+vZcNm7KpsLvy+a4db6tOCn4fbpx/TskfHUN2nCYisyDp3y0V7Yi18OGuf78
W8i+Vr+zZh0V8QH9S6MI974/2CtS9eMdrqkVPSgi3Fu4i/3130gr1N/RP8r8
zEfdTmGnaxUVspSE9oBQCiIe9jVvuVWEP3NiFXQ0SH/S26T0WakNv1svOWux
PkF2VpCByh0afqw5bZTY0YZeqQ2p1iJlMJU8Ya8uT8fonofFp3LascFVkLp3
rAIF9wMcf76lY8YqtdsmrzvwxXzYut+zBr6mQSuZHgxoV8ybr17XCebcqqLF
W+sgsjF8b/sKJsZ6M+NeSnWDwZjyYtg3QfNtMXPxHBb83yra8n17EGudokUp
bEFf+O/zi2awwfKSlF/3oxeRGksrLjm2oc3pllzCIg6ONL3afexGPwpLvGqO
6XSiIdJw0mMdF845936ULR0EPevPQfayHuxfmvzfFPGOyT81t7wkqDifetRu
zLwff7qk9N3e8FGRvEQm5CcVVl67GRcKBsH/cSbv8KgA7/5tpMdl0CDhqXH+
eDcVRU9GlDRI/pVPLqm5sYMOLf/0Lff4NIxOcHaKkXm5fOjx95GfdCi3H363
hHx16FzN/0h84Hho+9mKWAYcFzjkpLEZOF6W8GrdciEiVSwO7pRl4lT2Emfz
KuKpjhGbPQjfDM/UHboSz4T0YV1xz6ssfF+pXfv//6tcP3i+/M0PJhYpJ5kX
ED5tSDof5kE4IBGX3BhpxsICpX3s34/Y+LR7wUa5/3ud+/Q1s0+wYOi9OI0n
YGPx5stHDQhPFCYbdjddYkFBa3GljTQHnQXWKS/I8ZqSPps/Z1mICFaueyXK
QfLX0Nbz5PjYvn+SCntZ8NjVFCJVw4a98GvYS3L+mmI3baEsC6Ubr5fHebAh
9jOUYkp4q+ZrVBrzifB6KPx4DIWFv/sjxEwIn1cfik+7soOJoldb16xQZ6Eu
12dJNumDVTf3H6+qY0BjRd9LWXsmlruvlMkjvNormu04sY6BVf9pxZt6MqCZ
vOmAi5YQL18sav+eRMeTn/ee53jSoS3BMf5APHmz0SX/C79oMK93t83cR8NK
adW/POLVFxyUuh9tpSGfbmN4yYKKr3ni3/4pCfFDRkorhuytGe6q3QtzBgBd
/tUblgIsnCjWmowZxItrlVM9cb1QjjurLvuPB6uUfzbFewYwR6nB78KlLtwt
z9k5t4KLOudtyYLnfdg/uEPL80E7nOsSXeUTOei+2vpzRJF8/zI9vVE68ZQ7
2W3/LrBhmvFjIjerG67/puSHDjbDcvM6/ZAQFlza7iXcc+pCtJNZpYRhA2Zo
bLy96ToTL6xeX5tY0YmWorkShoq1UP7mr2ldzICCunFU45IO3GlNe6hytgq/
b17Nu0w89FRuirb12nYkrQvfLfFfOTQuNO7ycKbj9dJjM5+cID72svNP7fVS
3LrKl8qqJ/s77EbYg88UzFpLP7nq9Ae8ClCYXr6bhlJ22NXCVRTcUjpfHB5e
iL/rF8h9G6LCVnL45d+CVrT8fjm7yzQPjB2ME4uSqFhpEsH7srsVeeujb7Oj
c7Bgi1DcdTcVj33r7zsqtSJOwLXxGs9G0byVY39XUPFt9d4Lrv6tmL+V6ZZj
8w5C44Cbn45QMTm02dGCcFK6JGWbHeFkHG9Zcznh5IUL6U2f91BwUcHKXiHy
PbhKi9NGJGiYfPSf6iU+BZmjF+zu3P2I8X3tcsanaLD8ZTcm+bANEe6uv1ev
/oxDuvYNW4doEJxtknt1tB3fK0oat0yWQ/SuxYb6C3T4ur5/q7e3A00d0aa5
BtW48Cz3kdgyBmaXeYe98uiE7oiM6eHOWiTdk+grpDKw61uSVvL1LkwUDMYy
hhow2HxUY10e6WOBLT3yvd0w66VeiH3fDN/X/5yYj1jYekQl7vqWXswRJpys
1Kfg1KmBR2nJbJxO7DYQq+vDkVy3X0JKO4y2Pbfe/4YD9sS7hPIjAxijpQs7
U7qw7O3Gd8VNXOjc/PDDgOTzuFvLtiUxvaDM/7F94i8PTUs1JWO9qPjvwO5f
tIgB7DktNWBrIIDBHKmFUwY0jOseDXJRp+LSV9e4qyT/khJBD3VID720y0Rc
mfRQ7WGr89pkXt56zkued4yO9Usnhqrl6Fggb0NJJ3yLWH6S8meMTj7vzQcO
/qUjbn9kLYvwLW797ef+IQy4qbSwj9QzkD+l49lN/E15y787mXwGCkW0XuZd
YsLFOdnu6ArS+3JDtihZMyFXfj8QhB8u1/JaIwgHNLvDpd9fY0L90SElxSss
OCRQlJQI92SN5lY/LWLCw2e27rYGFkTOi9qrEZ7sEr2seKOeCcqc4baXAhZy
10i+vk6O20/8zMqqZCL1e/jeiQEWnk2be/sgOe5V+NzoShoTlSP0ALUs0ovH
z+1LIufff5o61naESfiz2GM96T/eh2n/NhCPGtMoG7y1kInOkMRfp8qZKPvx
fqEj4TNf7WbgipcMTOyh+L5TYuIuZV31COF54aad3H2rGZg5/5/nftLXNSts
R5YTXt0PONUc/4yOk6dMnEaD6fi5XKVT/P//x4qePPf5dHj3BvVZRdPgdMPd
6DHxZCeukYEn6Yk7N1nlz75GhWfP7TmzSU8crnFblF9KhUPuaMXwgUGoHY4s
PJkjgLnj31vJjEG8rW+tiK3ow7Xwgznzz/Mx9GZgW+PsQeTYfG582NINEYlr
V3bZ8RBgNaq46Ew/nKPa0zXHOuDy7F1a8DIubENubfjI6EXm9W2S9ZvbsLt1
y/RGKQ5Cd+zdmkb28gqHhu97yV5eW6dIpYmzMZkSLu68qBvvRJ1fTbo34cr0
ioG1C1h4fX9WjmZPJwzXLtm8L6QOSZv9D3quYSJ78T4r688dmNcXbqr1rAZi
86ivt/mT52R6vSGruh0GoYHjyhaV2LgrzKWnlOQrgV4ZJWyD23aNGXfsyvDy
XlDONS06kF59wnR1G55Qo0uuhpRA5nDt2TVpZE9LGn1Pv0HBpKfE3WcqxbDe
dOWeE8m9gmH95LFZFLg1lQavPlUA5owEP/tWKk7uzjetSmzFsrZbRh89cjEj
5N2wRgQVBYoHHM3MWpFeEfxt6cBbTP+6KUCJ7A2ZC4v1yma1wl061mbBxWyM
LN3y+IkqFQnfz46XO7XCdx71dsTLHHQtuXmqdx8V7tZH9cOLW/G87fvo3t15
MF4hIX79IRUubjqRsaspmFI11EZ0IWS0Th0I/0bFLg3L3U6fKJC2utl3xeUD
vJ80lwQ70PBtabSInWcbXI3l1+3z+18F5x2N9RuGcQotslWEiEo07AYuIaSM
JFIRMppWWkZEGWmolERJSxEZISPJyl4vr8277Fkoifye37/Pec733N/nua/P
fV3nfc+3ECdk3DhEvxPume8rDZOlovbMq2MWvMX4fjeNOWjCxPl3U4tzFrfg
Z57i29+CZVgctGYH/zATf1J3c7IWWnBM/I1IT0AFpq6bb9wfy8KHdFcVN9E2
pBjJ0F2satCwIU+v26EXCacXvl8zb4eqr0anUWU9BN8br96u1Ye9EbY6kW87
cPLkOp2YNRTsUrhTr7ylH3E2GyS7BLvQYyTWkx/ZDPFnd1+ObhmAnMEV9aFH
3dittHP2j3Ir7qqeLILmICI73RcaBGkQ5Y1deWWsHW+Fsfyx1RD4kyW2mtJp
UFDPvMyd04UdvE1z564Mw5/XY17jIx3f+B/pReqQ+Ry0BYzoERjFRW+5dJyB
+sC8R/OOdLxcyR1xleTQv9smZHyJP+NZfXJ5pREDjqoPkU/4dq5m69hKDyZS
m1fcdpEiOTX4S/l3wrcQXffGP4NMlL5o8PjIZEJ3devFMMK3++xfed6bs/C6
zfoog/g4venLziNE10IZlVtK37GwV7p5nSbxcW7xGhMMwoGuhVeWFwZZME/N
9ZG7Rnzdl9bTxwn33Pgno2cEeiHy2LSwp7AX5uNHck0ITypOe4eKyvSiuksy
x7mT8E8gPSudrHvaUt0k1/Yio0hlWWRdL3bck1t/Q+H/30PjXCL/smAilO5g
FNOLzjI59TLy/MqlJ1esL2Zh3aU8w6favRDPC6n3JT5qhMlYlejFgtCakdEb
RSxc5tvalk74fGePmLmXAAvXHPJX58iwwO93Pe0iyYObN9Zr88YxcVR/c6MZ
mQPvu6+hifirJ+J7HHPFmRB4S1l1I4bo7XT1ZTrhVZWSGlfNfQbOM29KpuXS
IdjHaEslvCqweROhN0vHDYksnmWlNOQkyTccWUzmDjNJd9kWOqZDpKsdCrtx
ydHuajdjGIJRJsljtjR8Nj7FkTTZAUH/w/r/fw+EkeDQsrCxBweDGo7MKrah
ueqL8vCrQYQmpX27HNeFseysT1dCqDhkd1hyRcQAaJWeWn/kOhFa9JvJ94+C
S4f9NW+H9YMSYXhZvbqdzJONtLFnDfh29uWG/IfEv1Ju9QaGteG5jllHUlst
zqR+lR9P7UUEj2/Yj5OtUKsL5avprMSQwJKnsQwy35SpTUnHW7D2gicM933H
mqX3KyLlWDAdGRaNukAFd0X0m0KJEsj7rflbcpOJiW1BYn8SmqGaMByZcvQb
3r+6ZJj4iwGXaZUje2aaEPpwMENn/Ava/nHtlPdhoE/j2n1PhyYk5TRLHe/K
gRX3+l46P8nbOR9zLFkUDMbZPzF0z4Lroq9XtHPoGHv+vMnMhwKFqOajHY8y
UNRzutzdjY52b3VtPlkKmIyZtFnNNKQe6D3YqESHDXP2V/mfRpzjP7zhL18q
VC56pbgI0eGsIPFo914KgvfzlGSJpyNA9aaS6z46bt5wqLCPp8BYRaDg6fNP
aGHrfaV4i44t3fs3x/E1IVd3Ik7vdTYCoza3nGilI//+mhaDR01oba1z7NPK
w6e9pkUxqgz4vpk8Ekm4bXrlgfxPv684d2futxfhtpeSy/Pg/mZoTwVu/Khe
BJ2A24kW65lwr9yakvCZitIo3fUjK0thrCMsaJrFhC271L+RNy2o+yD6jNOw
nOTxlE98NsSntXOc/PixFaKaCn7bWVWovFk937KqF+kHD/9a09yGpC2yp0Np
dWAVXDPm7etFLPu24gKhDnz2rzy5fG0j8mS4PTLL+vD58YbsH2dJ/6x/a1/q
3oQIs0cvB7P7cf25tMt1ahcaHVKqNvdT4f1859WcrAFIW27VijPtwaZrsX+7
L7Xh6buDq0q+DkJzvOpk3Ckaklm5T2yEO2Ep4KdeUTuETXmfN36Vo6MxM9Dp
56duuPslV2h1D+PbPQ/uxH46fLZ0m6e+pqHJXiFYaXAEda9GmROXGFg30SIS
do+O0PDU1UJEX9styqunSd7x9qgTOHWEAcXWzMxRwrfV20dluJyYuGH/OZJ/
JRPrX2ncuU74pr9K+H15GRNhapG7ZJKYsODRF8onPiSb8n0v7yoW7nwRPyKp
wMJpFv1+BOHAoLFcxrZDLMxuXpuWe5uF1E7dK+OEe0NZ0s9uXyXco/zZbFvJ
wgHH3cfqCE98y7ojF4cRTv6NXafOZKFbrj5GjvDQzCX07HAAC/GtEV9UqYSf
7xNsZ8l+zi5Bw2p7FhL7VpSovGbBodqqQI+se/nXL+wjdRSM8rvvNmGh79ai
y///n8HBp6txM4OJ/c5GsetbmJjNTGQeI3zOckvhiCY6i+evbHLRITz3ZEsA
4VWzIlP672qShy7w32A+ZODpwJ3iUsKrzCYuU9s4Btiv38rxq6eD7e3ipWwk
16fVuF/oE2NgkZHJOp15Gq4HLC9nIz55c8TIgfXOdJh+8HKdCu4Bf7orS0p5
BO7j727efUPD+bp/kzqDnUh4tPmjm8wwklu2d98sJ/uiW4uE97Xjim9jUL7Q
ELgo1iX8B7qRGPZRKzKjBSZ+4UHWywahsG6psGFnJ2ihkmdWqzTjadqag11c
A/g0L6jkc60D347lCjMpjQgujzrLyd+PNBIDudXbUZ6vGHr/aT0crUy/9G7u
A03uuhjPsjZ4Cyu0TonWQMn6etpby14MKY9NnfnVgukXXVxjJyrwxEK86uUj
FhhFV73V2Fqw27uBs3hJGco/fc+OHmBC4mWKrNkGKvQ3WapwCRQjqdPf9KIp
E2cD43dznmqG8NXgFUa+hZg215jOrmDgk0VIeGdxE/RLlIu6AvMxMMl9/4gl
A6tzTK5PqzeBw7hySUfmZ+grhthzTtFxh2LCvauIAu+k6OBlQZl44T7FYxBP
R0KNWruaHQVe21fq27alY/fWX+mOx+lYW/BTuoCXAhPR7J9p71Mh4/D9AHU9
HQaT1c8+DzditGLdUkvbj3hi//LgzeVk/tubmsoqU2DhrB81HJeGoAqtf9ka
dKRp1hkfvUXBc8710u7/MtBCT9m9yJvkJcOPEVGTFMiIO3jYtmdhtemN5pli
OpQ/FJvzeDRBSuFiz5hOLj7Us4XKriVzjjvIqYGjGUup3CIv9QsQ/N3dfyGI
AQc2iZ2lqc3IZajt1L/6DZV/f65qm2NAsFvH0+oSFUkO3L8PbipBamn1QkYI
E2lLHr0+Q/Kmx1DbllDl7/jefNdrG8mbc39ftB842Iq/N3dqz8RUQt3umGlg
MwuRk/mFW53boMOXotpgWws+V7520Se9aN/jHJL6sB3acXONb3Y3YG3cGgr7
uT7EPLMtMWjpQFqVHNPQlQIzH6m1rqb9RPfhBn8UusB9LiXDqbAZCgGOpx9i
AD6n82vVIroRlRx6kW9zK144agto7RyEjIluiOHfHgj/sP5tFd+OzlWuB07v
GEKIS9MfmwwasteuPLpvTRccr6optqkPw2CvjchvkkMXH36ecpToRbiJUsAk
OXTS6KBSIC8DgeFKStaDNBw6knvps+goLvtN3WPdYCCrKaN08g0dQhsX3XQi
fJMtylWdIHn9RuyIr6UZA7cm553rCd9u1H5ZHWDERM6kVNcFJgMCdPeiPqlR
NLkIWoc/YoLmUbTAdZwJa7Pg7Nj/fz8tf7jtYQ0TycLyd3nI/ODqPZTFJNzr
vcFfIvSDieBElb9rxgk30naMphOeRAQY2y1eIM9REwn15WShfDmbBgfhoZHV
z4mSX0xoXbd+qznDxJPt3pJNZH94j8X1rlYmDhTcuqZYzkRGie5TWbJupDcr
NfKGCfEw1VdWl4ivVE48MEfq4a7XLYg/wcSxnrXvXTiZJBcrCzsQPj+ubJtZ
sZQJGXU28ZQrDHBc8B13ILwyMD9c6hrPwJ+x+fpaklu0V60T4ia8OvW2Kihx
KwOfX90ePiVGR8rv2AOuhFdXFAIjZh/Q8eXknrse/DTIDEw5yHmO4Gi1ufY4
8dV5qiViO/O6YB79ds746jBe5+vxxCjQEBRmmvtOrwMxQj++n/MewnNxX8Nz
o90IEZqVkKpuxVm/V5sLvQdx11nB72lIFwqHeyxnbajQiV9xea//APQKcgW7
t3QiPFdVnMrRBF0tZYrh7X5we85NKPa2Y/KekoxNRQM2ah/dY/SG+K6idWHJ
aW0YG9lpbu1Uh/aajiE5kudphjP6mx+34t/apk6P8Cps6FjlNcDZixH117Lu
kS14cIIzQnVFOcxWDVuUmbFQ5sZ+wjuZik7lFO6VAyXYcadS3CuFiU4q/GTo
zeDpbw31lSrCMre6ra0STOziSzxRtLUZZ3aG9lmc+QptMerdq+R89TOFqsYj
myA+XbE0UCMPjz78pNkQ3xLQ886xl59wrD8+SCo5G1yV4+J72+hYduWG8vtX
FITcEjzilfIJ2++FJ1WFEx8lzyYzakBB7N2jjz23p8N+5hLFfD8dC6NHq+Pn
GvHGtHFduUwqrhvXDLqI0FG75+2i7J5GrJZSTrTITsEdVY5NwouIfqb9C9LW
U1Cs/O+nl0oanjAHZjsU6Tj6YNgt8RIFOt65ujcuZmDMzEtO4RzxBZFxJkXt
FLzL27bz3ZYsWFSNMG6k05GsFGuz3LwJs137eLXP5kA0kPrTmouBnWcbt3t3
E/92mldidvcXOG9N0uM5zcAvXrFW6vVmeN0byRCgFiK7VEi3q4OB0oOhdZc1
qbAQfngm3KEYp7e+O5xH+ng4S4m1VaAFRydVyrT1y2CtmTW+a5qJM8ss1LXZ
WrFQ/jdNMrAC5UaSk+Ekb+ZS3OJpXG04eHI620mwBms1fJ5IHu7F/XbVwTyZ
dnRIEtfrXY+kw4wiLok+/OtiyjpadUBp75rQ4XuNCCwrOH57ug9nBX0PcMd0
IjPOnO1DEXmP8ymhHG39sP59TNxmuAueLmVr3Va0IHPpOQOH0gFsXCgO69fp
QWHkMsUiuzYoH47+SckahPPiQ7YHjGlYylGceiSrg/gv1W67d0NYVFBjKviL
BoNv/KK67N2wD5D2evZoGJlTeytLouiw7g+KL11DA8+p3H+sKyOwCpqx/iPD
wNbzwfbUFXQo9gTlqxI9Cm3dE90fysDdawLjTh9I3zBqxnwJ304d91Jb2cNA
rU/bvQY1BoJlKzIvEL5NtJux35RlIuJ8JX3pOwZMahwmVhK+Db1dUJm0ZuKU
rPwLfTJXUj8HjmgTbtQqigiPejNh2V1nq6PIRMx5xxPshDMGYtNyV8mcYbd5
a3R2LxO/hNdHG5H1unKRyeX+TBjH6r/uUWfi8Vyp05r/v0uj5aW73oGJ7pnP
Lq7LmLhdJZHpTp7voPDkqg15bt3VWHX+PAZqFIf4LUg9tMFD948QPktss2px
MGWA+or9ZzWpXytzb+4ykg8/fZUMD62gY2mweVEfed8FWipn1E4GMhskpH4p
0LFnMR9PCjmf2MCUIpssOk4cWM7zx4SG8q8ZW/tfjWAH22m1J0Qfp/Zqxh7x
7IZeW4fYoeJhfH87YznpSoP5h30DtvKd4DSM0k5pGYJ5SKp0Lpk3lrrbeT9S
22AevjniWt8gtmsNi2Rs7YaTV9T+oIAWvD05Y5I5NYAXpekqQcR38WZMq/kT
36XBFdPNtWQAxy5PGw8/6kDdc4eEV0Sv5parj1+T6sfM5/je6BPt4OtZFyBE
r0efIZuYs0Ef5kL/jTlptmEH/3TyfH0NydUa4+4+vbh8k//pL8VWzFe2bV/Y
WglGPW2b71cW7Prl+Ca1WuDrXcw7Si/DuE+/bpoQC2JVHZd0nag4/jTpwdhI
MaqcVxzK8CHzYVWddcHrZuz8ef/+BdNvaBVq3uU0xQAjNUzpy1wTbuvbj3qs
LICXkOTPg9cYaAvK2D52tgnQVuU2k8xFyZXnPLdXM7Dp3DK/uAkK0iNvy38u
zULIsb7XjG90DOwznBsLpSBU2srw/lQGCtNjmYuuEr8rpsH3UYkC3t12Spmx
adgYfIbpSHwUNceQMUh8V+2Xr4cX238EBht+JBDf1XgiyvNbcyPk44TeVSuk
4PIO9gPCf2kIOMDj2SVCwdWAi0O7OlLBu+rJl5ZNdGxYndFm7EzBse7i2c+L
MzD9QND+gx0dqj6X5taUUSCiscVu7lkm7oT9VGJ7TUdJ+Kn9O3Y0oSk+Mzwp
+zNWp2qbqxA/ecPB7UFwQRNkTscFf7PJxx8/ZvgTcwZO2P94mna0GSrbZfDT
uBBTNRO7jhYyIM56PzHHQ8W6Exet3L4U4ZdnTPFxLSaK/rZ+km+jQu7Rx6f/
/EtRcOnuPjniG2YdtrBdzW/Bpy+qt84/LkdDrMPhwXMsxKY+u7A2uxWz+6Jt
Fv+rwn5zFyE+8V5IHJJmVH4nPs1zp6t2eh3yLzwr/dRJcuj5wZItI+1weD6R
er25Ab9wpkgpsQ9qPWKbn6/rxLDJ9WvVoxR89ls2NRPYDywdu//Trgsb6vUX
lYhSQeE6EyjqOIBdbpy9MwndqA2gR5w41AoBrh0vJvYNoulhpffYWA8kZi9z
dIe3I1B9z2zutiFYFYasGIqi4WCuCHtjTidO+TU80uEfhpXKv6DrZJ6MKDxn
jNZ1Q+nV/Y4Ng8PYFCAe7lFIR1V16ZNrdjSsEF5vz58+gujet9LtSgxQ9Cyy
paVJHxx5mhtM9BtcekfUjvi336zcnxLEv23yn/V3IHpv/Pa5bKCMAafe91mc
fAys/N1W2Ud8ix7fhuHdMwzYLrnJoX+CgfmKhbdc/+cyX40w9lVM2OSpbMqO
YOB0fJdGLlk/l+E2bibNJBxeqsN8yUDRsKfWHFln+GYlvF/DxIuw/cN/I0l/
23EXVJB1n3THLbfmGfg4cvd4tQsDbpL1z2TJen7wfs3wWgYuLJue30d8vO5f
CWtBwiu+7m49zbuEs7Hvts18IvUf6OGLJfX/7svfdF2LAen6qacdKnTk2Efk
VZL3Ddq02/hKIx1Rp/XOUP3JuTr9m3WpGgGXW82FTXvpCFATKNET6kHBxkTP
Mo4RjGirbKZ8oEH9pY9u2KIufAkeX56wdRgc1nIuEjw0bNMQlt3c0g4mt23E
ZpMhyKbfk7hF6YbJq4VF6+JakeuVtOveqUFkvXG8pXW7C9vsDi7ndqZizdqP
7qGBA8h3fHw8w6gT6jbpCjNqTaD/lrhy+0U/8p+J7Dkq1AGZd6Ivj4k1Ym1i
Yo1rWR9eisqeejHahrmIBzkDovUIbmDv3P+7F3Yi6Sdk21uxhFbg2nq5Glbx
OqEfVXth6PL7gmNnC24FTLud56wg59djdiSIhTMG1SoD01QEX/IPG2GW4kqy
atAxOhNvFMs2hG6k4h933TZdkWL0npKNMjNjwqLZo0rYoxmLV0Z/qospRINP
UI9IPQORXsnq4w1NsLvqtrKAlY+X8ZwRGnYMeOlHBzQaNmH/bnPn9fI5ONvu
cbpngY4W+0UvJZso+Bl4QyhwIROZuoeWdySTfo2slFzqScGOzuA7+w5ngPNo
/KmhUyRvtqZxe6+jgJNfa4eQRBpsR1SForfREdO65GRkVyMqzqnsiI9OwaXa
qr+RbHT82B0S8qmmEZweHs8a8pPx8fz7znPThGOS5tw+3BTkSmX8YX+YikZt
McdwKTrEuUXmlltToBEi+MsvIR37/kS5HrWiY0WjjIllJgU/IvcJOcplwop3
dFr9CR3jFUYqmuubMJCgtqJQ9jMSPbwuXeylw9eP1hryugkzD2mev97loX9o
Z9ghbQZu8sxH1O5qRjVC1SQLvuKVmqLcj/cMiJSw/uj2N8MU+qe+qxVB+rxW
k+x6Jpi/9PyfJ1KxyDV7bm13CSYcXL56fGBiYkkfG//NFszs1Nf51vwdlidG
kmb2sqCi3xvTdLEVezi9n7KJVUH7/L7GreMsvK570Pjapw1OHI3PPN/X4ro+
ZLYn9KIgoDNbM7Idyi0eZjEaDdB5WMvjRPLmkR/yP0TyO3A9yJ/FDgq6BERm
Dmr0g3o+TUJhvBMaz51nJyzInA27IS0jNIC1Eo0yfpu6IegkVZd1sQVGz4po
VhMDiF16alWYfQ92fJsK5Xjcho9DjQLHqgex7Oo+AwMjGv44Chi3JnVgz11j
JenXQ2hJt7wr1kWDn4/EEvfELkzrH+G/6TmM7X/3aD4jOdTNT1FT+mYPrlvN
X3AiObS6NuejL40OyVUJb1Sf0BCr8Z4p1jOC6c8NdubEn+z46kINIf5kPsTL
9wPR+2z5zakQksdo/SulVpFcVb/mkJ044UP7iWx2tQQGjvadC1vVRYdC4K/q
LYRv64qrpIVLGEh4Z8Pls4L4oyfJ+///TimJ6xL7CX8OvA+aYYgxsFZ0hMFP
+GNvJijuUMpA4aV5rgc8JM/dmGB0kf2fsir4W8g9G7RK/jKj05HP81tGk6xX
GlYL7/FloPmTWrgA6aetR2tElUk9fiPd22UJr1YeDqIaEF4pi1JflpP6X8td
TJYdoKPz65RByBsauGZTD9AGR2B7+FKKpSud5EvqjyuveqCbH0J5pzWCy2t3
34rqo0H0VKzW2aoufPd5zGrzH8aT54fpLhbEn71Un+Gt6wDF0+O0bfoQ5Jfc
T7x9qQe4mSx3N7cN+Vs29Up2DGKL8fz6YM1utDnt7Nr3tAW0d9GB6xYGcLa5
8+R6ji4c+LZezelqM6LF2U1p0gOwV9yYeaG+AyF5Iz6nHShY5L7lbrxRP84c
OSf0NqEdUW+5pqxtGzDF29m91LsPrJNGyRN32uDerxoqMFgLyuQAG/enXvh6
amwoCW7F8pNn9vYersKmQm+G8F8WzqtbVlwk+fFV22mFfSQ/PmKP2F9J8uNb
poz35c9UaB7WD9JbWQrbzhNKW7KYSFCwPv9gshmca1z+PLAvgvbB4oUqeSbW
NXzkfbi3Gf7b/qpc5yiE40ZLr8A0BmQTG2U7kptwbaxgrGEwD9064sfo+gyU
cboeUZNvQjfFiEPF5jNWmdxc4B0m83OfCadgPvFXIrqWOJKJKa9WsalYOqaY
DON0Wwo6Exsm62rT8XXoYdyhY3TEZkoGr+GnQNm/f0EqIxVvE295VsoQjolx
cF1paMSLK2Xv5X8kwymPk0NghobJb/Pq1t8bkdG0dM7JMRlBjUXy0xM0pJg9
YtfjoOCMTaVvj3UqrpgwrEvF6DjeZmoWakKB4bUr9xxt09ET4+X825SOcO37
FVzvKMj5183XUE1y7iCfZNddOlzitireESC50rn6VmpaNuY37+bOI7nYWdk/
t+FeE1z8Il4Nrc5D9e2SDaWKDGgILSQck2qGhYha2Dqer7iRMnx65RMGXmf8
O2Ra3ozi8MXFUlXfECWXYOzIw8TyOS3FIzepOGdmxX7teAnCC1vN8ICc/7kX
T+OPtIAvxLd49+7v6EscGP6ygYURtSE2pz2toJwbuvPOsRKXkiQfWFSyUB7e
4+eg1YZpw08TZ5tqMPP1uJu0by9OVf/wdTRuxyat3Ptnv9Uj4kgmx9Ndfcgr
mLg3e6YDvjFntGbTGrHxx4Nws8X9mFgl0KT5sBMDhy8qr8lsgsb+kbkQSj+G
vw97WH7rgoH/fOrxIiocHST+tCYMoJyadHZmrJvkide9DbWteEfzeUj1GYSI
pqaZ0QoavnB22tfWt0PsemDMk/1ER1IVAuGER1qiJn/Y8zvxUXXVmIwA8WNf
r87mkvuxGhlIULnRjWtPO+TDK4dxIzXV8/19OiItMpw38tJwJdI0xNR9BE/u
fTBr/EVHDbcC74qvNORGGmQG/BsBTvM8CtvBgNZYu9peeTrO3I0ZSCB8iJof
mJx1ZIDf4qVPsicd8hkCBklrR6FfP223I4CBs2/vUj2eEx7u4tc2Ipw555wn
4BXGwKPZTa8MyNx94/1MOoCsO2oGh+8h+5fvbI4IIPtNa+9d/H+/XsfyH2ud
GCjIH1vFIs9/H+PK84E8v6Q0PTqW1BMsfqb0JKknfUm01TtSz10Vm/g5Uj/H
yf0vLUj91Mfj2/JJ/TVn8zNTyPsuv9B2ezt5X0u5ryOW5H0nf+XUlZHzSRRa
VGtDzsdOjFoTQ87HpHL+5S1yni/9w73YyHlK602a/X+eFo29McfI+R/X7Qpe
3tCO+48khlPJ+ZeJvt69fbwbT7ZFTCjVtcJr2Y6aeXJf2kssRq3J/aquGShw
IPerPxhztoPc7/PdCbknSD80uMrLWpB+KHIyr48j/cCd4PpB8GwHiOD7ZdMb
8Yn2SNGB9M8iRSPh86Tfdr4MDfIm/UY7LM37gvSb68/LGl6kP3k+OL15T/rz
xKaf/VtJf6Z0HXf2JP0c1p6yvoX0s5Cc3ZwN6ecFTg+OWNL/hdsFLTeR/me/
VvQvh/S/++j5UmOiF5034iXWRC9K92jz6kQvZl93v9Yj+hI5EBQ9V/kNisfG
Ko8TfS39xRoxIHo0+6JsGsX9FXaLpsLZiB7lr24zyCf65ZYev3CY6DfkxRnB
LKJfB0/h0StE707v56PWE70rbv9b84HoXa/28b3fCRQ8TyrY7EL4UP0++Gwj
4YO4k7PZTcITKfdP6aaEJ8ZGRUbThCfu6VLtuwh/dhTubYwj/LFMpw8VkPu7
RF/Sf4jwymbR/mVrCa9yb+i6/SC8+g88odQL
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Slow light", "Subsection"],

Cell[BoxData[
 RowBox[{
  RowBox[{"params", "=", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"\[Gamma]t", "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "0.01", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", 
      RowBox[{"2", "\[Pi]", " ", "3.0", " ", 
       SuperscriptBox["10", "6"]}]}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",", 
     RowBox[{
      SubscriptBox["R", 
       RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",", 
     RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", 
     RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",", 
     RowBox[{"c", "\[Rule]", 
      RowBox[{"3.", " ", 
       SuperscriptBox["10", "8"]}]}], ",", 
     RowBox[{"\[Eta]", "\[Rule]", 
      RowBox[{"2", " ", "3.", " ", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"794.7", " ", 
          SuperscriptBox["10", 
           RowBox[{"-", "9"}]]}], ")"}], "2"], 
       SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ", 
       RowBox[{
        SuperscriptBox["10", "6"], "/", 
        RowBox[{"(", 
         RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",", 
     RowBox[{"t0", "\[Rule]", 
      RowBox[{
       RowBox[{"-", "1.4"}], " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{"tp", "\[Rule]", 
      RowBox[{"0.1", " ", 
       SuperscriptBox["10", 
        RowBox[{"-", "6"}]]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", 
      RowBox[{"2", " ", "1.9", " ", 
       SuperscriptBox["10", "7"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]", 
      RowBox[{"2", " ", "3.1", " ", 
       SuperscriptBox["10", "5"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]", 
      RowBox[{"1.9", " ", 
       SuperscriptBox["10", "7"]}]}], ",", 
     RowBox[{
      SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]", "0"}], ",", 
     RowBox[{"h", "\[Rule]", 
      RowBox[{"1.5", " ", 
       RowBox[{
        SuperscriptBox["10", 
         RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"alleqs1", "=", 
   RowBox[{"Expand", "[", 
    RowBox[{"alleqs", "/.", "params"}], "]"}]}], ";"}], "\n", 
 RowBox[{
  RowBox[{"sol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"alleqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "1.4"}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"1.4", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"TableForm", "[", 
   RowBox[{"allcountereqs1", "=", 
    RowBox[{"Expand", "[", 
     RowBox[{"allcountereqs", "/.", "params"}], "]"}]}], "]"}], ";"}], "\n", 
 RowBox[{
  RowBox[{"countersol", "=", 
   RowBox[{"NDSolve", "[", 
    RowBox[{"allcountereqs1", ",", "allvars", ",", 
     RowBox[{"{", 
      RowBox[{"t", ",", 
       RowBox[{
        RowBox[{"-", "1.4"}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}], ",", 
       RowBox[{"1.4", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],

Cell[TextData[{
 "Time dependence before and after the cell. ",
 " Black is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse before the medium, blue is  ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]]],
 " pulse after the medium, red is ",
 Cell[BoxData[
  FormBox[
   SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]]],
 " pulse after the medium. Solid lines are co-propagating, dashed lines are \
fields 1 and 2 forward propagating, fields 3 and 4 backward propagating. "
}], "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->111628146],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"sol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}], ",", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "2", ",", "n"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"], ",", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             SubscriptBox["\[CapitalOmega]", 
              RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{
              SubscriptBox["\[CapitalOmega]", 
               RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}]}]}], 
           ")"}], "2"]}], "}"}], "/.", 
       RowBox[{"countersol", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{
      RowBox[{"-", ".5"}], " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}], ",", 
     RowBox[{".5", " ", 
      SuperscriptBox["10", 
       RowBox[{"-", "6"}]]}]}], "}"}], ",", 
   RowBox[{"PlotStyle", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"Black", ",", "Blue", ",", "Red", ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Blue", ",", "Dashed"}], "]"}], ",", 
      RowBox[{"Directive", "[", 
       RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",", 
   RowBox[{"FrameLabel", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Time (\[Mu]s)\>\"", ",", 
      "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {}, 
   {GrayLevel[0], LineBox[CompressedData["
1:eJwUl3c4lu8bxiWRVXZCspKIKJWRZyFSZL6ZUUZo2DPZe+/54g0hI4UU5WqQ
bEL4JrMIycoqo5/fX8/xOe7jus/zOu9x3I/gTQdda2oqKqoBWiqq/3/lO+RS
1psokNhT862I+7NSM//oMYNGCiSIs5txF/QrGTqG1FS+owCl4y/3ivqg0vQ7
CTWWNxRgPSiSGLr/i5Ine8/A3dcUcAg3Mzv+fUhpv7WnbVstBaY27W8rDA8r
pdfw/xF7QYFP5r6XpVdHlV4a3eb5/owCJx6OVX9TnlBSL2UtxSsoEFWZn/Mh
8JvS4NYLxdwyCpB2TNoU+74rrefSmBkXUcB/W0NLr/KHUuhSya8XBRQwoWt5
W4/NKHEp6/hy5lFASmlgVWtyVuncVHZuN5kCQxk79S2u80pN51WkpTIpwP5y
9NpX6UUlUsTs26g0Csib33t+R3ZJyf3k+YmLiRT4snohnt76txKt77BzQRwF
zmhNn5BPWlFK7QraSx1DgVO+B+mau1eVnjt3i9SHUWCPbhqXl8+Gkkqj+3Oe
EAq0xP6QGf/5R6mP88hFz0AKHF5+FyF7d1Np5aXdrTMPKICMldwxKd5RCmZg
2Yj33s0z9CBLhwwVwmFaEz7vQQFnxmKVjsN7ENl/1CWPnSngG0Pj4c6wF2nU
fqxA57jrZ3bp5zQ7DaKfd7XN6i4FUkhjyNUT+xBXVfLcUVsKQNSGSpEXHUKT
Rjx4YE0BVTss1+P5fiR5epp56CYFzkXLKP7ZoUeqos6eSjWjwN6aa2fmXjMh
xPDQm9/GFNjQsKjXPX0A6ZEK1NYxpAC1x7u/+i8OIsufOp2Y9Cjgcc2unteL
FQkUdqO216bAPWXygWx9NoTNjTfpoyYF+BltTn1H2JHT3LbVgeoUsOUVk7iu
zYm8tzugOqZKgb6ErG9y3lyI7qvqz0rKu/uDtW+Y5fUhZILJxCYLo0DM9cpI
p0OHEefre9Y3lChQFHmXfieGB6F+WhRGUqRA3ZvHO06CfEjiHi3uajkKVNfU
3cvrPYI8K8iUdzhDgXyxO077OwUQbA1rbZfezYfHuBcdEkS61X4Yi0tRwIpr
+BDdlhBikRHzM0xit573Q3usjAiyOHvGZ1KMAtqS7aNcD44h/he+MCmLUoDD
t5trYVQUYYn1z6YIUwD3KIjwMBFDpGU6wISfAt3iDXvu5UkgouvZyf68FHj4
+PWqYoYkcqT+nv0jbgooofPP7lefQjiCUKyVkwIvDvgJymxKIwyXWLgW2Ciw
mBH3Jlf6NEJ1cPwnOwsFXOU6bN7cP4Os9z17J8dMAUVXt43eYVnku4Xe3UA6
Cpz9drVUdu488kVURLmIhgLFng/Y9LLkkU9zK9zteyhgXyPewHhLEYm1jhoe
384F00uOWQvaSsj9pZMREhu73GAsQDFGEdsHnbJuy7nAa7e9+uM9hujTO47B
XC7wO5vHCs7iiJRg1Xnd8VzQb5KSOeWkgvCW63/LGsoFvtsMwqs9qsh++bXY
yc+5QOV9igHXUEMmtOWnPFtzQXhG5lHtAw2k6+uXhPeNuXDg1X7S8QtXkNe2
PkpMb3Kh0ojPIZtDC0nxf5OcW5ULXz3+CGky6SCBTDewmfJc0DwtqGcqrIvc
S6eeO12cC9dXaTPoNPQQ9aeqyk3kXDA5hIowtBggZy/8mD+Ylgsf/Xp9vwpd
Q4SawzONEnb1mbRN8DhDZGu0bWkuJBc8r9y7v5Nngszcvpt9zn9X7+aT0/uu
mCH96wcu+XvnQv7VK2mbDObI04O6FHaHXDCo1P916tYNJDvr92Uzu1z4zOL1
w8j+JhJ5PGW90DIXjAcVl254WyKW6KCWgmEu3H3czsHbYI1ot3n9DdLNBdbi
Kmx4ywa5cI23sONKLqwZ8HzIVbVFuByub1vguWA/1TXjQnsb2bv5r7hEMRes
KAHzNX53kMXQh/orZ3MhMMRJwYzhHtKa8700THxXv3yl83SpI/JCPPTaJ5Fc
2HL8PBkT7YQU1Bzfy3s0F2j/nWqd93BGfDvtjZ+w58LG+acGp+65IreNmWg3
mHMBZV7MbPNyQwynyp/h+3PBbEh4ZyreHZHZWdz/eSsH7lP5G5/65onwRyZW
86/nwIp0+PfEo94IA5eshe1SDggQczpD7veR9YefGSt/5uze30N0dks+yHdJ
jxebkzlQl9sl0JDgi3yq5bZUHcsBnbyQEB1JfwRU6w7EfcmBk+YzV+8fD0BK
P5nUDfbl7O63QsEluUAk3WzbWqgrBwrdgkNvWAYh9JdT/rS35MBh+bw8ycRg
xFtOMsajMQdeCHuLjP0Xgvw89kFA6E0OsB28knj0Qhhiym5W3V6bA2cvSGiU
1oUjHVSrah7VORCpMaNvei0SQeajhwQrcuDeyIiiKEc0ItDymtqjIAdOr8ub
ma7FIQk1+qmCuTnQWBo/d4QlAaEumDvRnpEDHOHL8rHyiYhLQnC9e/KunwH1
xHeeSch3Xz4dwbgc8GXq0mboSkYM7lR/b4vIAX+am8falFKRJqMrnu7BOfCU
ayjSoykNeSzrk9vmlQN+Jdt1LySyEB4hjjPurjkg9SaqIpIxG4k+WNYk4JAD
fQJhfs2Mucj2lrJxm10OaGTyjB5NoyD3Zod+uVnlgMce+mt2dQ+R0QGXAAHz
HODPzBh7tZiHaH9g5Gwz2l2/pWjmI4oFyGmK4gWBqznAzVMwQmIpQvJjerta
L+VAKzBXO2YXIxz3b1u6qeRAVZwiF59yCbJmkBXZKp8DzeJnEbHhcuSW8hl+
N9nd/E5SvI73VSCD0m3Pjp7KgU2Prq/eK0+ROsbNQVeRHLB+NXHxm1wVIvEn
8c7Ro7vM79Nj41qNkKfEqVoP58C3oviy/nfPEd93xsePHswB0+qDF9pSXiIL
T5brWuhz4Fb34XZ6/jrEghyp5UqTA5JyE6XFr14hhEedW8ufbMDInJvtCm+Q
KitdeteVbLhcf+GqSNxbRER3lsy/kA0DIecLwmPeIbSSPI0u37Oh8xNhcauy
AfHgqbzGP5oNVYH0Idv/NSLTdBo/m//LBktW609OLE1I64QXG39XNhxmAinT
smZEsZu1sLklGx78OXaKlb0VKat/LO/SmA0f1S9aCEW1IbHp/1k012aDmciL
fIbKTuRfiNOKc3U2GGnRIcIy3YijC334kYpsUOxz5ddn/4ToaslXOBdkQzdL
P7fDeg/SoPiJOJKbDfsQ2tGjf3sR2RN2/R8zsiFXIWy/0/7PCBdNxjZfXDaU
ZLFZ5l4aQIZqNy5/9MoGrzcGZ93svyLTZ3WKo12zQSojtI+raxhZe/aYRtch
G+bxwZfXiVGErcS4/qtVNlSSjcFaYhwREK06nGeeDQ//Kpq4b40jknmM7reM
s+FU1CH//s8TiHrma6nlq9lgj/yVScz7jpC4OKNeaGSD6eaToceZk4hl4t0f
PqrZoGz5gVmneApxPNCkTGDZUPrL/15bxw/EN5KfQqeYDcdO5fk6MM8g0bQe
W+1ns0HAFX412M0iGYFdhonS2XDhc8TroMmfSLW3P+sR0Wx4Kk246qgtIO/X
Bu9OCGQDg5ve4z2Zi0iXs0xrEW82BM+kiNcWLiFf5yNE73JlQ0FxtG9P2zIy
az8ReJo1GzZKyvu8GFeQjSmF0XXG3fV0+CpKZ7uK7LNMUqynzQaVuBME3dga
ImCisqK2RYa6bmwkc/kPIjVA1mZeJ4ORX5uyY/Qmoqi3WtazRAad5e7X6Olt
hHS50NrsBxlqeX2PZulSoTGK+wece8jgqjgTNC5Eg2a+sDgj10GGDx9ro6ml
9qHFZ2rjtj+SoTk1pLdTmRZtlLBXD68nw/eN0yN1ifvRnqL3BZovyZAwkkdT
3EGPjgrz7mGvIoO+RrPOVy5G9C9ve212MRk8W+dqbw4yo/vTRbgs88lABRb7
afQOopwcD5zFcsgQ1OCJXXRkQaWZpCSqkshAc+6zyRgfG4qEh4Z5xu5y4N6H
EjTs6GWa0W9KEWRYcxfW7V9nR2224sjNvmTYIH+PqqTjQl09pzdivMjwmjbZ
o+LYITRgBTPQcyVDr1xkc4geN0qeW2IesSODRzrd1PkJHrTEVsM+34oM35JV
LGZV+NAX3/OabM3J8Oikl6XIqyNoz1c9v9/6u/mdKKiTcBFAxwzLhl5eJcMf
Z2ebd1qC6K8+GjlfDTIk/puM1jwnhO7veL64H9vN14LX/L2ECMp16YBmpwIZ
7unf79pQOIaKfLB5nHSWDF8OzNS+MxRF0fpDN/klyNBNaTBefy+G8gh9UHc+
RoZ4nc/D+6XE0ZVQ51NNR8nw13GwZaVcAi3R7ti6y0GG2fb2+sZFKTTkufe3
dwfIYLNO0O0YS6MWPGKtnPRkuKmekWSsIYNyfg9Mq9/OgndGN78u6ZxBF9Wl
fVk3ssDqVtDnqNuyaGv5sJX1chYY9TBlPko+i/p7yJ1m/pEF/i1LKbbccqjJ
10nuG+NZcFLQJqjcVR49hyf9qx7aZc3RIyXfFNCfDPPtpt1ZUPj2+3jCthLa
5JBV9bQ1Cxrv7tGoKUVRSp96Js2HLGAwWW9mqcVQUk7+rbLaLODhmLtSU0ig
Mnt1tKiqs4DKKT27oFIZZbLdkdV/kgUNUdf+VHWooO9kjKi38rKgfIISmy2r
hpJTaWeuZmcB99/3k6qB6qj7ZlVXfloWMCtb6ZRNXEJPfjiQfTk6C7SKkfm2
0SsonfjroNzQLNDbbOyo8NVCJ2Lt7H/7Z4E1EU6lz6ONphk2ns9yywLBvKGj
Zqs6qHO9E/+CQxYIqd36Ur2mi14ROrpP2T4L/vvMX3CSVh+lnvPqmb2eBYzR
OL2VLgkd1j5eixhlwZ82TsfS+Gvoy+d9uYl6WfC6o4xaeMwQvet36q6Cehbs
vx8zcLDGBFX//lUvlsiC6BZOQ13EDBW6FKkwcSELSOe+sFgMXUcH2SbpImWy
oMI88vWixA20yiNxflgiC8xPP73zku8mGvsV/SwjmgWmt/z8mXgsUeXCzLz/
eLJg/pL8v9+INcrPqB4hyZkFmykDxZdsbdANh1WHgINZMDSJZu48vIU+kddW
OkGTBUX13/uPaNijETnbwg92MkHRLnv8Xt1t1GpvKcOnjUwIiPkX8Au5ix7u
2Dfo+SsTiDTpqxYqjuiKTBW0/8gEMnetnaSYE9qZavFIYCITxK9lel3jdkaD
LV45N/dngqrW8WwdAVfU/IOtEd+nTNgjpCV4X94NVRDnwhzbMiHo4tn16hvu
6MJvR2but5nw06bU1GLCE9Wq4/jaXpcJrDp0g+9FvNEy/5clAc8zYUj3z+y2
+33UnplK/WdJJqCCVYUjmr5oS28+F+VRJkS2F3PT9vmhYplqk/qUTAg+Os4U
UuOPTonGBULK7nwZx9l87waiqr9O67jEZ0Kl2ZnxXsMgtKCq/6hYVCY8tDV5
b3A1GL2J8dcn+O/WvxfXaDYPRd/Rvo+6eD8TfhmpP3njHYYKdFgbb7plwiz/
b92k/HB0xKh83ep2Jnwa1Hh/RygKVRLQaTpss5uH7QPfNa9olDy1ktxpkQnO
XpxIwUQMauxy4bQcKRO448Rs7dzi0Vr5Mapf2pmQsz4gdvBiAspNFdz18HIm
mB8Nn2UVTEQ/R7fdYcQzgX3CNvTURhIqq+eg+FYxEwI36o8ariajiYfZGdzO
7fZ3gTr+z04Kql1oXDQikQl7p79colJIRyvu7LgliWbCpQOVsg/vZKAHzuSp
qAtmQt/+mrTTTzLR9jcz48+4dv1Oc85+s8hGJUJjntqwZkJ+lIG6S28OGnlF
xo+XKRPEZMRlZiQoqPp/nnwhezIh2q84LbX9IVqUy/dTfisDejvfKs2U5qG0
Nm9r59cy4LWJcUJHSj7auEx3zXAuAw5XW78RiHqECteWHmP+kQErMiETwWmF
aKDf1ZV34xngPc8wZ/20CMWY0hIkBjJgdJ+6Yw9DCZrbo2Ax9ikDTjOGcI1r
lqI76SNSKe0ZoJDJueVMKUNfHRNt33mXAc3WkTZiHhUoz1xLZtXrDDD85iDp
7PsU9ay8a2f7IgN45g74lmg8Q8+hz2l7yjLgyeps9TJVFZqyz+hzaFEGbOce
Tl7+WYWutG3lK+ZlQPhyIb3kRDVaaaiCP0rLgLE9bXa2yzUo69Hpg8aJGdBh
sDUfwPwSdZyMGjkQkwHOTO7JdOdqUSnn3vuegbv9hRVaNz17hcbIeWhIPsgA
8ZQZ7ou09ejcDs/hCY8MaHm6QHpjD2hJ1M2ay3cz4B+5I1Ou6i3ar2ByMO5W
BvjlOl7lSXiHUs/q2fbc2NW/JT4v7P0eNVZX5TEi7ebjXvLwg0MjGrqu5ELW
zoBnYmHJjx58QCsLz7WPamSAp62wkUJGE8q4T8zXBs0A6gtv0iy2mlG5aoGB
x/IZQH5NondXbUWtLA9L/zqTATLLzIPquW3o63cMEy5iGcCe2TUcH96JTjvu
VXwhlAGLQwy5M0zdKIfAVtJfvgzQHRfdrhntRu/4/lINYN3N8yPNzNCjHjRd
ciqnkTEDHt5iplPJ7EUbv46s09FmAJwb/fQnsw/lU+x+HPs3HR4+N93/tKEf
VZ9tpu5ZSQe5WuHvi3MDqGvGOxPOhXSwTyeqqI79h3asVzKTv6WDiOaq7LXG
IfRvYanN6HA6pBj+IXNIDqOipII3QoPpkN4X7p9YNIL6Vqc4PW7fHe9KfjM6
O4aWWMa2zjWlg1HfTEn1h3G0ny1MWPpdOiTVTF61L51ApZw8P9c8Twfp5pXC
xxnfUWMBJ6m/Fekw1vSZbJI/iYZ22YUplaTDnFo7jtZNoSOSJvKNOekw7fkb
l2WbQRmG9RLpMtIhuZHmQb7+LHou+spPjaR0kGgh5VIV/UTjZpWyP4Wlw9T7
H08SfefR1xnn1jgC02Fov9nVZ9SL6LT6qauGPungd/Ovb2nXIooVCewZdUwH
PYwPFwhfRu+QDhsL3U4H87jLO5Guv9H0fWxV1tbpEJ2jHWd7ZwVdtNxrPWeU
DpXCRYIZ/msoH/tW/Sn99N33WrOkbM46qv5+hctFKx1kwzvjX7ZsoBSBqeY/
RDqY5MZQoZqbaHvXiKCS0m4+xuXt1YVb6IbvgLf/+XQIX53/vcmyg2oPN5+k
O5kO638SrHdLMJ/odyEaounA0hIv7nl9D1asWDcSI5AOdyuItw7y1BhVZmk8
B2c6WNxrnsw/SIOdvFQwc+1gOnz967RnnHEfZrhBJrLo0+Fsw5I+wkGLPSPF
rgjupEHrG+7jyZf3Y97Jalz+G2lglLF9ktGdHiN6qORGltPgplj2NccnDFif
psv9zB9psHC4bTnsMjNGjjqZvTGeBs1f1Omqnx3ArFsmgfQ1DdrNFGp0OViw
NRVDavZPaVDM/PwTTSErBoGsIk5tafDNtlaE8wEbFva2VbXrQxrs/BxUPHed
HeO+oBQRVberV7d3JwLjxMa81kpmqtPgPyqfSy8JLuzxi4p2tYo0iG2mm57X
PoQpnBFioSlIgz/H2JwLkg5j1E5DMjdz0uC7mkyqegsP1vYkWe9tehqcnjHt
RZn5MFNxujSfmDTojC7XfPaeHztm+/bll7A0CAtO7H3DI4DNP/L6IheYBjNP
u/oLvgpgfoJzR1bd0yDry9gPu/tCmLr5I1TPKQ2e/WL4Lm4kjLFkX7/x7HYa
PPiZ3MyDi2B53J8K7lqkgcN+/yl7GVHMnhTZ1GacBj/X1llaFI5jZ5KVp08Y
pMGlq5MGutpiWOPBGompS2lgqrp3gidPHIvWdNBUUUmDxWNteOCoBGYQJeaQ
h6RB5sZpFWsJSWyKNqvy+pk04BArTpJaOoVVqOj3vZZMA5rKi+rnaqQxz0Dm
NR6xNLiqMLNm7yOD0e/4yQ/wpYFHR4UEq8gZrEdR3uTsoTQoOz2ueolWFsv0
WvZJYk0Dg8UfB8uWZbGTq1Zvr9KmgdahgAtjP89hK6f5J8qpduvJAdXlf85j
9Y4De5k2U0FWfEwon10e05q7pNa8kAqni1k0z91TxLjE99qJzqaCgEnzlz8V
F7DRW68jg7+nQr8ho5EMFYI5fpPqxP5LBSVmuwrlWxgmLzi9kNO7W/+15u62
KI5Rmz9k3e5IBX8jafWLCziW9IXdoPZ9KpB0a+l3MpUxU+4O90P1qeDytHtG
xk8FEyGFpru9SAWDPXEMfndVsZpPG0MyZalAF6faz2+vhg02D98sSUmF7uuT
V9yXLu+ud8wdu/hUSEArfWeOaGLOdEruYlGpcIKhBKslaWGMF8kRhf6p0NH7
SeulhzZmOHk5yfp+KmQu1KucFtPBCoI3ySLuqbAWFv57alQHQxqMn+bdTgXh
ONK4qI0eFnWToe6GTSp84LyccvmsPja4p65B4EYqsChfOTDCZIA5Y4cHckip
wJh2R47cT8Ie1Q9sZ+K7eZbM2ziNGGPLpmF0xhdSIS+AunbzrwmGbJ1jPXw+
Fao1Kl/SCZthgwqpImknU+EJP61HQJo5duyLqhTpeCpEI0X/XJwtMGev1fOc
QqlwN+YI9fjRGxjTS/3LSYdSwaLqrcqfuJuY0TUaA122VLDNX+k/rWeJFa5V
XWdlToUHuU9/EvxWGHqW3TmOOhWeCxqd5e+wxpwrP6VH/UqBUKrZW/+l2mFv
dALyNKZTwMFfCOl8aI8xLUmX0X9LAUVJ0Rm9F7exR6fi34QNpoAPu4newN57
2HIn2nKxNwVMo6JO1io6YMi9hZ59nSlw+fmX3i3UERss05oKakiB7a2TNh/S
nLBjV3YWCEiBEg9j4UVNZ8z5Z/mfPbUp4Nx3TOAqowvGKM7M7P8kBQ4bNdp9
JLtiSFHbGZ+MFDDMjZVfF/LEdh+LSorJKfCQ46MVA68XNjgprvY3dldv+1p0
B5835iQSaewZnAKS6r8V+hAfDBrkrc77pQBf+Qbzf+YPMAbLmbtrXinw3CYN
4432xQoeqge4OqSAdOC+kIPB/tgSthF5xj4F+k7aIjYnAzBkrCh52SoFasM3
udWHArBBfrpiR+MUWD/O61qhGYQxkj903lFNAZFHnT2p0aGYiEjrzTo0Bfbs
rP68FRyGIWWda3QKKcB9pXc1NTQcc349wJ8vlQI/PkV015ZGYtEqXysXxVLg
/MwSGt0VhRW2j11EhFNgnOPSQe9/0diXrzP3/juUAgEXR/4lh8RhK1bz1MfZ
UkBi5ZiR/b147MCv5VRXphT4z4r/6zHBBIzY3oSDe1LgloJK65HsRKzkyIGD
F2eTYV1JU+LXegrW+IgtP+l7Mijb5iXITqZiI5KHzo+PJMPN6JvJSl/TMDZE
wNynNxliMx3fCs5kYCebRH63dCQDxo1Tt//LxC5qnQg71JwMbA3xaL8gGfO+
frqi8nUy+NRNLXdF5GDJU+eUqV4kQ+rtpx6l3bnYk3uKA5rPkkH/8bMpy0QK
NuGr8m/60S4PiWA+mw8xjVzS1aNxyfCsRX2p4cQjzOq4ybc7Eckw57F3kcRQ
iPlWmHvUBSVDyanygM3fhVjlG9tcA89kWFI5dHnqWzHWrnb3TL5zMnTXpxbN
zj7GprqcPi7eSQZ3ZQWGB1slGM+Y90LUjWRI/tr6+idWjsna+gX9Z5IMWVc/
P6C4PsG0FoMOHSclA5m/Ry+5ugILpIpB32vs+q/pyYiVfIbNCuTGbZxJBj+r
tz86xKoxmsf5whelkqH/xYn42b/VGL9M8YsksWTw/Ct7w/jzc0wXfzYqdSQZ
nO9Un/QteIHdaXnu4nNol7HBmyMZL7FQnTq6VtZk8C2SuD6bXovV3Wg4ZU2b
DHuDz1D7Pn+F9c18bKik2vWTeNynpfc1Nu/Ufo1qMwnOm0eFqG/XY0KBn/2y
FpLgol4yd5P8Wywi70fXp8EkqLQwD6TZfo+JRU9c9u9NAvyi2cKZygasyW34
o1RnEnx8Lk/8vtuIUV/qfRPVkARyRO951r8fMMrpTkUFSIKp23yqc61NGMLX
8mL6ZRKsF1mKaOd/xLwXoEL1SRL02qP33t5uwbj/q5VYKU6C+1LlK4amrVjN
++qivPwkuBGgl51o0Ib9TinJ/ZeeBPGhj75xW3Zgdy6kxtUGJcFmvfCV3D/d
GINoAqOtbxIk0no97Uv/hBUfjA7j8koC3uzgsadKPdj3iQA/l3tJkOM4u3wi
oxcLbPfZFLRLAiUD6klp7T5MoMbDo9syCcQutX+uZP6MmUXcdZA0SgIOGbZB
5ux+bMvZ9ueQXhLkjXSoXXcYwDJNLW9FaiWBKU9EGPelQaz/lJH5D+Uk0Etv
2G5n/4Jp9atcfSi1q1f7w62SeQSbe4O2XT2x67f00cN3QqNY5GMFtR3hJNA6
3W9QKzCGNflIoyaHk4CsHfYrWGscs7KReEXPkQTtl9mEdH+NY9TaoudfHkiC
FdPYA3kJExgqzHeKkyYJZmimSqJ+fsNGmA6VNuwkgjEV3duIh98xnzXW485/
EqHFZ8e212wSe9lCd7RrPhHe9bxpE5qdwqQdfx+I+C8RKi9ZZ2xdm8U6jeYj
z/clwlOtmeK0iz+xO8oztFOdiXBnpjfNRGkOe8w1ukM0JoJYdXjbXZV5TJ3q
i/cSJMKHTrccdYMFbGqmby23NhGcTgQbVZ1fxITqW+e3niSCwu7PiKHFEva2
8IN96eNEUJKWekxsLWHX499OGRUkgslOTIRb9jKWaVkzUpORCFunVF/YL/7G
2BnyOh2DE0HfsGWldXgN0wo0Y1fwS4SgHOli3kfrWPhfbsO93ongoT9Ct+W8
ge3Mxo2nOCTCcWfBl6jwX0zO8rKouX0i3PokH89Cu4m5DNHeFrNOhMWrNGeu
LG5i020PVuqMEyGj8R6xMLSNCavIywcbJIJM08Nn3cM72PXXKw80tROB4+f1
DI7pf1hv2W26MdVEKI2V77nDuAeHGCOefTKJcPSFfmOZ8158Yx+neafErt7x
ATOhwzT4Gd/u/DTRRFCdXQreaKTBi++pSYrzJcK5S5fMnCVp8W9T1M6/uRLh
kVPB6L1ZWpzfHGpes+7WV1/IeVBOhyddPYtdpUuE5zdLHsZfpMc7Py4Gc1Mn
Qsj47L11PgZ8P1bWMr6VAIKf9FLP/mXAfaWF9VyXEyC486EuYysTbsvKapMx
nADK6MCRypsseF5Ee8nNwQS4z5Bien2OBR/eE74g0ZsAbrUy09berLju8o4n
NCfAn9sS91gK2PAY+7r6sIYEmOs44PYXZcebJ9yodSABXNGynx1j7LhS71zU
t6oEUHW3fdEiw4l7Xi7uLnuSAL7PH3ZiE5x4ZYMlp/vjBChbFv6OpHPhYtVf
cvbnJsCF/3SmPDm5cbaU5meSkQlAlX/z4xsjXlyTOXhtLTgBnn2pFlVT5MPD
Q1DFt34JwN/9+2Cb8BF8262mUdctAZhcOmXzGI7icvNO9HyOCfAYn1+opBHA
nW0ktSbtE0DjZ0jA3nABfJpUMOBhkQBdneYPZjIFcaEucz7cJAF+K92XqBcX
ws3UeG8wkBJg2M7x2BYI4T3nE2fJlxPgJyOLPb4qjNdz+2+/O5cAFzfv/gCy
KN7oFd9+WCYBWJhSpKItj+PtXyhZThIJwPqt89CUtBj+lfxOXlAgAewW7t9j
GzuBf9/+tN+LZ3d9vto7GrwXx+euTwx0cyRA5bKfEU2ZBL4lsNfdnz4Brnre
oWSkSuI0geyqg3sTwIvpGedOmhTO9E2YQ3onHl72D1W1PjyF8z5SqRxdjgeF
e9Kbn39I4wonQueRr/GwmhPeLaN1BiciU+tT++OBn+EXr93KGVzjZ2H0fHc8
TE719mzlyuLG5R/Fcz7EQ9aIT/8Y3Tn85oHBP6tv4oHULWIX1ngOt3eYbtas
i4difQan82HncS8Z+lvbT+KhWlWY3e2oPO6fePicweN4oHms/dpmVR4P/31i
X3l+PFy/H/TjRI8Cnv5cI980PR5Sdmh+bFIu4C/lo0dfBcRDwo/6h1SaGP42
k/yE3Wd3/J7LUf1+DG/eLHtw2z0eOq7MVf+1xPHB+g5e3tvxkPmvV/hDNIGP
8Y/MOlvHg111K5ukmDI+7Tdf22oeD2/O/bvi2KyMr+MHDb3146F+JiP/CLcq
vpN39HiPVjzwbWs19n9UxWlppNdOXIqHaYbnGXQPLuJcTdrJ/ynFw/zJuRHP
DTX8nEZit9zxeKhkOr3fRe4yjpTm5cYLxoNUVOb7V9xX8ItMVfemeePhioJ8
5Oy/Kzips5cpnSUe5GdJrM3ftPDrp74PLTDEQxNzyMzY2FXcJn6lRG1fPBQ5
3aX94qyNzxaIJ87/joPY2N+bz4N08L82l6VzpuNAJYMm0pJNF6c/cadTczgO
xuC7vc0jXVysvJyhvCkOCi6oJSwM6uG3nksH3c6IA7M/zcWfvUi4vwKy9DU2
Dj4Pxfo8ErqGp7+5bK4VHAf3FNS4ZLqv4c0tNooyDnEwzLAqui1vhIuNkH+v
qcSBi3Kkw5ErpjhmWXLDViEOqPrSpO/zm+GG0y+6/jsVB+md+UWla2Z4+HJP
6WueOKjjuP+Rr9Ycn6altwpcjIXB5iMp2h9u4FTRXD2/J2MhKkOwZ1PtJs7N
KoJZD8XCd0aXg/KdN3F1XpRPvSkWGCY0RVsmLfHiU259zORYmMkqMdlUtsHf
VgcSfgmxML7EkTk/aYMPysc/XQyNBY3esw549C18v0ppdK9TLJhqvSn2mLLF
bQ3HVTLUYmHy9/77Vn23cf/h+UoGpVhgP71ExJHv4Ok3twR8Tu/yQOf8Afu7
ePOdQ9vXj+z6pTMWTuN0wMUCNJ+L/I4B/sePda8bOeEYrYlw6nQM1HWmpdb3
OeGGUbYJdCMxUBi16m+i54yHpwTdnW2OAQt3L/pHxi74zOPaY09zYmDPRUa1
hiQ3nPrUxyTB5BhIHexWspNwx3mq+/YkRcTAwMKC9k6TO64BC8NurjFA/+5N
iiWDJ17ScyxVUSMG+n2nb282euPvr52hKUdjYCgmcg+T3338y1fMmf9sDKxr
sTVMKfngDD9MtPYIxIDrGUqXU+sD3H4zgfbjajSsOtLsCCT443y6lyIMZqOh
rjr9SBVTAN5VTMX0fSQaLJ997i6LCsBlSQ6se5qjwYS96bx0ciC+/fQKn2Jm
NPSpsHfv7wnGn9LR5LbERgP0BdnZ3g7Bb15/JWgYFA1Tk6QTK/tD8SZG8eNu
d6Lh6vMDyv+0w/B4G7rTFUg0cPtFH2DljsSJeqhWOhMNTEj3+N/Pkfgqu/v5
9uPR8EXyevu/9Cjc+N33CzMs0eCWTPCMSsXgInzv1YS/RYGLDLtvi1Y83u/s
1fpsIApGir/MrTbE4xEt0ppYexQ4P21zPnshAZ93z9U1ex4Fyx80txXOJeIv
PvmYpYVFwfeNMeMk3WTcXkx27JhPFDSIXeWLmEjG+fx+3qx2jII3gYli591T
cP+TxrafjKJg9Zb6PNfjVFwj7LwL48ko+MixnuCDZuBbw/OrGQJRkNfp9f7z
QgZeIVvoKcYZBedYlOVfFmTiHBMcvqo7kUCu/u4QxkfGRy4sh/t1R4Kfa9x9
F7VcPD7pMeOBD5FgroJ2ZR2k4MqzFrHk2khoqfhgIudLwYvTupJq8yLhgFWc
w7jlQ9xpuSznt2skqFYeGGrWzcdFLlkJBtpFwrUXvXt1+/Px/lzeApbrkXBz
uDqY36wAV9CMfCypFgmi6JuX7a6PcJriW9W3DkeC1bVl+jedRfgiL6VZ4kAk
bJlc7c27XYwPxQ1+XaCOBErWOrsm02O80uPSPs+5CFCqft59xagEt1CTIIW/
iQABPR4pT5Fy/MorS/sr1REQTmH4yDhRjp8/RfZleRwBO/soPwQKnuAHDjEX
pSdGwJ5/v+UO8T7FX03NrxdbRwDrhOAz+tZneKHxcaa7xhGwyL6kxnWhEk/s
NBeQuRoB5w3XghufVuK2Nd3qtXIREEJHZY3kVeFcoZUZLYwRILbt9Bkreo5T
/50tj6GKAN/x7/TLp2rwX3eF3+ushkOIRoLZ61c1eKNB8ux/I+EgJbWfe/jr
C9z5mLvi7LNwcKk+mXhLrQ6/nvHk6pPCcFjsGpycm63DLzH/sHTOCgejSxcU
RRNf4QKr16L/BocDP13oyp6513hno/wwg2E4UI86Ho7qeoPXyTkvdV4Jh+kk
+vG7l97ij8pK9iXh4fDpVGYEXv4W90nmleKVCIfLoZaQev8dfsJq21diJ2zX
/3KbrGwDzjF4NmlhOQwGPsyvOBQ34FRX7hVV/QgD72w/WpmjjXj/mdEuxU9h
kHbkwYQXxwc8eO87gSsFYcCT6FpRePQjPpYX/P6ORhg409bKKX1ow/v+e1y4
jIaBmbHdrKNZO97M0hXpeTYMroifX3+40Y5X+B7WCxYIA7YzUd6scp24r/GT
b1lrofD3toi2+r1u3Dmh96PgXChQfhplzjZ14zbNG6VF46FgZjiUrij4Cdc6
p+xa1R4KMg3ds/uGPuFH2AZp2vJCIVbKkkJr1YuzXNqe1k4PBY+9/cXTrb04
jb9QR39MKHRZBapVn+nD537dSZnwDIUGJ+2Y44yf8dcte0T/aoXCfaL5XGtP
P24cIKF2YjMEpsIaZp06v+BaL7UlKhZDwJ3yHG8xHMKJBbeDZ6dCwKg28mPZ
5BB+wuztAPYpBDhmfNxwumF8Q87A1rAoBP5Zpu58tB/F5xy8r4yQQ+CZ8L86
rX1j+FhhrrRVYgj8rR67nU8awz9yzG44PAgBn/eEav72GJ666BsRphcCw42N
p5+YTeCRxwvuMl8KgdtL/noZtRO47/UWnSQkBLpfSjIJHfqGW7ez8+SeCAGM
6vf88YFvuGxxcUnNv2AQGafrbr89ifea97RNlgaD5BMwDv81jd+0fdgYTgkG
+WWKYq/jDL7o6FgvkRIMDwPe5watzeBMgQcqnHyDYayhdEiR/ieuUqCRuK0d
DO9kKUmCmr/wnrLDURTVYHh+cUCk4vsv3OL5dJCyQjD00H8x+e07jz9oCnWL
EA4GkB9uan21gNdMvzfkXAsCpb7OJysSS7jKUoLOy9kg+Aelg1JBS3jPHwsN
k9Eg4OHQ4V4cWsLnGf4pPmwOgl+GruL8icv4cUnFo5JZQTA7+fB4M+sKnu5U
NamCBcFqnXlbsOU6LuodOPJDNgiYZmL/W/28jlcH6gxEngiCy+wf2/U1NvDu
pIXmbrYgmLnw5PW63B+cvkaizHQyEMSbLJRSpDbxdPhb8O+/QKBSknCSe7aJ
i35syc7rDISL1gxHqc9t4cTgrbjpF4Hw+fd8uujFbdz7b76za2QgrJzXPxge
8A/fv9fl9iG/Xb4ad+UwIxWRykhY1bkEwmTYreEcEhVRxTdmQGUWCBNH01+q
LlERcwiffPSpQDjiejTF/Sw1YRaU/C+/LwCUwmTjT27TECta2s37WwPAx6ak
i5a0j4jkYUq4+yYAVrutAo893Ue8eBYkdL4kAEqLnZou2NISrGPOqq1+AeCr
KZG0+YOO+HBBJ2pRPAA4jzL8eynGSJjuZ9Y3EAiAksKyZ2fTGInl3ma+Os4A
4GpvyxKnYyKO3saeBFEFwN89v65G/2QivDJOfeLq94dDq8nzeU0HCMk15kNK
Af6QK97yl8ualWh81zL60N0f/B5WjRx6zEoYx4QU097xB7GcpSdrv1iJMJFt
+W6SP2x9SzEgebMR47pzppYn/cGngllkMJudEDdPUWWv8ANvFuusNFYu4toa
08DXDD8oEnzx3taKiwiOCbYtDPaDuwIZovIvuYiRVy5R8sZ+wPwqXXf85iEi
kVv3k/k+P/gr7vs7qZGb2Px0wKzMxBde32ix8HzFS5gyfTn0VMUXNEUMbxYc
5yPg4qOeKklfwHOZDI+m8BGBrxTVX/17AA1+mRrMrkeI/Y9sz7TmP4C059U8
3MRRgsvzPf30Tx9QtZwqexYvSHhWxjT+7PMB2q6gr98/CRJf5gz9Fup94JPZ
q6RediEi+8bCylqcD/CZ6qT/yBAiRC7zje2T9YEtkZm4fRXCxGl+9xphn/ug
uk+xemH7GJFsiDsdt74P0aU4vf5lUWItkemkhNZ9EF+SPxOZIUrU0uU/PC1w
H0Zrm585yB0nsKWuaLzRG6pixJzl/MUIrcYTluZM3nCYju2Gv5wEYWc/fDCL
7AnHGffy1BdLExdGS37Rh3rCjewjuXZfpQkWfc82TwdPqDcz3xvBIkO8VGIP
IxGe8K6XNHDUW4bYz3pph3XaA/aUxJh56J4mCl9Uz4Wf8YATN9/6vjskS0zQ
RLe4t7pBxx2FYfvV80SNl1HRZJUb9AUKXFk5J0dEzouG6Ge7QWS47NCspxwh
M/gOO+3oBg8Eah4f2ZEj/EvXX/zidAO5xj7DOGYFgl/XstDqhiv8+sAT8xe7
QBjnKgTpbjgDDXuz08J9jEAyx6lUvznDq6TOt1kUjBBOCfc93+kMRU3/EIcP
GDEX2e/FV+AMSIgDR9RBnPB1d3acuuoMPQLTzAmPcCJPs8TMu8gJsm9NskUP
EsTs5mG5PJIjYONbT+r0VYnlp8v/fbO7DY1MuowtcRqEyK8fx5Uu3AbmvlG5
Y6BBXDsx7JZ64DZMKFl5Rc9pEK8ffmS9VGUPbQ38t7wvXSZCEsmXnmzZQbRo
oY/53isEt+vFWs84W6jsZLo456JJoOcz05mfW4OoKNu6nJA24ewSN2UTZg01
nLZU9nLaREFFsOxbI2uwNHPpjNLSJvaLOXQ771jBX84/zGRvbaKHW2X/oJoV
+M6qfm76pE3Y/P3lkfflJtgJuaV23dchouvxa+epLKDWuHPu1Std4i1jX8up
UnN4myVta9ehS9wii0wuGpgDT0hz0fqILlFT/4HXpfQ6NCRmxVXv0SMMqPZH
eJDMIHbN9mOeqh6RGBJt6V9mDBvFOvh8kx6hwDXsi18zhukpblPXfj1iolAy
k5raGNo2uGb7JvUImebO7uBrRtD99ZyKMI0+0c3AikRQG8Jr+q+yU4g+wRyf
wp1oaACdDtSZcWX6RLXA1Bm9vQZgyvaD2r9WnzB9du4qxxN90A3e81i1SZ8o
6xkISd2rD/vFq19qjeoTGpw8vzOf6IJWLI+axkEDYvmR/QFTI12Yt1P5089j
QGSee3XiCI0uBOxcoTsrakDMXDO1yDXSgfgC/iuWFwyI8MycjnwabWB7qS94
38aAMCeNfGq5fhWeCDUahjgaEE88/PZfqdYC8WBTATNvA0Kz7p2btrkmHPpS
wuMWY0BEohe1jZ5rgLzP82fazwyILxY/QocYNMASGRtrqTUgTgSG15tZXALr
n1YSLO8NiObGVvGbjOqAvT4wRt1jQOzTuLrv9g1VWCnNi/BcMCC+I9T6F+tU
4IN1sKX0mgHReOZ5niC7CixRBR16vmVABB/hxQYbCWikc6ESoScRVmydsVVH
COAyV3vKfJBEqNAFDMe64+BUQyPdwEEi9i5NeauKYeC7GN8Tf5RENLWdScKp
Uejv7SwuFiERIc8zpDeqlOCSaNGjqBMkgibC+rb1IUWIFzUJqDxNIhqc2/bz
tciDQ5Pg4bVzJCLQVKawx1sOUoKML9Eokog90ttj6MhZ4JSl/+VHkIi3hy19
1+Jk4YbnlaO/VEmE/94W3nL8DNxVz7klcolEYL+kai1/y4CeonLRsSsk4l9/
MonnkTQcrMbeLmqRiAcBqz8elkvBZLNZSogOidjSfyd0kPUkCEiIMHzXIxHe
YjFmPq4ngPngODUTiUT82TRMnxkQhVschVbb13Zvqi6RXpKiCCxJaXC+NCIR
63mLzI05goC2FMtfMCERc3OeCTdp+OH5QfaYSFMSMZPEQqfUxg2q000s+WYk
4odCsc+hRHbo5zxbE3KdRLQ0+H3/9owJ2GTiHU6bk4hG1oqudJQaeMQ6Tj3e
ZSo/r5/nzi7Uu0D+7MwuiyQmds0e/6z0lykueWWXE/eHDsdL/VWa29Mp1LLL
WjVJQUkRdMjhccuoW7t8Qvb0lYVtFuRoI/eHrl29kzGZ/RznuZAPPN4f9+yy
1BT1DQVHXsRVYihye9dveu7z1Qp9AaQhyWB/w24/h9tn6oglIeRIS4u8rjGJ
yNw44v855hjilTF6uNSQRPAd01W1FRdDVMtoCzp288rWCWXYbBJH1Pd69NXq
kwh+37quGEtJ5Ol9mWIHXRKhbeChwUIljbz+2ia6cJVExN9mLTfSkkEWlyKY
5TVJBGu6qvPc7BnkeZDjNUk1EqH7ZLTvrPxZ5ITj4OaA8m6/jV7n/cLOIVff
prZrYiSCY6l8i1VEHjEKu/8gS45E6NOpm5s4KyDsk5kFLrIkIuXIxLuCt4pI
9T2q0EPSJIJLgyvsvBmC9NpfYm4QJRHXLJ7O+JeiiNo3+NcqSCKuKB4TnfTB
ENsEsmouH4mI1nkTLtWGI4Nr+J1yVhLB7Ptb890tFaS+6leF1Z/d8+2QX81x
RBURU97HRiwbENQ39Hhte1SRMT0pl4lZA2JDuWr6gJIaMo99jLg7ZEBM0LsE
mbJpIE8Dpjpqds+v6abQbMVHDSRE523/86cGxMBcj/beB5eR1PuXKryLDIj2
rtP8JT+uICWNAerXkg2ImpTll+uvryIcqGqqzW0DIl35U9wxeW2E90NVQo6F
AUG6cEK5K0kbUXOLvJlrYEB0S/73WOiSDlKgv0y9iRgQH1jkPVqqdBH6DCZC
YPc+q+jfYD0UYYAYPNocd3qkT9zp0v7w9psBUi3/5D+9NH1CvLnY0x4hIZYp
Bq57I/SJglrD0frfJIRixSvWcVufyCS/LLO6bogIuvM/VjilTwTf9FSrPGOC
KGqdrV8t1yNOrt8HUQcL5HEC+zhdjC5h98PV0DXDAlHJ9lRkv69LFA7cXX7X
YIGc9xay2WunSwi+NBc1476BpMfn2Sap6BJcXsqxSe9uIDQ3Jfu8/+oQVJsM
16k4LJGHvbQu5Td0iN6djO3/Xlojc5r+3C8EtAlv2pcXYqhvI0m9La2hfzQI
raf0wTbStxFxR6N2yTYNQsjYpA29fhv53LO1+pmsQbSU7xgt195GNFX/KEpi
GgS3garHNac7yMqZ1TWWsEvEi/yeZ4JjdxEVTT6jUS51wpvizj503RF5VzjL
uKGiSli5HX3x0c0RSSB7T9RwqxJaGs3G1dGOCCnDrzx5ToUQWjmcF1PniHxz
2TzxNFmFaFGrl8a4nJCUPyEe96eUCe6FvVqPOpwQd9vRG3sSCKJGKSHc4YIL
EmpNQ8VEixFSg+fpl3RdEEHXg3n4G5QodB6JcLZzQfLWrlO3OaNESpFElFuq
C8LP2uNINYQQrqxNMfcXXZD2chUZ5qdKxJnJv4lhBa5IwAAXj95dReJptFV2
LpM7YsPzVtn4/HlC7Dgjv6CwOxJ/QlGQvH6OoLx7lpMn746slVV4ab48R8Sv
7eQ+snFHUtquvfmncI5wsMjIK33rjljuPrEKVc8SUrKdRS9cPZCiH4Guiw5n
iNKh85VdXz2RtmPjdN7c0gTbIk1Sx5InIp2vf5Gt7xThTdPj0kbrhdw0LTu2
4HGKUJe8c/ajtBfy8wGLwrd3UsR3X8pLCPZCAuirioqvSxL8QvRvyk96I7KJ
hpXoK3Ei5Fx/binujZhjL8ZZ7cWJOY18/8ckb2RPeRh11mFxos5FiXjk7418
HpTo7/I+QVz74PSB3OeNcHLOslepihHxtl/aonzuIzzuB9Pyt44R6z5FZREJ
9xFyvlZpTM0x4nqCa0xY4X0E6gfuCTkdI07WHbga1H0fkWqab1afFiFaGJV7
vEV8EHz26rrTiDBBXVE6aNfug2SFHHjqMyNI2DV41t4a90H2XdOfeVIuSHQP
qGZar/kgGhY0dr7OgkQO1ZjJDYEHiAvjCXRpW4BQ1OUYNXR9gLySGIlm4BMg
XFd9JtX4fJECk+HTZtN8RKHNGpnxjC8y758ju+8+H/HfgIN+1yVfxGndZ/DP
AT4CqbvZQPLwRVLONLK+UeAl6PzUH1r3+CLW8hntLg8PE5n7OcyCwv2QD6VG
4saPuYh2rxgOtVw/RGqYO4pylYvYmaVtZ6jxQ97xTawwrHMSlh1/FBK/+SEP
kBpf/BInwdXiEK191B9JzqTT+vWXnRiLMbA39/ZHBKo9C/cnsBJeF9kuvgvx
R4pMT343U2cl2P51Cgon+CP5XQ9pKqhYCVVH9f+mivwR9fMvAhVdWYgSXUX1
e5/9kc9Z397d6ThAuB4SFH0gHYBslxVNscwzEMzdw3tGFQMQ7/r2gGkvBqIw
PHMYUwtA1AJj1u3oGIj//rCn0FwPQJYyV/9cO05PIF9paaKjAhDXWmTYwpuO
oHs4N545FYCUf2UwULejIdJTX/9SWApATGfDJ56y0xBi0dF/vmwGIMes+Ue1
3uwlNDxOsvKyBiINh4MvHuHZS8Rq3sGyFAMRjVd/VAuG9xBHlS9cUbwYiLD/
4UowTNhDPJVjMhzSDkSeblpcPH5xD/FJuMyB1yYQCVBJXaatoiI4/v7MyYoP
REIX5j/9PP0Pf7TwqkQxKxAhcf4bUCvdwc9NRtUMPQpEFDIsjhUe28ENuyU6
eV8FIjfsd57oCGzjWYW3t7MmA5Hpko8utSc3cSG9nyZkhSDE7Gx+I5m8jlep
v7p1QTUI+bn6X4Le6XVcBYly+Xo1CGELzEuraFnDbU5IRPFZByGmY1Gf8e1V
/PE/+zpyXBAS4qz7XtFjBVdYVWi6kBmEpIS7kcMPr+Ctsww9XwuCkMSLtdw6
9b/xuc8lM3x1QQhpfEcJp/+NS5fNcmd/353PE7nHVbmEv3tYJ6K0EIQcFthT
+cJ8CddNi5Qe/hOEyHOwtpcfWMJdAsXVjxwMRnp+p/SGOC7iNYb2HtnywUhT
oLNna+g8rrRv9nN2bDBiSH79i0tlFk8eltPenxGMxDYf9UebZ/C552GtzvnB
SPiaSJGz1gxOtjn2Ru1lMMKwg14espjGtz5aFC+NByOKMj+q58hTuD6lQsh0
LhhJl1o+QpGewss8d8hNa8FI/4u4O8eaJnGTE+SELMYQJP+N5nTk2ne8LnLA
W/VsCBKuPDlPf+cbzmYpulqBhiClvLFRyczfcHtFNwcejRDEfubwrfqnEzjP
HJvVwvUQpNu60OXT5jjupamlmREegkz/7eY1LRjD5Vg+HP01FILcbL4C2y5f
8fhp9sxrUyHIDvPUQ9vJIXz67U2O94shyMOPla3GRkN4mhMVfdq+UCT1ko5I
ufoXfK1HcRk7FYpQf6xy+qs8iGuVRt4plQ9FekeoOOOaB/DCoP+mOFVCkRsm
/2VfvzqAk2Q9hmYNQ5GIAwVukZb9+POUysbkwFCk04OkLPCoD2e6twf9Fx2K
HPq4pJKq0IdbXdSutUsLRarrMi5T9/TiHOu/ypGyUISzOZ+NTNuLuxqeSJv+
HIq06VeK/g35hJ/mpdhdOBGGTKV3TReVd+CLgqpdEbJhyLeJ/wp+Unfg5WKz
sgNoGPJG703FC5N2XOycLJUzKQz58+CTT+GhNpxfpzm1KCgMORY+53vkRTP+
9drdrZXYMISHxebumGgznnGd7SaRGYb4TumWlGd8xDnumEoOPw1DOF/nZ54M
b8IZwhYb2EbCELsU3W+nwhrx5v+1dKXRVL1fGAkRpZAipJIhGiiEfc4hmccy
hIQQSiGVhMg8u7jzde81JpEhIZklY0iSIaF+xoRMSdTfh//Hvdbz7vcZ9l7r
PZ9OPF7GYToSmtYt08p432DhqecSC5YjoSd67Ot7QiPGkhFmo8sTBcFFnC8S
ixqw1Srhn4EqUdBAvnTtM0s9VtpYbdmuFQXMe7WuBZQ6zLvNqUrYJAq88jL3
lp6tw2Y/5Ue+cImCfspS6K2ZGmxsERWbTo6C/x5kPx0VrMLov8dDz9KjQI7n
HRXn8RqzY4mdDn0aBSUf8Qs7GiuxPt6PpWJ1UXAyhHWe/dErrEPa3eDSjygQ
iTAtkjxUjsWc4CtOX4sCvfehP7iTyzCdsy+E5rdFwy9xxRZZjjKsQWtzLPpA
NHQuFrN3/SrFKuxxfrU60cBqorkw9bcEu+dy9svOi9Fg5OXk0R5ZgineHNKy
sY8GdfGEzet7S7DnD47uWvGNBoxNjJh6uhjLSn2VLZsRDeJjG5R9YoWYE9We
x68gGu7kE9c0rZ9j4hnbvJsqokHXK3snG7EAoxQaqTt0RUPS+9qCgUP5WFLb
WA9+IxquyvSy2no8xbT5KG6HOGOg8z3lt+v7XGzdzPxvPn8M/CPIZ3Sp5WLO
Aw0yb6RiQN607YzPgSeY6lRm8KJpDKCvfs/LbmZhc3J2QkG2MRBo/WlINzAL
y7otkL/DNQaOZb/UwliyML5fYZ8kHsaAP4tYbjhfJvZ1u6uCSXYMvDy7otqi
n44R9cTeDBbGgCxujXB4lIkZxvdddq2MgfWNyctT95lYmYBOeGBXDAhu0/dc
tmNgsYelPz/7HQPat6Swhps0DL0+6q3MHgvmbV6PDF5TsdU8EmcjXyywHWLw
jfJSMYfTOxQHD8eCzv2UnL4aMqaEzURzGccC9z67wBojIjYdliGeah0Lm1pX
3ZwrCRi9xeal+LVYKChHR+7KEjAu0/bRs36xcNuFkzNZAI8N2+cru2TEQnZj
pHMtXwqWnOH8biE/FlROjTzsSk3GdCdErwWUx8JJ+XMxdQeTsRLP+ISUjlg4
9O/JLg4VHBYRcGu8fjUWShr3Lv0nnIip1Uk9NGKNA0LK6sdykwRsYdvI7gGe
OOBSf+1zJTYes4k1UV+QiAM2h5u0F7vjMAXKyRQxgzj4Tyqg8plpNPZteEo6
zyIOhMk1ZSefRWGkQ+k1ZxzioGAoj/f1jiiM7Sn/jOHdOKBPDRk/7onAPpUv
og8ZceDUquYlmBSGLcqwNkznxYFPto9J90YotpO2S8u6LA7ILdQhN89QTDP4
uPaZd3HggDpMfrz8GCvQddWbX4+D1be36+SvBGMtlb5tVzjioXJ10ai+4xH2
9XioQQd/PPQ1d7qFjwdhwvxMo6fS8bDiZGsWIxOIhQ4MmF2zjAdvtU9+Dr8e
YHSDqZ73jvEw6KFkE6fyAKuoXr2IesZDUqhy1lyQHzaXvtfyYFg87GxeGO4+
cB+77GFk86k4Hj7f6XeKi/XFfD/bDmlXx0O5hXLvxOIdLMHYw660JR5qJKQj
g+zvYG9OR9rjRuJh7lBW0Qrmg534U+dkwJuwNb9fXPYoe2H6nl3fXgknQG+0
6qtc/9uY88iws/SRBLCpcLObjb+FURrXXberJYCmXrMFa8tNbHuc0o1atwR4
dy7erSbcHZP4qzkr75sAfB+Zp/GNbtg5LzNP2qME8Nd7mDTG4YZ5Xbp1+wEh
Ad7OeJ/SSXPFhkRz7yi+SQBO8aOYx3ZnbDWhbDm9KwEO3n1WwHPjGrabtenu
7qEEaKJYuu3+6IRdGB+7/+NnAlyKuhHe+tIRc7RaWLPdTACnhnCK5nFHLKD1
74M2rkTQiGCxy81xwIoLRAKeiCeC4F/rtWyjq1iHuOymoFwi/Ks922F32R6b
wKkEhZ1NhFGPhMP5N69govcsgh2NEmGp6JVFQa4tFgmJYSIPEyFTcmnnl5vW
GOVH0ZmW8ETwmiL/2f/KCsun9Uz4JiUC8rjL/wy3Fda9LqjXmZ0ICeIHXBmV
FtiBchpvSHciXKU4M6+aXcSOu9bUyA8lQmLWJbSg3hxDBEdvD44nwk/SzAmW
s+aY853DPYp/EoGwsLGsLWuGfdpnYbC0Jwkemd7g6wgwxhzmxzP1hJMgvdz0
vyGiETbz9t4G42AS7A71arz4yhDbuEsqMJROgpPDHymdfAaYRO/QrhyNJAhr
ZUzH/dPBnj676bahmQRFCiqerno62OnQzTpz3SSwPljc5Em6gGmfFvf5Z54E
Css/VB5oa2MeSU691m5JkFjM9rPtkya2dH3peKFnEqiT9OYv62hiAUhY+PY7
SVApZfV012sMS5zLPlsSmARq4v4n/Z+jWKnhNIknJQlihy/hYsM0MI0j/j8d
SUkgiKU4szDVsbd/uPUr0pKgQ2R0Q7hBDevPO/7HOTcJmt//FPfffw7b5PK6
UlOdBNUmk9cP7FbGIkZZygQak4CUM+xdb3sW212B47vRkgSzyDud4vwzmOT1
F7X7PmzdxyrE2X9FCXsG54Vv9SeBiHyeV3O1IqYk9NHrzXASxInG0L0kFbEL
TauHvKeSYN1E6bbH71NYFy3Sv/nHFr7ynpT/jVOYta/wh4NLSSD33+nG+rGT
2I3D58LaNpMANT6a+bf0BJYUEjhxeC8OorVvxQstyWGBbUb3rgrj4FV5cFG2
sBzmsVeMg3oQB/FcKyMZ52Uxreyao3ukt/C/vPcIFUpjJ+cSXhrJ44CrYWLm
1I9jmKjyVe3o0ziY05/Ys+3UMWy15Z8ziwYO2tYEfaVaj2Jf+buX1TRxkMDy
NUHu4FGsy4YZdl8HB89lu18Y3DuC5c6iWXNmOLh3YrrIUPkwZrv78bfPrjio
k7M7mLAggeleNr8jfBMHiWezJ9LdJTClDMltl7xx4G3+hzX2nTjGp9Qo2f4Q
B3S/auHYgYPYekBKCUcIDsqv/D7VPSOKTTZd09SMwEElaXMCtolidVbsTq+S
cICfXQuv1j2AFTB7fy7jcbBWz2Jz8+5+jDKdFXKSigOvrogdAbnC2J2H2ulP
snFwkYyd4jq0D5NiRIziK3Egp5F7eJ+VALZ3ytLrfS0O7NY43LhK9mIsp46x
8Dbh4KldkCr3nr3YQEOzeFjXVr/lQv28UX7sLQ+psLYXB83f9FAWE36s5JIb
8mcAB/Pstkf76ndjcRNcV33+w4HLvRvdi267ML8TA3MF0zjwPVAW+/M6H+bi
9zRoeg4HDHHKx+5bvBhw69MdfuNgWEfynXEKD/ZTPnbYmC8ZmJLKF66d4sK+
3LP1jNmbDDIuwfH33Tmxtlq5zSbhZDA9z/q19QkHlmXWIapxOBnE1q323T67
HUui0PL9pJMh0EKC3y2CHQv8dlO9VD4ZvEwuwfehbZjlXV47OZVkKHsxmTdF
YMO0aoa/u2okwwSnywf+DVbsJOfzhxmayUBbvrkq6cqK7SAbU/cbJUOY07sK
A10WrKoqcZDTKRmeJ+uKbQZvoJ9FeUZLryeDw9el06aBf9A/ARHjjp7JsEOm
h5r4eB09pxG48NovGcRrkn8W56yhNmlrK25ByXDMK3fnjqZf6IPNO38Ew5Kh
Qmq5Qen7KlpR7cHhlZgMmvIh+zmNV9D+gxM8B/HJAC88m0/GLKO/Ah352yjJ
wDmfvu/MuyX0LFiLHslJBuGTpqUTrotoaY326f6qLfx3wtCVN/Nor1i9cnhD
MoxF+t2LSptDl4LUNU63JMOPpEMMtpAf6GlEUTfuQzLEvshhT3H5jpoznhup
DiTDncdib7a7zqDe/2QuTnxJhtl52Ay+PY0W1UrYozPJMGWXb+1Em0S7xWnX
fswnw2bPcPTZ2gl0/tE+d8pKMlSLPzw3Pz2OKqB8vsssKfBBNIfMYvkfml/3
Jzp3XwqsG4zrmYaMoR0S9xMtDqaAEXUhaGFoFP0evJjKdjgFZjuKT/qqj6Ky
2DTDTiEFyKc7kSrRL6h+unP2DqUU8Jxf+NX89zPqzjqaV6aaAjkCfWz7vw+h
ufV9L3drp4BT45PMY2MDaMsh89fV+ilgKGbLdW6mH50MeVfnYZoCJZ+OgdrG
J1RK8037G9sUKD4TdbBLtQ/Naige8/NJgb8XDtIP7f2AvpGUnzzqlwLfI5IE
g2x70G+Pc2d7AlPA53rwnaS896ikFuPX8egUePQjrnLKthvVzDywOZCQAgf/
axbze9iFOm4jsEWmpsCLobJ9dfqdKLMxjneMkQJm+HKHRO4OtO4w196E7BRY
fiwUa7jeho6EhgqrPUsBnEhiotByKyp23v8wviwFxqRkV+zZW9C0N9dV9d6l
QL/+iTWthDeoSuOsJb4nBfhJO8K5exrR3npv37FPW/17WqdtRRtR7tqHhQ++
psDNpOM/Ghvr0ZxqlndNkymw6+qag5dEPYpVhc/w/9jC5/vhPjyuQ/1eJR7N
+5UCQjIBVcuFNejeCgGt1Y0UYDHVt6hNrUafl5EdNNlS4YP57e1BoVXo+ItM
6uDOVJA2WQ0JCKxEzZ+X8/NIpkLWru0uiYNl6Fy++gmrY6kg6USeX9tehkY/
qzfMPJ4KLX6u/GMqL9G63PZINeVUoI6tzR0tfYHaPjHNjlRPhbd6e434NkrQ
1eyPDR+wVMg13TURol+CymeObN4wTAWzcueCY+tFaEu6s0iFWSow5cwfz9oU
oc7MaRV2q1TgYcHjGx8XopS0pTs0x1RA+cqNZTQKUC4S50zHvVTAvG6QR2We
opmEOM79AamwrlnhyK6eiwKe/6hLSCrMXTFqLrJ8gt5NFnHYjN3SK24qfiMr
G92NYwbq4VJB4Mas5Le+LDQ/8SgVT0iFj4t645W7s9CvcSf65NNT4ZjWpbwi
cgYaFFu69CAnFc5djVC8OJWO7o9R5X/7LBV4pciIh0Y6ahqpZWhflgp8dYLH
xJYZaHWIVUNCeyrMCFFXY25RUevgzyOD3amQ0UYtOnSdgi4HOW5K9aWC6e6f
h+3dyahswA2V2tFUKPv9Os4pmoi+9V+w4JlIBaMiwc9BOQTU8cHdO1bfU8E3
7T/v6XY8Srr36Pn8ypaeEjVJL4VUVPEue4fan1Rw5p7Z9dcjBe28Ez0dyYIH
xKnUqeF5MrrdO+WIBA8egCxjOquPQ31uPKGYSuChqAJx0qHHo2jIJ3k+KTyw
3fU4Uu0Sh/IROevb5fDgz2l2v1s1Fs1ruD55QRkPTBdGfe/2aNSvn+jProEH
imL+8Q8bkeiFuWbeBk08nCfqdUf/jUC/7ZdW0jDGw1eV26ZuEuFoyQnr5vWL
eFD//excDRKGBmtH2VRcxkNU0CFXabdQVNR7KljRZeu8v6v2l54Q9FJL7juZ
ADw0yEXveswbhEp+6XeYDMGDQCDhA9oegC4scS1nReLhj1nOhALhIRov7n5A
IgUPDtrE9odmD1C7M+SCYRIeZA+I7ehH/VBZg1aUSsfDeHTaUXu1++jbezLX
hfLwEMPWUCxgehdNjbu8/qFwi++i5FFXd1/UKSM6HvcSDw99MjUOx91B/76b
frGzHg8pm18L3Ga9UeWjeSzb+vEgb8af0Ct+C+VQG0ypG8YDN+YVyv/pJtpr
yn0s6Bse2B2G4gRoN1CvAA+j33N4uN/TXC5t5I5CMmW0bHnLDxO7zSMqbujO
3LY7vut4WNxlb1ytcB3N/SBLmd9OAIJ03MEudRf03rSNfAEPAZCoZ102F53R
8/9i6jz4CeAwcPlZzp1r6Jjs94lxUQKEemZQPnQ5ogceP1P8rEiA2G9h7xcG
rqBTxKG3ZFUCCOyqmhhOsEPLCnhsrBACfBaP3zdpZouaD9wI7tEnQMEllyE2
lsuoxDx1b5IpAfxVhVg2p63QOfaOHCNLApid4tv3dcQSjT15/F2LIwH0FYke
Pj8uoTYX7BwirhPgrF3sNzn2S6i0XdySlicBPji0BM8euYi+iZzdX+tHAGxt
MKPrsRmanCZaEBBEgJfl4RmStaaowwtD9FzYVn130G9gmym68SXf9WUiAS73
x+W80zNCFVxFT1njt857rX/j4jREr/6I/bNO2dKX7rGj570+2vDHIwnNIcCg
SI7+x3hddPnxoM23ZwQov7Z/5l+gDirFrX80opgAbB0tsuQHF9BoYZnK9ioC
tD29tEsBdx6tZJDCbjUQwOd5jh2ar4XOSnGZ8LcQAO9TajnXrYmanpn8ZvmB
AIzy0LEHZzBUyDyb9+s0ATxzNac4GtRR3QGB/rB5AlhJcI91BqqhDxzCMo6t
EEDhsvr5Nzrn0M+3ril7shDhKhErq9umgvKt9rDu5iDCoeHnhdTlsygaqNlR
wkMEsdR74QY/z6CZsYcc14SIwHlrwX73TiW0dw9OjipKhDs2cdukZBRRDgrL
qobkFr7L5ya/6WnUI3ckJlSeCGwnVcrSX51EaSdMLKQUiVDndIr5efUE+q6s
RrxVhQhOAdGM2hgF9GRTWinfeSIYtEYyHEflUCdD3kfFekSw9eIeG2XKoikf
AvQumRDhe7Wd143bMujqmO0Xsg0RjJGag7eVjqHS7u256g5E4G9/5PNRRgq1
WTh3Z8SFCJsi+k1H5I6i1X/3cx31JkJm5To91uQwOhce3dN8jwiemRPPS70l
UQne3zSPACJEGn/HTacdQsNE+k8VRRKhUT/LuXmPBFqWobNhHk+EuwN/as+/
FEMnZcrfriQTweemyf5Bi4OovgrBVo1OhOIa/3NVbw+gAbXbpb5kEsFi2Xcj
B78ffX7h7kLwUyLQY2fOMn2EUX6LS+FvS4kQ8nLqdLuZEKr5udHEvZIIhhXF
HsXmgqjvNcUDO+u2ailt30B7AbTfe0+hWTsRsnS5Hy6m7kG5f4c8WO4mQq/M
xomqGn5ULfinFrGPCHFW02P5P3ej9ITu/s9jRJDODj/931c+1OVZApvbGhG4
9l61fE/bge55zzn+dJMIUdyhXBqPudC61eDm72wkeOVantvtw4ke0LwTd5uX
BAKnmCGDd7ajLddnbxXvIYFSjhu5KYwdvRvvYra0jwQ+ioPlnsxtaHe/ldB9
SRJk1RYET62wokF/u9cqjpEghtVgsEGBFZU7oj+0fpwEveGnT7l7saARt9WZ
QcokKF1xSngj/BdRwr98XKdOgqYwj5C29g1krFLBhU2TBFfVXTOk4/8g6hyH
ZCMMSWAc9O3+bpXfyIwcZWeLGQkM3cLMUYk1hGi2d36HFQkCH1/lFhD4hSzS
tpfGO5LApvbbEx3RFYTZEETociVBn/91fPSJZcRo6pcf/82tfqPnZk8bLiG5
ijMa+HskGCmWIrmm/0QsL1+T+PSQBK9FdRKbBxaQbY8+s+0PIUFE8aP1yQML
iH1bZzMtdos/S1qv9s0fyM4FnbwvSSRg2XZIVFN8FnklWB8nQdjyk/VUhsHY
DCLg+MIsi0mCi0bW09pJU0hDxHGliWwSIBJp8ocCJpHb+dlC0s9IcKQ9DPfF
dwJp+0UcevaSBCTbymi22P8Qv4P8NT8qSXC9vAXn++QbclQrhnmijgRuM00B
I51fkeCEAJcXbSTYlrULHVYbQxRKV3RWukgQLLuxkho0igwN3JJV/kiCXI5L
/ldxI8jZo47zlSMk4EXE9o9/+4zMvtZ+0LBMght9x9SHJPsRyliNLfv6Fj9l
3HL/rk+IDqcKXPhHgryFffOZnH1IhrnstrYdZLAVj1pfEexFTP0yx3l2kaHH
8FpXkdwHZDNNtMVIgAwhim+Vmfo9iPU0X/x7MTJcEQ9hK8noRjh2Rd3ee4QM
D6+0tn561YW8UGI1t5Ahg2NEr9IprU6EL3hJaECRDH3x8hlGie3I6+ybvw+o
kqFdNvUJxaQNcWsfH7IDMmTseBU1It6KNAr1M0d1ybCfvbbvwOxbJOvixlqK
MRk+OqaY47ubkLAkCTOdS2RQFYuPlmx8g5zndmd9fpW8lV/lsHpnA3JEJ/6y
owsZpvfWdH76rx7ZHlZcLHCDDJUE31jG9nrk7eZvx4f3yGBJZ7M/21KD5JwT
q1QIIEN3c97glFY1EnFfc8/XEDI88pTLke95jej8jGnQjSeDqPJbrajDrxBp
hcIDG8lk2GGq+09lvBzhuvHBp5BEhgUz+vPisjKk5T+Rw0JZZDAdlW+/EVGK
5B5CH7Y+JUN0zq8Mn9AXSJS984eAQjKINO3f1xFfguj154d+qyTDdRfvEZWW
IkRW8P0QoY4M7n+an7DOFSLc5iuK+m/JILGSeGfM/jnS1q7xX9F7Mjgbi6j7
3HuG5HE5qTt/IsMeiwqRPpE8JEY7InXfMBmS3O387r7PRQxqO88HTZHh3gdc
5x+PHOT4xiLt1BwZAoVPDpcbZSM7Vfet/LdEhjg/kQeXIQvpKLmabfCPDI9D
NJ4e0clA8udDN/+yU4CJ3J/Usk9H4o7nWpRwU2Du5NMfiiFMxChnYft+IQqM
doq8ZelKQxS+Cdh3iGzh+y83iJnTED4J1bJHhyjQPfzQTnaSgnSSQ1wnjlPg
x0Q0a54WCXnel11DPk2BilfPR8N2EJGEvW1CRioUUDCtv3bgCx4xid/T/EKL
AvLCTsT0ohTkZNtZ8et6FIgb7XbRKEhGdnPa3j9gQoGI8B1hky9xSHdw5rEQ
GwoYFdd37O9JRIqqmx8pOVBg339zv7WPJiBJ698/TbpQYLt8C5M3MQ4x81WK
MvamwCJ74JfTmdHI6WLrUdb7FPjW9nPazSAK2TMXoPIygAIE/2fVNhyRSM/1
pimRKApYprdZZRSFISVZ02hXPAUy76h6yNFDkZQxXvLjFAqck2kU7qM8Ri7Z
WupN0ylgRTz80KUmGFEi+afTsiigwWt6kNT8CBH4SP9tkkcBXBekPpcNQj4a
Tz4te7mFX1YjBJx8iJyWFTyw4zUF+GvyV13HHyAJ27VibOsooOYUt+ry1A+5
UEX3YGmnwPHeYB35K/eQDGLHoHk3BbIOThqpGt5F/vqs62d/pIBiy/GBMV1f
pEzGUk5/lAIXH9jqxLn7IHu2h1Fp4xRAbWJDu+O8kVujxTzzMxT4MFYXcLbK
C5Ei8s6mrFBgNmn7/qmHt5DHPmp2E+sUcBjKXZIR90S+GLl3qLBQYfbWJOfO
vhsIgb0pf5ibCkOBy7PTru7I4sii6MndVLBbOqd/G3FDjF9LxD8WpMLpu69T
lSSvIxw+AZ7HJKjA+33Q4Oh2F8TJKG/4wVEqcN3HVT5jd0ZqpPuNOmSpcG1j
YfUY7zXk/oiigvcZKtwXI/b1KzsivZWO9MZzVMA3LUsGX3ZAThIS+YRQKtxV
Wx9h57iKTBl+n6vUp0IE7oKS8oAtcl56/1VeUyoI/HzEM3PZBmFu0+m6akEF
l59np1XnrRHryoxCdgcqqL9IWPS3sERK8d3iVi5UEOJZ+pN0xALZ7f038akH
FZZVxtdEt19CbhoeZ9m4TYV24l6Czqo50nLMxsv4LhWclr/v0PxlhhzZFjXK
9N/q7+X0VZvTDAn+8tJ06REVAvPPfEg9aoqo4vlPkWKo0MvobAoTMEIIXkj6
TCIV9qT/GCTQDZBFA09+DTwVru65u2sK0Ufy2Fp/jjGoIHlh3+Waeh2E48uq
o1I2FfyAct6QdAFxenWkJyKPCsZnNf3OPtRGDngFl8i9pEKdI+7odXct5J7B
c8mgyi1/7OLxXPc0kR6pz8ndtVTI+fQUV4fDEAU27m2Hm6igwfpZ428VisQM
K9+520aFXwQDlnMLCDJR4fKtuYsKZu2p37siANFMTbl44CMV5sQt4tVAA6Hf
rm+8OUgFczyuYFpIHfmjP69YO0KFzLqZZwi/GmItdTCLf5wKnsTzttny55BS
VgMB5xkqVC1UkxNvqiK7h/3CyuapQLD2bm19q4LcrMhZ5lqhwgtd3ZINcRXk
81H7l+bcNLixYZf+4+IZhObTbheziwY/drHfXscrIba1KuwNAjQ4s+OgJPW9
IjJovffiKXEa9ClfKf+odBqhZAevux2hwfzv6qdGdqcQm8Uf6UwZGmBzXPIH
Ak8iA7EtC7uUaBDe9G3qppU8Quo/Q9JRpYHN62NBDb5yiPXRTOQR0GBSyEDw
TKIMIuyze7JMiwbnVrW1uj4dQ/prAhPmdGmgTGyo6zGVQkg8389IGdPA+mPi
YvziEcTK2nr4ykUazPx93ChSdhgRym4Kw1vT4NLF5d16eEmk7+fp4++u0EBz
xZAYFHNo60uK+YH9Gg2ETXLsC5MkEItY3ofqbjS42bNiTLwgjvQemWp95kOD
HYE7OvCvRZBUbwvvb/dpwBwNTknZ3I9crGkQFgmkQatGXetXdWGkxyrtekwk
DXS/+E96ZgggyVncuxriaID8UfrvR+MexOzn/bLfOBrot3U3RLDzI7th/Mop
4pZe8gF1viU+pDvGfLs7jQa5wS6ZLzV2IkmfavOZ6TRItXcauTW2AzE9In+p
P2eLr6tEOfqJc2tfKH925dPgQKPC5EdhDqSrmjNTp5gGNd32ieFMdiSB+67+
ozIaGD759drWfRtibPX1Z9lrGkhtt+WWvM2G8GWZkOfqaOCYJOLu9pwV6Vyo
QqXe0mDUK2wp/ggrkqAhO3WlnQbk88lTrV0siFEMMRHfTYM/N69UKxWyIDs/
sSu/+0iDxy9X9N83sCAdh32+sA9tzcvFwn0EHlYkzmskXH2UBlVXTAMfObEi
BtWG8r7jNBBI1VT9Hc6KcHNX9j6boUFTvNvxjfusSJvlsYBv8zRIqFk7eVWd
FYnJTD0sskID/s6rSfRPLIjeAmu7+ToNXJNFkOfGLAiXxm2fmH80sLOoqWEY
/YOW6M/7G9jTQNWXRXCgbROi+vTqf+9Ig9UIm4b/xDdA53C526ldaUDVHXxz
w2od3lbhypn70+Bb39y1S4RViNjxz75fLA30e7mi9IqW4YLlTY7dR9Jg0Tbt
54/3i8CROVCgI5MGFU0/B0SO/oSm+QsWjxTSIF4c/9TSex7C1Es3yhTTIC+p
yN3u7yycjz6UNaeSBiL/ST7aMzgD7H0JBlKQBq6av85pL0zBG8mNxStaaSA0
2Reoc2ISwm67U/C6W3xb73mkRY6DVlUf9s4oDZL+LbJ0fv8GDRbFSerWaXAk
ghTy7dkolL5qLRi/kgah2VfiejOG4cnBr20J19Lgc/Ar6a/VA0AJWZ9Udk+D
T0KKn8RzP0Lc+J7tY7fSAD8pvbZOfQ9BenKSMb5poJuqlr6f0AHeBVqIon8a
wNuL/NFmzeDMb2f3+VEalA+XVlw73QiWd30fhIenQc/F2virXHWgOxBHUIjd
0jfx5EKCxWtQ08h+8SkpDRB154T5hXJQSK/uDiZs9duzjNYWvgSJ7X0/ZGhp
kNiWTfvlWQp73Oe4P6SnwattHrwFQqXA/o5DOuDJFr+GQg/urFJYPSmufbRg
677HUWeMxMtgOlXZqbMkDc6dFPhUz6yAz2smj+5XpIGczIOdex68hk47N5pE
TRpcnevM08iuhrq64FetjWnw77DOKRmFWig5Qu7zaU2DaI6exSMCdZAVVbwk
0rWFH6TdibWqA+Js6+6m3jQwtNccOehdBzGmX+VvDaZB996d7nVbdUDpuv6+
0TRQ5PceLfWog1vCe93qxtPgw7dv3ec968AxQC7c/XsarC8YpL6NqYNLo1oZ
e36mgYCFrPVmbx1cOG9X+3o1DdQxD8Fe+3pQyfX97LyRBoP0uM/jKg0gtzP+
Ny8bHd43h8tpcjeCmFe2UDknHW7gF24+TWuE3b3Vig68dODWPhOlPN4IbCp9
pjv20uGV9bDj5d5GWKHOeZYI0yFr+HlZsUMjTP3jiLUVo0N/Op5PNLQBBq+J
57IfoUOMtU3zO5V66GhWbiqQoQOHtckt2R21UCNn+tXyBB1eBlW+8xythKJE
t3//lOigou7Y8l6kDDKXgkWfnqPDJSUVq/6lIiBYkVXNUTrQKkE3xSwXol4X
W/7RpoMoKXmTc286+Iu33ckyoEOz+2ZsjCURboZ+TTIyo8M1h5lraiUJYD+5
XrBqSYeTxuFqG9yhYGawt51hR4eFqgw/it9dOF8oN6XrRIewX0WBO4yc4eze
89sXr9Mh0rv7H2eRHkjft5OketJB/NkESXc3B4gM+SLn72zxO1s+4fhGAfiQ
eLsffnTwKfe9eD/HClgysx8QgujwdSp0ykriNixy1BCQMPrWe/9Q1KHOhzDu
0fdiKnpLrxnuzevlUOjvnOvGJdKB3HshvKQ+CtpOc86dw9OBzjNd76sfC1UE
cZ7/KHTorMo69eJzDBSuK0vHM+lwh3mYKolFQoa9qfbZHDpMRaopfpwOhtQG
N6eRZ3QI1oiOU9L3gQipkEdRxXQQ4S5zOPTEHPxiyLRT5XR4kfLHUstGEDzm
il8NVtHBXaBfXo15G66Yt/WFNtBBJ8ai8vOJOOi4NMvT0UyHQVvqkLIiFc5Z
8WEC7+gg4OZvpamWDUJ25s+yPtGBuhuR4dgsgTB739HZz3QoxC9XTeqVw6ID
QfDMVzp4omS6E3Frf1wGHzXNbvmD3f/xQqIB1N02SnkX6cBVyNbUeeUN5HmI
zVj8ooONn6dnW/lbEPZExekbdGD/8lg4AWmFyNtOlyZYGZASXKmm3NwOq95h
0QqcDBDc2fdUrO4dOPvm1NzbyQDimqrO8bVO6LnXslTDzwDbNwQOTu0uQB/M
SHPuY8Dz0b9+heGd8PzhTnsTUQaodlt2I086QDRIIYV4iAHdgftizuW1Qkyw
acuIFAOgw6nhem4T/H7ss3nsOAOk7D1OYEN14BaeetrrFAPkz5jFDGiXQ19k
2fWKswyIJhduF1bOg/Mx/TQW9a06j8lauC0FSuLW3+tiDMA9vnUn86UFSCSK
cuIuMID3tSAS2XUNEnCgPmDAgMro468Fi+NgI8XB+5AZAx6U+7SmYlt7Snic
427JAGlZydmfhTkwSMoaKrZlwJf6gulvWD7oUt/uXndgQP+FTzYPVp5DWdqU
tqYrA3aupQ9Swp/DESb3w5gbDHid6zO64+QzSM44XtTjxQC9JN5XqWnZwJJt
PH7gHgM4Pnrd8SCmwa0nXgeuPWSAw5NtZW5fEmH4abLJs2AG5Dte7kvB7oJh
fmnYUjgDho6qVetPG0Hl875XarEMwI+u3jUP/qQhXbw2F5rEgL8z2k2jRBkg
vDhwpAPPgJuJxTmthRrAXqZ+WYDKANaNCJcTHxDwqbBPsGMyYP2Gq5nP/FkY
rQxuzMpmgDlPUprroDSYVGeszeYx4L52iV93rjDU1L6RP1PEAGc2JMRWUBCO
N0w4Bb5kwOHtPtOkMRmgvOEiNVUyYCXQYkAlWxe4mmXf8dYxIJ5q0V2Z7wL3
Wg3ZLJsYIDY1Iqdq4Qf/td9Sprdt5UlJZ6kghYJ5Z9LNiS4GRNre2ruWGQP1
3SXpCh8ZoJJX8MLeMAlOfujtuzfIgBD17WZrkclA/7jKUzvCAGOjIE3CfArs
7BfGOMcZ4PSRVqUangr+g+fumcwwoCKt0KDCNhWmPts9I85v5ZXOLSSJSwHL
kaDRkWUG9OB8P//QS4Y3Y0xB6XUGEHybK2byk0DxvwZ9r38MuN0bdWa+Nh5W
72Un6nIzgVf+Z9AV4xAwefPaQI2XCZ5HjrINnw6AXP4eToXdTPA3VuNgfXIX
WK9ONUrsZUJBh9Nw1aFbYJP/99FeISZEubW8tE1xhBe/BdQ59jMhiNbzxYPd
EHbqyK2tiTChNsndJG9WAFxSsdLvYkyIvZWa4PFOHmrGrLy+HGKCT1EVal9v
B/tO3Dr+/ggTii409Fz76AVeAWFTjceY8OA5yXznJ39obaVklckyYexyRaNU
fghI7it2eCrPBL+XF2675oTBQ+dmUdpJJshafBHUOBoBvcXD/QmKTNg5UdWx
fCICFP4tpYacZUI8WWjni19hEGnIbearyoQKw/NS9s2PYZQswXtdnQm++1k2
q78/gnOTZ1svI0zoZHH4G/jyAaQoGYUbajLhrOWBesvyOzAbcg1DtJkw5T0S
nzbsCdpdDzZP6TJBry2PIiDvCnTRpFdHDJhAM1i2LMFdhV/uOXf3GTOBUMCT
8erFJTAtrzrFbcaEPkrnwf+EdeAp+4cfGxeZUOYX6n6w5RSwmU8/nbdkgtS4
TXj05pqGLeOfy9fLTLiR2VqslL4XSmcFJT/aMQE/HFoT9lYLeM8d/9J8lQmV
onU3h17Yg2ukJqXSiQlHjYsrJgu8oLbX2rLAZSu/cR2e0Lv+ICx5ew/TjQnJ
4xtPzyWGgPft8M7kG0yQSWyX7e0Kg7Yqakz4LSYoRH+XzKqIgMPcJRf8vJlw
mDLPb6waCQFWLWw3fLfyQzQKudwj4GPWl5or95kgLMbiUv0wDBQWl/1N/Zkw
cXnFB6sIgUiER1krcEtvzkEfs5EAGI07tHQmeCsv8ueLzt/vguqgcqF0KBNc
Z9ca9w7cguRjxjdEIpgQcWKPuuQbZ/ju63yML5oJjzcnONVv2sD5Bv9vLHFM
oBjs+/djyBjSduEYSwlbeg4MXOdVRWDV7ontBI4JOYaZNvD2GJjkVe8bSGWC
e9KJa/zV/zRyf3340E7cmq+DKa7+8x80WLVnEmsoTFh+lVImSBIGm2QWw+I0
JrxLfHdlRlkRXowIcWUxmaCbJXD8dJ8W7JSXf0PIZIKj5eW/+h9NwcVfKzg6
hwmneeqm2inWUNN8WT3gKRMW6/u+neBxgH2CXmu38pmwsTIlU77pBF5OEaWO
hVt+GAoFRjxyhtZCmtelEiYIZZqQDXicQXKz5LjOSybIv6UqqTs5wkP91inV
CiaoFCr4H7tzGXqJI1nHX2/tqxES8qTKAOTHVxzEa5jgnUatPWh+HCJO7zy4
p54J2S/nWAwvL2qMPpIcYH/DhBPn3+lVb7sA//+/Gog9X/cwTXeA/wH2PBki

     "]]}, 
   {RGBColor[0, 0, 1], LineBox[CompressedData["
1:eJwUV3c81t8XtyKzjIaRXURClHi4nxEZFVKEFIlSyM5I9t57PmayoyTKNwel
srISKlnJKCIVKvR7fn89r/fr3nvu+/0+557zecSsnYxsGejo6LK20NH9/1f1
9dHU1Zf5MHDhtsHC9naNNuGxvcat+WB6fPnAtW8dGqbOoXU1LflgvHnhw58v
XRqzLbLa25vy4az20W+UrT0aXrz9Q45P8+F6KXPIlzu9Glttvew6n+TDfVez
nU1v+zQy6oR/S9fnA+8Z0Sh/gTcaj83sBaYe5INWtkvrrfG3GjoV3BVEdT58
rLtOV3p5SGN4vZ6SV5kPhqTpxYKNYY3VPKYL5iX58PC0bquaz4hG2Pfyhfqi
fAiylobtlqMaO4+d9ttRmA8KOxXZE+THNY5M5+T1UvNBpOOe2aj5pMZLFU2F
g1n5gPQrvGzDP2mYRH5pjk7Ph3rDRUe21imNmwdUJo8n5YPlmz31ts4zGsx+
H12L4vPh8XXFuZCJWY20nmBGhth8YA4lPibbftF45Nor2RhOu48loD62bEFD
s/XmI4FQWryT+W847Bc1BnbsOe4VlA9x1lpSRgVLGj8fX7uqdDsfBPfm/WrJ
XtYIYdu+luCTD5TS+2e1K35o8FnURXzzzIdxnScZ2a9+aij/Yygvc82Hmr1+
EqnSqxqthmVqLM75sLxNyF/5xprG2UKDThvHfIiNdWJMf/Zbw12LOi9ilw8n
7EzzGzPXNZjSydu3bfOhsPmwctqeTY2U2VnOD9b5sNi5k+F8zT+Nh9GH5dMu
5EOnDoZ8I+gR+fFD0w/zfDDhO/GB7gYD6j8YZHjaNB/ED5UrHLjAiJb7ul04
zuSDZ4nCyH9mW1CQhAfDdcN8aMyac35zlRnxeAgmvzqVD5mGG0Fp4Szo0G67
2iCdfIhZU9QT2MaGnl3j0hrXygeL0CL/797syOi/2rcax/LhuOav21z0nGiS
4/yVbJzmp5xVg1oxF3K9SL+6ppEPfJdFdt87vB0x3C8JN6Hkw1LwitSR/dwo
iV5/d+3RfFDtpHq9PMiDHhRlqTop5UME2wlXP3c+hK/gHV0K+ZCWEnGas34H
6tWeMZc5SOOjOTziun0XssqM/Roumw/44rbz7EG70dIXJd/P0vnAceb4MU1O
ARSg/p7j2L58uDLs+oz6UBBtjwvIyZegxf/bTxbf3IMUFF/DeeF8qNO5K/e4
UhTtW81JCRDMhxB7ZRnZQTG0p/HG9bu780Hy/gBzLZ8E4gvG8I4d+VD6fCMs
+ZokYtPdvnORJx/KlTet+Qf3IrptE195t+dD8+pCXdF5KbQ68KDlKGc+DCpw
uxX9lUZTVmccg1jywYyVrONKPIDe75M8VsKUD3tjT+uVRx5EffM/d3fR58O/
4fq7cacVUJxt9MeJjTxIU3A+keakiG59PxApu5YHBvMne4byDiG7293KHst5
cL9oxEXnkxI6y+o8DvN58OCdkuqM2mF0UOyhitFEHmj9N1b4UeYoErx39lP2
hzzA85NsrrxQRVtVV+I+v82DfpV6tgAvCpo0VJ326siDnomlp5gchnpG3ic+
a80D6bCouPoMHD2189XgaMqDPz8pOgVlBEoNaErJe5gHl5LmSx/9OYaCOC7h
c/do/LBnusbqWuhGBsP8odI88FAQOvgg/jjSua917CU1D/hYpRR6buiiw+oz
37al58GvI+t/1Nb1kHhbRJZZYh5Ul9RV1uWeROtjnd/nQ/PgYISkA8ZriObs
HXOOBOTBsjCn+BDzaTS4yqUb4JMHCVsvfnrHbITubzPK53XKA8rFG6lyB8+i
nOwfJy5cy4N/mRb08SbGKEoqdbX4ch64ht1O8401QZexYX010zw4/Q6v1Ntv
hgw7vf8EG+VBucx2sQvx5kj9nGDx65N5oMuk22vJbIF2Ol3csCLywEigv7Fj
vyVi/PuvtJySB0/q4m612luhpbCCsz8P50H4SNQLl5OXUEfuVEW4TB4k5m+T
KjlwGdXLhJ3rk6TlY306ceGADSqqk2IUFMkDRZ7Eab+jtsiv+7p5FW8e8Eju
3yPodhXZm3Mwr3HS/MElmH8X2iHT6XsPiK15oI3yNl6NXUOKm0tb367nwoWQ
QY2NQAckHJVUK7yaCxJcNr2vZh0R205lK7vvuUA3kxS9eMMJrRa8Za/5mgs8
vbsP4vHOaErOs/7v51xYjZekqN92QX1Pdl/WGqfFcyhrZQ12RaDVwBX/Phfi
rKZLrxS6oYq+8w3DA7m0+VEtcOijO8q4sGEr3pMLJrtf/3Q8fBOxnkj93dWe
C7yrex4ZJXsin6NysZ6tuWDp9G9/Lpc3+rr3hah4Uy4kCFIe65X5IAveC7Vd
T3Jhs2xAysXWF72m+6XtWZsLR6bYSnS1/BD6FvNBrJoW/7WDXdreACTa/pTB
sygXDAyfrMZdC0KJdWfTxPJywflJi5HmvWDEUDS/vyszF7QXxIYsWEORW2JI
482UXLhqrd97wT8MTfkJnRaLzwUNhWtrY9sjkLFD7VRnZC5ISbxkSWiKRC/N
TnrdDMkFV1L+uHxsNCpT9s3r9M6F5Nhb98tj4pGAOJ/STfdc+OaSUac2kYBi
tlW+FHWixXd9MBC2LQltrB8z77yWC4wC2B4jo2R048uHBQ+bXHDc9XlrS3kK
GhtyCxS1zAUH3TUHJoE0ZPiCfUenWS5Au3inWUE6OpRPURc1+P9+NnDZyEJ3
Yt/0dOjS8vO8K+b7ABXx3bK/7KGZC4ISQk6b7bko1I5xVQTLhW6PNmZOp3y0
Ypwd1aGaC0Z0FSbXIwvQ1WNKwh7KubCPefXZdG0hGlbofCAiT9NTNh9ttnwH
NbD/HXaXzIW0tNOuxcXFSPZ3koOISC58WHjZbyJSiqjTMnQd/DR/Mkudyu+V
Ib8WcymRbblA3P5joLntHlqsWm5oZ82FwKeRK0VTVciKGqXvzpQLC463N79d
u49IzwaP9t85IMDSLK0aVIMe2hixuv/MgW+s4n93Fz1EkkZfqMKLOSAlFhii
+7YWMcsJtLpN5QDHcIKtil098hSoOSc8lgPd9Htn9Tsfo1kWva9t72h4NbPM
Hm9AHZPePMI9OfBLZf7dncuNiNLLXdzWngP2wwypmrxNqLKxTNWtNQeaGe/e
+2PfjOIy3lm1PcmBgp8jxrOnn6F/oS4/XWtp+2MLnM+ZPEfObqwRe6pzwPS+
3DmGq63ISF+12rUoB2Lr8xgmql6i55Q+ck9eDhyteuTNMvMKKe+/NvgqMwdq
DQvVDeTa0U6mzA2h+BzgPfdX5eR0J/rwZO3EK+8ckJXhqfTn6EOzh0+XxrjT
+LT0Veyb6kMrD8qYjJxyQOfIxZz61n7EU27eOGKTA28uaf56VjCARPc95C+0
zAHqDSJvKPctkitkv3nVPAca3Nl62YoHkU7W04PLBjmw067Be8fAMDLZuSO6
Xi8HPv9lr4mjf48uJznO+GrR9PnekO0+8QE5c708RuI5oP3iyM4tdSPIL0o4
n4WSA6kBk6zBx0ZRDLPnetfhHDgw9D12fHUMZQb1mCYp5EAWdfVL0NdxVLwp
9eicbA48/K21mLE8gWp9Arj37KPFb5/9FcD7CT1bGXacFM2Bw+zKtU8Np1CP
q2JHiWAOTHis8Wy59xmNfIvc57gzB3wtKP76sjPoy/XJoEPcOVD4x8v+dfcs
WptWG1tlz4FOKRf6v1lf0JbLyZRG5hwQMz2ZVRo7j0TPa/7UXqfCPYPrTloG
S+jgENWQc5UK7LJ1+YkXviPKmV+V/d+pIMFx11LEbRmZnCi2vTBDBQNCjpG1
7ieKpWwdcu2nwszBbx7o3m+UVW+ldPQ1FbRUp8K0WP6iUqUn8RuvqFA5knDX
/cY6apW9rhPRSAVFxXLvfLt/qL/kWdGpx1RYnjPU2/Cjw8YkBOl5H1LBOHyf
P9WIHvsj2PUkp5QK5uV6lWG7GLGtGZI7L9+hAlvB7DczNiZsB99tV+lcGr+r
9CyKrFswBY6Dsg+TqSBdeVEg6iALhiLCwr3iqNBXkhv/z2QrdoJp7JNGJBX0
xC4dvxTPil1Zj6e2+VGhIfQQ8lPmwNy9ZtdivalQlePxPPUOJxb4Ezc+406F
iUdqwmJS2zDq/HfO0WtUyBxderGhwo2V2+ldv2NDhc8BMuE9gjxY/VThSztL
KlxX2SKgwMGL9Y+c8f9xlgpCqxQztGMHNm5a+eGxARWUz1Nn9OV3YgsDTEf9
9KhwrehtTK3pLmzr60dLW3EqiNhf5qCO8GM7dblOdatR4d2dudCWo4KY5Isr
ZcmHqeBW/d9YcIkQhjXushaWpQJv2HenyGYRTED8hY7rXiosLsqnMLWLYj/D
XOVfilABi7V7wdokhpUbvl535KPC23CLrqK3EljoI59PLVxUEIw0rrm3KolZ
CUh37GClQoVOROjk/n3Yjqmg9MaNbHiS5V/A+UwaW9JR8ONey4boAJ9P9ftl
sI57H21sl7PhddhUyEqRLBbgefQQ50w2sNH90Pz77iB2fuTz7ksT2WDJvV9s
TE8BO0Ik/6v9kA19/IeXw5UVsa9s37oserMhbU7xV6icEvbSKfvh/Y5s4OWM
8/6MlLH8AZ0sphfZ4CQbuyPa8jBmknvnauWTbKjJOKgt06+CKTKe1qerzQaS
uySYbp8qxmG3qXy2Khvy8k6xDsWoYS2KZgzrhdlQV1hr9CxdA6OmMc8Z5GTD
QouR8k6EYTf/Puy5k54NlRc/dv68jWMHXnDlnIjJhrAre08mXyIxFpmnwXlh
2XAyWr4r/+oxbDLu2vUfAdlwY+zvHxFfTSzdtFUl2yMbXLdt07395jjm2ugi
vOhE84vH5uuvXTrYSXGRLceuZ0OSB+v7HTd0MYZ57/4vF7Nh8G31389GJ7GP
hlJPkFk2LPJ6/Ln16RT2+NFAXtIZmp6ZLYGhkQaYo7+8o5oO7b6+p3T8sacx
namRM3EkLT5/oFREsBEmrhulNqlO8zuLDebDzmDDPJ9ZohSzgefl+WqeemPs
oWfSt4+y2fD2WPBfsc8mWNwI9lZxXzaoz7Uy94ubYseKswrfCWRD1w7rSKE3
5pgwu06k3I5sKJS6VftD2wJbc/rlFLgtG1QOXJ0803cBq1I11NjPlA3Uai02
gWQrLDJ3Q+L2ZhbEYK91OHwuYTaMFWx9a1mQFL3EVOpojfG/3jLstZAF3Lz5
/xJu22A/FR9C10wWfExgcTuZbYt1p1ndFZ3MAvUTHy/EtV3BQqz+c20bzIJz
bFwdo2evYZYv7MyE+rLAq9fNJ//RdUxNZifu3JkFp/+o5hjsd8AWfzhz7m7O
gtczA5XHTzlh+g18I10NWUBXUpq35OyMVQY8Lg98lAV9FlMflbRcsOucdDpf
y7OgWt+iw4HTDWt/c2dn/t0s0Hqx1mzM4I5JZ2l/PpufBYPvS24LMnpg0/vi
gyA1CwI6XNdNZDwxrYVDp90SsuAMJ8fE59NeWNHDQRHp6Cyw/aGxIyTcG7PG
hRsTA7KAyZanzEzEF2thfhZ9/FYWdF2ZVvoQdBsTfW1r/tcjC1QOqrqWrfph
o2b3Vm3ssyAsMab1KUcgpiF6+iX/lSzoH/336MBUIEad/pnSbZUFd5HeR+Jl
EGbupn7oqEkWOPLe/OdWGYI9UR2nWzDMgka2MdWKB6HYbrqQnoITWTCS3Rn1
9HkY9jam04GdyIK/Rd4WU9sjMeUzTpRmShY8SPnlfPxUFJbEz8vmcSQLKv/L
lhPIjMYMi81LRmWzYJ3e+MjvS3FYtcOmR/K+LNhj48wZMR6PcSkVauqIZYGM
3Eu2tscJWFfT3MSDnVlw9UfRptLVJEw2LPb+Fe4sOBjao7VxKhmLOqnoL8iR
BfmL77lfYimYzjsvoVD6LDh60eKpzvE0rCRP6KvqeiYwTvVdZLFIx5ivND/5
tpIJARbChj1+GVjrMss50/lM+HYmYnfDQhYm8aRiL+dMJrzweYqxUqhYkL/B
z5aJTJjZFoj9l56D4RzpibJDmfAudHPuCZGP5fWrWY330dY3qT6KbAXYZsbo
wdSuTHho7fxdc6QA+2/vvq7NlkyQiSrg3ZN3BxOYb896+DQTXv8zYfiYUIR5
1Thes6vPhF89qFY+7i52BHvE3F+ZCROSqwVwrwRL3WL2NqwkE7a4VzSK9ZVi
PzvX71AKM2Hue2yDLUM5VmOqSdxNzwSG3SLdoomVGLfI7DbzpEx4XxioubR4
D3P+HD3KFZsJDmkpLactq7GDrm9ueQVlgv7XfV6XVR9gsUc99eRuZwL/o3iX
wxw12PymAP+kZyb80fedHp+twcqjretOOGZCRv/rcb+WWmxQ7fy2+KuZYLWD
fZ514BHG8OWMXf+lTLDY0Kwx+lmHmetoCZiZZEKnatClCqsnWNiqhhvVMBMe
738neayqAaspPtI1pkfzp/7gq1KOpxj7Fmm/K1gmLCsaeVr8A+xorehQmWom
SFZhWS16zZjNZX6FBaVMCB9Y+8Un2oI9bWGbdJPOhNuFpX/ivz7DZp0ZKfXi
mXCLg+d87+RzjE90PfmPUCYspibFB023Yg5+C1qB3JmwYqZqVrPjFZYhN53b
yp4Jr3jCwm6RbVjryOgqC3Mm3FnZLqPv144JUXrL4v5kQNMzEdFfe7swnS9t
DP0/M2BgUJjVIPk15p7Zcn7HYgboBa1uB54e7PVqDSf1UwbcMWUszNvbh/0p
rrgy9jEDig7IW3Iw9mP7TIqaxIczQP8Ml/Opr/2YX22qS1lXBhw23+CpGh3A
yi/Hdcy/zACX1vTP/768xQZ5wiUUWjLgvuOX1ESmIeygi9fbukcZYJwsvEfQ
+h1mLupy8E91BphnWyR7lbzHwnquhWuUZwCVHyudWP+AjcqdV23NzQC3dP/D
a+9HMbaPZ5JYMjMgqTvg0d1D49iRmJNf9ZIzwJtpi+Qt+gks/otGTl94BsSE
dNvRwST2NPPICl9QBjBUmhaUVH7CZnXkDUx9M2CB737TXPEUhpeI0o85Z8B2
5VVl2+ZpzMGE31zcPgPYRz7pNo3PYBlbeB7a2maAwcUTfCtcc9jSZUbbebMM
UFjZ/iY4/SsmxLveKH82Ax4VQLftj3lM59nPnW76GeBorPxOwOobli863fab
zIBPN42ciuuXsK6eUTENjQy4+wxNPo/8jq35DfkEqNDy4UbZyXplGTP82HaA
5UAGbb7ty9lAPzHfmJZQvX0Z8GK3q+pD9V9YKaVhNFY0A2QHe/1zjq9gdFkV
CXw7MuAaRW/UNHANO6BbNHduWwasl/OtWTz8jZmuUcls1gx4y7Btz/qPP9gD
k7ifYpvpIC431fzozgbmk6K9M2AtHQz3/RQ04fyHkf10R0eX0yFKn8lk5Bgd
PnDK7VbWTDpM18/fmhimx6nRB3LWJtLhDbkukvqAAbdt/wwmI+ngd2mfoHkK
I76iacrA25cOH/8yjGx6b8EhiFvSpTMdRO+88h69zYyHN3do9bxIh3tvs117
Ylnw3eoakdENtPVGmWiRAVZ83HulfK42HbaJNHwoY2fHy+qru7Sr0+FdRoAm
9TQHrqYkvp2pKB2IxNmZ0+zbcAaXD4rWuenwQYmh5ii+He+sSjnTnEHT95my
aMrIjVvIsKT7xqZD4+CUS1cRD77Xrvnx+/B0OKXxzHsumBf/dtf7/dGgdJC2
5vtPxpEP9xeb3/PrJo2/I54xabkT17G8i51xSYeKTZUm6+u78O05Fy89sE+H
tS37uVkCd+OFu/uKHK3SwbH0J6wOCODXTaJedpqnw6iszC5nXiFcKeXY7H7j
dGjZfL1oY7UHb91WJzutmw7p/M8N5PlE8ZhTTqc0NdPh+VqArVW/KG4cLe1U
iNJhwEiflMsUw6eZs2suKqWD3chB+T2kBF6teXbgqVw6oPPRT9n2SuJeQZwr
AtLpwGDBQe7n2YuzbvqrDgmlw4Z9nfljDim8n6J6/vCudDj21aaYR1Aaz/Je
9k3mTgdLkcuEz+H9+IFfNs0GzOlw44fxqUcJsvjPQ8KT9+ho+U75l3u//wDe
6DzEyPE3DR473mngkjiI68/rarctpoFPZovaMy8FfKcM47V9X9KAk09e3eeo
Ij529WlUyFQaeCsuqDylO4Q7fzrYjb9LA+OHn+3PVyrhqmKzi7lv0mCGiVkp
IEEZZ7As4N54TTtfuUMH/A7jye95jZ88S4O2oBu/0C0V3GL365u7GtPAJnJi
8GrUUVzSJCzDoz4Nxl5E9N+8q4rX9a19UKxMg03mD6/06NXx4baP1uWpaeA1
d7WP4z5Oy3esw7WENOhLzF/Zak3griwaN6Wj08CPZQBpC5I4+3FqZHFAGsC3
YPVHRcdw088nkm1vpYHo+I6FAA9NvCjkL1XyZhpwMaAPL/W1cPTc/H6hfRrs
v7H3xi4hbTzamq3h0pU0uH0sTmtguw4+TN/wXPRSGlhUrk47bdPFXXH+oVwT
Gv+zgdrtsifwu41DG1lEGrR0NH+OnTfAly3CWczV06Caa45zJscQR+tHuPlV
0uDczI4qdPI0PqyWJpl+IA1kHXVXpMAI3/te66CJVBqc/8NnpBt0Bnf1/qWy
QzwN5j5ffEron8U5Hp89kbwrDZJS/rxd3jTGzc4xGRvxpEFTtUy9wZQJXrzy
8CI3ZxrQNf842NV/DscO87rGM6RBoZDStuguM9y1pi8jeiEVXn0tDs7SuIg3
nQ4s1JtNhVsp5x6a37TEOb4rVLJ+SgWbZ85K1Res8LvyCU3hw6kwvk9XXqju
Er7cjbUff5MK8lLBqlEO1ji6sdi/pTsVrspjc+Iyl/HhSv3p4OepcMY0h/vH
fzb43pObiySkwtTSBlNzgi3u+vXeb/onqbBwpLV20vEKzi7DyRlQlQovR1JP
O5N2OCrpVPLNTIWnHnubjlx0wGkfixqUlFRgZ3U8JOPviA9/ltH+E5cK9WZ3
i/QqbuAuklHmXiGpcMKAeHA+2RmH56o2Kv6pYG/mKeFMccHZLs85rningtpH
uvCNORe8qEAn0N0pFXwOB2iHnXfDv+NrUUrXUyHlMdM0i4g7jsZLUpZtaHor
hDK2fXHHh4VZSp3NaXres34fTL+Js1NfdDtopQIPdY59yNwHl5TssG7AaHpu
TVxr976Fo8ruFRa1VDh/1vFdTpEv7vp0SPjOwVTYmzB5qE/EH4/RHKlZkk6F
UG5hIu1oAF7cNX4cSaTC2+EhV8XZAPz9yNyNd7to+wOSsrUvBOE/bb4xSPGk
wrZjHrcuSATjXAvLae4cqTBY3j+R+D0YJzf+wjb6VHg/ekWooiQUL9/Dte34
lxT4FX0pLickEm+9y3MneSoFgoVNlJJSo/BRuV0qE6MpoFt8uK7gQTTOg0Qt
fd+kAI+qfEAvRxx+4KXkj/bXKTAiydA8fDIeP66/P3xXWwq4Oy/QzZxMwH0u
HqqueZoC+YF7fVBVIp4yfeQYXX0K7HoQNZt3LQmvukEZOvWAFu+9S23ogWR8
0k/z3+zdFKh/+m1eoCMF18szMRCJTwEOEf6tMY4ZuI3U+U8OkSlw9LWir8yN
TNyv2tKzITgFrp8NL9zqnYXXNNnlGXulQPPJ1BjBairepe2odMc1Bb4ycMRK
fsjBp3tcXi05pMCM5YPpHbx5uMC4z2L0pRQYln9bgQ/k48p2/sHvzqdAQQGP
8c3gAlx/KXiXlEkKlN8645eoWogH0cViz/Ro5wN3XQz97w7+RTQvfk0pBS4L
dCuWCpfgTGV3JI4fTAG6wY+sezhLcWHF0vpkaZqeq6Zds0xluBHxYOzgnhTw
tjG3+8FdgTu0P3Lz3ZUCt7NVV5ekKvGw0w0sHdwpgBUZMz7XuYc3XHoub8tM
O2/ZMRJSWY0PzL16XkOXAslXZ5L2ed3Hv7l0naP7mwwesRLhp0Qf4OJBb/2z
F5Mh/MN9qkFIDR5ZONPTN5wMlbxFVpTCR7h0zOSJgDfJ8KM9J8jxRh3+0uPj
q4PdydDwPl/nG1GPM+i+aYp+ngziyUMsn/49xvMPdVPUgIYD/xaOfXmCI6H2
+tnHtHgcd5H6aAPuswjVWlXJ4Mpm1qwx9hTf/e6J7M/SZNh3kk7bd6ERr3tW
W1J4Jxk6FdP3629pwn+kluf9y0gG+ZYqwresGXdQT4t/EpwMPcZtY0xHn+Ns
+xLZ7fySgZB/Kot/eY6XbosJ3+mdDGOznwT+K2zFpyYD/d1uJIN6MDVFX+ol
HtTl+1fsWjLwKwaVv//xEhet8/TsvZwMZx5Px8W+eoVfiHR0kjNLBmfRrYes
Q9vxdVe7rx/OJAPX232tW5w78CyLy1ej9JOhWzdk4o11Jz4ob2Y5cywZ6srG
s7dav8b1BzUNCg4mw8DWaxd9Znrx+Sas02B/MgjED274B/bhUWVq2psStHjh
CVw9ov34S18F7Dw/zV9f4ZZNpze4zRXZ/1j5kqH1s2o+LjqAMxjuU3nMlQzK
B8ynogcHcExCSH4HUzIcGOON2WYyiI9y7Kp4vpkE/zFJqdaKDOG+K9xSrr+T
YIuj6ZLa0hD+uJ1FpOdbEqTFUQuGi9/hCs4/uCLfJcEJdqFfAi4f8W6zb1Eq
A0kwaWvdHuU1ijscm2Oe7k4CBqGrUqMRY3jZzrFNsjUJcKMnd8smx3Eduvc+
3yEJ+mwaVrd4T+DTcwMreU+S4HLGrWh7vklcvLHj23pVEqxmo+V/5p/w5uIX
1yvKkiDx6upGOPMUfjGhedqsKAkO7JiX7aqfwrMu143WZSaBSjhXsu6BaZyX
rbDbOSQJzvI7eJZbz+H6QRd41fyTIPL+3RIpjS94xJ/dpow+SVBl5mz9VPgr
vvklfiLVKQleSS5xcK3N40cvn9hneT0JZjfSQrClBdztA7O9tG0SdOQlFbss
fcNnO2//bDBPgj8ZMpxzIUu4hKaqaohxEvBGOW80c3/HLz79efuUYRJc2ytM
FbrzHX9Tac8yrpUEewdYv3x/s4xDrJnAFsUk+Hkr29fQ9Re+tmWHZbdsEph/
/tR2S2oFV/LrvZO+Lwko8xPX7CdX8NIb2nIyQkkg6mRAf+r6Gv5pmsH1x84k
KCC98qgqv3FhS6h7yp0Eddo3vtmz/8GTDQ7jBixJ8MAvK9Po1V+8+9VSyG6G
JPgtWFfdV72Ob8Ur2yfWE4Fp39PVvLwN3E9B4oz7ciIoP7e12pr2D7fj5r6S
+TER0Pog+6lleqIwsqvcejgRYmTjCtnCGYiP9BGLsm8S4RUTJfu6KCNhtLzp
BW2JcEDAwrrgEhMRe72hMfx5InDpSVg9Y91CtE16MJyGRPjefElaoH4LofFm
PvrTQ9r5a5fkOcVZCK8Tpb2VVYnw2OpE8J8xFqLm+eUdN8sSIZr58uCzO1sJ
6dr3uVvzEoF+sgpL0WAjeFLbHshFJYJMb8Qt7SZO4hRnyMpKSCK0ndl9Y9cD
LiIiFKM0+yfCUHA3l3b5NmLDo67VyCMRHGwPub55t504+s2FVcg5ES7d5mjZ
a81NuF6R0/98PRHMOhzOUb9xE7MmRUOeVong6du9242PlxDvsRQizieCzkJZ
Nm8VL3FBW/ASm0kiHOTt2GN2ko/oV0n6Qj2RCLu0lQYs0ncQjbsDNlqOJMLU
jRVtiv1uotU7oYtfMRHe6lbnPEf8RNf7/GwX2URgaD/LLMUvQIxQW1TFRGnx
N7Q4zn0SJKY2+rZ6CyRC1uT1Z2lvhIj5i5NDvXyJILfGj9I69xDroow3A1gT
waCrRqf7jQjBFMSrNcyYCH/xA3+PuYoSHJ8k+BQ2E6CRo2eE/p8oIXhXs2Zs
OQFKPntlyO4TJ9T2h31DIwnQYmsvoVItSZBRaY1pgwkgFo5Zp13cS+h9LY75
1psAdZXnVEN59xHm917J5L5IgPmcCKmncVKENdfw719NCTBxTnHyvLE0cd1p
tu1UQwKk3fuwR018P+GtyHp1oyoB5HcsHPHokSECkviPGJclwIu6XqRyX5aI
+LF/y707CdD59+VX+owDRMYjvTsWGQnwlHubVdTtg8Rj1Zix/wIToP/dgZdn
zigSzVnUKl7fBJi+HpS7PKlItP2tvG1/MwEuu25M0nseIoYbXwsK2ieARKby
2ZVKJWJcePSLq20C/NRbHRcxUCZm/b896bBMADl1+kJyRZlYJbaZ+pxNgMPb
ebaznT1CbBaKSPXrJ8DxpB9Gm2wqBDOTwsp+XVr8Q2/+RrxSIXa+NEx5p5EA
V0rOVrEaqRJH9JJ6j0olQOCgCX3cA3UCVRTmJYglQLoi82vGLA3iOMfDG7OC
CbDYbzrvG4kIk+43HBnbE4CVV6NLHMOJi/JTHxbZEuCeNx3lXwtOXEn4Wa69
JQEeC6qXv9QhiC9FMknffsSDxvcbs2HWJPHnygmF3Nl4yJGPdm74RRKs+x26
T32Mh+t5KjcMY48R0vfusd17GQ+/LKMm9nZoElcfKQTbZ8bDrJJFo6KfNhGg
hr6PxMXDjRX+kkRZHSKj6YSlfkg89MzZvnr0UYdoa79CUXSKB6w68XSHoR4h
PUr9saIZDxPVnC4dHqcI/HL5JTu1eIj0lD2wcFKfMJ2t73knHw81X/XDp/cb
EBHL/RVPBeJhT7lB4JqPITHLzGoTtBQH+lzZaqccjQi6mJ39Pz7HQSdRdtx0
2YjYzS2J236IA/YtbnLLPmcIHUFMSOdlHBiY1QXIp58lSuU9BjipceA3MF3r
uWlCNNcGkf6JccAoN1CUU3iOGFZNuL8UFgeHpvxX+U+YEls1K2LeuMQB+f7x
UnCZGWFnOqGZqR0HiQV2x7E8CyLg47caNo04OL6Xvv7ItQtEhvW6qO+hOJio
OFnlfPQi0eawa+PinjjwPaPspDBjSUgHnnok+SMWgmtPbOlvvUTgzOcl0mZj
IbBaeaEetyZMo+0SWUZjIehua1pXkzURkRrs+KUtFkqPf/3b8+oyMVf2ZO/9
3FiwMW9/60F/hWCQf5UslhILsi97F7ZkXiEEagfokyNjIebwvwEH5auEHix+
9HCPhcSywQgZTzuivH9vGkUvFpg6ZkRE5e2JZ+eUmO5hsfD1QtfS0Vl74v0I
7ip8OBaauGOEf991INhmzuvTi8ZCTZzW4pj8DeL630TmV79i4OXY8mf1ZmdC
yEg30vhLDMxNZbClqbkQPaV0HFOjMfCHPjdB9bELoWzixE3fFgM8Bd55Dxtd
iY37J4UoWTEQ3i2h/+GHO3GfhSmvPS4G/A9s2bsY5UFYX/xPzDQ4BoJea+dv
2XeTeMkuI+XhEAMmeFV5oZ0nkXCF5VA1ioFGybbDaeI+BNkItRpKMSDYth5e
O+JD/OK9qdIlFQP8abUbtdm3CPOWKfW57TGwvPSkekj6NiEp9Exb4lM0nLlQ
kHKLCCAGXb07HgxFwxUU6Fn/MICIbFc4hXdFw6Ho+EsfpQOJbzfzjC48ioZk
d99WOaEgor7P90J6eDQw9mWvTEiHENellcf3+kaD98Vdnx1qQwgh/6/Wtc7R
kMvkpuh1LJQIOGBu12cWDUdm+ZWtHcIIvXAVN/YD0WCreOPvyNcIYv3jt1+Z
otEg1JTL0JcaSVQrF3tJ74gG536/rSyaUQTfJJ+f1mYUnPTkyKXeiyZG1Zcj
/HujIClxNpl4HEckJJexc72IgpmgdLqd4fHEsS9WcdQnUeD/qogvQC6BKE3v
SX5SGAWsah2JmqyJhMtyZe4P9ygYKh3++m4iiZDUtRELuhYFpbqEsbplMjGY
J1i0/WIUjMQtxt0ZSybUTkWVyWlHAW+QiNjzuRSCqfRq7VX+KGhlqFw7sTed
WBLMb5PligKK15H9dA3pxIf44ZFFhigwG7RwlzPKIGo8dbd4zUeCaJ5rPxGb
SVhpy5pENEVCfr7U12gFKnHyv8vXT9ZGQp/y60r8E5VQkaf6bS+LpCU1/uKO
rByCaxdnSUZSJFza+OjnzJdH/Df9bbXUNhJ+VL3SfCdcQBSbS3E4mkdC56QF
13+RBURSt6WookEklPvr5m6uFBB2db06T45GAove2PMPw4XEzrCazHb2SFg/
0W2t/18R4br3JuXLgwiwtNEQ38lSRlzMrDKoKo4AT6mtel65ZYQu58xl1+wI
IJY6pmVVywnRX+di/oREgM9zQfZ2rwqiu1X1I5tpBPxku69TK15FNBx1/d59
MgICL34v9B6sIu5Wlm9JJiLApifunEBcNeGbInhQUDYCpNIZv2eH3Cf222z4
yW6Gw4g2ffat3TUE3/Dh5MXlcJC7enOmL6iGoDt5o+ThTDjkSzA2XVqsIQaV
xnoofeHgohcler7nIRHC2CJ6sigcNDcnmP5WPCLGC0OeOeiFQ/y52b1dk0+I
gXdlxctYOBgTF85ZOzQQbdt7orwOhwMLRyd98loDUe3HfyZENJzWX28d69r9
lPAzr/qUvRIGj8Q72J97A+Ga+OaV2HwYiJw+sIWZv4m40rZWUTIRBs9ibTkO
/tdE6B855v6wKwycb//QlwtpJvbwDDN1FoaBWWyRw6NPLcR23Y1Zw4wwiHfb
r0D7p0kwBYi/HowNA3lVRipzzjNifsEhddIrDBwLR06vWjwnnrbT7/ujHwZv
Vt99/fG9lTAPlNXe/zcU5qWul5z0aiP0HxvKVi+FQvlWu44zy20Eueix7fB0
KPTc3nMu6EY7sf9C8xDeFwqXm22Ybzp2EGtHje1MS0JBuvefQF5YFzHv5HNy
lBoKcWFNeU08r4nx4jwFm6RQCJpbi9UoeE284vuy5nQ7FCy1wwS8X3QTaUt+
keFnQuFaWn3mlrReIkqqyJFTNxTWvlVL8k/3En4X208no1BQfP0cQlT6CNsu
XoG8/aFQUDxA8RntI5RLS8vr/oWADN+LkNsab4g3lv2dnytCgO8NK32m5iBh
bVfQGpEfAsfaZHViHg0SS87OjbKpITBQOKDkIT1EcARxVbv4hcDihf31WnzD
hGaRXtKGIW3/sFtmHdN7or+SPzpfKwT8NXJSZcPeE1aPZoOPqYWA2MNR5gHW
D8Ttl2EekRIh0P5d+dvYrhGibvaZ6Y6VYCgksw92GIwSmt8TTz/+EgwlKwZE
06dRov+3ld75sWD4sf2Hr7TPGPGN7R+loC0Y/nSeW6WcGyek5CgictnBoKzB
KvE7a4LIcHn4WRMPhm9Pyr3mLk8R+3yCRmeUgyFaeupfxPMpojbo9FDU/mC4
ymP8t0ryM9GbvNjWyxMMHNwvpwu+fiZY62QrLT4HwX+3A0WrY2aIDPhT9O9d
EHxUYYrj/D1D7HvVnlPYHQQMUY+aBK7OEuTw1fjZ+iCwFh91MNGZI3z+3HF1
jwqCPbeLzs+KfCW2MrrZ7/IPguWcja1GWV+JNHbSpsEtCMbP6H1N2jlPPBQa
N6a7EAQFJXLHSvkWiHkkpBojHwS32j6rvpRaJC4Ep/y7MxAIP5I9Y5OHvhM/
9Q3btnYEwolBl4RikWUiSoAj0bEpEK5HO9y+b7dM1D8IFlcpD4SNoRff728s
E9zjrlod/oHQwr1e7KD0k3ihfjp6SSYQLj87c7WpZ4Ww2Mp51lg0EOKJnncc
0qvE8ps2oYYdgbAi6KvvErhKiNjjVcF0gaA8vCAQqbJGeGfK9+0cDICNlOdN
+IPfhNwK5y6NwACIEWs8HPVxnWhtaR8ruBkAZ+fGHmTqbBDmsaGlzA4BEPLl
0KuvtRtEuOSGaq9JAGR/mu28lLhJTBjNW1w+QFt39mf8doCOlLFM1eKt9ofV
7cFK1B0M5LkVjqGRTH8QeZEt22fMQIbEhtgVh/jD42NBD56mMZCj/7lFq5r7
gz5S8WwUYCSTdhv1WW7xBys2/cEEWSbybx/XhcrzfsD9dfHWHRdm0oLj/a77
mn7Azmi7rNHKTMLxu/0P5fzg64bEjpZdLGTQfxSd//7dhqtFn+giWljIrXft
lDru3IbMAf/d2qKs5E6vZ6yzX31ByE+OYZ2dg/SqiW39OuAL3k9O7Rxz5CDf
z5v6Lzb6QuI4t0NTLweZc2nx50q8L+zVp7LcyuQkJU8IjW9R9oV6DhnxH0e2
kYeEb9ZJ+N4Cc9k8Vvw0N5liSrhI2d6CFwdf/taL4iZXkjgOyOrfAvZGy2MT
z7nJJyx3Cg6J3oLrOz6wPjjKQ+Lfe2KIVh9aY+xvnZLmJfVb91+25PABHq1j
l19L7CCvXf+4LZvqBYPSbhFnQvlJ9bHyBdYwL+i9N/X7Wzc/uf2sV6eXkxft
e6zljQC/APlYgzfchPSCgK1LL0SrBcit3Lqb3LOecACJablNCJLF9bXzEUqe
wEaNONRzUZicZIppv9nhAamdjKl5H8XIOm+zks8PPaBXUMesgE2cjPq2L/Rs
jgfkRxlajquIk4rDLfghZw+4s6tVmC9ZnAyoWK1f2OEBg2bTv7ROSpDCRpeL
bS65w9NFNs7THZKkeZ5asNGaK3wx2hfO9EOKRFkTdFqfXKEz+fToYwlpUiI1
wk+l2xUS10UyUs5Kk/NRg95CRa7Q2HM0qKVOmvS76eo8beAKAjFKJ+Z995OF
p8ov+JS4gDq93U/h7bLkl7/8RwtNnCHSVntGSPcguXx/+d2na/bQcjeRgcvz
ECm5MCOloW4PE+N3fiimHCLP7f/okcZlD3kndj0ye3CIfFrwilv34XXg2jVu
Vfv1EBmaRNWtWr9G43fqvqqVErnb/fgTr3g7ANf7t+a0lElMJSuD85EtFDxT
QOGMR0hXt/jpK+G24Cqll/5N+AhZVB2i3GxmC/HPdPMJtSPkVmmnXtdNGxiI
zN4sdD5C9u/W3DqsbQMKdD/bBUeOkFf+LHgWvrcGNUvjhfv3VMiYRuKcCp0V
8O0vDmhRVSWb2Qfa5SssgWI/GPPCQJW8SpX8vGRsCZHNZeyltqpkXeMLQbeK
ixBEbWlmTlQljem2RnqaXIB/xTMVItOqZFJozOWASnNIywubcYpUI9V2fvQj
zpnDLuLiuUM5auRksVwWA4M5aD63fNF9X41UbOvuDTlnBn9Ekl4nD6mRvWzc
KJLBFEz+u7tISFBIzoTU3UmmxuD4x3StvYZC1opOK51hNIYP3Nxvfz+nkBYP
jhjwVZ0F7kcpz+jfUsjK/qHQNMaz0IzxiWWsUEi9HQI/sqqM4PNcn8wbFXUy
Iiv39R0mQ9j7e+KrZI06aWky2td+0QBkrRPu3mlWJ6s8/beerNUH8WClVz+6
1clTDS0ehpanQPYXVyXrV3UyCjtuaPZID+odrdkPiGmQW/QMtthf0oI37XKK
qqEa5BRiOHu8QROs1o5THydokK1KjwrFeDVh07thnYOqQYbsEcSHW0mQFH17
QLlGg2T8Pu2jJY3DeUrbO48RDfJlp1IywYBB0/YzdGnTGmToo0yFtYca0P5C
hiVySYNkirS1t91FgfbjiHGWEZH0Chvj2OhhGCrc8z1aGpHN/Jf9VuKVYYuK
rZGWIiIDGNsF7xFK8Fc8W71fFZH/BlNMBO4qwFbRD6xX9RD5+69pxtzQPnCZ
v37Y/xoivXok35hQJCHPwDxiyBmRq4VLnK25YpB3tdCfyQuRc8nbWTQ6dwN/
S+fPsVBE0vl7fz1yeLGR5YXWt9w8REomJfV8kXqrkf9IfPXuXUQmbQ37mHDw
j0awao9KcAUi9ysfOrm4sR051FWlN9ch8kBs1iCfyk6k9cjyjehTRB6cZrik
5iyI/i6+9z/Xgkj+rrkG8rs4Wq84bqfTicistT0Bb2P3ohuP7j1n6EWk0F4j
LTsZaaRX0dGdPIBIYb+GntjLcuh21TYVtY+I5M7Qcp3/ooQSGK1CSuYRaVQ1
NnBY9TA6eylURWKJxq/VW8U//AhqaL9Hev9AJN/3e+vckqpINeCXx6PfiDzL
omN53lUNRftb7KeuIzJ1z2RLUTMFTVwyOnHxHyJ36u0MV7mAUOzYl58eTBh5
zur+XEAFhn71nmTrYsbIk5S9+z774mjr1OOyza0Y6XDcdYhVkkDvL70U4GLH
yJjTTREHOwlUum509w8HRlZacKidcSVR3d7AxFYujOy6avbVk/8YSr5SJ+Ww
HSPnXYup1OZjiBsy73/nxkhOvx+nWq5qold0PB7GvBgZ4XSnlm+PFhqakFe+
z4eRDJfOCNr1ayH1Cw+rx3dg5G0jxqD/wo8jFk5755mdGLl27OEsl4Y2Wveh
Z3qxCyNdD182sF7WRvdf31rz3o2RC/t46x6V6KClnUdGmPkx0m73cyHWC7po
a/WYhgMNT7K6BVvw6CGpHM/Kchq2+Cv+pfqVHsrh0K1/RsND8/2GjLdPIJme
mYVaGjYaDao3OXQSEfMHxgNpuKvnkHD5zEmEaSgJy9Dw8ZbJkA3qKVSw8+zR
Ktr9LTVJXw2N9NGhTYkmLhpWLyKNilgMELrhdOwkjW9d6vLj1acG6N5dFZOr
ND0Zx/ri96oaIvHQ6ggrml4T9f3HepIN0ZOZGvujND94DweueH0zROO7Dh9Z
4MHIXrl3ZeK6p9EJrU38Ns3P2H2KF7runEaHdynMz27DSD2RyO03N08jC1GJ
DAVaPl5sV/Vsf2iE2tZq3Y3ZMDKINVHGjesM+unGdFWJll+cYe6j0LUz6KaJ
68dvWzCy4UeGprPwWSRximHkHx1Ges4vrfJ7n0Xy9KpSJpuIVP6sU/H8zVmU
aPXQN/ovIqsH17h3RRojyXZKd8ovRDr0GL5o/mSMnpQHxV1bRqRMW6nXdWSC
enffmhBeRGTRE9Oxxh8m6Ovg5NiBWdr7oD6utLloinZ4+5fveofIc6nbrbie
mKLxBvz67re0+o6z433Ma4ZeT+wlGfoQGe+/24e93Qyxsoq9SmxDZIi1l3aN
0nnEkMbAWER7n8T53j/n484jY8FIq+8PELl5Rrpqy9x5xMnp/F36HiK9tYb5
zHIt0NJVSfVzdxB5Q/ro5L+tF1GjTIxlbRztfa/egn1OViihLO553yVEXptx
N3XPtEJ3FYtrzCwQWTzkuNzy3ApVTIiyDZkgUuyx5b4Luy+h6m2DP2pO0N6X
97G45JZL6K1u0ZMVZVq/+ct2kY7vMmJdp+ea3oLIN5uZG+8e2yK6qQrbjUIN
cvtiUrrUJ1ukgA4lVtD6rf5YtKIH5xU0U1Q9fy5Ng2xrum273foKsoCCN5WR
GuTTgEuvj7NfReGcGo+NnDXIYob9OQ8v2CHet/PktIYG6cP8WD2WwR4pXs0x
e/1BndS/zxpyRcEe/RzUcrz0Vp0UNz/fiV20Ryp69mL/aPOi/d6m2fITe3S6
9pSA2TN1crexluc5FwfEo9U8l1CmTtbf6X8gNu6I4nf5GzR50+bJKcnffzhv
oF1kX+kPN3Xy4qoHPkC5gWLqVSaUbqiTzCf4e8LSb6BUsYvP3lmrkybLlvNf
9Z3Q1QPcjG0n1Umf/Ju8Hy46I78G+fR4CXXSxkOk/pWHM3p4gG3nfWEaX702
89oYZ8TSXqIwxk/j+5O/MLbBGf1W8cCvb6fx1W5UwHe6INmq5j9qmxSyRujK
wAE5F3SE2y9i6DeFpH7n8uLXdEHZC65NIb8opHO2VdOyiwsS4+CV51mgkLsX
GfXvvnZB0dUXEN1HCsnQWvk9cYoW7zeO7X9HIeczjFP9/rogtxy6Xza0+dxM
loyc2++KmumfhOzoppBX0/Ts2UJd0an2f60WzRTS0P4H12q2K4pk7N0v2Egh
1XBqzacaV5TZNbX+5QmF5Pqy8PvpuCtqaPxFaXpIIes0EiOc1N3Qh6AZUr2U
Qh4cVmH9buSGbHji61PuUshi19FI12tuqG2/TcJmIYVMLZGN9khzQ6sW80+Y
cykkB9nPvlrphtZvXlO4m00hQ0a8YryeuyHj7FIT40wK6c79MvbWkhtKP5mw
+SWFpqfCgWuD2R0V2jkU9yZRSJvjvPF+e9xR12FXvbYECnn2llVCoJ47smHY
eLMQQyG7drBwM15yR8PlUuOC0RRS8/69xBBPd1TQFa5kEUkhlT7/SQovckdu
bhyTPGEUsty/gJf1P3cUE3hhJSKEQooL6KRE9bkjX8cY2B5MIXkMUlNjN93R
/Wh3DuMAChk1R9m5bYcH+lRufJnbn+Z/yGRagqwH0vh1efvYbQq5/Fg+I9nU
A81ckNhedYtCXj8zuHuHEw3TxytX+1DIyQXfzLRQD5RqRDVq8aaQ5hESArup
Hug/1bNnprwoZJ94R1ZmjQdSpfaK7KZhnUZnQcF2D+SwU73AwpOWz3O7qNQx
D/TqcV/zg5sU8uhyo5DwigcaaB25uouG78fY5ORx3EQJ1x/7x3pQSGkpdmEx
iZtoT1jPd14azm95kFuoehO1X6CWlLvT6snCVETS8CZysSqNOk3DCSubeXev
3ERaU9EhW2l4a+JdUanbN1H/5wW/HjcKGSB7sqA0+SZaPmx7o5iG114si8mU
30Rru+unY2nYySqzsKL5JtLt6PobSsPTfzAJuaGb6M6F00FxNHwxdfpO1cJN
xFO5qV9Cw4PysZIKTJ7oUz/1SC8N63co3X0g4Il+P6TnYqXd/9Lm/V4lRU/k
4rm9/P/80L+A4lptT5TB9WSsjIbrMqWkjlz0ROjxajA3Td9B5e6SendPdCFs
wD6Chou73aVVoz0R+2drBy6aP8LXBMsaCjzRe/EW8zs0nMb4bL/6Y090/c8u
Dm2av5y5duWN3Z7o1p4s4980HHJ0myz22RPJtARzNNDysd7/qKL5rye6IyvA
HEnL3zwL473n0l5IUDh252lavm0Ky+S0MC+kkrpnWNeXQo6oG1a9NPZCv962
KBrS6qPLJae6PcgLdcetM4TS6keTQ1PhRKYXCtPx2/uQVl9Pi7/c76r2QjGV
4erfAilkxQeVmp4RLxRf89YpmlafPEtMya+/eyHj5W76t6EU0oep362T2Rt9
DXnqsT+cVi9yDodfKXijFnL2zDKt3qf88h9DiDdyOv1P6F88hTyR7Jj5NNMb
6W8yL2cl0vpPiZpPQ5U3sr7CoocnU8jA3gFK3bA3Srzv/aY4jeaXOGvTvQM+
qPi/PP/RHAoZemQwr4LwQfpdc3kteTT9encCykx8EKLjn6osoJANbhrk3QAf
NLvrpnQ2rR+ce+Hygjrgg+oZxLb036PVl937zmjfW6jL5p12fBOFXPUtqYxM
vIVkdMNCJ1to9ZHoHhtefAtxG9JLUlop5IEGLoPg3ltoamYv9W8bhWxnP9bv
I+mLloAq+bCf9v6qK4avdfki1SHDN+3TtP7xy/eztpAfOvhpYfIErd8WX1mh
siv5oWlHYliIV518N+R0tkfXD51/3HBofoc6iRqsn5t4+iHe0wKjIYLqJIu/
ToFtvx+6Yijom7pPnczaynchOMIfzQYPcfyiqJNd3rF82nn+yOLT+eeRSJ3c
/MLcxVbnj7a5uVruJtTJy69/qyV98kfnZa9Kih9XJ3e2O8UYigSg1Oi8T2MG
6uR4rPF1S58A9EglWqb1kjrpfZzneEtoAJLtj14auKxO8vzrFpNIDEBx0v30
H2zVSS1nnXfTJQHo/Nnwpy+uqZOj0lse6TwMQE3R4h/L7NVJr4mWhHIIQCzh
lL1BjupkuRFF58bbAHRoy5Agl4s6eYx9TaJ3PACpnzMkW1zVyZHntf8U5wNQ
t/yRgKvu6uS2wwfrfzEEIu52yqEYT3WydOFL0jmuQPRCy1yYjTYvyeKSG0/4
A9H4xiduHx910n2X2L7bCoHolZLpv4O31UnO3o/0Y5RAdEb6goubH83viKyP
uHYg0slm/FDqr07ixLknhf8r4bzjqX7fP05ZCckqo6GSkVm248r9LomMUkaR
oqIoK6PwkXPskT3OOY7jHRFRdrJPSoRECoVCiAZCy+r3/j5+fz4f931f72u8
7vu6/npbkqGg1vlPVwiR/7/CaRwOZHgZURA+QSZh3uXdns5XyNAVOQ/fKCSM
z+22aZsPGfgj/EbGQon6DHFxxMWSod9Q+iUznIT1pz79+D2dDNOqvYkXIkiY
p1lInUUOGZYSxPZtiSRhG7j0M8oekCH159azNQTnNP71Fq4hw2v74m/GUSRM
z/+Rue8zMhwqL81uI/iNynWF/ldk0IgUIWlEkzD3KRUunUEybGt9G5lAMPed
b6P0STKc9lhn3E8wNb3+u+4PMmS9abfaEEPC5OLi/r5fJkPfqZ8DCgTXkO05
A7koMFQSlatHsIm/4mbJzRTg5qRH/I8Hr65I1UlS4PhZs5P/23/VqVPObi8F
mjT73nMTvGrDUF9WpcDtzTdmeonvxZtdNcjUo0DqWsS5eIJ3HCKZ6h2hwFWV
y/80CS7V5rMdPE6B6cjk7JdEPAbKQxcC7Sggq5aw2ZLgnt3FHpLOFBBXXtr7
jMiHk3hQYJ0nYe8HpWw3wfMCppF2gYS/P79RPIl8hnJIpSyHU6DUSvDafSLf
IktfmZmJFBhwfo96wkhY3mzdfb1MCqham/eOE/XRnIh9NJhHgUUn+DFO1K/1
vV1zYCkFwtbCDHqI+tp27+uSrKOA3Ubl6EKi/tMty+/qWihgzH/z3jVCHwF1
HRN23RRoFW3030boJzPfbTVzggKvTovgBwNJmCJDbwNpjgITO6zKygg91idt
FB1aosAu/rlJgRvEfQgqUpQSDIW1wNr9MYSePbwDteslQqGia35dAaF3tsvH
DtvLhELTaoZbqScxj538asfQDQV9mZuBIVdJWMXROheSYSg0XCoYNnIlYYch
9vqQRShoKSma/3UhYc7y+2KlLoXCXdy9R5y4n7+3L6fXe4TCUoUUHnWehEWJ
dOTYB4QC18F/iyNnSVjhP9daRkIopEuV3jezJWG6P3Wfk+ihwC0W1OZoRcLa
v/C+HrobCrFrNyYdLEnYt7f3p6VqQ8EBJq4IE/OlavGXrVnjoTDpMRDuQLwv
T+7U7tGfDYXnt1VIVbokzDIjRnX4byjIJPJ1LmiSsOsUhaPbNoXB7ctDOnIq
JOyRrat/lk4YPDQpxa8S86iRuW6o/uEw2NIl5MsmQcIGDvEmDJuHQWb4WGEg
8f4tKd/P33YxDBxcdi/L8pEwfc4vb7Piw+D4+uAy6z96WOqw9nEeWhhcWbLx
hAXiva+KbPfODQOFnVMSAjPEvOos02T0OAxiRGvZL30i+mPr+YIfo2Fw83vv
s9lOoh/E9AcYaoSD5g33bR7EvCd0Ye/PkoPh8LBwj3Q3Md+56vl6SJiEw+rU
7bNb4/UwiW9CF2cdwkE/Cz/tQPTDm2bmZrSocDh2r8u26QIx7wi27Pg+GA6f
KDKHX8oQ/WRKmG4zGQ67nXt7Gdv0sCmWk0jzXDiUkHM+WorqYRlebBsyOCOg
1K+P5c2hh/16rTdvoBIB4U9Oc4aN6mJVaeXPUikRQO3dOvYvXRfbL4lfIclH
Av9Q+MfVWR1sTtrwVbR6JKz161/p/aSDPZD7ot5/MBKS1/taxffrYHKa6mze
1pHg+c+8r7JRB9t+oi39Xmgk/Ip5ydMWq4PxRs49FfpArCtoyu2R1sFG5w22
TydHgUe7tetGHW2M+XciVJMZBfODejyN8tqYPVvsdGhhFDzup3CekdDG+vjf
Vm5nRYFyqAWXxbIW1il35dip71HQZVYecKBeC3vskHSjySgaBFUKucR1tbDE
9tHXaSvRsKgVkNsnq4kZCtAvS3PHAP+id/qJLZrY0gnLteLNMSDswPakkUsT
u/iuWf7Z3hhQGzjr6jmhgelM5YbMH4+BPeZFHRo5GtgYp7OyRV4MbEpJxN3F
NTB19CWaxzwWNI4wk4b+HcD6q+cNArPjoDUx2G61Wg2LhIQwycAEmB99PcoX
L4/Rv5dqtIUnwK1n3vIlrvJYMeP1pE9iAiy4mSlfMJLHupdEjbvyEiBn2rqW
nV0ek6hm8JO7E0DRLMhH2lcO699idWxBKBG+2jN/SDjKYq6JTm9sLydCre9V
UWtjGWzBZUGx5FoikLtE7bPlZLCgg2HhnNcT4T8Wa4yNRwZLmMnTLP8vESwf
3TrN37oHqzSdpm5MSYRyeVGX40f2YKs8nmcbGxIhke9wL9N4N5ZI/m9yt3AS
RFayCeldlMb+azfzO7c1Cbbpx9OcjKQxV+HtXJnbkmC25c/+PAVp7FBeo4yQ
XBIkHqP0Bf7Yif1q+3eRTT8JrDz5mz1DdmJ2gpRPQ85JIMIQOyhotAPbmx0x
klabBIXM3qrMVUlMeMras6cpCfY2qg5/bpfE2NRk2fhbkuD5fTW9a1RJ7F1z
646wV0ngunDvxW51SSxukuec93gSBLQrWCF3CeyHUuywuUAyrETvuoF934rV
1ye853ZKhpdp6D9rMTFsSGrjSKVLMrR/0xCX/iyKLQdFTDheS4bfL7ualR+L
Yrr6/83V3UiGHdQDv4XsRLHHDa5cngnJ4PMqsWclVwSrbDTcP1CfDJcdp2YO
YcJYMWs5umBLCvCd2do4VCKIde70T7DalgJJG5PZ30UJYl9D5lPX7U6BhE8G
j0WcBDEFNJ1tr5wCuy1aB4xFBbGCJ31VgoYpsCdpLMV0VQC721w2esM7BehO
TCuOWj4s65mLjvHLFMg+aHZ3fTwPpv30m3Xaa8JejMmgzUke7M0TL5/R/hTQ
K860FhTnwXibAktujqWAQGNsRXEeN3ajJkHm/u8UkPVfVY1+yoVZPqzevHFX
KnBN9ctQNnNiM8UkFRvZVFCzW7adG+LAoouemOYqpsL1x89lGwo4MFZBR6Se
Vips3F4k54U4MKXcj6tupqlgz6VnrO2/HuOhcn/p9EsFr80ZD2YW2LHc9Dhu
8aBU0CxonRBvYccgbbPMJXIqvHBvqctKZ8d8kyXPr8amgg/W3fRAlx0bi1Pp
U7qTCgNlmRnjEWxYA9mmOb4jFXT0KJMPHNaQt9s9+vGdaUC/pTSsEvgXGZD7
lQT2pkGpiNUhScW/SCCD+0nHvjT40WeSXzP8B91vdvl8RCsNHrWXeWw89Ad9
EpdT1zdPg7vx16M+i/5Gp9oKXsoHpUGEU+zR/MFFtOvDwPnP5DSYtN0dfyxj
Ec0t8CzejUyDk0VtW1NPLqLbO65I7ExJA66Yh1s3di2g537yLmL304BXtqnA
t30eacncZ1s/kAaqpNPrnUfmEJfe+xTWcBr4Vnl978ibQ2+O88oGf0qDFm22
xha3OeQZ5Gr2dyYNFK4JpY7Nz6KCXgX6LGc6rHq4BEtqzSAJStGBoQPp4L/c
rrJ18Qta+VDsXJWQDk3f9PV9DkwgZWcpNdu0dBC80OygNDqOzn2PXV6ip0PJ
567ajoRx1LzsmmiQnw763eWMstlPKHqrfG1HfTpIcH9lLdaMITHLPP6x6XT4
3WbBueg3go6+ExkImyXs2bDKDPaPoJvnw3Jkf6ZD+/oD5PKhj2jI/YLWNbYM
qAkOevKq5wPKjZV2/COWAf9K/Lbd6RpCqi1ZlQKHM4DdsN6EXfAdcjLlv1Vm
nAGJcxufPWAOoJTeIONTFsT5ukbfZuUB9GvU7gPtTAY8OXqOV/xkP2pYE+eR
8coAFa7LwfuK3yIT7XQ7PWYGLNj1ZPpmvUZBTZx7P+RmgL/rD0Er9Bo9POI7
F1KYAVeqnMmekz1os9Wp8OeVGVBOfXvvuHoPGvASKjnRkQEdBhyvB+pfoUtF
8esu/8mAcV/Tlju97Uioh3uicDUDjFzGAzGTdsT6FdL6dR0VauvjdZubXyAJ
7HqcBz8VGnPnV8xr2lD3gI2Y/y4qBLqdTVCpf46C17r/PJalgsBjif/OoOdo
3x6TwSVFKmSQQd+wrQVFeJDwYC0qWPB6rpgMPkMkLmmFCFMqXG+o3fxQ9Cn6
so/O13aCCnxXpnjcC5pRxgnh2Q02VHCISJh+RWpG8wzOytuOVIi/tOWtq+sT
VHDgi36aHxWunqx7r1rWhEQcK07cxamw60Vdtu9yDWqOUFSfzKOCmlBw0tCJ
GuRRnCcmV0SFGYlGtS1Fj1H774zBoioqfDw/2v3tUjUKiQ+6VNFOBcsBkbnz
K5VIufKn0c9XVFAplHEpvlyJBt+5K2i9pQJV+fbOjP4KpCnjOFv7kQq51KAP
qg3l6Fud4c3mRSr8l8x3qCW/FNFHG+04lqhg1mNz+IxsKTLi1oYj/6hgZDQi
VnOqBOVYKqxv30CDsgZpQ2mPB8h2WuB2z3YakO02C20fKkRcm6I8hPfQwEEF
be1cV4gq1NktreRp4Lt/yuunUgESCFkQe3eABg9UpV/HJuWjp2ID+MhRGiS5
/NCOjMtFd0+u/Ekxp0F11Vt/6vMcFJa484TRKRqMXen9SOHMQYd5r7A/PEeD
2OnlHUVJOHq++tcx0I8GKlqCmrefZqJ83e21ykE0oDoe8dWj0FGEPyY0RqZB
q+3tVZYxDRn9iGk+epsGE4LVY5/n01HbuORusbs0ePfgiOuL+8moQNog8EUh
DRrdDDitHiShKIeLvUElxP4s6ydT1YnIeKA49FMtDdrEenZHv7iNFER7BtNZ
NJDyL1J9xB+HeC1/HjB5TgMbp7UzSo4xqL1Df7y0hwbzAaP1WhqR6D6PE+li
Pw0ivrc8dK0KRzGGEalbhmmwt/uNpuzhMHSsqetw8BQNPKJvuofEkZHiyjxD
bYYGMwdzKpoMQxCfzpaf4ws0ENKN984UD0ad5efyjv2jgb9P2naIvImKZ0NX
1zjocLDJJ2KTsz+KUyywKuelwzX867LwOV9klj/HKS5GB7edK+EnmV5I+ZOI
Q6ckHSJEj8k2tnoggZ06j25J04HR0dYXFHYVddHIzpOKdAgfNWUYJDqjh315
jbT9dHDM052cG76A4oXbxcy06bA2/1Eu+4wjcj8+484GdOiPIxcd3eiALG4L
tVYcogPzj8OFqvrTSLVdc4eLMR0KDR3y9dqskCC3nb+EBR28gh+gNEVLNHfo
1quXp+hwSr4PVrvNUHdIriz5DB2K0kYirv00QqUNrbfUz9Oh4Fr9vbWnGEpc
+tr/+RIdRI+pj3r7kJCnlqBqphsRn+4RJ+sidXTCRz3K3IsOStHbhqgWimh/
me0Iuz8dcrCmaO52aSQ0E6RdFUSHtEcBq29uCKN5hTuJlyl0iJ0J2bTdlw29
dmmZkoyig42eGC+fy5BB+d1pg1e36ZAwULtvXVGoQcooP42SQodfEvx97Mmf
DXy27/+hQaODz3rluEfvOdApO2vjaSYdUmhU1T+XxZA6NeAO4y4dRiYYLZFX
diORt8y/FvfpIPvO3X6kUwktbn56Yn0pYX/c8PgbBQ301vxz4aMqOmxKngqM
+Y+E9iuISmyoo8NeLf69i9IYiuc8FGPHokPm48/1R/2PoC8jnksPWujw56Wn
LYf+MXSknunK1kGHxNdNc1Xax1FORud7y246bJZr+Xxhw0m05r1kkveWDseC
lYXKN1mjR/LW+0xG6OCp2dHzqsYeCXGGZTIm6EDlfLRlSek8ch8p2zj7hQ6P
R8L3qm11Qnsz+L+l/KRDx/opjauaziido6V4mDcTroa30N7Fe6D5j/NSqoKZ
MC5oIzol4IXM63bepohmwhGMneecozfi8g66JrszE8QfOoQE7fVF/h8PKHtp
ZILwxNcX6oqB6E2tI/Opbiacoh6JMH4ehFTTEwTEDDLBzoCvYvhKMJoy/TpT
a5IJmMq5RefJEGRbm1PCcT4TbkyuDXsHh6HKtO4dNpcywSNAo4LTIxwJeq0l
FLoSLH+7Nf9CBGqTPeNp7psJzwbMmY22UUgnbbMaNSYT8m3zlVY84pCEZ0j5
virC32yfSjKejIZkHKoseRmw/8z+Q1k+DMTw7rCP2cSA2oAfZfiWLGTXpM3R
LMIAtnzZPQF1Wei9rfBJtR0MYEx6eCVxZqN3sW1zm9SJ88tpSod6cNT3Y7/i
y7MMSNzwp6kqKBe9auDONSpjQEjHeonPvwpQPK+vya1HDNCHNw8MLQqRuc3Y
j0d1DOB8+iu+8F4h6pqrN9j7nAE19iIlfrb3Uedu7w8cgwxAzx+f/FBThNqi
h8SbObLAseGuUt3Nh6jZqiyRZJsF77uO987OlKHKmhcPJs5mgepzZg5Lqhzd
2zbWHn8hC6YY+KyrSTmKmxDiHHXPguEvNuFGeeXI2tfnZnh4FrTfYvvJfroC
TadqOXWVZ0Glm+5aanUlEnzTcOA8PxMu3fcQ6TapRuu0+45vEGbC6n616lmv
avQzc+Za+VYmSN0tCOqkVqP3F3YUcOxhQtSRgMHaiWqUuxAiVajLhJ5fhxmn
gx4jTeHDnPMuTPhy54DCDkYNOmvZ3hfazITZtjtz13LqUOepbxs7W5kweEHP
9EBjHdK1EUAiL5lwtFozv+xdHRKztyy6288ER5tt7gOb6lHXpfe3Wr4xoSu4
za3tRj0yuPlFjntLNrwR4szboN+AHgbyOVhIZcMi3+F5o1MNSCpYOSVDOhue
92qGkdwa0F+K96qsYjZk3s3iOkptQOVxSz1HUTaUzdi9m5hpQHtw3sAYt2zY
Jpxhty++ESXnKJa+9swGvfCwv0/xRsSWZz4h4ZcNWaHhPZsrGtFwYbJFUUg2
nBmy2PuyrxGlV0js6UwjeIop1yzRhDgekU6LZGZDnwLy59jXhLwfO8Tb49lw
3UOeb0W3CVk05Pz5dj8bOufOqGw804R4WhVe8rOygSOn5fH91Cbk98J0nXVL
NiTqLgdSc5rQeIe7FrM9GzxLGwb1SpvQk+7yO8pvsyFqUKwlt70JBbzX9bP4
kg325/z7lpab0NSQfVHGbDZU5Cxwdq5nIeuPwSMfF7MhENv1xncDCx0Ybzbx
/Ees704zthNhoV9+eQlHeXHYsuHcirscC1k8qzumx0/whQ+6d5RYqGDza25l
QRyUpOZ08/ez0JnitVvCYjisKPDMypFYqOKvCIlLHIfH1KGhfAMW4jPa9+eP
JA7pKu///T7MQo2jNp4fpHFIk6c7iJix0BYVd8WePTiUlHA1fzzOIubxsKmn
sji8bjNvCj7FQru2lJ0vVMLhhEuLoLYdCwVebJViqOLgx04vsnRgoTdlwwPx
B3DwlE66hhxZKNKU94SPDg5De6pXMp1ZaIS2k9+FhMNH71IxnisspPtZ88Xp
gziIrNj9OOrGQinqZuGmGA56/VvKHK6x0DfyBXTQEIcdtNNuxh4sZPjq5qra
URw0ZISPbPBiIaZUYs2eYzg86XB3ZXqz0O8r+b5bzHH4XWa0boMPCx2vrlfj
PYHDJSdZbWNfFirk6P2+chIHmfOHtM75sdA6y+nCWWscGuoD9h3zZyG77H+X
xk7j0Fp6EvHfYKHKb6K73trjYKn1Ny+PYH5dxQ+t53DgLNaOFLnJQs6RGL3W
CYemy0GbzhDc9MbW+sElHJ5WO9j7Ebx1l4cQfhmH0fFB+hWCvTzCu5LdcNhj
7rd0gOD2+syYcHcc1IqNit4S9nfzlh+54YUDrW1t2JzgIJu2dW4+OHRqDj/N
Jvx7e/dD41l/HB5uqopvI/xXnl8MOB6Aw4eSSc8XRHyRBzdqHfoPB8YNh6wc
Iv6ROOkFjRAcrFOSjU5dZyGd91olcqE44N/l8A9E/pJlzd0kI3AwPeXXhTxZ
6KvPRVmBaBy+Y1Ucwe4sdLg54BNbHA68Ui1+KVdZKGtTUvZCPA6U3xynKa6E
Pu3v2U0m4RAadWLE5DKhx9+9vR0ZOBSLfq24coGF2A2/JDTSifhqLK+yzhP6
TGYzLcsi6gt/7vw4S+hRSelZei5Rr2mnc+M2LHQp4FBIdD4OurPiJvmE3hpb
T5OCCon8RTpQDp0g9OgUUelYgsM8CNcImrDQixKG56lyHG7dMpVFRwh9rpYr
GlXh8LbpTrMZRugx4+NdxTocxmKTLq7osJDSxM/zOxpxKHQS/8DUYKGI/Xzb
hJ7g0Lch1XW7GpGvW7vecTzD4cbCO8NARSJf//8/ZlClSjyskmWh/wM9nS/W

     "]]}, 
   {RGBColor[1, 0, 0], LineBox[CompressedData["
1:eJwUVnc4l+8blZlZZlaykojMZHze8YmI7BkKGREyssnee++VvZIkidwRyd5F
SCjylcySln5+f73Xua7nfe5zzn2e+3n4brro2ZKSkJD4UJCQ/P8rP3Qx40dP
MQDew1jmI0Ho5flw2rC7GB54VhmZuUoSTFwjmhs7i4Ftt2lP11OK4MM8PuX8
vBgUllIY9KplCEdtfewHnhXDwsu3x1PfyRKym3l+Cj8thtBd0SeBHHKElmuO
nJ8eFYOf9LkU0gF5glotYy3+sBie+sxd+klQJEz/eapYVFcM7256vTTrUiL8
KCK/blpZDHrdcUnnyTFC5HbN16dlxWBbPTb+6hNGYLukG8haUgyfL1m9ODmK
Ey6sFBSN5hdD8w3nWOi9ROiRU5YQzy0Gfr5tkuW3ygSjmLWOuKximNKLdIre
ViF4nZNbupxaDEG4wj8BLTUCZeB797KkYqBLbiEwp1whZI6EkZEmFMNkZPVz
5yV1whP3UcH2qGLgZq3q827UJCh3ez3hjCgG/dXEFnkpbcIk68nLPqHFcHk1
9aOKlQ7hW4vDLel7xXBl/45hJq0eQeYfaU21ezH4c/t4lo8aErp1qhWoXIuB
+rMx8/lZI4JBifaAjXMx0JNYbwZuGRM8VPLXT9kXQ38Rg91bJVMCeRbx3j3b
YkhwDejJ8DAjpK+u0s/eLAbvzXGSuBZzwuM42fOZ14shQnP5VqGdBYH4fvbF
rmkxXDjGufHS3pIwLh6qo2tSDCw3WJY5T1sRbgYLL9YbFgPrBJda/KoVYWds
2I1OvxhOjejc1Xx8kxAq4El6W6cY5DJXpusirAlMnlxprzWLYThV8b2/kw2h
pKdT4LRGMXB5aAyIu9sSpNjtm0LVisEFNX5FmWNHeOnAoLKgUgzttxmDAj/e
Iui1Nb0hXDr0w80w66qBA2GJzswuDyuGVNrKX7YbtwnuN4782Ccc5o/WV4vk
iROBtKEyykixGDJmFW3Ta+8QUo9osTddLIaQkZzrW7ddCfz636oYLxTDnT80
B9/z3AiPynLlXaSLQab1aS/ZF3cCtof1D0oUA7PqKreDqQdhVPWzqYh4MbRJ
WhkUrHsSLHMSvkSJFkNrWOcJvMybsLUmHbAsfLh/q/LTU+G+hGClGbpLQsXw
PW01SiLJn3A8MbigWKAYftfuKWf33iNISA6BGc+hnpW7Tt8dQghCPwrSg7mK
oXuo917CXijhZPud2+XsxcBwooSHuTKcwBKGYv2sh/mRsQo6GxhJoLlynG2T
qRgKhqd0cgKjCSTHFr8wHy8Gu5TGT7q1sYQfk486L9IXg9IFD93bVAmET5b6
zqFUxZD33NzJXSyFMCMkeKmSvBhod5nlSutSCWPr39gHjxyeL/OCnHD1dEKi
bdz7xb9FoDwfbcxAnUnw3z4XI7pfBIsEsSrttSyC/b1hGc+dIniZzPPGZSuH
YEDtugDrReDS5zRTfzKfIM73WE5vsQjoi64bhPsXE7geGHzMmy2Ca+1PdJgm
7xOOyu8lLr8pgg3tW0mSKqWE791ZCudHi2DU6nGB8mgZYUlHfsWnvwhit2IM
n3tVEEbmZlJedheBYcWyNLtCFeG5fQCB7kURsJfTNqxw1RAygl+kFz0uAp2k
X/o38XpCKJ0V9t+DIthLeC5LUG4g3MkmXZeqKoLdQo8ZZ79HBDPBsqyAkiK4
9drbWqq7kaDWoHKpJ78I/hYYV4XyNxFklT5vHMsqAmu+UkWLzCcE/t7o3Gsp
RfD2A1vuGO9Twp8PA9vrEUWAKMSbD9xrJfzn6FxwIbgIsjOmf6fpPSe8/cFw
JdivCJilrRBPIhAajukVM7sc8n/5u1ROqZNQkLercd2hCBz0H3HEW74kxJ7J
+FFhXQR10//J/U3vIlij01oKJkVgMdHt+U+ih6Az4PsrTO9QX1WGMlnua4KS
MVfF0NUiUHyaoUXN1kdgc7nx1xIvgj8/8odR9UEC2e9/VTWKRXAmrf/NcfJh
wlbkfYNvskUgvBjnenpyhNBf+Kk2SqQIEkKDXmi9HyM8FYk0HhMsgpL5MmuH
/8YJZc1nyLhOFYHpDPdLb9JJQuDwbdN65sN6KKON7fW3BEdTOsp9+iLIz0jZ
US2eIpisPHiEHy2CGFNsQ3BnmiB5sHX0zZ9CEAhq5/rdPUvgiU1t4vlRCFSN
1DxXVN8TaNhkLO23C0HJhPIl9dI84cf9N7SNXwqhXm33F63mAuGTmPfT38uF
cI2OOuP+xUXC2DN2a5WFQhBJn6VplVkigEorQ9LMITaye2NE/EjIvv7Xln+k
EDrvBvbfylwmUGtk/BzsKwT3jxzhDb0rBL+LYgne3YXQbtZ1IMywSvhy+hUv
/4tC4Dh3/Pfcrf8I5szXmwafFUL+mrP7p7drhCGS76reTYVgx8Gyb22+TkA2
4mf5HhbC6WELroSfXwm8fc9JvcsKIYUsdX7nxRYhpdkgk6+oENYnaO3nn2wT
SMvWzw7mFEKoLP/zy607hE+B3Lp8SYVg+uWYaeT2N4KhU9OngZhCiP3vl93X
03uEnmtXfbzCC8Emplhy2/EHoVomoGjAtxD+SnONqUn8InDys0h7eRSCwoiK
pEvDb0L8sboeXpdCeLvrMT2l8pdwZ232q6dNIVRmF6YomZIgH6buhvBaHOrj
EeP/rHoE0XlFyzpwrRAklJeTtImkiFSxohKvdiEY/J6ofmBBjpQmTIz0XykE
TJNTZyaMAmHxd7T2VC4Eb4n7lNJPKZE9w7zYfvlC6L/oyMesRY3cuiTN4ylT
CAVvQkUOGmmQaYmBR6fOF0LLLe2RubN0SCvt72kPwUL4YsRnHqhzDBH9mep0
6lQhKGYoTq8FH0fyV0RI+jkK4ZTY4rygDSMS2Gl65tSxQhBPpnP5o8GMbNbv
tPZRF4KoncfTQF0WxDI/VsuD/HD/F5N/TaxZEaJ3q2ffzwLgkLM7Tll/Anls
o0ft8a0A1kRHLGY+syOCemv5PJsF0MrSPU0twYlQinF23/1UANNE8ujKr9yI
N2ejMc+HAmA04DC5YMODrFKpf+l9VwAxzbO1Vl9OIf1Lvkw8IwXgf7Nd4yCT
D1EcZazo7SuAsC5VQWNPfqSuvVr+bncB6Lyec8SuCyCJ2e8se58VgCum/o5H
4zTyL8Ltm3tTAZQKydC+1hVCXO9SR598WAAvvf5M21qfQfS05B+6lxWA8dxW
PlX1WaRLcYx4sqgArE41/jf6XgSROevw9nVOARgxLKWfPHUOYSPP+cuddMiX
WNH9X684MvtsX+O1bwHI1NXtvbgphazK6lbFexTAMxHNenpJaWTvUTW5nksB
TKh1T5ygkkGYakzb52wKwPrJuK7+gCzCK/SYo8SiAJz5zZiPtF5AxEpovW6Z
FsDPbvyUzSM5RC33ufiOdgHMJVcn6LXJI0ZsrHFP1QuAlkTcrGZEAbFOdf4c
oFIAn3vUA122FZHAWJ5iKsUCOBIzK5pjiSDxlN5/BmUP+dtQ0LQ8RJGc0BGT
VIkCOPat7vVCFIY0+QUznhQ6/P9ZYeAlMiLycm/aeYm3ABjeEOoejBCREXfJ
/kquAhikchGrqLiErN1eCpViLIBCVWabci8VZH9F4cMP2gI4vygtt+V6GaGw
TlNspyyA8IGV4gFvVYTXTPmb6p98wCQrL49XXEHEp/J16H/kw8cBpXjOUXVE
Uf973fh2PqQrNtNcoLyKGGlU2F7/nA+MP7UfMOdrITavDzr5l/KB+mWlRtRf
bcT9kjHP6lw+7GdokOQ81UESFI9OuY/ng5O+GxJ9SQ/JfWopfXEoH3q9BSlr
T+gjVdLPkv6+zocf7mr1v7/rI92it9Wi2/Oh/VtDUfiEITJe+bJMsyUfbi4l
vzqYMEI+CHAdYX6cD7RVtSKii8bIL67BZwVV+XDNKCHaR9AUOZotyGZdmg/q
J5895DE3Q1hZ7rkLF+ZDybHvEqGl5ogEnbjo47R8cMuIaP1uY4Eg0ZFRPon5
8PbbAqOzqyWiQf7hIyEmH0Z3Gl4wXbRC7P4k5fcG5oP+lxvfY1duIh4+q/sJ
vvlg07X3Vn7YGgn5hhnqe+SDfMOvrhudNkj++jb9vEM+xLMN38octENq7NVv
l9rkw0l5t1TSlVvI008lPfYWh/W5Hull0zsg43P6QbsG+XDEr2NIJ9YRWTCp
m23Rzoc3T0QzmRadkK+T5BcD1fNhjzSqR+nKHeTo0JOto1g+HLe8Xtxa5Yqw
XWHQHFbIh2mWmbFnvm6I4Cu76jTZfAjZvtx83dAdQdtP3OQRzYfLHX0NL8U9
EE7+V2rup/NBZKijb/aSJ/It0v18z6l8yGPkHsLtvZAanaE/ziz5IKQ0YqC6
5INEPPH72Mlw2M+LhZNV8n6IJadwPyt1PljZZm3MlvojrJ9Cs9r/5oGQtzX9
w6ZAZEtNIpBxPw+2/iGtj8WDkf4H721sd/IgmnovJIUhBAn2vihF/zkPdq1F
Rs7thiJmc8vsVot50H+LnFL4ZxhyAU/71zSbB+Ldm8W89BHIF5qNQfPRPOj0
Zj16+mYU0uOS97ihPw+O7WkztldEI8WTarnkr/LAd09vavkgBvGX3ws2eZEH
hN+sbKOOcYhRYemtumd5IHGkPu35RjwiSaarRdKUB66SoRN/ohMROvsDGYP6
PCBKKnz+eTIZ6ZS8RvqnJA+WsngG9/ZTkPxMyv+0C/LAwzhIkuZPKuL1+/FI
aVYexA9PPStgSEfOvWIo0IjPA5+WwpeztpkIlcjzsKLIPDCQPdHoXJeFLCU6
3N4NzoOy2NUgbcocJMukWy7PMw/aSuQ+G+3nIe7tbjybLnngOF8m+zq1ALnK
f4ri0u08CDxn135SpQghXfcdX7uRB/c0ZA2M/O8j73XOPEOu5UF4tACdbkAJ
0vJksihV/9Df9X6XP3GliHPQeWcFtTx43Xma4DdTjqh9mtNPJB7qmTMKXues
RPivxCosKeXBymhOvbZzFTLNtEwVK5kHmrK7N+M1apHH3qkb70XzIFMgcVb7
XR2SOIe+kRTKA0OL6Y2FgHrkUkVuyTvOw3oRF/xGKB4hPLRqMWKseaAf9/3T
1J9HyL7Ld5eQY3nwj8dvouPIY6ReXodwlvywn7Yz4uYXnyAxhX8F7h3kgtxX
cb02x2bEhqyWZmw/F6btJs8ZNjxFOIYopn2+5gKZk+kglVsr8k3yMQx+zoUY
l1PNgpttyHCmZTnvUi5UTxcERIS2I+GWbe69b3Nh72GY45hXB2Lxyv4a91gu
CNidNP9k3YkoiLBhrgO54NVVT0J24yWyuetKz96RC8fb6OY4A7oRrVaWucHW
XND4KJXklvAKqQtuqQl5kgvWi38gu64HuU1PovalJhdkPjTy7rD1IX0TpWzF
5blgr3/BJcS6HxHOVV02KM6FO4roVF7HALIilBQKGbngSOWl5fNwGFH5KqV7
NzkX3Fuotm7xjSJlj9+eEo7LBTtyw78b30aRmxhPe0pwLui/8z+i3TaOdFK+
jLvsnwtH4yrdOR5OILxDtqa/PXNB1WyfU+fhJDJ/7cEPG8dc2Ax7tRcw/RYh
8Or2cNjlwvce/6vvSacP3wvf0octc+Hcc1+xLqV3iOldJamLRrlQPEYVob00
izyTXyD5qpMLPup1emXa7xF2kvCR+xq5YCzn9HN2ZB55Ez/gRIvnQjbVw1lz
ykVERt9FsUMxF6Y+ZYnULy8iqRzMNJ4XcmHIPLzLeXQJ0akwrZwXPfR/z07f
tf8T8tDpwDNNKBdGeieY5meWEQbpEmU1vlwwFTtKe/znCjL44r/FR2y5ALZk
wqZW/yGikQkNdoy5QK085j1St4bEXpUM4qLLhZIvGm1dR9cRtXc+3BFHckGQ
tmjv/PcNpLKI+4v8nxyoCun4VHhpC6G063i2sZcDIPfXxJ9tG+neoTI2Wc+B
wptx6Z6zO4jAs9rT9J9zIFmAlyRweBcJDdL+1rmYA3lhdlRSQ98QjC4rRXQq
B0wp7n+n3t5DisYVLBfGcuDyEQ5BOLGPHGTPi2cM5sDS2Q/9mOZPpO200OBB
Zw5YtUwyweffCOd6X+7j5zmAyhs8MdD6i/g0OjvYP82BVK4J952eA+QC+oRy
vC4H/O87vdnaJ0EzKK69iazMgQ4pqir6iSPot4E/pYolOXDJtieWrYUUbTRR
xsuzcqBYOlH/WDk5ynhq9Zhpag50vqH/yFNPgboux80zJOSA31CErGk3JSru
PuHvE5oDlFN3sbec1GjCRW91sXs5UBc2K2NvToOuH3ByLHnnQPuPnYHeB7Ro
TdzNZg3nHAgoePLtYygD+lbB7FjSrRz4mvOsYIDlOEq6pm8/bnXor3/dhcu7
x1FTNRXOa0Y58Nfy5omhCSY08gfhbr5ODsQuGUxKTTGjjRUXBj+o54D9V+MP
t1dZUFoK4UA7NAfiMza3rOVOoBebeKeq5XNg7Sbe9MqLHbWx5pD4Kp0D5xkf
/FF8zYE+76RZuiucA7ZZJQcnirjRVVcyxaf8OUD+kuKCuzAPysL7J+0Xdw5s
qP3o6O85hToFflUJYTz0S52U3K2UD80WWynsps0BspycE/4Z/Gj33PwPKsrD
/a5QyJimC6DciqPVib+yIfwBYUmu7TSqttZLOv4tGwQU337I/iSEeuR0mrFu
ZoNh1R2l9JPC6NCPRvr8j9mgJ1OS4dEpgv6qqLX78D4bXAjRBb/FzqFCRmUv
+KezgXuE+datB2JoYFOGW/VgNrRsPOvr95BAa6wT+9d7suFfTNKwtoEk+pYp
SkCiMxtuCx8I5qJSqLibz5vmJ9lAl69eSakkg5ryuon/enhY3245LUhLFo0c
cYgi1GTDx+HUj44uF9B5MTP57sJskJ/oPln+4SJK814/lSonG4TyHX7HSiig
F+KvflFPywZEU7yTLU0RTVojFIxFZYOZs4ZmSzKCPs+5sMcSmg2sPL9T37Fh
6KraeW2TgGxo3QoyP7aFoVgl75EPrtlg8p67oqubiDoZcZjyO2bDg8e9opad
l9BsCqbHtrbZYCP4z3u7XxndsiazXb+WDZfClVv9qVRRbuY/7ecNsuHEbttt
SiU1VO3lN7a7WtmQbjKlGxl8BS3mXen9ScwGRpbxhh6lq+jgyDwfgZAN068e
2eo0a6L7gVN+wXLZ4Op2NfLmJW1U533vOapz2aB9tKWLWUsXDYjvjFAXOlyv
9N30r4weWqXYOp/Amw0vOQTeD5zRR0lya5NZWLOhDflxzl/aED13pew/42OH
/REX4S7UNEJN9vOJedTZUGl6qkbEyxh9ZJT4je8gC9522zbofr+G+qWrsgXv
Z8ECt3/dz8tmKHGc5OL8ThZ0aDRUX682Ryc17/rnfs6C2D9WP9NLLdD8uHMF
+4tZ8Ndh1fxhoSVq27cMRnNZ8GagdX3Y0wrdUzYhZR7LgnszfQaTytYohDIK
ug1kAQ2zGs0kwQaN6uhXGXmVBVmsShnES7YouxIhJq41C56eyrZZ9ryFLvju
1fzXlAUZliqSt8rs0eqnDwdVH2bBUXTl2u6iA6ogzX+cvCwL3t9Z0WBNcEJJ
3WYlbxZmQW1Ld6X0H2d0oD5dvyM7CxIzBSju3HNBzUWosgISsqB/x01ozNwN
PW3f0TITlQXUst4b0oru6Ea578zF0CzQFvEvcRW8iwbxrZ/87pUFNvE5BVEc
nqiaRTmq75YFzB19HQVCXujxghtWjxyz4BZp+5fPmDdawj5W5myZBe5VQxdb
i3zR20axPQOmWVD665xX+bIfKp1+afWsYRYM6he7xykGoN3HmkVXrhz6l2Wm
a80ZhMZrumgqK2fBnV7bFX+9YNQwTtilBMmCJ37Xre34QtAVyrzGG9JZ4Ptk
8dbm+1D0obLB5HOxLAguGLEOGwxDfULp9ziFs+DhE4/Jkp5wlPogSH6KOws0
uA2kKj5EouOK8mayJ7JgeeRoVNW/KDTXdycgjTELfkdEXw8Vi0HPfbfp0KbM
gj7Xt/MFT+LQb1I8Sw9IskC2crRVnzEBbXedIqP7nQkV5I7XJ+8lolrrV1R7
NzNh9+X8UaWeZJRNhMxBaC0TuKdLjpzNTkE/3HoeG/4pE/ApYrSURyrq+lF8
GHuXCSxTnLoRV9NReb7VzcKJTAjqXaMcvZKBklrcZ/w7lAkNYZfCFPQz0bQZ
ZsNnLzPhuBD9eG18NmrOPuR1oj0TTvdlSH9oz0EFjSKzPZ9mAuMMy3jc31y0
eWx/VrIuE9TDGWt+1xSggcca/yZVZMIw/camGmcRqqrpeGqjOBOKzK40RWgW
o9O972/WZGSCZuYf2TNr9w/zkODkkJwJ16KwR5wtJag7FcFLOC4T3mYImIkk
laK0l/NjKoIzYeLZhQA503LUZFkjzdY/E2irHZRotSvQsvDf+YJemaCUU7tf
qVWJIl2mDSWOmYDMdf9lda1G427StFrZZYJ31t31+dQadPpIaxevVSaclCa3
tnxZi7pjHFOFRpnAd8Wxrv5KPVrePvU3F88E45RI9BN5I7pjHkVlqpQJzlbu
+8ZjjSjy5wIjh1wmfCl90fS44jE6rZApmHUuE+hITAmPnZ+gp2dUxI3OZMJ1
pu0YYctm1N33uxwrfyZ8WE1hPXv9KUrXYqCRdiITwj6VS+T5PEOvGZMb6jFl
gmPt6PF/Wa1oxd7jG4z0mdDUcpdxoqsNRWWZ3ZNIM2HbwKl/kQioe+NYdtzX
DAh6Mugt8KMTfaEbUqK+mgGv0pufm3e8ROm2JeqoP2aAeCKdvGhqF1p+PvlF
1HQG9Mq7DvPovkJ3htG+yxMZQN4s6cWA9qDInc1xiuEMCCt9pnZe7jU6Xae1
EtaVAUwRG2zdqn3o6asHm0TIgI6gDRV+q37U/cuDn0eeZcDpfRWVyMgBlFaE
nj64PgOi3KcdbX4MoUjlgHRATgZwleu06HaMoYePSYJiegaMvpL9URA+jk4v
i6j+SswAmYVrtyV1J1A3wVhTn/AMeDOZwhlK/gaFLnkbuaAMKOj5ybv75Q1K
Y/2f855vBpBoHcTxvn+Llt1XC/FwyQDHW2snLOen0W1sP1b6dgboBy2t6G6+
Q5GFyvQdmwxA43yOddLOotM8VFWuphnwgqgqTuHwHqXNfzXspJIBL9kF3o1Z
LaKCgv03W9EMEOpcbx84v4QidcN7VAoZUPVoSYOL6iPq/nyKp1Q8A9akCwrN
Jz6h8cpzjVvCGdCm79Mg3LeMVgwuXEYEMiBZhYD+61tBZ+b+u/PuRAYoUybY
PNlYRb/ZbJCeYcoAKjVqlTrmNZTh606mB10GrHyQ5B5W+YIS//6GY0cyQLDa
IGxv4itqHkGif/13OggFnKRAJDdRL3qKzzXf08GxlMyKQ3sLrTnJcOzyWjpI
iyRQ701uo93lTKVpn9KB+g5xhql85/C+PiG3OJ8OCcwOsf6BuygTwmsRMJEO
7d7O4kNa39FzPYK7fUPpwKJYRJJ4eQ+9rHU26kRvOtj+aa9Uv/ID9bsh9bDx
eTrok1EUpLn9RNNXLlwieZoOSznQw579C62/ozil+SgdJlg+82cP/EaXApX/
rZangwGdP/rF7ABVLzLSPpWUDkq/Zg16OEgxmzNmH51i0iGMSe3pq/9IscCH
Ft6tYenQnFll9OUlGdb4wr7I0Ccd1hNIJJRSKbBBVWfpUvd0eCcZx68QQ4mt
jLi93nJKB4skh19kcVQY54LfZpxVOlxlVNgbaKDGZOyDwt6ZpQP6Tqv/+Rsa
TGsr7MQZo3Sopzc/ZUFFh4WSJKAv1dPhrNTFrwupDNgab1HSvnQ6PF4e0mEW
Z8LIq0sFLounw5HKBI6W30wYj2TV0zThdPiWGiV3aZwZ08MffRA/mQ6533gW
kvNYMae+J3cDTqTDSnRjBE8SGxap20rVz5gODwzUvggnnMBarbrO21KmA5+k
e8LdGg5s8r/XXY0k6XC00TimoJ8T23AbNCb5nQarVT1/TvzgwvhD3wTlbabB
gZnbv39ePFhMyeeRsek0MB31GJFi5MeE45c0gifSQENqcb9pkB/r8Xz/Wnz4
cL251c+KJAGM9MrEi7iuNIg/fv0spdhprFhqWFEB0uCOz9HYY0eFMIS77+lq
Sxp4tFmqdn4Rwvw24aFKfRro3KN+endYGGN/90z0W1UavIpudRAaPos1v2yq
LClNAzrl+0XLUyLYbkZN0b/sNGgPzVVjoBXDnJQyk56FpYGyduSXh38lMBqh
FFr7wDRgm0US7Wolsapj8VFsvmnwoWZhctFCCvu0FBJ0904anP/DVSM7L42F
Dgb85nNIg5Un96rzqmQw3mZv71HrNGhRcdBa9JPFrsc4u4hdSwOKb/m8+EU5
7I+7/ZdZ/TRgj/gR/EfgIpZrbn0rVisNfrD5HZthl8fenr9m8flSGrg0X+40
O6WIab1V1r4vngZlgiPH26pRbP0FOqB9Ng02J6yczTwwLLZaQfVAIA0MJe8c
2ebAsZ4ACdSM45Dvyj1DXR8iZmMn2kbNkgaFAZL6BZKXMFIdIbkWhkN+J/uD
D7YvYagA93lW8jQQOv3BhjVGBZunO1HbdZAK4oXlumaWl7GAPcYz7j9TIeLP
3M+3qCrW0kd1amQjFebUhhxr2K9gEq67DDHvUmGvw7tpQ0ETG762ESs3mQqq
J8MeH5hrYU6X/qNcGU6FL6SzV//FaGPVbB8OiN2pIPdidVSKTBdTI5nx24ZU
WM/Vt9Cq1cVW/pvcK3qWCo6bf6WfXNPD+Nv7N/7Up8JAw5qyZb8+1lHx6nZt
dSoEM9GdF0wwwG4kd6xcK0sFTVKqERljQyzXunm+OScVwpbvRumRGmPMNCXD
ruGp4KvJUpb33BTTCr3OrBCUCpZdrAJZz82w6F/sJmR+qXD+71fnlVfm2MFa
0mKGSyqQpz+cGPl+A7torSFkcTsVhJprfsQxWGJ3ZykdhW1TIfeM9u+oSkts
deDet1bTVIjkn7RUXrPCBJTl5cMNU4EsfJTpVvpN7Mbzb/c0dVLBak/ySK2y
NTZR50i1oJIKzJnUBf4tNhgkXOOkkEyFB1gQ/4fdW9g+BavFsGgqbBT+SSp5
Y49JB46WZgmlgjSvZ13QCwes6o6qmAh3KpRI/vpRVeeIfVwhdd9lO+RvIpcX
1+CE8VhA83PGw349Rbea2p2xNG1ZTJsqFfbnHtTwfXfBhl9vhbOTpsJC2W9S
qmRX7ChW17f4JwUWZN0T+kTcsEAJAX2PnRQ48+qX85qrO2bPyGiX8z4FOt2r
nOVVPLGSmMGam9Mp8NFB6WkajRf2/kj0puhECrS/Z366/NYL09s58IHeFKhw
njV3iPDBEm63tkd1pcCTdJotLntfrHfJk1QXUiBEYUqkV88PI0ysx318nALe
33V+COIBmI9G1WhdfQpYEj2v2ancwxq7rFm9qlOggN2Hu0svEBNumik8WpQC
k69fHZCpBGNMGb2PxGJT4FNW5NjnZ6GYJn343l54CgwnBl37aROGRUegih1B
KaBiWT31nTUc++vZ3K3nmQKvgr4NB8dGYBc33Ki5XVPgqx0J+GtFYu52YlrL
t1MgsVmuRIEjCls1KpvytkwBkrscyGZXNMY/YsGNm6WA06BN242yGOy6KpcV
jdGhHxsRQxHxsdi4XOpavkYKVD6WIyH1jMfa2YP/dl5IgYRPvOrCxslYt2/y
IIdkCijmekS17yVjgzPFeW6iKdAQ+iNHNj8Fm8vvlOfjTYEOxhKHyp+p2Ke/
Y0d9OVMgiEmq6URjGrZ+Y2lqlCUFWIUfsOm7pWN/eMm8gqlT4H6wVZEwRSZG
HsqsMk2WAj9jvwdfnsnE6D4KsEgcJIPSq3YauadZGFe5cuOHnWQ4RV6dXR+T
gymcjdxA5pLh0ZVECfWcAowYm9me+TYZrGbm7PEnhZj6l4r4jdFk6Lj94HfY
bBFm+uC1SOGrZFA5G/RPRPA+dpNh+uf3F8mgrCWVOvb6PnbbZbVXszUZSv1U
pS3dSjBfSepbf+uT4VbEAQvjVCkWnMpxwbA6GcKJWHNZWhkWvXuW4kFpMrT0
vKogMy7Hsp+ol5pnJ4MQIW6DY7cCa5GP/9AWkgz2d3YtR6NqsI7c/HrmgGTI
ayHcmAmpxXp/191z9EqGOKngByPhddh0+xAXl2My6B3okjVV1GMLPPNr7rbJ
oPVgPkO55yG2GrTxrN8iGcYTbrw94tOA/cCPmfgZJMOEO2fpk0ePsIOSU2fG
tQ71l52p/GzUiFGSS+ydvZIMyLUTy1+OPMbYenTS3xEO9QREVCvcbsIuqKeO
XjyTDB9spe1/xDzFkNqSomS+ZLhwzovkqXULdpnu8Z1VrmTQEWh1ZlJ5hhkN
T9BlH0+GVj5iUsmpNuzG+U+zmzTJoCuWPnOD4zlml/ytRpUiGcS3qpEernZs
rUwkdWM3CQZuXmZvU3yB/bLTkChcTYI9rViu7XMdGPVZp2HN90nw3SU4da+j
AxN+8IDmQU8SHA+beBS+34ndeiIR5piTBIoew1KPa7qxYAVkey4xCR4KBVen
XnuFZb/QsNAKTwKNjrjT1Aw9WG+fnaKkSxJ0XJ+wdox+jS1oeVSX2CTBeqO/
cKNWL7Y/EXKCxTQJXnKUk13m6sOE5/N395STQKTvixZ7bz+GWddY2SskQV5u
f0Jb1QBmsvp05N35JKh8V5rgmTyIRe+M1z7nTILbjvZLR72GsVVKapvQrUSo
mWw7LaQzhpHEs43vLidCpfZM7fGFMYydURCznU0EFuUO9iCPcUyNC+VW60mE
XaUT2x61E5hl8dXYZ22JwBedaaCiNYn5nDbdF3mUCO9+zmeL7k1iVec9J+nz
E+G+v/61t4ZvsY6mUGJQSiJk9ZeVf6Gfwqblkxu2IhPhH4PfvZaBKeyocm38
hFsi5F0X+nn62jvM3mRROUc1EX6rnXPV6JjDgt9vNNIQEkHBp16VtfY9ln3z
D2+AVCKEao0qsBbMY71OJ/7eOJkI/PoNO/0aC9jCtqDjKFMihD+Ua1UeXcD2
vaTe4UcTYSPyzZ1Bk0VMOETzieBuAvCKW3UGey1hGKWZQOZqApyb611Zp/2I
mcTZp1DNJ4D5ea3jK+UfseiMMOe13gRYeoX6Uq1+wv6rfna6oTABzg+dodis
+oyRnn+dxpeeAM+Mjckr7FYxzqbJI2kxCdBpnbLPKPIfpg6b7z09EkB75Yxj
68s17OalvxqfHRKg59LjUp3sL5hfL02riUUCTIUmxup4rGM146czFdUTYOjf
aogmtoG9NJYmf4AmwEHM1eoHEpvYzBzmziObAAMGaXM8LFsYzWczrSO8CVBB
6j60wLaN3f6dQvn6ezzceTx7R+7qLsatdyXGcC0eaI5Tagtu72IjVSR0n+bj
gQ3VZTbL+4bJGLkwHumNB2vxk6bqJHvYSp1QetLzeKB4k3HbuG0PyyabZ+N5
FA8vtBVHTAJ+YH8brnIr5saDm/PW773jP7EGKvKivsR4aFqXP7/36Sd280Yb
n0lYPFjlNObWv/iF9dCKnPF0iofcSrKHPLF/sGQ7KqmHSDxMbCwzxSqR4MR2
aCJIx0P49dssXt0k+HdmL7nBM/GQJvHrVLnOEdy085PSf8fjYbcl/oSWFylO
x57/wpsiHlbHju7QHCfDX9zRJ1L+igPPutL+5HoyXJD7parAxzgIdArWTPxF
jr919+1/NBV3eN+O9+pXUeAxfRKa2GAcqJ/Xe3zPjBLf8CrSu/4kDi6YnPte
Nk6FPx0LuJ4VFQe/XNkPjlLT4reFZRZOB8QBb4xaQeMKLc4d9OVmk2scJJZ0
fDw7QIcHnzO1H7sWB/252iZXqxlwqTDGLxZacUD6bkvQsvQYvvyu13mDGAcq
n8XdYvSO4+pRcndpz8VBiO3IPU5LRvzP+43vObxxQG/FsUD3lRF/KFPhI8wa
B77iH4OVA5lwliWWQJWDWGji+J1GXs+MzyvtRAeNxoIyR+vFwMtseHJaNS3D
q1j47/eYpsZPNvzSmmVi/rNY2ETGdz0fncCrskbSnpXEAh9Np2iIFAduuhHJ
ppYVC33NeGfjbw6cTgXJeRsXCyrtEvsf+zlxt526wl2PWLAj1b6y48+NC16x
4Qt1iAXVkHJf4Rsn8bdFXGXHb8SCl3CH33FVHlxBM7ZaTDUWTkjp3ptj48XJ
q2413eKIBUtrFxE6EX58i6u4V5QhFv5w8yixN/Pjs0nTc5uksfA2TDJF9LIA
3uh9hcJnPQZYv11UfucuiFuqihpFv4gB0lbas0lHzuBX26xvX22KAfXVReTY
ozO43Pn8wOPVMZC107ARayuMM5ygr8xOjQFekucaf9+fxdtWNn5U2cYAOZ8N
5/BxMbzC9Ayds2kMhPqpupxaF8NThy14JbVjYDolmyN3SBy3bx5Ve3YxBmoz
CNdndCVwtsjGnD7aGIhpvlVRqyOFk/5ae5BAEgPuFsc8b76Twr86C7zU/R59
+D4ZUflkK413G6avvZuPhizf6yfqY2Vw99NeimuPoqHoKo/MJUo5/EZOvXZ9
RTRIKVlOXGyQw6/Qf7Z2z4sGjdTHslM3LuK8343jf4VHg231Seu4fnl8uFv+
PY1JNNwN9z5m+0EJb73ovj18NRrOrI7D+UYCXl5XQ5GGRwOWXarZEIvgAelc
4lyi0aAvuELWJIThZ23+BooeRIFkdbXmTwYizjItm7a5EwW/BpQMDVKIOMnV
O5WPP0fB1ZDLNqInLuFvpT+MKI5FwXc7nZUqMWU8nKyT92pZFHhf3/oZEH0Z
d/X+KXM8JwqGfj200Dmript9kbwymRAFtLOi09bDqrjURImbuXcUNFNyaj49
fQVfKAl/6aQeBeedu14K0V3FJ99VV+ygUTD/6zRlYvdVvPf4SKyPbBRIt+kk
uoRo4g8DOfTDeaMgwc2TgZZaGw80rf+YtxcJv0I/Fhme1cXdUyZe861HQl/h
ZZXdbF3crne/tnIxEpjyJoNQWj1c68Ilj8eDkZA+Z/If374efpJpmnygJBKK
rUv2x78Z4Mev/F3VyY6Eomnz2kp/Q5w8mH/obUIkXEEZrR5SGOHrX50ylnwi
IftAWrBYwBh/3ndE6JdWJLB3pDOciLmGN5CcoQlWjoTR9svJqaKmeJnc1Q0K
hUgIvTso9H7MFI8rz2xmPB0JQvakK7Ii5rhpiKjq2d8RYCN3mcyBzgLXatER
fbgVAb7GzR1DIxY4cdPzmOxKBMiQyCTOaVjiZ693TGFjEbCh3jvbxWmF7180
tDepjACz5Uy1r29u4usuflfn8yMgNEqhRUDDGl+oKJKwSY2AiHUt0qNd1vhr
lrV9l3sRcH/NQZm1zQbP3AqMidKPAErSM02bQ3Z47JkyZ/orESBG7WWAmd7C
A2/06aYhEUDduXj1+X+3cNtBZs6isxFw7HZ6hB+TAy5TVVXT/C8cXlReODiI
d8SFPwwlKn0Ph8tfXS5myTjh3Gy77i/XwqGpfuLmlw9OOHk4QXH4TTioG7Ve
ZCPewScsxgeWa8NBNrHS9kaeK37T/n53dHE46OX4fumhcsO3XF3bRTPCwZWw
mdzj5YbThTI8dAsMB+w2Ktpj7o4rl6mn/tUJh4d89jPu6h74eB1HXLFKOLid
fNuKDHnglk9Wwy4phANZVCnJKX1P/F5PpGeMQDikDfH8sbT3wptXX5qw7oVB
M7X8lblWH1x5O0W3ZS0MLPWTwhVNfPHxn5bqZh/CgP2BbRf+0xffoPmneL83
DFa6PSbTLvvjZ8QUT4nlHeJGnbbM44F4sywN+2hSGBjhiQweQ4G4MvLu+N3w
MPB/dEAoTQzCLbW9SZ85h0GrfD+ZSFIwnu32eFkZC4OcwfeiowqhuJBf6Pxn
mTD4J8La9qY2FG8K1Z2KPRsG/OWvGW6dCsNH0zZ7R5nCYHFYXs+aIRynbhat
M18OBUdWlk0N+kg8G36V/XsXCi90Xarl0iNxodd9BSXDocDr/IGfnycKJ07f
Slp9eri+9GSJpGI07ver1N0jNhTOfQv6+TcvFj9KdtfxRFAo3FVZoLyvFIdn
0hJtWu+GwmMbCdeehTj8MfeCIcn1UDDrnjm5IJ2AryPc8vHnQ2Fb/SzfA7Jk
/HpY+r/SyRDYXMttcFBIw79p6fQe7Q+BNz3Spt2laXgsJ12K84sQ2PjqsC99
LB1/+iiMX64mBBje1h/O9XScccFdpT8oBOrUfpGUd2biVbXiDOc9QyDQ4sFE
i1IWjnivvU27HQIXHvHuSrZm4Y4MN+2vG4aAmgFpYNDzbPyVkm7clkgIaD5d
y+34kIubH6U3MOQNgYqMxtQLLnn4zkQvdytrCOhUWi47HcnHTzli9WEkIXBy
INJYQ7wA9805P8b2Nhgueym3i9UW4WJ79CcIIcGgZ/Q0Ib6wBO/u7Ptw3ysY
ysWctw3/leCmCRFVlE7B8IsygXHdqhSPEvwrP2oUDHEhDSoF58rwRb11c+tz
wTCsGNS4NV2O+/BUne7lC4bw0DKPP2oVOMOa9ca5E8EgL+7FxtpWgSuGzAbt
HQmGi93PzyWWV+IiFhkqzA+DQIRNkpCVXo0b79FNzeUEAWlz9Le/rDV4eEK4
fUV4EFi/1OB5llODz7fdjZM3DQLkRxOPflUtnsquN2ZBEQRj1B1GZz8+wH+P
MVyvMwuEXycX7CWcHuHmdDMnGpQDgadkWJev7xEOl8vHH4sFQu8NE2TiTCMe
2qao1vbvHnxgmefPXmvEj5bbS/eX3gOK2P61e5FN+O0P0htD8ffg1LlWeq2d
JnyQ41/VmOc9mNjf3Dhp+QRPSszgead6D/hrqQ3n8Waczecl9eqXAJjJI/sy
ytOC+zQmdH+ZDAC2qy8pEvJa8Jl1k6DN9gD4gDj+TeB8hhdYbX7bSwqA8VKe
gLBTrbigBvcChUwA8IV2oZcvP8eleLyaBQL84QdNd8FmVAeeboK7nbH1B7OJ
GekXMx34XirdOVEtf8Ab2COPnO/En1GV3pfi9Qfhh+Jj32Y7cWx7JB7v9gPr
NqHfF9S68BLRPFWVB34gzjWyq1TZhZPb2ZFeyfQD9GOU2Seqbvz1zB9vHXs/
8ByoF5UY7sa1us9aW9D5wVVFnWknlx684eDbSevvvmCgiI2Lz/XgTPId03bz
vrD1dPXuK/XX+JsHRlp3GnxhIWKpKkasFzfPCpO/Z+AL86tMcI6mH3e4/f5Y
Xr4PSIvP93AJDeNKH2q+Ukf6wL9Yg8LxhmH8uIHPgI+LD9CQ51g9J4zgLQTm
KCOiD1D8nhISOD+KH2W8csC46g1xER837l0fw+ci2OaCx7xhlrVxirZuDG/4
9fHZZqs3cB9hMRj7PYYbfwr0HErwhjcDpHzMReN4xdOm9Whpb0CzDEiWv03g
fudC+39we8NDz1rpEs1JXOu+dpUdpTeMqSortVRO4t9j16yV33mBX2eWHInl
G1z5Bu/sv0AvGE4k9fVdfIsvkcf3efV7wrdUN9gWncGbfa9VLj/2hD7e3irt
/Bk8dkMowqDAE2rmhWi0GWZxyelOTMrVE+w7T06o/JjFg2t/PP3K6glWXbar
he/f4zx61hU2Vh7gqUNjKkKyiO/0SIRPqHtANE+oUPLlRbxH8cCKKOMBqt+u
Wm4mLOLOp3NO8lJ5APcAB2X5qSX8+f5w+mzdXSi6ydukoP0RNy1SCNPbdweH
LgUPn8VlHMldJFH56A5lacWPZqVWcIGM6EC5YXe4mcrWgESs4Ouxb325y9zh
1cZkFL3YZzzQy911RdsdnIrsCpliVvESzZrrfpWHWg0HlpY8vuCRarqzTofa
dVmeGtya+oI7Xto3sbjnBsp8fANMiuu4jPxlA2V9N5gcvbqwSvEV7xFcUmf4
5wrvyJhOvavewNd+c1wsMXIFfeMr/0WxbePDex1P0nFX4Iwejc3X3cYfb9+S
jjrnCk0hS1zXErbxgM9PxJ1IXSGgOOfSCOUOzl1Rqu5k7gIeJMNuk0d2cWsD
5tPptHeApIO33YnjO77TsPPuo4Mj3F4NKTsz/RMX/Pr5DEHJEbbEghn6JX/h
xmffe2YyOIJUVEi/dfwv/Pn914xXHt+GLmlhhnDl33hEav6V+j8O8Lyl4lx5
xx+c3ePyM58ke1ALIDK9/u8frt6gSDVuZQ/p7+88HzlLQry3LmEoKmMP/p6+
dsoWJMQlG67t99O3gEcyVLd/gIRYZ7glfIn/Foh7qf65XnuEiMrlZtM/sQVq
Nc1tsQgyovvdpBW7KFvQliY82ntJRix7GC7Tcc0WJM0CSvWPkBOPCruMuh/Y
wJm9LtOhIHLiOLvy0WlVG2C4mPnkbRgF0e7XV++SmZswnvJvK6uKihjfjhsf
BhfMLD5yzNnTETtoJ/vO11rAfriKwnQTHfFWvuDylqEF3Cqn7rI+Qk9sbn/F
dbf2BgR8PPdFJJ+eaEhyNMbb6Dqw21IER04zEFMj4q2D60wh8R3zeavm40T6
5Az2VBNDYBg3DnkUwkxs4l2R1iczBMze6vb7Bmai+aML2iz1BlB65PZZvQVm
Yt34VEQmmQGIs2QasGEsRHVWzt3cej1w9fO1pCFjJUbnFg6VkusAxW7jo4pM
NiKFujaFo5UKTDLvnviyy0H8hJAaXG5VhrO5Szn7IpzEbuknJXzMyqBFXmer
dpOTGH6SC5vuJsIUykxXP8ZJJNte8VMRxuBl9pmBmMdcxCMSfxfQeVkYeeV9
lS/sJJEkyPfLBdnN9ozml6rJlbxE+sBdzc5byshH1KJP9YUg8dwPfxBysUR8
6Hq4sqTFiQ6fPUw8ciwRWpWVk2eNxIkVU847nV2WSNXNA+lqH3EiX4uF0HV2
KyRwcOecW7s4kc33UmJapxXS8KBH5Njl80SS3zQ3SFiskW8cD9GAsxLEiYOc
v+9abJEPuYvZraKSxOObqVlnPtoiJiQ9fXqKkkStD3GSnvR2yHWRggfT6pLE
3hf3bI/ftEMueUYS6xwkic+DrYYu095ChiLvxzhUSBIrSM8WPL5ujwztvcj8
ziVF9KNsUUogdUTM65P7h75LEbUaqMPtJByRA2PHi2Vk0kR+U7MB9IYjsijT
G2vKKE3se3BwbeeZI2JNwFHbc9JEdkMVb2M3J0Tl15OEVUtp4tPS8Ud8C86I
U62WRmGXNDFWU/DnL/o7yCL98q7xiDTxxg9PbFLxDtIZGOH1dUaaSKnBMRKZ
dQcpIedPqNmWJhrtWKx/0XJB5FQ+3795UoboV+zFPHvDFTEo++fv5yxDtPE8
9fS1pyvCOMwy2+clQ9RS7zVtindFalz0Y7eDZIj83zhKElpdEetLNP29KTLE
PtV2CYzNDZn2MvVJeixDbOS2mzwn5oa4XUNJcttkiPnbDD4cym7IC5qSLr8u
GaJrnuWLHTc3JD/++K/2cRki+yaZVvmQG1IgEXVWeVOGSNpdt53yyQ1R97mX
+PO7DHE92zAj8Lcb0rZ3Tybsjwyxg1g5Z3zWHZn0+qjFRC1LrDmhE6yMuSPk
WezqJ47JEtPX9wUkjd0RzcTfaZssssRbmeqONBHuSI/NbUYuXlmijuMuw488
dyTa/8+9O6dliQpYfuPHRnfkWlFOdIaILJFh7evP5wvuiH2x3c/rMrLEZkJK
tIvSXaSrJmB7UkWWKD4tR72tdxcxm1880nBFlljhPh/j7nAXkYt2s7XQlCVm
VIrGeWbeRaLrWkDBQJZIRxyn/VF3F/n2nCHUzliWGD7nE+/TdRd5lD8kbWcq
S/Rg7Enw37qLjGvdI1u0kCWu1zox/KX0QCjOKOya3ZQl2lxmTgo86YHMHf3p
UWMjS5xbeHaMRMYDOfVpx33QTpZo4G+ZHKLugRRo/DfVaS9LHGSlYiSz8kAI
9GeSYm/LEpUbHqSEe3sgrMJNEUJOssTn6gZMlIkeSM7Y9GCGsyxRevlXalSZ
ByItsnpn+s6hn0H3manbPBAT5iyHDRdZIj+nWnrsmAfSbS7UNuUqS8xt2mCh
W/VArB7fvJnuJktk0s7ISDjwQI4ml90QdJclxv6nyHaM1RO5JjT6MOoQk4Yv
ZSaLeiJJ+oZGcIj9eGJOMBE9Eb2E8/q9h3in5Xx2moknEjW6XFl+iG/rv2Vn
dfFExJJjjYwO8dLXgJzMCE9EpKzNauawnmm0ACd7vifCe7FkUPIQj/H35+Y0
Hu7XupNrfshPrd2Vi6vPE7HvXx81PeTfYXwiP/+DJ6IlbHb33KG+izvt3Dx7
nghbaVrU2KEfDfE2BUV0XkgHlTezuqMsUfgMLQ+fgBfCe9ztZKaDLLG481Fh
ibwX0qzrU/fkliyR3dzklKCOFxJ2jqG3ylaWmLx3UFRu54X89wzxcbGWJR5N
Kec9c88LiW0rfkVtJUsMFr16vyrNCxHFrzzzviFLdLHMKant8EKSjLiGh01k
iSu/UAGxKS8kXeoId4uhLPFGxkpp/Vcv5PIQn5WnnixRq1+6/BGnN3JV9YuU
k4Ysscdm5rS0pDdiwza4Xa4qS0T+BVc0qXoj/64b0TVdOsynzHDlUw9vhFI1
CDQVD/M57CEsH+eNCDC5xr+7IEvkceCqbr3vjeyEP+BXkJIl0hfa17QPeyPt
pTinn/Bh/qjIHnQJ+yBCxWJu+0yH+SupFlNBfZCCbONnYvSH+VPSqe8x9EGo
aXjbLlId5s2t4GFfqA8yeDHGefSXDLF2Vq5xZM4HoU+jYKZZkCEybZGnDW37
ID9YCVpO7w7nDfn43QFKX4RLS6yt5vD8q4k5yb6W8EWOpHV3P++WIX4KLG6B
cF/EHHm3JF8pQ+Thp37x4JwfMnDFranNVoYYceFtUS3uh+x3GY7umh/OB/XS
4GojP2RGsaCOxkCG2HqXQCwP9kM+J98zeIPLEI1fub3Kn/RDZCJchT9yyRCT
7WcG4gL8Ecaar65U/dLEHwGVdTEp/kjJItlr7MXh/EzxSIiq8EcoylaWzZqk
iedaGbTDRv2RVRHS6xcLD+cz7aVxP8EAhKcTM0h2lSaSPqyddhgMQHp/OPFt
HJMmenwPWFblDkRu9PGz7SlIESvs9vJppQOR9ij2OxWiUsR3Uy4GI1cCkWXe
szxK3FJEpPVml5F3ILIe82GK/a8kkSpI7b7teCBiOcCyUdwuScw9ynI9LDoI
uTKZKiGjIElcSDC8beEXjHi8GLnbLyBBpLq/vpi7EoKYkas2hmSLEgkUa28K
EsORoCOqzNtV/MT09xd1juaEI61p1UfsoviJ60+i+t1Lw5F7Av4Cm7b8xHy7
0y9UW8KREQkbfVSAn/jntWXV9mI40nn+n+dCIR+xNXbKT0U2AiHOaLU45vIS
Lx5/derrbASSqWiiZXzlJDF5lTnXeCUC0bxquOBNd5K42nGT5eVWBPJS6POp
iRFuYpYbCXUWRSTCph1BUDTmJu6NK+5g5yOR7nm+tjl7LuKTjMbu9NBIJApX
MmrO4iBKcRU7KJ2NQhLa2vophNiIW3wqIzEyUUjPkbGFqnVW4gPhNZkpNAr5
UrU1lP+YlSh8QYbE3SgKKcyIveJDZCXy6PZmVoZFIa9FmHkobFiINFFbXUzz
Ucgcp2hGTTMTcXEH4/kvNRpRKCtz77lwjFj4cznsQmE0QpgLu0b5joFoThL3
X1h1NCJ9mfvNlj8D8S39myaejmhE2Hzp1qsueuKgsIOGwddopLyR3tnRjI7Y
ciPlfy1caVwM7hOPIjooRVF0CEkJ3YfRRHSq6FCiW5TuFJUOOnTvVrtd2+52
oBOdUknnbqWU6BQqQqR06JeI/774v5zPzDPf78w8n3lm3jzXn52KgfPrTrqT
ijZqEzrH+0h/YkCzkXutMZNDW2dT5mUJzlgYYFp8uXGbQ3vF9MzfEv5YUI+M
JClocWg7DTfvb90bC9wZLwdM69i11b7khc2bxMKnxOD78jVrtSfWXTpofDcW
XLyeULd3sWmn6e1qHXkYCzcbfh5nJ7JpGyYMWF2qjYX6ozI21yzYtKsFT0Xe
7IkFv9vndSba/mHcbunR4l+xsC//0Dc/jr+oiF9jNpyOA7YnnSVOFSs4FZEr
lnouDl7e+M9t2GgFqe3WVWKOcYCDJbeNp37hBpPnY8rX4+C4p4myxu5f+PZi
iYpzbhxMuoY9/JH7H0YFe0w2LcXBXCjXYE/vImo07g0yWhMP7zxcaT2Bi/iD
/T3fMHc8vOrZvLlhzyJaxxlr/hCPhwciHTwOIQt4MPNQyi6DeOhV2mybrz6P
g4/ntYJo8VCsXzP5p24W5/evaZ4qioePd7bUl4vPIg9l8/Fz1fFgO7qg4Bo9
g9phsjpK3fFgqM0r02v9HUt1L+nNrrD0NuWCQtu/4e3hYVNHiwQYObrwPfrH
J6QafOl7aZ8AxlKh5Y99P2HN06WzWu4JoL47IrtseRJncgQsdkYkQKXHRt4l
zkm0cjWyHixLAOVgX087jQ8o/7vRwYA3ESJr+tXdJt+jvnvPhyfCiXAVXsj2
SbxHp/dvnaSlEqH/6aXHF+3fYWbLyqV1GonwR0JQqmtqFNfFK7o9u5wIjie2
nzkiNoLif7Wn5fwS4UKP+9t/vsOo7mXqTglNhJea+2m1z4fQy8zD8wY5EUZe
3/r55vYgvhEt8FVoTQTPbxK2PNv6cSmxejGnJxG+EeS+hYe/Rr41bdf43rD4
iCuQSmdf4cnJ8YDvc4lwe2FShOd1H5aVigTfF0uCjtbnc9L1vRgNSREiQUng
HHhV4jdnJ2Z+f6TUHpkEH97HXU462oEllL5PfoQkYMpROqUC2rF3Zavei7tJ
0LXW033/EgN3PKbwhvcmQXWF1miAZCvKXmpokHuTBO4bzMXn/Fvw2NYxz5HJ
JNDyvf9IqKcZnXx39yn8ToJjLp0jx2ObcFDI3GBhCwGIzr7UX+YNaDc7macn
TADHc1ZHY1Se4leG/x/aTgL0z7Dx9YnV459r6aWG0gRgUqPPH+OoRfHXbzbf
O0oAZ+PLWbY7qrGw+OrlP9oE+FZ19HuifBUeub3aeEaXALxXqVEj+pWoc0TM
598ZAuQb/wwITClHV4LD63OXCfCLyeVA7X+ACy4Lsg/dCXBV1zEy50IpBh+L
iFznS4DX849Plf0oxqSZu8rlNwngIGZv6KRSiMIM5aQNtwnwu2vhR8PX+5ib
zfx88Q4ByJ/yeUgF97DScCqdO4UAW/cFKe05no9HpQLn7NMJQM+OvJguloeM
31z6NdkEoNVZXfi1LheHimR/OxUQQPXl5l0L72m4usHrQsNTApw5vN3LzjUd
o8bYqgVbCOAV3deUVUtGvhriJrd2AhSq/R0hiJJQ0qXimdArArwXb7ahCSZj
MZwQ9hgiwNLNKW+lIgIqbuv3an1LgHj5CqNVeiKebFuS8P5CAPYtHxZNKTHY
Q4kOZH5nnT/VLbhVPxrP+Qm/2rlAgDSpHypaQpE4YVB4wG+ZVS8JSykL9tvo
tls9onOVAEV/rRNGeMNxcaVzVJydCAG2j/fkXw3BkL7zSgEbiBAn8jMsYjkQ
CeE3P+0WIAKPRHDZ6ad+eLPTyN9WmAicE1ZKHWt80FVg1/qsnURYWd1vd3/J
Ay1sZkgDkkTgXc+3IHbGFY/fbdizRZoIJOsDEdqCl/DQTGKVkRxLHgu4d07D
AUVVbHVijhBZ+1AZh23cBdwYJt/fqkKEmtzUPHlHS1xq/+fEdpQI4XJHnjxf
McUJ/t5FDW0iKGZZ9rVl62OPNT0i4BQRlAM1mZY12lif5yVYYUgEXR9Tf+JN
VSyY1sqfMSXC3rgfBneKZJGkxK8oY0kEs10FK0PFIngrZLzF2YYIqzzVQ4Sk
NejBLDubY0+EkLpy57Lsp1rn+W59GL1EBGnvlwWn5T9q6Vqd8RW+SoTPLWG9
+2N4UTFXkt3Mmwi194b2l4RJosS3+eQkfyLEfOU/NqZ9GDcptkg+D2Llcz/3
clmJBq4Ep5SvDydCYUw+x1fVE/i5zVFbO4oI09QLNodbDPD1JsW+m3FE0Pss
LX1P5Qw2WnI4PCGw+D4OaqsQscRS+uu5RRIRLs5Gf3oXa4OZU/nhh7KIcHZu
ZGkP2mPUkWv8V+ksvm4HRVJCndA3SCfn/l0WXv3gOpN/LmjXuvXwhyIiKNQP
GP9qcEND3k+Nux4RQVaSd438U0/cS4saI9US4a4Tu9MXFT8U+GLh9fIZC6+q
5j8GwR/ZDu9j420jQkG4Upfm+hs43MwUi+ghgmH/8WemJ0Iw/tMGW5+PRFhu
zJrKXI3A6/LDM6VTRBBf3CPrmhKFztcLQ6ZmiDDszMXzR/EOApc+1e4XEQYZ
pm8VMuNwTi7u7elNydDLnjl53oeI7/zPu8cKJEOocgmX3OVk7Hx2YLVNOBke
yJa4VzukYL5pl+jR3cnQ1L1pu7MzCS2u8docUE0GS7L7eY/sDKyvTxrhdEiG
i8ulUrQLOTgqyj1W6ZIM1oN1RVfZc/F3cNSkvXsy3FNve9JdlIvqR2/+qLue
DFeyrkSy/c1jvTeu672SkuFVeUXG4UpWf2jQOTJUnwyOauTHPSYlWNL4O6ZA
KAWEbG92Dc1WYJd4QJL5zhTY39PXctawEr+Fzaeu3Z0C7Uu3wosKKlEGp2g2
B1OAqvFKtd+uCguaBqr4dFJAt4p6N/ZFNeY3l41f90mBJ5xWT8SznmB2q4ua
XncKuNVWj4u8aUDVlmkLUl8K6KneXPks9QxfN3n7jQ+mAHdbgY+kxzPkehb0
8MZECnAIW3YN/32G158k7Sn6LwV4NKyl4uMb8cyDx/zckqnQd5F9IiOtCWdK
NOUt96XC9Z+uQyGPmzCmuMkwTzYVxEOGankGm7Cx4Hm0hkoqcKoZ5otvbUa5
vPerboapkPO+2Fg4oRk3pHN+7fJPhRm/7fDSrQXzyPGc24NTYa0yX+7aqBYE
Ev8e53CW/9Tmrf20FryWLGK3GpcKPo/2/zzf14IT8fIDcjmpcGu4xuDrkVYM
iatcuHEvFTpk/OtE9Vtxe6waP6M4FULyyWYzdq1oEn3c8GJ1KlT0b3b2SGjF
p+GWzYnPU8Fb26Ls3XgrngsbfT/Smwpz9R/+rF9qxcUQ+9W9A6nwMPZ7SffG
NpQJdlN9NpYK3/b9O6B8qA3T/UMfzP5MBT8ewQN+19tQ4RpHl8bvVIgh9a8l
xLThC9+YqWg2EtCblZL0M9twnXeKlDg3CfgVdA9QatvQx+1+pok4CTSbtTmr
ltpQK3xQbtNeEujG2x1bWMfATWmcTc8PkGDXduWMRkEGFjW7fD6pQoKzak7M
jYcZeH0oLZDjKAnkqiYPRwEDT84weZu1SdCnoP812YCBH7ZLKx49TQKzvPmc
i04MLJc/x1w5S4I/pQnWu7wYGKZzx7rGigSwq+qVZxADRb2/hCk4k2Crgld5
B4GBX6OEBedcSTAoFDzVl8nAGoru/QdeJEjXTo/1zGegWXtB9/5gEsQO03qd
qhko+W7I7nM4CUSjKPYNDQz8sbBhMT+aBGV+hYqlDAY2bFSLdkhg4fe3tB9+
wcAEsSs7xFNIgEq2dMN+BtooZZS+TScBW5YZ/n3DQBmDDq0sKgludL1UPDXB
QIb/fpdtRSS4Sr2om/OdganxViuvHpJgWHc0tmKegQ65MQnEKhLMi2Q72f7H
wEM1T8SN60iQZxbqcfc3A/92T1XwNJEgdyJML+ofA7s+bD/VySBBqaBV6lp2
Jmb+0huJ7iLBrfViUzvWM/Hy5kB3nT4SOI8WfezZwESVPUVs7EMkeNQStVeS
m4nrNUZSGt+SYIx3zGQLLxNfm3DtC/lAglOXrm/I2cTE3EvqtRpTJDgtmbb4
YjMTvYJdjX7NkMC8ZKWBwsdESM4cq14kwaaNnQLc/EzkKej09VshQUxAVM4O
ljzydGX9ETYydB9YFe5i2Re8ksmcXUeG5d1qcuIs2X/KWq6UmwycwtdShFj+
T/yLbXTlJ8PeCF72ChafLVvrzkoLkSGj20dpgcV3XObbp0lRMqjdEvk0tJGJ
j7REAvMkyXDa+/SAEycTQywMeO2lWXj8V5lpHEw0vBpE33WQDB/54n181jBx
x61ihVEFFr65V/LPVQZ+SXvDyFAjQ1g6/YPECgOrS7mtLY+RQXLkgtTyTwZG
tGh8F9Qhw7dlkuCNOQaeGXYL69MnQ63V4LW70wwUn80SIJiQoaHoBHfIZwbO
cHTdM7Igg2rDnQx2Vr3jDsl2t9uT4d88vVZ4gIHWJ23solzIcMWT811hDwOl
beIXjruT4Xezqci3dga2Rk9vf3adDAKN5gLhtQz8867kUlUSGfInVFP5Wff3
4CXRw+dIZCDL3PzuSGSg7fe43yuZZLB2/+HmeYeBzb9dCVr3yGCS3fCm8hoD
Y4T31z6vJwNviHP3JiMG1tLSIzyayXCjYSbpmDYDp/duMOZvJ8N/9ltT5FUY
aKL0+YPFKzJI/9P1NxFn4LYzd3knplj5PrubUDzbhrrDgkMRs2RgkHfIT0+0
4Q27iNx9P8lw+PGEznx/G456OKq4s6VBTfbFcdO6NsyLk7Bf3pYGSk/ofH63
2/BQW3blphNpEJ/VJD3L6kcOhryhZXpp8OlWecbEr1ZMeRWsZ2acBvY/56rv
T7Xi0vj5dxnWaUARi5wobGf1u7/bN+zxToOWCxruuRGtqK9KPq9BTYOJl3c8
OH+2oHNx4trLy2lgUcWVTa1vxi0vOScLV9OAe4hpEVfYjI1LYcxva9PhxZcF
VUdyM+7Q9o335E2HfQYraQOezdg7ZLktQDIdvizTdUckmlFzvYRMlGE6uOvZ
urbeakJB+wrTfHo6BDiGfgrWaMSWbUP0Md0M+CmvpvJAqw7zz/5ZTjmdAba1
XqpPBeowgiBuesosAwzxQuLwp1o8wXVlzQPbDDCS3n/yaEItMlZ/2Qf5Z4Bg
w+RU28gTbP8osntbfgbc4xfWunGjBrvKbe8a/MuAz4ctrvZ0VGHJ7O3VvxyZ
cF97zuIVrQrjZQvMy7kyoYbUoLV8rQqN7v1Yt31bJkwbFbLfl6zCFxnhlz7J
ZgKzQLYp/2Yl9obl7Qu3zgQty0H9YPUK7D/9ubC6KhMqjS4q7+x7hEdktu7Y
WJcJfyxfZ117+AgT1x2PPd+YCeluXRaL8Y/wZD3Vle15JgyM1wQ56z7C6v0W
B/THMiHqaZy88q2HSOZoK3nLlQU7xofhm28pnqvNfchhlwWvKdF/A1ILsZLU
K2bpnAUFbUcb0aoQ+bz/JhW6ZkHSWsXdtrsKsX2ftdfpa1nwKD9SkFRYgGok
/sPpsVkwdd/WfLblPu7wCis/UJUF+euXKi9tuIejey5WneGiALMkPsCgNxcp
Ps9tYjdTwN4huPA2PRfPP1PlaBakQB9bZxi3dy6OnBM4e1iMAgszdcUbBXJx
OK79x2ZFCnSbX6fWW+fgwNwR2e4LFHA8axvRMEdDMtBfcThSwLrsmS8HhYbm
cbxBmpcpsMWgYNPkSRq+lvrSUexDAVv11Jd+VCr2WWa7xEZTgK/1qlCrWTb2
POXMO1VGgSeibUMdbzMxkeuafmg1BfSuBA3HETPxtOXEXHUdBUaDts2P62Ti
ix/1WnsZFBiwehCv+ygDu3b7vON4QwGnZD7p+bh0bI8Z3d7MkQ27oEZf/yIZ
m83LCJrnskFWUMvF0i0ZK590lE5eyAbtrML2ggPJeH/nRGeiYza4fA45lzpN
xPjJLevGPbKB4S6zRsWLyJoX/W5ERmbDhOLyblIIAadSVRxelGdDo2i6EJdH
Ao4uG4cG1GRDD7N+h9qaBHxhc5ki3pANc7NKtNukeCyXyhjw6cgGoXG5HKem
OAyuXNEXGssGLeHlDum9scj3+qmCHS8VjuW0HDKSjMa1qgMmGwWokEglvvZi
ROHPrBn3cmEqqIzqTJPconDEUayAQ4oK/oc0xt7WRGLeQphooToVDgo8fKts
G4HKAifWzbtQQcBIZhd9OBylA2wks9yp0Pl05M62hHAUeeN37IQvFWJ436r5
YTiy5d29QQ6hQrP5yuy7kjDsPMI5o06iguof9V13REPxwpnOgdvNVPhdU8PX
shCIXWbT3F1MKhjwkZ08QgJR3XITCnZToTxjT1coVyBuszlTnD9IBd2hKPfO
vTfwhfNIaNs0FSJ1V9OqPQNQ68ZXaU4hGtQkRjEfaPnhgyCei8aiNDgxFBcV
PeaLoiEHU9IkaFC1RyInO9wXf93yWd0nS4NV/cHfAUwfLI9feamLNNgSMGlJ
t/dGKTpXUKwbDfyD3lVhljsm58o+6vOiwfl+hR4zNndku3t6coc/Dcq37tlN
crmKbwuTjYvDaGD1YLwoVtMNyRU7pLpINEj0aiS1/buMHNWaVoJZNMguvuX9
7Npl9Km5mGhDp4FLwp+Apu8uaPw0d3m6iAacAXNsXR8u4QamTDdvIw0OyVxZ
uvnZCf07DNdatNEgTrDwioa7E3587qFC7aSBRJ1T1uiiIzb1lucc7KfBOyOu
fzUbHTFwRN3f+CtL/5wo66Bnj0v+d5N0uehQwideEalmg8atdQYavHRQ2KDS
3udyHgv4+zgP8tFhTSdh/ECmNVqX/A0V2EYHTscPwf1cVtgwbun1ToIO0946
y707LFBI3kP2pRQdRkve9528bM6aTyK+tOyjw61viZqeT8xQUqjMrlCODhaD
LlB66SxGG3KZ+qnRQdXJ5ePjbyY4liHO66JJB9PN3hVZ5iao/lm5w+oYHRSn
9HSfRhrjdLgjHtOhw87M/LCHp43Q5HH9YS5TOlANAx99ldPDQo5X3/+cpcOK
bvMLByVdXHtmqnDWgg5Z5W7U/7RPYeX0Vsl+GzrMza8/KuOlg8KSnlvol+ng
KF3nk86njd6ekS+S3eiwcee90ZGTiJ31WbGRHnR4LLWsl3NLC4Mt29e6+dHh
nscL2oQgYH/+u4YLAXQI45AnlpZo4sH5xUCTQDoEi+PGH6c1cCxeYkEpjA6e
m5XbjMpVUW1E5aH0bTqE6Is5SfqqYPK+024iUax4eXzVxo4q44nmwA9s8XTg
sV8WTfihgAX/vXr1PI0OrV57zb8kyOMana9JDZl0+OI6c/zRPTm0TmYzLMum
QwCb1DP5lweQR06ulZxHh+tsQRGm1tLoHHg8LOYeHTLo1et8avZiA9NKM7iQ
DtuDFPNO7duDXg5RlfYP6SDebZa8TVkSOx5SvMzK6UA8kuSU0i+Okqvlsqeq
WPa1b+6mbxTD12nv82Xr6KAUoHn7r+QOlJv8aSfWwKqvhurAmrdCrH2fZ+eW
JjrIJaSxUyq34lio5DBHKx3cOkruWBYK4P//24XFYCWNxlp+/B//PLU0
     "]]}, 
   {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwUl3c8l18bxyXZikSFRGSmSGWfe9iUWRIhGUn87FWy9/a1+RqZkSYJ5YpC
ZI+iZVUSspMSPZ6/7tf7dcY1Ptc593UEL7sY2dHS0NAc2kFD8/+vQpd82q/W
AjAtl9FS1dpQaeMfPXyuuQD0TyqLfBTaVDF1Da951FQABvS2L6nb/6n4cvYP
OT8rAIkDvlLDV2hQ7YVrPF8eFgAbzWSg4xlapHWH4w5xvwDkpuJCpTtp0fDf
J0r5lQWQc89dVujMdvQrn87CrKwANJo+KGedo0OnJnPze6lb9jU9WNmC6VGr
nJr00ewCyGgNlg7gYEAm0dONsRkFoHC4AI4WMyDvI3ITGpQCaJ1aTDjXy4ge
u/cKN0QWgKRCqPWUKgs68Y+2oty9AFZ3W/7LPc2Omg3KFRlcC8A8PSr3cBk7
Oluo32HrXAB7/7289YaWA3mqU2cPOhQAb95jrvsNHKgq9uSxdIsCqGim2VQn
ONHxfQ7VIVoF8KN4krYlkBu9uLpTfUx9Kx9OU3frZ7mR0dPqNyqqBbDyp727
32wvcrfc9mtNpQC834V/sFfchx4WZyu4yBaAk30zZRsDD8JX8ded0gWwOPKl
Y86fB/VqfjOTOFoA0juw6p/LPGhhWtb/q1gBMH0updX9youClN+zqooUwEbp
om+6FR9iTwjKLRAqAPXz3+Dnez4kLdMF5vwF0De/JPF98AAS+ZWbGsRbANxz
wzGSlvzoQMN/jiX7CiDRAe8vn+JHe0Ix/DVXAShb92r2Zh9EzNrs3PO7C8DS
THhATl8A0ewan+FkL4CvjI8nWdcF0K/Bh03ybAXwcGjF+lG/IJrLDsmwYN6K
526rm8vwIfTlkrFzCEMBoDnIpNkljN6LCKuW0RXAxYHqn0l+h1Hf7Mq+zm1b
esw8La7iFUUJdrGfxjfyYaA1XNHitxi6sXgkWnItH8QbJM0+cUsih5vdJ7yW
8oGcuWQ37CuFzjK5jsFsPrwUiSgS2C2NiDSOOMZv+TAbdLhSPFEGHRWskjMa
zwdn8x/HNE7JIt67Zz/nfMiH6QOr54yZTyJGhdWEr2/y4fWBY0XaO+XQz+YM
xWO9+RC+84GgoroCmjBQmPR9nQ+J4ShN95ES6vn4PvlFcz6EUBganpgi9MzB
X4X1eT68r9Yw/JKLo7Sg56n5VfnQqokr3ZpQRSGs1vj3u/lQz+LwWLlOHf2X
STt7/HY+DFp6cqxWayJz4eIM/8J8iN69rSVySBtpPVBXbaXmg545PlF56DQ6
qfxtbldGPnh9L/txMFMPHWqLyr6QnA8v6Pk+dVIN0N/RjsXZ8Hzw7Kgerw81
Rt+vOeeeCsoHasvb4hzec+jtr53aQdfzYddY8o6RThP0YJdRAadLPuyxPvjr
ZYAZys1Z1rW4mg/zbbbK60EXUYxo2q9Sm3xgb1pOq8+3RDbYsJ6iaT4oGjy9
MpZtjQw6/P6EGuXDR1ZOMfmhy0j5PG9p1+l8uPWfraiykC3idrHcuETkA+38
6r/YGXu0ff3f7QqlfOhr1ht3cXBACxG3zq6czIeLLLxVx1avotd5X+5ESuSD
xeWfl9XVndETiYjzfcL5IL16m4uDwQUV14hu5z2YDwF1eoxGzq4ooNvR7B7n
Vn7MeMgZc3d0zYyVfo0tH0pdOVQnLnkg08m7DwnGLf0P6+uzuHgimc0Fxjd/
80D73rUY4TJvxB9Dqeb/lQcyBvMnRfp8EDP3iUsOi3mQtO7z2p/OD32R8nmy
/jUP1g2NKiQjb6BMiw27Qz15cH1XZ//GzSDEpJv2u7M9Dyzdef2yJIPRdXmp
eJ/mPAgWUPkt8ikYXeS0qO6sywPv3uCaBd1Q1EXzU9OnOg8K6c75cDOFITQX
90Hwfh70swVwb3sdhu5/EHbpLM+DRkq7UmFCOBJof0brU7zF1z6vsJhGoOSa
s+mC+Xmw83fQ3gDFSERbPCvemZUHTSk/mcxRFPJIDmvwTs0DFsPT/j9so9GX
AD5DwcQ8mPggyFN6Pwadc6r+0hGdB051znb7BOJQ64XTvt5heVBB+6Dg15N4
JK/5hUUwMA8UKaFtnH6JqPyEf36HXx6cPqujd+dREuI5tEfW2zMPpmg2zS89
T0ZxuypbBVzyQFMm8GLVZwra+Ktq1nF1a/6ZfcpPBFLRf9MffnjZ5sHv9UDR
CJ80NDrkESxglQehWT2n8O/pyKCFhavjQh48mJQUYPbJRMcLlJQF9PMgGqt4
4zKTg4riB3pea+dBosDfoUuDuWjPjWs2Xmp54GE885RpJB+tnsuJea2wpc+y
+fzuI4Xoiqosv9eJPDA4yePvZleEhqU7Hh48lgfjJWWNng+LUT3L+rCncB5M
b2qfywgtQ5K/KU4HD+aBqdvfimbmckSdlKB5vT8P0r0+dz8srUABTWaiB3fl
Qc6tqYM1/PfQ/L2l+namPNgml3Hg8fp9dIkao+dJlwfP5DXNbv16gEifeq/2
37lQ/GYz6jVbFaqyNWLyXMmFiyidKVKiGgkbTVP553PB7ePkY2T8GNFL8TR7
fMmFp1afM8Tbn6DXE367+Xty4UKbzdUW7Qak1MtR2taeC9E1ojR67YAqG8oV
PJpzgYY9NKxOohElZL671FaXC0tP3xs3tzehf+FuK+7VubDohD2tKnyBXD2Y
og7cz4WkiPmbo8EvkZGewn334lz4fucAS4NRC3qp1EceyN/aL0zhhoFaKzoh
fvXtq6xckNcfDPms9AqVcG9zdE/NBQYZucQOhTbETZe1wZeYC39ahsK0DdpR
5KJ08qvorXg+jWiOR79GayNtwu5hubCti7G+4lsHcuy8VMsXmAtVcx3BA45d
6EPdmu4rv1w4cIxZPXtPD5o6aXg7zjMXuMsSE63/60WrD8vpjFxyYXTiwhNV
+z5Ed5TWeq9jLngfHqBJc+9HuyvMGj7a5kLzLGPFasoAEhCp2l9olQuxi29+
M3QMIqlCFu8rZrkgGR0darvvLdLKfnZ0ST8XLIVGhQzXhpEJN1fsE51cSDT/
pPQr9j2yoTh/81fPhfGLKWkc8h9RQAx/AYPSVnxPSauLH0ZRHL3P386TuZAe
cFq/+PsYygrpMaVI50L9z1zxxKVxVH09iOOASC5EtGTOlUt+QS9Wh50nBHKB
qadd75f5V9TjLvO6jDcX3LX+2XtkTaJpx4mQ4xy5MJgLRm1K39HapOLoL5Zc
mJ5I1XMpmEY7bFKUGuhzYUBH/u4YxywSMFdb0fxLBVM13ECdZx4dHaIasP2i
gnHGzMOwCwtIyfhnZf8iFeQPOX6NObGItHrOMGXOUqGtU1yZRmAJmeiW2ll8
o8IRJfsD3nzLyPbVZtOhCSrQSd6WCpJYQe6q5/mnPlLh197j8VU6P1G8EuOQ
ez8VXsarwo+Xv1D2k0uy8l1UYB8oeHCQ/ze6LVuXuPGKClfW6vp74v6gZklH
ragGKgiMfXGbL99A/WUvis/UUuGFpS3H9Qv/0KgQ7zbOKip0TIT//JBIg/3h
7azLvU2FgCglTUk/WowxU5jbpogKsn3FjkOB2zGuPTfdxfKoMLrHgn+QQodJ
sx6VrEqhgtuFg9ypI/SY/d9EalsAFTrzvRWO7GbFPH2n1uL9qGBjbXHPNYgN
C17Bzxl7UsHI/ZW9xt+dGHV2kW3kKhXuz/dY+OzkwCocdByLbKkwXMRtOzvG
gT35UtjqYLW1/qzjWaJ+N9b/0Thw+SwVWG08h9pS92BjppUfavWpwP+5RdOo
gAv7MUgnH6BDhUv8BH95Izf2x8AiVVWdCtYFZk48q3sxxq7HC4w4Fcpu9WTM
4Psxbu2dZ7oVqeARcuKU6S0eTLjFvjzlJBU2uAcZkvbyYVjD3sv8klt6hC0M
vVM/iPEcatFyP0wFPJxfXYwigK1EuB9rPUiFw07Ebp0EQazCoOuv8x4qxCpd
eNBRKYSFP77+uWknFeISPuW+7hbGLvGIveZiosJ+jyDq7N/DGNeXkIyGjRxQ
GaEP5w4Vwxa0ttrktRw4frGs8+ykOPb67idbu6UccIk8r69hLYkF+cgfZ/uW
A3eYb7I9LziKmX/8us96PAfEpS6/V5KVxk4RKf+qP+QArfYF+kNCMtgM81zn
xd4c8G8epeWSlMVaXXKqHrzOgUMBRR7ZqiewgkGtbLqWHOD6OLi+3/EkZpJX
dKWyLgfsLZYC6sblMJnthno01TnAueI1LyirgLE6bJ44ey8HkP2/pD0piliT
zAXav4U5cNMCPzEdpYJR0+m/6+fmgN8hXQ0nSQzzXq/qKcrIgbJu+Xf7vHDs
SMvOXN24HHiTfPa4mRWJMUg8C82PyIGL//LCahxVsYmEq47LQTmwR2mU/mi4
GpZh2iyX45UDSioGE/unNDD3Bjf+eZccOGXY4t8lrYWdPnRwh6pjDvCHcRjs
j9bGaGf9+qctcyC/mZmIcDiNfTIQrUMXcoDmDt/npPkzWO3jwXyKcQ5Qxd+I
34jTx5wDjzkrauXA+5cE60K8Iab15aNxApkDPLJqDjWRRtgh7RjFCeUcaBEN
snFOMsaGd39liJHJgQbP2+I3e85hVT6UuU+SObD/XpKRBP15LOEj9kZGJAes
hHJOupw2xVRLswvf8eTAWzicto3RHONn0YqW4soBXa+S6rM3L2JrLj9dgnfl
gIHnzW++tJbYwGChyRumHFDdo9aTlmeF3VMwUBGny9l6v6zWjlRcwqLzNoRu
bmaDfq6ynWyqNWa7/Q5z31o21NtYCgTGXsb2d+0Y9v2RDe2r84PVxbbYikwV
dH7LBvmWmT9TrXZYd/qlEoGJbAhOalgv/WWPhV166t72NhtcSzgmlsOuYlYt
Dhf4+rLh21/3PyHjjpiiBDfu2pENYmVdXu56Ttj8sivbvsZsoJjfYKr5zwXT
q9/zsbM+Gx4tpj+qC3HFKoNqK4IfZ0Pa8aEjo6ZumCMbjdZMRTZgi3defj3s
gbUPFHEXlGTDkPG3pVk+T0wsW/Pr2YJsOOcYLk5/0AubFEkMgbRsYKq6XOSl
5oOp/zhu6JGUDdmw8Fzjqi9WXPX2oFhsNhwsue9vku+HXcb5G5KDssHqVWLk
Ku6PNdG/iNW4kQ0NC0nF45U3MYEuO7N1r2wINPKYYJUMxEYu3P1ley0byn1e
iCkcC8ZUBAxb99tnA21mHf1HphCMOrmS2n0pG4x2R0D5jxDMzEP5uLzJVr61
eGfOvQ3D6hTGaH4YZEPFDveO7JFwbB9NWM8t3WxQOXI1yW8lAnsT1+HEQmzZ
X1SQz9OOxk4Yuyg1KmXDESt2jkPRMRhlPyez16lsmFSBuvq3sZhBqVnZiGQ2
bDy2qozLTcDuO216pYhkg/QyN6vgziRsp2yhmpZgNpz/MJuRM5SEdT7/Pv6Q
Oxv2tmT6uUZTMMmI+Af2HNlgUX1thsY9BYs5LRPIy5oNt87JFPPZpWJa73z5
wrdlg2GV+YDUtXSsLJ9vRuFvFnzf6bguF5iB0ds31s2tZsGuHt2e14WZWPMS
w3nT2SwoUFGu+rs/BxOqu3OY7VvW1vtToOeJMxULCdRfaRrPgldXen7G9uVi
OGtGsuRQFlwv0Ph3y7YAy+9XvDTWlwVZxw4v9h+9hW1mjhxN68yCvkVrO8vt
hdjTwyKdm01ZoCGnZM/cVYTxzLZnVz3LghVW+w2HF8WY7yPnqw5PsqD17rj1
/IsS7BT2mL6/MguOtLzw6/1ahqXtuPAmoiwLErWmTPqZy7GVjr9FSoVZwN58
+TUDVoE9MlUjSjKyQKhAwDfvTSXGcXBqlxklCy4dPMsnJ38Pc/0aO7IzPgv2
+q+vuFbcx466D9zwDcmCd3Q+LZtWD7F4eR8dqZtZUOLNq6534hE2u8mzf8In
CxzdTYhjnFVYRezlGl3nLMizWMt/t1CNvVU035V4JQvCj+CKQTtqMNppY4d+
6yzoiuF6yyr6BDPTUue5YJIFP1dScg9k12ERv1Q8qAZZkHA5eTF0th57VHqq
c1QnC8q3/ear0H+GsewQC7DHsqDooi3dZ63nmHy1wFC5QhbcXFa6muXWiNna
7Jf+IZsF/XbK2W+0m7BnTcwTHmJZoBJtov6I9yU25bpd6cmhLDj7OLrLmKsZ
2yPwN+UPXxYcOmG0U463BXMK+KEezJEFf9RlCscNXmGZUpN5zSxZcMbYfWwj
qA1r/jjyi4E+C74M/XHwft6O8Sn1lif8yQS6oFG299c6Ma3pNtr+lUyYiThU
YvypC/PMajLnms+EoYhBEVPrHqzr1yM26udMuLH3GHbboA/7U3rHfvRTJrib
yD2bONaPiZgUPz80nAl1ZV79qzwDWEB1mlt5Zyacql1j5OB6g1XYJLyebc2E
MZ35E4rCb7G3uyOFpJsyYV1zLfotNoQddfN9U/M4E1Ky2LtWCt9hZgJuR//c
z4Trx/alTM+8xyJ6rkaqVGSC5O8nBSbqH7ERKXOF5rxMKLqN+2gcGcWYPxlT
GLIygXnhDmOWxRh2Ku70jE5KJmiq9Yw/PDqOJU6r5PZFZsKUWdSc0fwE9izr
1OqekEyYTWPT6Rr9jE1pHdM39c8EkekfHzQ/fsHwMoFto66ZELLU+eX6+iTm
ZLLf7NC1TFglB09qHZzCMnfsrrKzy4TAR2TlGcPv2ILNdrvZC5nwrITb33Ji
BuPj/Ntw7Gwm6H6sflNM/sC0Xqxwe+hlQrA3fUxW1RxWIDDZ9pvMBOvXKsIz
Xxewzp4RQRWVrfy7eO+sqF/E1gKGrgfJbemj1EJ9kbWEGXxqO8JwJBOyZS0z
m3xXMP+4pnAdkUwYn9D4mez3E7utVD8SL5AJ3wvpaJMiVjGa7DtJe7gy4ewm
W87ZV2vYEe3i7+d3ZUJse9Dfhr+/MdM1KpnDtKVXxGIHJ7GOPTRJWBHczIBD
vufmOX9vYNdTNbmD1jLA1yFxgv/KP4zsp5EfWcoAh/Dt+3Z60OCDZzxuZH/L
AEEvuwPvWGlxauyR3LXxDJBsfcS7d4oWt2v/CiYfM6DWm7PpYdd2fFXNlJaz
LwMqNCU+1NTtwCGEQ9itIwMYGcMCGZro8cjG1+o9LRmwPzXFJHiQAd+nrBId
W58BK4PF1G+CzPiY32rF9+oMoOH9U/PuIgte/uR+p+b9DOiw8SkwKmXFFWUP
sdMVZwDn2D0BUYddOK3bB5nLeRnwxJdVbNKVHe+4l2rcmJkBTX1Y8NVTHPhF
CYYM//gMsGA7Ojj9cTd+2KGx9n1kBmS83KZfDJz4XInfe/mQDBDRfPMgvGIP
Hig4e+CndwYcFT/2T72IG9eyKsGM3TLA0ZEyp/pwL86ea2n98FoGlEQpkUUd
+/DCfX3FzpcyoCXl61qEKC/uaBLT2mGWAY/52hG3Ix8um6o6JX4uA5zUH4/y
PT2AN++qkZzUzoDw43fUE9UF8LgzLmfU1DKAsvKocWWHIH4uVsylEGVAZXn0
J8EeQXySPueRpWwGnF66smJ0Uwi/r3Z28JlUBgztSw4+aCOM+4awrfKIbeWf
eYRe3fgwzrQZqDDElwFsJzTWjM+K4v1KCuYn92YAz0SVnbS9GJ7tt+SfwpEB
EnaX686GieNHfto26tNngMB/zUWF3yTxleP8E3dpMiD3+o/TC1JSeIPr0HbW
9XSIr2Y62x1yFNeb1dZsm0+HUt8rvZfuSuPcEtuvikynQwlLmleqiww+euVZ
TNiXdGiaZii/ongcd/18tBt/lw4eLwySAmZkcQXBqfm8gXSoMeJ6H99/Aqe1
usWx0ZUO2c9/Og+/PImnvOc8V/ciHb4Uvv1vvFUOv7ivy3tvQzp8TmeXiH0n
jwubRGR6PUmHA9b3GTXXFPCavrUPMpXpcN06SFXoojI+3PbpckVaOpx3kMsa
mMS39I53upqUDg/u4WFyOQTuzqDiLRabDvqFb9IWTEicRYMaXRqUDlbba/2j
v6ripl91U+xupENIhuIma50aXhy2ThX2ToczyX/3i6Sp4+il2YPCa+lQt/s/
fR8HTTz2MnO9tX06vOHZ8c/ukhY+vK3+pYB1OoQjMu/8ZW3cHd8/lGeSDhfm
r6QNhOviJQ1DG9lEOljy7jFMlzTAly5GMpgpp8MGiveJfWOAo7+nOPbLpUMc
87tlgwhDfFgxXTjjSDq8lK/9eHHDCD/8Xv2oiWg6PPz3Yla62Rh39/spx3Uo
HX4HctcuUM7irLVndVP2bq1PeZ7vqm2CXzhPd85odzocMewP+ChzHi9drbLk
YEsHk9nUjnAhUxw7yemeSJsOoYoPT9EKm+Huj/oyY3+kQZnVUqlzsSX+3DC4
UGcqDSKT8uUDxq1w1kXpSqbPaWA/oCgWmXYJLzmW9DxyOA2aLo529S1Z40vd
WLvGQBoUd3xSGLpzGUf/zffv6E6D9UU74pCTDT5cqTcZ+jINGn+yuJZtt8MP
n96cJyENesd0Sr0/2OHuM3d/b6tLAxT46OHjp/Y4iwQbW9C9NNCf/vyyJd0B
R2Udsv5ZaZCU6sH6q9EJ32oWVZRS06CgbHR2/KszPvxVQvNPQhpETHNPHOZ2
wd2EY8x8w9Lgjn32YbkuVxxeKtjKBabB/jCHmns+bjizzXfnVb80+HVfK/mZ
mDtefEsr2NMlDc4OOz+h5nvgi/hajKxjGugOau//aeeJo7Gy1CXbNJhk7N+5
IOuFD/Mz3HY1SwOzhAGnpW/eOAu1pdtJPQ24W6Zi79Vex4WFX1+ux9Lg3RLH
jooPN3BU2b3KoJgGjIIc5APmm7j7syH+oqNpEMUzONWXEIjHqX18tCCWBjm7
1k393IPw0s4xDSSUBtYmz3NThYPx9x+///dubxqEcWTFcuSH4Cu2c7Siu9Ng
0zqKn90hFN/5YyndkzUNKuiMDxkohOHkxjrs2pYGO8YHfb7/DMcrDuzcpTGd
CgWiXXE3xqPx5pLdRSlfUgGkVmmurcbgI1J75cZHUkGfTfleJnccvhsJWPkP
pMJnjVZ7/+sJ+JFW4eX2rlRARyU0hJ4n4hp64pF721KhVOfmQa+oJPy65fH7
j56lgkgByK/MJeOpk6dUaZ6kwotUTjreuxT83n9KQ2cepsL1u+kSM+4p+ESA
2r+pklSQ+nh46jl3Gq6Tb6J/MDEVesP3i1q0ZeK2ouafnaJTYTpzd9loZxYe
cN/Kpz40FS7s/+f68kM2/ui5Q/4531Sgru/6qsWTi3dqOssWuW/FRycX3KKT
h0/2uL1acEqFrgw2GZPIfJxn7Pp8rHUqJB2wvKfNeQs/4RAY+s48FVRCs7v5
Wm7heguhe0VNUqEOeQ0v3yzEQ2jisRc6qdDhwaL4ekcxPi2Qn7gmmwoSe39K
2HqX4XTlRUIaR1Mh5PbfymSH2zi/zO0nKWKpIC8yfVPRthw3Ih6OHj2QCiti
V69f9buDO7U/9vDfmwrz4jxXKlMq8QjDeobXHKlwo1offa+9i9dbvzxmR58K
2TczZf7tfoAPfn/18hFNKsjsqT1u/uQBPufWeZ5mPQVYw/R+cl5+iB8KeROY
M58CTZl/tyd1PMKjC7/19A2nwJsJLRf21ce4WNyEbtBACjgu+B8Jb6nBW70+
vTranQLftIXUHKhPcFrtgeexL1NgmWOfSLB1HV5wvFtJEVJAtfRlCWZQjyO+
9idTtSmQ8l73sL/mU/z6PNxXv5cC6sKR2RkGDfi+d3WSK7dTwOPVDVouG8Br
XlSXFRZtjR+KuaET+BxfTqvI/5eZAj99Y0t4ZhpxJ+X0xLrQFKic9Nq1I+wl
ziySzOIQkAKn+Y6qCio047d3xUVy+6UAZVCtKGelGf8yERzo8V8KlA3tSIsJ
bMVDOv3XBa+mwNVntXwe+q9wgRofn16bFBhmiOm9JdKGW0Q7u0hdSAFzRavi
zpl2/K+7w8wH4xRIUn7EpP3+NZ590eZKjF4KaGzTvs7a14G/PXbB6ptqCkge
Yl2JHu7C9d6q6d86mgKlql1vxyX78NnnWIe+eAp8PjKocKWtD48pV9TcFEqB
459bP+g59uOt/tKY+f4UyF5k6ad/PoDb2ks+ZdqTAjeEM3YouA/itAYicrU7
UyBd4bw7RfINjgnxHeOiS4G4T3Y/4h6+xUdY9955uUmBb3XVT7IDhnD/VQ5R
998UCPCKUys3GsZr2xkO9sxRoHnu7sRD9ve4tOvyzuh3FPiqG1UjMfMJ774w
FyM3SIGiVNv59dUR3En1O/1kNwXaAv+7PLNjDC/nHt0kmynQ2y6QOCM2jmvR
vL++CBSg+4hiO5vG8cnvg6v5dRQ4I/HvVZ/VBH6o4fXc33sUqItj9vl95zPe
WNrieKecArwH1qu8zL7glkmNkxeKKWA5G/P29c6veLZNzUhNFgXmhI6ENkVP
4pzMhd2uYRQ4Vsgn5d79HdcLseBUDKRAVaJXYnXlNB71Z5/p9usUiLzYXy1B
mcE3pxPH01wocOOZm1COxw9c3kZXxMqRAkyRMT1srnO4xwf6a2J2FBjufcpV
4jmPT3XcXKk3o0BNt/axwo4FXEhNQSHsHAUmJL6Izpgt4pbPVm6eMaDAadlf
f3vnFvGBymsMY+oUkPpAPcRweBmH+As8O2QoIGH2QcS65ye+toPLqluSAgU6
GTLdkau4bEBvUYYIBfy7uNN4NH7ht//TlJLgo4CHZfOzjcE1/PMkrfsyNwW4
gzfyl0t+4/xWUPOMgwLZQfxKYTf/4Cn6J3F9BgrsVbLlVyf+4t2vFsL20W6x
BGf6mNQGzohXto//TYaGsPOyPwQ38QBpIWPPpWTws5CILmCnIRw4OOyzPiVv
1etS4xRBSxRGd1ZcHk4G2Q4mX5t3tMSnbVHzkgPJ8F/6j+dZXtsJo6VNX2hL
hl0iIz/bn9ER8Y71DZEvk0HrQMm9nQ47iLYJL1pDSIbeVWmaon30hMrAbOzn
qmSo9Ax9YBzDQPjq3u6tvJcMOk7DDc26jMSjlzZc3uXJIC3briXJyUSIVb/P
Y8xPBtqb7Q8TqpmJ3WltD6VikuELbf6ZOY2dxBm2sNXVsGT4WPrvqa7KLiIq
HFNqDEyGc55my1kH2IkNr5pmI69k+HGDj19NlIOQn3Nj4nNNBuGMM8snHnEQ
7vZSel8dk8HmbeLdS8RuYsqkeMjnUjL0xy3HTTpxEod6rPgI82S4lqwtH8y0
h7DQ5LVmNkmGDrajvYMVe4h+Oco0VTcZamt5dWT+chEN+4I2mk4lA98/78KB
T/uIZr+kzv0yybB3gLrd6vF+ovN9QY6bZDLIlQwd/JbCQ3ykNikICiQDvTdd
xjt7PuLLRh+jH8+W/62KF8H8ADFrOTHUuycZXFweTSeZ8hN/BbZ7BzElwzf7
V7k3TwoQdCGc6sPbkyE20jA2plGAYP0stEd6Mwm8yxgD2Q0ECd4StUejS0lg
45pIcNw8RCiKR8yhj0nw90zpSMvuwwQZk96Q/jYJDsyFn4tqOUzozJTGzfUm
wbnTvUnLN0UIs7uvJPJakqCb68U2Txox4vLO4d8/nydBBPf8t8nXYoSjy1Tb
mfokoBxlb27MESf8ZJiubNxLArnc8ERXQ0kiiLL/1LnyJNhV3i1z99QRImpZ
fMfdoiRos+U25heSIjIf6xRdzEwC4W+1+PXdx4hahbjRp8FJMJ41nF54W4Zo
zKbe4/RPApP1twviSseJtvXKm9e8k2Af5vBVrv84MdzQxct7LQke8Nzf77bz
BDHGPzLtbpcEz0OmNT5XnSCmAufqXlslwbL0g6WrlieJX8Qu0+tnt/zxwHDz
l6eIzcKDov16W/HLmjDzBMgR9HTSq+LaSaAhe34qBckT3K0Gqe9UkuDk+Pvt
tn0KxCkdSq+8aBK8StdINFdVIdCdwvwkwSQ489855zZpRGiwVv03xbvlP488
g/lhjDDpHmDNZE+C0FO9HZcpOGF57MuHeeYkuHnDwXfHPoKwT1qp0NyRBLoz
Mk63bxHEdLEEZW45EaR6tPbbNpHEH3td6bypRNBdvuj87LwqwSTu1H3mUyIY
Jk9xpy2pEmJ37zLfbU2ELtb2VJ1T6sSVx9Kh17IS4SPDok30b00iSBEtfkxI
BPtTbC4NFVpE5nNdK72wRHiXPs/YfUmbaGu3V5JxSYQjKb9Vfn/QIcRGqMur
aonwpov1xYndegRuU2HtoJgIG191hz7/0CNMp570vDuWCMnNbFxhPfpE1FL/
nWc8iZBoaDqW129ATNEz2YYsJMCv76ev1vUYETRx3P3LXxOg9tTbsUfnjYl9
HMK43YcEsLztKnv2szGhxYvxabUmQF//u7jZHeeI28e8BtmoCcCvbfBg5fp5
orE6hAxMToASbYGTcMiUGFZIerAQkQAs3kIWK92mBKPanbgBtwSYbjyis++k
GeFgOq6WpZkADqJK3ClKFkTQp7lHzCoJsO1lNuNeZksi8/JfAf/jCfAn16+C
fsSSaHPau2F5IAGMmGnvm+peIsSCzzwWXo6HZHH/xRjRywROby6UPhUPke5V
wballwnTWIdkhpF44DJdeBkoZkNEpYU6T7fFA3XWXrjrlC3xvbzu8IO8eLiW
e/jAvgB7gvbYqxTB1Hj423dIwHD/FYKnenBbSnQ8zAu99wmovULowPwnL894
uHH1t5rY9qtERf/hdCWdeCihryx36bxGvDgvS3cXi4euzr15EjFOxPuPuDv/
yXiw16BG3TntTDB/M9fbJhAPB4+HHnca+49wXE+mf/UzDrRGv9OwCLkRfEba
0eem4+DuyLUQxwI3ouc2DeuXkTj48tjwrpigO3HCxIVjW1scWI98C9sn5UFs
PDjNp5QdB3wPFtot3byIBwx0+e0JccDOZ/pbhdWbuGz5VNA0NA7oA8MyFO94
E60sEqJeTnHQp1HvsvzTh0iyZzh+H8VBwlrrObLpOkE2QLWKbBxwzXjdmgu8
Qfzk9JbrFI2DEFFz7xRVf8Ks6Yvyd/Y4kNVxFFd9f5MQ5nuhKfQ5FvaOBq07
FQcRb939Xj8cioUoh/+GPPYHE9Ht0mfwzlhYY1mSDkoOJua8840sHscCe2lD
41JMCPGkz98iIzIWNkT3jRiUhBGOYifGDvvHggP/bu2EE+EEX+DM5WrXWOga
tPW7+iqcCDpi5tB3IRYCrBePGq5FEDqRch4sR2KB9eRFM4foaOLvp7mfWQKx
MPWgJ4tHPoa4f6LUV4wrFjpYE/cenYkh9kzsCVDfjIFoC6WXHyzjiBHlpajA
3hhIMVQNPBiYSCSllLPsbIkBj17OjgHxJEJ1+lICtS4GjHnfFVenJxG3M3pS
6gpjYFPVZG+0bzLhtlSZt+wZA8qyLexHLVMIYW1bwZCrMSC2vfAy02gK8Taf
t5jdMgZg5/kj22xSCcUzMeVSmjEwJY2uJHumEXS3r1Rf2R8DJy+maUo1ZhAL
vAVtkjtjYKXpTsDOC5nEh8Thj/O0MTAQ4vgm4Gcm8chHe4fvbDTc/JE5ba2Q
TVzSlDSJeh4NYRt5QT7zVOL0UxvH09XRIFwtyc1TlkvIHaMGsJdHg0Hyxbyl
y3nEzr1sZZmUaJBANT253/KJp5Nzv27bRcMf2z/bn6XcIkrNRFmdzaLhCLOe
+J1thQSl20pARn9rfodU2h73QsKhplerTj4aGNhvWkabFRHcEY+y2lmiQZBz
1DNWt4Sg/TN9N54mGtjHGwd7ukuIH85CLwx/RoFxe86LzbOlRPO51Ol3I1Fg
t0PQ38SxjHA/7K00/TAKjti86EuoLycss+7p3yuNAhvaC1LtJhWENts3G/ec
KKibGr52dbWCEPh5Pu5PWBTEb9++chCvJLqbFT4xm0ZB/dq3k5f+3SPq5d0X
u09HgZng1b622vtESWXFjhQiCsgBNupepQeEfyrvUV7JKGiSCw0u2HxAiNtu
BEhuRsKHiaK7uvmPiD3DJ1PmlyKhzcHMaxtbFUFz+r+yqm+R0B78tmLbzSri
rexoj1JfJKxbO9fstK0mwrY3CZwujoTVtTlUpF9DjBWGvXDSiYT0y4GHc2/X
E4PvykuXsEgwC/YtSTj1lGhj74nxPRkJGfzt4UdfPSXuB+w3DhOIBPv3fJsh
C8+IALN7n3NWI+DHs+dN3bbPCffkgVeCsxHQ/UesKoOukbBvW7tTNh4BZSuB
lrqmjYTeKVXPqs4I4DEz3DCnayIO7B6m6yiMgJAx8UVl1xcEu/bGlEFmBKj/
/DXu2/OCoAs61PU2PgLIG5Z3vKRfErM/nNImfCOgX+961OtfL4ln7dtE/uhF
QITLM007agthFiypKb4eDtbkGdv/VNsJvVoDyfsL4aD1aBb72NROkPNeu05O
bo1r2ufFka8JcYvGIbwvHEKI1xMDOh3Emvw5B9OyLcbnDrzz6SJmXa6fHqGG
g0PYmp40UzcxVpovbUsJh4l1z8glajfxas/0msvNcBDT8k4f6+gh0hcCoiON
w4G32qntjHAfESNa7MymHQ7ybLO/VXz6iADLdsMUFA5KRnv6kjr6CLtOTp58
8XBY0YuwzfLtJ07cvl1R8y8MOjZcBma/DBADVv0dX++EQfBcsC8wDRGXHW41
RxWEQbRpxchswBCx4OraIJkWBgpu/5kLrg4RrCE777sFhMHrG7+8m6eHCbVi
HcqGQRik7rpi6zz3nuiv3B9boB4GlclJZ4S8PhCXHk+FqiqGgaTChV75zQ/E
zdYIr2ihMPDdy/WPuvcTUTP1wpRrNRTGq1+15l4ZJdQWkw1rp0Phd+i4YA/N
GNH/+5KO+WgoKFeLKjLrjxFzzP+UbrWFwrKad6T2/BghKqV0UConFF6/O+P4
GJsgMt2qvqrhoRD77taOJLGvhMj1kJFvJ0Ih7v4Ru7y4r0R1iOFQjHgoPHQq
dpFa+kr0psy39e4OhV3spqLLTZMEU41k5cWvIdAZG78p7TVFZMKf4n/vQsD7
6LvRC5NThMir9tzC7hBwP+uUZHjhO0EOX0mcehICWpocZU/Uponrf4rcPWNC
gLImy1kkM0swbve4tjcwBMqd5m3jHs4S6Sykbb1HCDTcnvKwlv1BVPGNnaOx
CAHzhWMKX5XniFnEpxB3LAR4rool/pZdICxCU/8VDQZD6q9r0+mUJWJFz6CN
8XUwnDfnd6MbWSJieFiTnZ8Hg+zTAFo3iWXiycPQQ3IVwSBCSUozbF0mOMbc
1V8HBoO//uwdP+afRIuyYeyCRDD8WQ40T3z1i7jIyHb2nEAwPJXR2WElvEYs
DbTx1XMFwzxm12caskYcvIbfC6UJhkFJBofXxG/CL+tYH/fbIHA9WkbH1POH
kFpl26sSHAQvqLjGGZFNormpffSWdxB4DjR+EMvYJMziw2/TOwXB1YW1aUum
f0Sk8IZCr0kQvF4I/jq0+I8YN5q9aHMkCHi+Z4SnfKchJazS1DnvB0KTznN9
nR+05PlV1qGPWYFgdVWumF9mOxkWH+ZQGhYI1Jp7GTVe28mRpx6xCmaBUKB9
yPrkNjqSss+oz2pHIGwbrCt3EdxBrvfttKg0DwCuPyvrmlEM5EXW93sfqAWA
pt8PztJRBhI0SvqrpAKA88y3o9vlGcmQp0paT//dhMnA+7yNM4wkY4mD7Oui
m6BAtVY5Z8VMcvu+YJqa8Qe1iPXAc75spO+j+OaZQX8g+vdGaYyxke9nTQPn
G/wBf8CZrqe9k8y1nl9ZTfSHFoY403L+XaSwLt/YjhP+cNXpw1Wja+zkcX7v
GiH/G0Br3jrrgnaTqaaEm6jdDTAMrDh19cZucpXCekRS7wYkuemF/ardTdYx
FN06LnADElcrWN+e5CTxxZ44ovk6HNlhnVR9ag+p1yxuY8V6Hbhs3hvanOMm
rzp+2pVD9YXt2kbOFxl5SeXRih9MEb4QoSL1Ves8L8l+1rfD18UX2Mbvn+8p
5SVrVTgjTUhf8OyfCqnT5CMZObQ3OaZ8wGcHSx1r8gGy9En1bJSsD4yf+Ueb
LiBATtDFtXu/9oI3j/fqnmcSImv8LpR9rfKCBPRszVhRiIyZEwk/m+sFuzLE
8tOuCZEyw034cVcvuGvw+s50txAZdOfXkx9cXvDE++7YoSxhkt/IptTW2hPq
ouI5I5RESLN8xVCjNXdwbXhpsvFInETZ4zTqn93B8emB/4qmxEmhtKgAuW53
YHcz3vTklyBnY9768RW7g6/5346CGAkywNvddVLfHWLXany17CTJwjMVFtfL
3MAzolbRTViKnF7fL19o4graBUX+zy9Jk0sPlt59vnoNimX4zywLnyCFf3wT
VVG+BhTxt0LbNE6Q58U/eaXvvAb12Z12zFdOkM9uveLQrnIE69g9X3aVnyDD
KVTte3+vwocXHUqzR06S+zw16nwTHaD+jCCr9IlTJCaXncn22A7eZ1993Kcs
T7p7JE7aR9oBQZNzafyiPFl8P+xE4wU7YE90cB71lycZxVx63TdtIfeFXWXx
M3myf58a47CmLTyJM8DVlRRI+z8/fArfX4blmragMycUybgG4rwczSXo2Kav
v86uTDayDLYfu2MFOtsSrBollckrVOGvC+esgOmgd6ithjJZ09DC63HHEk4x
BRJaN5TJczSM0T4mFrAhJns6/7MySQmPswmqNAMJvPk4eU+FVOT+FECcN4My
pqaV360q5ESpVDYtrRkIiev/iBtVIWXaunvDzl+AKtuuAyQ7InuZOVA0rSn8
/O+/x8MuiGRLSttHMT0HJxrWa2VEMbJaYFLWePs5kPDEWyxVMPLiw1P6e+6d
BcvFzQx7Y4ys7B8KT99+Fl6Zz8TTBWKkDhfPcvY9I9i0GSq6NoiRUdl5XUV0
BpAkffJNvRJOWpmM9LVb6sOAlL55tDpO3vMJZDxdrQeXpL+qEPo4eaa+ycvA
6gxcq7mx1+kyTsZgGgYXHuuA47Vfe8sicXKHjv6Oa9bqwENV2pbWhZNfEO1Z
jXo1kPbtC4M3ONks+7hQkFMNlBJ59/d9wsmwA7z4cDMJ6b2bCw9+4OT2xcnr
6mI4TEP4wHlWgtwmvTGGjZyEB/uNc0XUCbJxv03AauIJcFZ+Lt2vS5BB29t5
7xKyMB16/pOtEUH+e5tqwlMiDXOmTsyYFUH+XjfN/D4kAl5+13SbfQiSJtBv
5tTJ+QaRMIvx4mKCFKZQeqZF36gYWhk/Hi0nSApjxKeko39U/nFGetPdJ0jx
E8dPz2+wI2b2KlmWOoLc3/m9nlw8hIRphVqYOgkye+1A0Jv4w6jkverRpF6C
5DtspO4gIYbuD047/xskSP6A+p54Gyl0O3TyW8YnguTIVHefnZZFc7My7Hd/
EKTRvdHBkwonER0p6+29uGW/2U8uMPIUmnCtLBb9SZB7Fu/+5RBWQIMWO2iJ
vwTJrcMdKWeBUGBdJ38AE0mev/Tge9AdDE2M5QbnspLkaaXDIl/9cbTr8XJp
+S6SjDN8HnW0g0B/Itx2RXGRJFvA8pmmK2rIPEJA8aIASUa5FFXvOaCOsoc2
TbmFSJLW2pjXoV8dBV/z9Kg7TJJrqlVTO1U00Rvedsd6CZJ0P2mjf3lJEx34
8eXYPimS/CHCWfO4TAv918LRZHmMJCeYPEIv7tZBxm8X95fKkuTF9UPT91/p
IC59pY7SkyQ5NNtvsP2mLjKqeMGbJEeSnT3H+Su+nUY6ylkufEokqdE0EbZB
PYO65z9ZPFcmyaZHlBkDIz30+b1ukw4iyZq0pdpfz/SRFv2DKj6CJDNV+xIP
KxigGVsTAXuSJE2UxVV7UgxQsGshXY4qSXKeDF71nTNA+qKs4U/VSLJX6l35
IW1D5FV7vPWVOknGi8hYdBYZoit3P8w+1yBJnYPR7N6bhmgb19KBYk2SZNw3
/vLgBSN06EF4gKcWSbawK/i0Vxmh5YOvZWW0STKEKVnCY6cxKufitnm/xTjt
9098V43Rz9AJGVcdktz4gye3vjRG//raW5a2uH45U82V/yxa2hWpdlmXJH1m
F37t9zuLxKV+DsAWn/iqdeflwFk0c2xnNuNpklz6VGDpfPQcavxv+hm2xfff
rnHsjT6HDDueX7bdYqceg5bGz+fQr7mxh95bLNF229cRmaAXUc96/8/fGmmO
7MkyQRLxH7/+f35xnelow7IJ0vP5upfY4suPHlCu6J1HnbFp8SxbfPAOowZH
+Xl05ECzc/OWPx+LLv2u326KxvsujV7b4mxqbaWt5RbPuDPRbvH5NPZLO+tM
0e36o5yRW/HtSXDgrOW8gEzMI9XXt/LRH9HYav3fBaQXazBvucWJgfuus7Rf
QMpDgdqPtvJ52tdV6rGQGaqq5ov/uZVvZre2McsAM2QajS2LbXHYZV/NR7Lm
KO/WKxbrLb0I894/5gnmyKO3XNp+S89NY7F7O76bo2dLTBYXt/T2Ux/ecyHv
IhI06Hj4//o4haTbaH9fRJ4NLGe+YSS5cirqRqWxBXJ7GfGmaKue/hOTn/jH
aInMswxTl7fqT1IwKa3cxhKdn29ViVQkyan9U1rGYIneqjfWsymQpA1L5v1S
Dyv06mAn18pWPR/5dQNEXC4hcNmWf2Sr/q9+8zT1zLqEgvrfh/pvnY/SIeel
ppeXkJ61YsALSZIUrLUSsdhnjfhsxY7JiJEkt59qQkqTNZKaaW5L2zqPNOvM
ljR7bNBphzHNgq3zqzKzfe0MskFjNE3/mbOR5PUPf5NzHGyQ1k/lhp0sJPnz
6VzLqQYbFDj6LMWSniSn/fulnO1tUYzeKd/bW/fFwGbWxrtaO3TplpP/rimC
ZJ+nZIh+tkP74ixibb4SpN5orIwXmz1yOtoe+GiCINue37Rjv2yPFnmNG4mt
++pZkHWXBssVNF/2UlqinyBLacVzqywcELWu5ZjmU4K8Tl+rHE97DWERUp+a
Yrf2e8AUZi99DY2PhvFdjyLIQ2bmHZjlNeT+r7pcOpwg2+9uXliqu4YMU285
ZwUQ5L5z6j7n3ZwQ9m5kyNKNIJ8U9T8UHHNGFz6ufpww2dq/wJvzg6UrojGy
8WYUIkhbr4NPXnm5IjkRRfrxg1v2dNrMquNckfOV1t5nW4IfWtlfGF/vilh1
mfwDuLfsaTZI49xuiKU0bfkI85a9+e16JV1u6Kr09p+6SzhZo5Ic5aLsgTy0
D2/724yTR4flmBaNPFDbRpm0/gucLHUfiXa/6oG+73o0UvIcJ9PKJGO90j3Q
7/0JPy3qcdKTozX+xoIH+vNk6NWf+zgp+/UPJbLYE9FXJfnupuLkgzjb3HxW
b3Tro7Qdqy9Oiomy8AsKeSMejc/2y144WdD0MK9QwRvRCsY/HfHAyaTVzfwS
e2907M/6SJMLTrpcyiq80+iN/r5oKc6/suXfie6yJ54+aHRd3OneeZy880Hu
Uc9HXxTJdn3tlgJO7l6gS+la9EU/3y3+WZLDyet0/R4d9H7oynHzU2qncFJL
yunkK2k/FD6bZ/rt+Nb/OaCgFsL8UKXFMX3pIzjJf4jp+d0j1xH1aIBIF/+W
Pw7vO2L9b6CkYcfjAnQ4+cu/rDI6+QYiszJN3Whx0jLZMz6y9AZ61Grj0USD
k0fqd+qH9t5A1hxP7jz7g5HtLKr914X9kfWd8wu7f2Ak7f07w1c7/VEW3eKe
k30Y6fnT/6smXwBS0ul4kZGGkaX2q1QW2QBkomZrI5+Mke+GXM72aAegU233
OLriMBLVX35p4hOAWjmoLv2hGMkQqHXLrj8ANd/beeC0G0ZmM+6xCI0KRMK6
Mc1L2hjZ6Re/RzM/EJ1pLq3uUcPIzWn6TuaaQOR6YOXBLQwjbbp+K1I+b3Hd
8QqRkxjJ3e4SZ3AwCE0FHk+9cxAjx+LPOVpdD0IDfPfsLiwh0k9jt0ZTeBDa
I/tOy3UWkbv/dQsKJQehrkfsor6TiFR31Xo3WRaE3MVyKRfeI7LCSEnrvzdB
iOM2x2WzJkR67hUUuSkdjBZrTN6uxG71c72fto0qBaNKNa3/ZsMQWRqV/QnX
DEayU0eZem4i8t1vzjQ6y2Bk/1jq29mt/g99pKeLiw1G3+89LbtkiEiGW7Pj
2ZPBqJZLf8SGA5GZ6c9+KC4Gox4FG7EkJkSKxcX9fr8ejOzKOqdub0Okjs8R
Dl6OEPQh3T8if1GFTDjjhOcohaBRoWHWgl4Vcs+fmbycpBBUtpMoGI5RIUvm
n1Yo5YSgQ5ES+18Eq5CnvsbWfCgJQe8lduqm+6qQpr2S3bxPQ5CPeZ72pp0K
mVN6bSPnawgKzJLrasNUyEPGM+ZUxVDkNrIZLT6vTFZpPb2irB6Kdp/pELn3
RZlUQ7EeH/VDkbjy5Ui+98qkvbhkLJ9dKPotSQg/bVYmy/851lMTQ5Ef7yO3
zUxlUrpyel/ul1C0z0YzmqKiTKrsmH6TmxCGAgVsP+Z5K5Gpn+QNGLPCEP67
dvjxVSVy9nHka/eiMDTgGbFec1GJpNoffq5ZG4biP4hy+JJK5N9Xl24vjoeh
U6rsLGusSmR9zNB19ZPhKCpsgJkuT5GUZ285+ONDOGLxazAXeKhAHuctuKos
HolkzvWsWRXLkQuC6j3RJyKRKH9mwH/JcuRdsekTQ1gk4hOm8XUMkCPFTp2g
cTeJRIM924clTeVIfsO29LLQSHR60KL9A7McyRy58HL3SCQy9HzJecT5FDm+
hPN/p0Qh6V38RYViJ8mk1+P9aX+jUe3jZ5cKI46TQ0+W8Bv5cShTnkbqr4wk
uSS+7cX3ijh0PnDDtYNRkmSl7lI1rYlDkz6LWg9Gtxq2oCPqJ7viEPfzfUpP
4yXIu1r22vN/4hDbs+cfR6fFydB37wxtTOKR4q7vfx+Ui5HH1hsv67IloF8j
GiGFW+9HHeeez3X7EhCjhsqFp1wipO3oJ1sx4QTUfj9HYnn+MJn98o/9DqUE
JPbF70Vj8WFyR9yJa88dElDlDtOm97sOkx/4bnvINieg+XSjAwqzQmQkSgzj
vZGIQleIrlYQJLN/PDjZFp6IOFYSuM3yBclKav+kZ1IiGhG9aswWJEj2/uHS
7i5JRB1vSJpBQpDkeUJlC+5NRAcdGEq/tAqQQ3vP6S7vTkJXH4Tz6N47SDom
XR40dUhCG0rc+UqCfOTyleUj952TEF/SP66yaV7SHwsL3+GRhMR3WyqZVPOS
iXMlpx7dTEIc2zzqArV4yerT3zNZUpLQ+aR9rjSePOQGo6sFNCQh4Uv+WMPQ
PjIp+OakEGcyunHvybWVPi7y5usz3lb7klFt0YBYfTEX6cjJT59zIBkxzRUJ
N/pwkaolcHi3WDKqu8udFMfPRa62/bOlUUlG3w2/PTvssoc0Zw/5/NE+Gcns
PqtM8HGSIvkRY2n1yYg/YyemUsJOck6ZuPY931p/6DHT20B2kkZGlIatJRlp
hYaq3zFjJ9+9eHUwrCcZ9ceiK8wc7GTcJKOV+5dkdP93n7bUtl3kolTsJ72d
FGSif7Qm+A0r+exZ4nuGyxTEK33vNMsgI/mRj2Ws+goFtZbcMYyjMJLr/hFf
rZ0p6PFeett4Q0ZSUeXmwlNfCrL7zXGbrY+BrG1wpHdNpCCHtOSV1Tf0ZDWo
Hx9+RkE3LMmQ2VU6cpC/SS78BQWJ8lWYSDbQkcsByirH2yhIk2J6bDyUjjyO
yWrFDVDQ3h8N2x/spiMfPBewxKcpKP96QGnnye1kZeN69O29KUj/S2etf/I2
slPAJ/HcgRRkrtCoM225jfxfC1caD3X7vSkioZRUqseSkiWPrRQ6nCKiMEoK
FSJbC0JIZcu+M6sxM9mylGXMl4okFSKeUNYSUmRpl1L8/vPi//L6nPtzznVd
59znfndPhX/LWrIlE461P297qi64TxU/sp00MqG7LMb0yTOBfUWPeohVppng
9FOyqENUYF9+Y+VIsH8m7Alfc1B15wLmPPHYc7A9E56vldsWLfULdz+ePkbu
yoSzdedKslvn8OUjv4CR3ky4vzjQToqeQ7GHV8pDRjMBumVDKL9/YvC91K0l
c5lwrm/LpOfULNqW1UitUMyCPAsZ4ZNT3/HTbcN/7ZWz4LC7x/iXO98xvvTR
oTz1LHh0K79d2u87NhS1xRroZcH6o8qSy39/wx15bxd8DmXBwP/enUlY+Q1F
aSKTz4Oy4AWPdm3LsS+YR0kS2RCWBRu4inYWCl8QyFJb3SOy4ERuo8n7/s8Y
mLHReSExC3afM70ct+Izjib927PjZhZM+Bl+vhU6gw8i7BtT2rLA0N7Uvy9m
Ev19bjFs5Mmg2dz0WNvyPRpH9O6Q3EYGn69X95r8GkNJqsijNjUyFLn4jpkV
jmFJo8f4AT0ybFLf3btZeAzfbdiuu9eKDKmOGg/a20fxaEtRu0oYGZY7rtpN
jh9GxaE+5/EIMrSeT7R+ZzKMX76L/siPJcODuQEzYcFhTJbzkpXPJEOBZrzO
lbkhbApS8ZApIcMuNcl/s2dfo97WEoGlfWSYHaVfaTHox2UGA5kNb8hA3JOx
12/rw5c2YsrX3pHB+uO6jE1Ofegb5n349ycyfDye16cU2YtF3aqMz8IUiFY6
/nBi6BXKRpbqvNahAGyLHfPr68IJ6mATfQ8FGhcMN3tc7cLqOysc7I0oMGLn
ZMPY0oW2/T7hXRYU8BwRZZdd6sRETfX2FhcKmM4I9BsovsC/Q7fPEqkUeNKc
VP74XBtqnN2kdZxMAUFK4VrboVY8PZP4Z57BrydEGZwhtWLjH+8040IKTGgt
V9hj9Azj16vcb6ujwJyN9n/pWs14n02LvtBIAYEJjX8XuU04vU3UWqqFApLx
0attdjWhzc7xd8e6KWAmX6iQvu8pytgWSIx+pIDzZtf4pX6P0bxfui/6MwVO
j8RMywg+xhDn6FzlWQocnRDQm8xoxNcXzuidF6CCaKuW5sPaR5iXqODyS4YK
KuckjQoVGlDzaQ5P0oQKW9/1af4beB9dD0lcrzxIhVShxgbDZ/cwszvs4FFr
KqwrCOk1lr+HP0cch+gOVGDWcI6I99bgg8UNolv9qCBd7JXSdZbATzfiu5qD
qOB1xtypupOH8hK/md5hVOhd069la8TD6I19WhWxVBjzSo/JVKxCi90URwMW
Fb5PvUnxEa3EsIfC24byqDCSPrYU4iqw7EDgl/BiKnyqUwpKFqtAKbujN5p4
VND64TggsaMM+/xWl5PaqKDUZFcPlBJ0L01Z4vmLCoKRyvIzmI+rO0XeFy9Q
YYPIzyszlDxs+BnePLWEBh23TfXiPuei7L5LSRclaPDhd6KsW+lNfNFnL3NZ
kQa+yXd2GtBZeG3xxa+7yjQ4dutpaEVoDqopWQzOq9PA4LWaeJ0rE2MuGnKu
6dHgvuW7joMHGGi4TEE15hANrORrazRPUHBSjSHeQqLB4U/KLebnyUglrfm8
3J4Gg1ZrrFxjs/AbU5iX7EIDv5C8cVJ7BhbpTO4lB9FgdGVEkadhKh47cUa+
9woN9ka6Jb5oSMal118v2RBBA5UoxYItNkl4qrWjmZlIA555R51QajxKu1SR
8jn8fJK2SasTorExRl33QwENzKk9mdquUXjxdoHM9lIauKzXzNQzicTWOepg
KUGDmzoH1Py3hmPwZqn6mfs00FRuv9Flfg237k/g/NtAA50/I6y0E2EYnhLm
XtVKg7H5vFXx3GDU4M2azf5HA23Vf15YzAfhYP8FVb1XNFgR57Ru6kgg7trq
8vn+WxrgKYnGAQN/HLMY6Pw7RgNdZCoRz3wx3fcIDyZpcFTDYKdo5wWcrjUN
afxBg9yxFLvdFV7IGKl3FJqngY9skOmEjQeaieyGA/+jwcNF98AHUu74Q71S
Pk6IDmZSkjIHv7lirq3q0tbldBjxUrfY/M0ZbYLz3q9YSYdio2QrhsIpXMjZ
1HJYmg4lEmq/+7Md8PhHyeTOf+hw3tNlb97+o7hsZdzFNUp02Pb45tyNiySs
0hW0tVOhg/lwpePP4sPo7BCqS9Wgw9i5/EGPD+YoGf5dpl+HX388YENThgnW
Fpz7LbuHDrOh/rGhd4zRs+39oBPQIV1Z13PMSx9lvp6qZ+2nw6WrZpf0rXXx
sUwfZ9icDpanZoPqVmpg/pG/vzKt6GDtVh1MuaSE0WnyJLOjdPBTSEsq8N+A
bu0mxfMn6FDv1xy2zH0Fmoh5CZadpoOSV8r4jlM/jZXMkk+4uNPh5mLCYqJq
p7FwdGWltA8d/qBwzc7JLOMPDa+Wt/jSIfuu6h+ZsDHjpoXfLleC6BCqINOd
MS6Ahfr/3NcIo0Ny8NQPvSopjLm8b/VoBB0yPJaN+Bj9g2d5Z73JsXRof+Lk
slpYGc2+JjSaJ/PjDVQ5Emrido1y2b8ZdNBlkr5WtexEUZ9u/3IaHe5NT58x
WGuIE7fmWl1ZfH9v7HtTl47YMrZxi0w+309ryz6hYFMsUjC+8qyYDmkajXub
aw9i3Cm37rByOlzXntzs4GiFntlxapoEHV6S3KoSS0h4sO921Lv7fL2XvCLK
jhxF1bWdg5QGOrhdvhp4YLs9itnO6lg00cFj3C4tRtkBW9v2jlV00uGsCIfp
TXLGElFXQ7deOizNT28vlnTFBNOYrHVv6FBWG/D59tszaPmww+TaBB0Sl0FN
SK0HPueeLrD8Hx0iGWFTQ8q+ePtz1MKiEANuRWUIHLHxwyT1IjuuGANO/zZa
oxnhj4cLvwhvkGHAvWrBar8/AdhBjzj7QZ0Be/pqrPBwKL4Iz1OOcGDA8YcF
r67KR2HFg+brus4MmL241nlmJgrT5qd6x90ZEHh3MHp/fTSSAnTjrPwYcOSV
ooq9Rwx2eTyd2BjHgOhLZa9W9cfjK6vx4mqCAXFpJjoZ5DTUVl0ru7yWAcFH
1r6UE0nHFOH9CY4NDKgTvxcbFJKOB+pY3gJtDDjXacp1c87AapVjahbDDLBz
VlhM35WFFKGnt9+IZYMDe6jtxSIVj9/PLRdyzoYS6/mDCr1s5JFfyNm7Z4NV
d1OGphoHV/ktphZ7ZwOI508OenOwRdnB1yowG1LYYYWWkxzcQ5bSoiVkg8iC
2RObjzdR1jecq0Zkw/ahqNZVH/Lw9dZThK0YE9ofiLuWPb+FTP82p4SVTHg5
WMhIEy1Cx4e7hRqlmWD4tef9PpMiHDi+5oiWHBN2UjqnpGqLsD+x5ctKXSak
Z149rV1YjD1ftdXbTzJBUv6/AFu/UvzvgUieWSUTJHy8/pR3lWGKWKDF9Wom
JOa7h25ZVo5W9qNfq2uZoH5Oswr3lGPHlzrjbU1MoFv+NxXKKsfnW/yHhAaZ
MH/hTLubdgW2xL/e0CiUA3r2tgsyXyqw0a4yzfB4DgTNTNfmH+Ai796zO+9P
5kChu32toBMXb20ebU05kwP+uvEkeT8uJr1fLTxyIQd235Tde5PBxWOBASE3
buSA/YLshdJJLv99T6JoJObAvIi9r+QiFw32FlT1puXAwYxgfS2pKpQX7plR
YebAmNG8HLGrCj9m6bl2cHOg7eGjvRXXqvD1L+vrl+/mQOwXv4AVaVXY4eTJ
lK/PgfLIS7NKN6uQq0Tv8X+WAw01xXYZjVUYxpu3WDecA8OyPYFHlvBw1csH
Os4SLLi3M2CpfSAPl+zusVm+hgV2r5P2JkTycDb703nuehaQ5H96habycOCM
XJGQEgsWhz0S04t4mPc9fFOxPgtmPQ+eZ/TykGJP32NrzILdbKMm3igP42or
j/0xZYHvgXmBpBkenosaTTtMYsHOXGN9vyUE7lpjIvzNgwU3P4hPrVMhcPtl
J8Xs8ywYlcgNlNUmcONggJHJJRZIiqwwH9AnUCCvIIRyjQUhHQPLMywJ/Las
nmIUzQKTJFu5hCMEvvfuqZqIZ0G5V02rkSOBrdoin/TJLPhSRjcZ8yKwjiK3
YozBAo1iS7NuXwLL5/W2J3NYMON9yDz8MoFZjZ6ub0tZ8PPlTJ10NIEx2yKu
x1WywEngv4t/4wkMTqAztWpYEEUNZuemEnjStrUnqpEFr8cSl6oxCHx+dHrF
82YWiJZe/VTLIlDfXhKl21kQXZRPks4jsOiEZpBTFws6VJcf1r1FoIyTbWl+
LwvUMwsFN5USGH0qYHj6NQtednqmt5Xx9TlT1u4c5fv/TkVuP5fADveB60+n
+efLbj1JuEugoedfnsQ3FuhvLdrmWEtgifc/k3ZzLIj7obLxxwMC1583lmP9
ZcGJP7HP7BoIjL3oevSDIBtc9v89Ed5I4E+/6HgNETYEJefMXnpCoFtAYX2Q
OD++7FOTZhOBXUEt3+ul2JCkE7lQ3UygccjkdpF1bPDK1Wpa9ozAsivip6w3
sWGomHZYvpXATdc0MqkKbIgSU3q0tI3AhHCblrfb2FASI2ldyce/I/0XlNXZ
kBl2apvKcwI9b2Rp+2qxoSPyXZAPH/fEVnvc3cWGgWW6fsF8bJLQxxQwZMPM
TMkBGz7mJs13miMbZvXcVb7z88mnbhJJP8CGpnyjQy58nJIOhv2WbIh1fDnK
4PP5m+nsp0Big7HnvAKHz9eHElnodYwNMeffGfu1EDhAyx+sdGTDX9/uQEm+
PvPsplXzzmwI906du/yUwOqcCdN9Z9lg9Td54c5jApU4YlcSfNggrzT7sOIR
gRm56hVdvmy484l6Ofwhfz4LrN7LBrFh744fJzfz/b9wy1f2zBU2xO3QvBN7
n8A3xRnWpeFs6Ly0nvOwhsBDt3nR32/w+V3e7P+UR+D9sp57BolsOOFMOk2v
JJBSJav0nMz3oz//2u0SAoWqDU9IZ7NBUFBCfbqQQP+7p1KcOGxo2KQ/NZ9L
oPWD3F/TJXw9rfuYMfx5FG1WbZdoYIPyOKfnZCyBQc8OLTn2lA2BvygbN0cS
ONZ2QY/Vyu+/U+GVO2EEPnrBvanxig0tPvPZ+/wIDB3QD7KeZMODu8tGTY8T
OPHaqZT6mQ1moVfDySQCj729Nvz2Bxs2VlDd7loQqDPWaOH7PzZwRd9tDDHk
z1dQQaq5GAdWbszS/rSZz+9JraWBBAcujl+0nJHm3wepLhGNVRw4Qs6Nr1lB
oMPtxetrZDgwqiizrvwXD+tH7H2HFDhw982rhZ0veBh7SIwUsIcDSzacXisY
xMNhuryEhyEHssVjU8e8eKg/vuvZCSMOhE5d+EY/ycPpiDNoZMoB2TUCOmEm
PLSpqdMSI3Fg/PnVOdVVPFyveHE1x5MDGfHpHmR2FfpdvNGR4cOBxpS/lc/5
+7S1LjvhxgUOSFPqJd5E8PenfcsSnwAO9P7T3J5wpgqHkxS+7wzngI7w6D7l
rVVYNNfd3UblgI/30Oq2m1wUNJ1MrWdwgLTJM7M1jYsOGQKHKnM4oLarP6rk
OhfFd+x4QsnjwGeHFykSJ7no6xrDcynngFKX2/7zMlx8Vs70PcrlgPjTEd2r
QlxUXOCqmxEcuLGLfcDvWyW+pL7NV6/l1zPozxfpqMQd72ed5eo54OGgOlRS
W4kx2uKbVz/iwPQqZynd4kocvq7YL/SEAyPby3l5lEr8//8gwZOmDfNRlfh/
re3dJQ==
     "]]}, 
   {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwUV3c4l+8XlmSForK/tuwyiqTP846IVMieyQiF7JnsvfdeWRGl7IYTkp1d
qVSSVBKiUKGf31/vdV/nes6573Pu63nOK2jtonuJmoqKSngXFdX/v8rPjmWs
dRXD94ArhzvLSig9fO9FDTqLIcS/oDtDtpRi7BrRVNdeDEfopWqZHpdSfPeN
vnR+VAzXTnTf+/uxjNJi4sg9c68YvG95CZ3XuknRqGatJmqL4ZOCQnrb4k3K
xEazSlFNMbDQKc79TKukrBXRWJjeLAa6aoGR+zNVFMXZgqLh/GIwk+iIYKqs
oXQpqcoeyi2GuYrNub+WtymGMXNtcVnb+a1d2Xq471C8pZWmT6UWg9wHJXGq
nFpKo/uwSGtUMdxsFsYPmN+jHPlHfavKvRj0Mv037dobKJ06VcfpXIvhI7uo
be2RRop+iXa/rXMx6M5EUdyqGimeavnz/A7FcEPWNcUqq4lSH3f0cKZFMcyS
DHnL4S0UeU6HhlCNbT5BSpTIikeUjsssalNqxZDu83X8lFwrRfdhw3PKyWJo
+BSr7dfaSnG/sGNtnVIM+bpdZodfA+VeWa6yi0IxTKnn3LdIbaPgq3jfgGwx
RBSrV3q8baMMq382lTxUDLSsKz9OSLRTluYUAj6JF8OOfRm7ZzvaKbJyz8CM
rxiC71Qb+Gx1UA6uFaQH8xRDsuTJ65MGTyj/tV69Us5ZDOO80Mt45wllfxiG
9x0oBiV5A5NR5k4K4+m97ItsxdCm9MEmPqCTQrXnw7d9e4tBk8223+dPJ2Vt
/F77MeZicDyhNvou6illITc0y4KxGDbTufrZRbsoMxf1nEPpiqE2JfRq0GgX
5fVBkZM3aYoh9k+qQmhyN2Vk/ifnwI5i6D18/1aKZQ8l8VLc2w+bRbD5+9Ab
cbyXcu2HdIzUehEcmloo6ZPvozhcHzzitVwEUbsPc+041k/RZ3Cdgvki6Lln
tWKuM0A5JFivpPuhCKy7T8h+ejRI4bmt/zHvTRHYpJdaizEMU+iVVxM/PS8C
rM0oqBqGKdM6yrO+fUXAfL3e3uvMKGVo8nVKR2cRmDtY9TgIj1EeOQRQmB4X
wfFfR/6LpBunZAQ/Ti+qLwIlR6nAsl/PKaFMVvjX29t8JHtzTKheUq5mU8/L
VxZBpnaoZjHnBEXjrtrJrvwiyGvsOKnp8Zpy9MTnhT1ZRXC+9bjixaY3FKGe
6FyTlCIo+vm0wIn+LWXjff+P+YgicPXianvy+j3lq6NzgWJwEQwJGuKTt6co
L9ZYTgf7b+d7wVBzzfsD5e4e3eJ9LkUQLPTsba/AR0pB3soZi8tF0LnASttF
PUOJFctYq7ApggPNZwdDvs9QbLAJrePGRbAql0n79O0sRaff70+YbhGsnUXH
kz5+ppww4ql4drYIiHiVK4XLXyjsLhc2LxJFcCKaM/af9DdKX+FMdZRkEXzZ
Vf+yh3GJ0iwZaTQiUgSPisKXJBqWKGVNYjt5+IvgBZNtdbT1D0rg4BXTO/uK
4Ovsf++NB5cpcltL9M83CiHzybF/zdO/KHyxqQ18a4UQ2ysRFtKwSmFkP3LR
4UchzGArhhZxa5QZGZ/mv58KQca42w5p/KZkW2xeEhoqBL9c8tLG5gaF4UzG
74HeQtiPFu7SfN6k+B+TSfDpLIS6zhL9k+NbFPN9Fg0D9wvhdw9/Xq4FFXpG
9Uvdp6EQ/oRRk/avqRBaiH8jWFsIbU2XhI+a7EACvY+ofcoKocMv3OiQBTVK
adLPFCwqhGsJuZXkN2pEXTYvMZBTCCqG0T65UTuRR0p4q3f6tp4p+89J8jRo
JpD3vGBSIfTZPLAOn6dBBk4NM/0x23y/Nf5437gLdZmc9fUOLwRTlua0vUm0
qOpIQFG/XyF0T5TufeJOj7iF9it4exbC+7Ade5QDGVD8npouAZft/mSJyzrm
MaKrc2++e9kWwpl3jmJ7mZnR+5ceIQKWhTBA3rNMtGZBOk93H+g3KYTaYjar
d/17kHyxygkB7ULYGX5jkPEqKypNGBvqO10IR0r9B2hJNrT/mqONl2ohPKcY
fP8rsA+tGuTF9ikXQvLVk+GTVAeQ/UkFPq8jhTCKJD9qUrOjCdn+e/yHC2Hr
2qu25j0c6MHuvxOeIoWQy2ZWGarNhaR+pzrx8xdCKceVp4ah3Ch/VpKqj6sQ
OFIc+Q508KDAdlMx/j2FcJOZS0f4Mh9avLP8oJdhe34K3iPPh/nRxfxYLU+a
Qoj3b2jnKRVApM8Dr97fBfBOsF7UUEYI1dvqMnj+LADR86OXaTaFkIjuXD7f
YgHsrjFOHhsTRrQy3J0eMwVwv1ajliFLFPVN+7HxDRXAXWu5wZeeEkhlmLWi
p7cANplvFeYHSqKa1iplj84C+DblyNaUJIUSs19d7LlfAIbXzyw975ZB/yLc
fro3FMCvjzv6ny0cQq4eDNH/1RaAcYdfbCCLLNLVUq51LyuAjve1ubbqcuiJ
ygj5X1EBHLaSzRP8KoeOSFx+0Z1TAGZWJt5GifKonH3HFff0Avj730MzUSUF
xE6Ts8mbVABnhr/TvZxTQFE/ZFO6YwpgMKFQPu72EbT+rkfEPbwAvHLoGZOC
jqI399fPdPsVAKd6zGqXrhL6cvR8ZbznNl/L8gZ77WNo9V4Vja5LARQybn1a
M1NGbLdMWydtC2B6UpmLs0IFCRys5yqxLID5VheeEzMnkEzJbm970wKIZ9AR
9lZASCP30aFl7QLo2dEqyhmGI0P2A3HNmgVwZ9rYa58agWxSnT8HqBVA1NSZ
W3v2kigwlq+YTqUANASe+1i1n0QN/sGs/x0sAG5/2pF/qeqoY3XCeVqgAM45
rZZXF2qgIXe5vps8BdBaRcV6o/40mrsyHSrPWgA3g4LOHPt9Bq3PHn+/trsA
COsankaJc2iXTZpKK20BhE7RKsnZaCEBM9Wf6hv50Nm+8F3HVwcdepmvw7yW
D+8iDVu1hM8jFb1fNaM/8uExzToP75vzSGPoHEP2fD5k8MWe0ruhiwzPVFyy
+JwP+/AdFvreesi2e6tdaDof1pcbn4SY6iP3k0Z8XybzIT013xjTMkAJKvQv
3Ufzwe+s7tnNS0Yot/miwrFn+TDibbr6NNYYVSrcT9rszodjTIVrt9tMUKfU
FY3o1ny4WGH71MTKHI3e7Cg715IPcq2hz8YHLNB7YZ4d++rzIe90ou2kpiX6
wzNwv6AyH+adp+2/YFaIPluE3aZ0O9+t599u8lijA/uvu4sX5sMLTSlrbIcN
kmU6JFWflg+7nPjGbedskd1GUn5PYD788mzsblG8jDx9v6wn+OXD7vBN6+s2
V1DIT9xAz3O7Ph3PXHyuI8qf/8H87nI+eLyqv3tV7Cq65aB5pdQ2H0o+Ts+L
XHdBzTMlXQ6W+bA1L/nJ+6orGp3UC1rRzwf9XqPXzz+7oSnjmjct2vnwuSW5
jLrZHX0fpzkWqJkPa0ZJ6FWqB6J/1rhEj+eDkhrtG2E3L8R+muXc4PF8cLl8
9uhbD28k8tSuKu1oPrwNaanuDfNBWCuHNZ9UPpy/L344pt9v+/57quEuuq3/
pvq7QL5r6Gek++Eu/nyYkXt+XSYkAN3SebbhvD8fyn4Xivp4BaGIRv+P7Sz5
gMkE77gSFowucov3HWDIh+UDMYJNeiHowExoVutmHsxwa9Nt7glDSxqygazr
eXD58xeoowlHfbff2l5azoPPagGuWwwRKNjnmDzz5zwY01y8EK0ehcwmP3Fa
fciDgwb8CrrB0UiRSPvX8CYP+sr/MXT3xaBvjAsD5sN5IJ+ZYu6fEY+6XPLq
7/blQeu/Vkda9kRUPK6RS/M0D5YvrH55UZmEDAtL7Wvu54HX3wqOxtAUJLfz
vBZVQx5I0R+3T7ZPRUwOW0f07+SB8/6jPCEGaahdzoR6oyQPHKikXSL0MlB+
Ju1X7YJtvofl6644ZSLvv/VDpVnb/Baf8vZmZSHppywFZ+LzIEaoik5MLBfR
ST4KK4rMA94tn5HauDw0nXj5ykpwHriySvxu31mAsow7lfK88kCY+UB4Fkcx
cm9141t0yYO2N8EzVj+K0Vkh/l0nr+TBHcZPbyWe30DU836jcxfywGqxirns
QSl6qyN2H5nkwdLGSP2JR2WopXG8KFUvD2Q1Blp/95cj56DDzsc18oCMe/BP
RLgSacxM6iWSeZCmEcoj51iFhE7HHp8+kQd7ufja0rtuoQm2T3SxcnmgSXtv
TaPlNqr3SV14K5UHxcO49opWLUqcxJ7LHcwDAfXHZ8cC7qKTFbklr7jzILqp
cfCWWh3i260RI3MgDzpRcJiQcj1ad/nlErInDwJP1JnfU2xAY+Mlhs8Z8oDq
WJGCwMlGdEdZhyJBkwf8lZV7hayaUEzhpvD1rVzw+0EfuZncjGx3VjOOrOcC
T94V9eXRFsT1bNeE7/dcOMfB/99mwkP0U64eBj7nQsV/Gd8v0bWiwcyL5QLT
ubBz2MwrLg1Q+MWH7j0vcsHw7qsMruU2ZPnUwYR3JBe+L2oU6Y23o+OS7Lhr
fy48Osg7wtXegRZXXJk523LB480oY3BPJ9J6sH9y4EEuXDXHFuKGn6Ka4JZb
IY25kFNXX5Ez24WuMFNpfLuVC5+VOyTlKb2od6yUvbg8F+4M7huZvd6HxHPV
P+kX58JLDePuxYF+NHswKRQycqGIg5K5mjGI1L7Ln/dIzoXXrdOp1AzDqKz+
Bb94XC6ccXstHj06jKxxvtaU4FwQFVehkY8ZRe20HXGnruWC3kLMzmjvMSTw
7JLpX69cuPaq89ovl3H0zuT2mq1jLjhZVfLJRr1AFIHzXVx2ubDZxjr1q+zl
9j7wM33wYi4Mfzsm/WRwApl6nJA/ZpgLdm+Gpp5rvUH3laeovuvkAm/DXlm5
W5OIkyp86MaZXPC1i3gqyvkOPY/vd9pN5AJbtnkbJXMKHdFzUWlTyYWltYnU
2MsfUCrXPkYvxVygpau/Z3ZqGulUmN58J5ULly0usET8N4Nqnba80g7mQtXv
Y+ZGvJ8Qi0KJqoZgLnzksFAskJhFA4+/frjHvl3vCvd9NtcvSCoy4a4day70
GPZL+1Z9RbFn5YJ4mHLh6w6l0w9/zCGNV768ETty4e5+afMvd76jm0W835Q3
cuDk+DWdnyKLiNau7f7Cag4kDpyl6TZaQp3LdEbG8znQZdGXYEa9jITvV4sy
f86BzHrJyLefl1FokPbP9g858NOCRVxrYgXhTFkpUi9zYLPiZZDS61+oaPT4
xamRHFjYtDmqM7+KtrLfHcoYyIFv8acG9JnX0UPRgwNb7TnQYpMXJhf4B3HP
9+bWP8oBx83XfCqDf5FvnfNlh+YcyKI6Trv/0CZSxBppR2tywJb7ZFolCxWW
scvkeeTNHJj7cIDDZoIK+9m/UapSkgPhmrMbnLd3YHXGqkR5Vg7cNndsfOGz
E2Pl/7LHNHX7/JJpBtVVGsz1U9w7loQcmBBs/+rgsgs75D52zTc0B8QrfuZF
ZdBhCcd8NGWu54CiS4jNYaDH5re4uaZ9csD/840H0qsM2K0466YzzjmAe4x3
BqczYS+Om+1Jss+B/iMFeWVcLBj1nJ7DqFUOTP6b9M6/twcz1VDjNjHMAR8d
PnaHdFYsco3ika+TA9H1Ncq14WxYXYXiwHvNHNjJG8BgHbIP271LPNAOywE+
o1Eln+ID2LEGgZdVyjng4EpLHOlix2xtuGS/K+TA0102YYUbHNijdsZpD/Ec
6JwxtazN48a+uO5UaRbKgZR6sD1Pw4vtF9hI+8ObAxnJzM63g/7DnAK/q4Ww
5kA1d+lyo5kAli0zW9i5Owdo890Pch4XxDon363R0ebAQzEG00hhIYxXZbgq
8U82yEbF9P7kFsE05nqoR39mQ//0d8lpKVHMM6fd7MBiNtx6zS5InjmIPVur
Y87/mA2J4seGyxrFsT8V1Xbv32aDxC5FpqfUkthBw7LHQhPZQPNf/9671lJY
YEOGW9VANhS1/i6INjuE3bJJ7JvvyoZlqsys6p+HsRdsUcKy7dlwMb/Rv2tY
Fjvk5vu8qTEb6GYeHawqlsdMBdwO/anNhngPoSv6eQpY5NDlKMqtbOhG/B8V
S49g72TMlDsLsyFonKVtcVIRY3yrl0qXs31e99G133uOYYrxZ79ppmXDfwMy
Z27oKmNJc5SCkahsWFjdee0ywwnsUY7i6v7QbMiLTMw4HETBvmgc1jYOyAYt
IcuwR/QYht8U2PHeNRvsuf0fRckQmJMhl6mQYzbYai6Vv2YjsexdbPWXLmXD
7+N205s7T2JLNjsvzZtkw9upH81PdqthvPs2Wg/rZwPz7ppkX+FTmEbHT3YP
re24rqij0Gl1rFhgtuc3mQ2HTWl2G3ScxgaG3glSKNngWIoNfuc4g60HvvQP
VsqG2+KqBnJBZzGdtz3SdNLZwNNn8+VthDYWEN8eoXkwG4Q3XuR7pelglSoP
3iUIbPcXO8nuffU8RpVbnbz/QDZQG8/Xr6vpYdKny74a7dnOz3ZO9ICqPma8
nk/mMWTDa7b4R6e1DbB7hok/Bbey4MlVVGKeZIT5p6uzB69ngVnMV987j40x
cpTq2LvlLIjrY6ui/meCjZ/zuJb7OQtcLj0kTt82x/LjpAvWP2QBI+G5j5Hv
Anap9xMYTmbBBf0gG6cbltiqqjH1vpEsYAjwmK13s8IglFXErT8LlKJp096d
t8ai2vrUhp5mgUawmws7xQbjPEGJiXuQBfTxtCyZipewKb/VW18bsiA+QyF6
Us0Oq2quHVCvzYLP0lrD4db22HEFob00ZVmgzNfqca77Mkbt9kbOujALCuT9
5ur3OmL9d9L12rKzoDGYR1b/ihNmLkmXFZCQBayXB+X3nHfBRB3aWl5HZUF3
9sPVIRdXbKHc7/Wx0CzwP3ToYjXuhgUJzv/3yzsLXr9doYYdHpiGZTmm57bN
B30L4lvxwPYWXLC655gFohPZBpZLnlgJ50iZ88Us+MRvx5m01we7Yhjb1W+6
3d/QvZ+TjvhiCuknv0gYZIHWtBJDhp0f1rmnSWr2dBZ0Xs66obV2DYs/53JO
VTULaJQLTkwbXccM4sRdSlAWPO3GBO70BmKztHl1FxSy4J/SCyrG5WCsVlV/
/JFMFtxHNt8lukMw31DmVW7xbUzzgi2+IhRj2ApSfsmbBY+M7pR8jQjHRlWU
zY5yZEE2p13HUmQEluu3HJDGmgXHTzukmqdHYtK/bNu0abOAmj2M7tGLaOyn
PN/0baosiB6OH//GFIu1ur7cyfQ3E5bi2eh+n4/DtOZPq/csZsKuIPyq4+5E
jF1y5+WDc5nA2731kghJwt7bP4oNn8mE5vaJJK/wZMz146FB/FUmSN4xkaoU
T8WUBb8sFo5lwnx9Af08QxpGbXmDdfNZJpgOlul+/5WGpb3eZ3C/IxOYbTjL
xZcyMHPOZ94crZlgKWFS4/IvExMxjMz2as4EJf4Drok82VjTyPobuZrt+pdX
SkYDcrHAPXWbSRWZUFTpwaH5JA9TP+fIv1CcCdcK5auUuAqwiZ631rcyMuFT
1A4uo9WibT8kOF1OzoSFqrQhxrpizJ2O4i0elwl+Y4TcousNbPep/JiK4Eyg
XLypdJC+FDP+dCbt0rVMSA//MK7yoRQrC/+bL+KdCdnfE6vHn5Rh6Inp3RLH
TKh8FXfx6M0KLM6a8YGVXSbInaVuflV5E5vY8eCJgFUmxNy45P6gsRJzx7le
Fhpmwl9xyxKOlVtYeevLzVwiE1y2/5OCd93Fls2j6ExPbPfjZWtw6oO7GNpQ
ZOVSygSDV4uigT73sInjmSJZ0pnwdeXejCJjPSb6Wu2QoVgm3AwLDW+cqsfc
/X4pHRDKhJaZuxpubQ0YU4v+mTSOTHDNzrl4tKAJMzGiMdBlywTF8rEB3rxm
rGK1/gIrcyasGE9a/SxtwbCj+9yTqLfn5dd36PzEA8y9biQ77nsGLNUczet6
9Rh7fD6kRPNLBkzqii7FF7ZhTD9kaxg+ZsDxM6kZA0btWPnh5MdRExnAHcyz
bjrdgS0PYr2nxjLAYXJ4yqjhCYauLo7uGswA/SJ2S/WkTmyiRms27EkGfOub
sw206sJEz24tkpABnZWVLYkm3Zj7t9u/d9zPgHh2g6vC5j3Ybklm5uA7GaA+
uj+xILQPQzf7FQJyMkCG++fZi9ZD2PYySVFJz4AgRdmQNYthbOKTpPqfxAy4
OFA+Qss2grmJxJr6hmdAxkUDx8Mpoxg8UbZVCsoAv7sybXPmYxijzVfnVb8M
eFnUWKcgN46V3dAI8XTJgJ8Xvka+/fkc+4GvxypcyQD+vBBya+YFhqZupi/b
ZsCJlv5g6fcvsQk+ukpX0wzYdPz23mjlFbY7/+mgk1oG0OTzB1nffIeJiPRZ
P8AyYGej075o+ikM1Qyu0h3PAJfF3ftjnk5h7o9e8pUeyoANjsc8gSbTWLzq
ZN2SeAYks3CcOyr3EasYmDqFhLf5HBVSKmCbwV5Pfr36iiMDUt4FEUd+fsJ+
2i5Qi7FlwFCb8imtX7MYy/flTE+mDGC5tiI8v+MLRm7+hT07MmBwb3INYHPY
rf9Y9pyaS4cZw54CKYtFrLOcrTRtJh348+1uvLFd2n6POZQ+vEuH5GuXuI8L
/8DYkIBlwFg6XB5jMKu9v4xJd4ms9D5Lh7cz/xgiU1ewU1oSURw96ZDkSdr+
8vyJ+V+Qr617lA6JVjQFp4xXsfRZxZNUzenQm6VjTme6ht25qvLy3L10eCz0
+ZiQ/To2Haj670t5OjTt0r5zqfwPpllkqM2flA4yHpe5jrT/w2zFzD46xaRD
oe+sp1kmFR5Ya+nzICwd9oceLWTS34HXPXYoMvBNB2Gqc4I3vlDjA+rOCqXu
6fD3yMde1LYTnx1y615ySoer5YKt+A0anHvKfzHOKh2c5VwuM4fQ4kccgsJe
maXDOs6UWBtMh2sthXGIGaaDIs0606U4ejyUKgHr0EyHLx9e93x/wojPCRQl
rSukQ6fn02MbQ3twmqpS4VOH0uF1k1qRWt5enE+usjlNPB0U6vY7koasuC5x
7/2h/9Lh3dOnkhUzbLhTb6NHAEc6nO3RTmtt2YdHnn9A18eaDjv6eHLmMvbj
D6yeHL5Emw5sNxul9zqz4+Nfu5/UUaVDdUAux0t7DnzBbcCI6m8auHZkJOk4
c+JCoc+D8hbTIJ+VmBLM5cZjSj4PjUykQfxParbX0fy4ePz0meCxNHjKURcZ
aC+Ad3m97T40mAYtQTLvtvYK4tSnxx7HPUmDgI2y0dO+Qnix/KDKcUiDfft1
Y7IVhXHE29v8pSUN9vxMY7HcEMb9F6FW7U4a7NDprAgsEsU5X92X+lmZBr/c
xlY9rh/EmzoabpaUpoG5s9d1LlsxfCXjVtG/7DRImuQX6T8rgTudyEy6H5YG
HWcjPzzNkMEZD6bsdghMgxyfB6UyTw7hlXvio9j90iBuBxfH6Y3D+Mx0SJDH
1TQwi/BUqz8th4cOBPwVvJwGW6tXP0r9lsMFmnx8hm3SQFxnd61zrTxuEePs
ImOSBhhVKo2u3BF8w93h2xu9NJh5fWk2YPMInmtuYx+rlQbJ4kklYSNH8ReH
TSw/n0yDthgLR+NUJVzrhar2jUPb/FwuS3IHq+Dzj7F+bYk00KioFmNJP4HH
Vh1X3xJOg7Se572xdRS8K0AWM+NKg3bDgiUTehy3tZN6yLA/Dcb8tEXzKnGc
WuegUgtLGpSsan78pUXgmDDv4QM0aeBmVljw4Q6Jv2PiqH6ylQpjEaz88w4n
8YBVVjH336lQbJNzdqekKt7SS8c/tJAKr/08+y52qOGyrissMa9S4b8PYv8e
653GB00WYpXGUyHgUGjtv3OauNPJr7Szg6mgn+AlX3n+DF7F/n6L7EyF5p7a
w+ne53ANqtf+PyAVstm1Xydma+GzX8dXi+6nwoB6la71U21cqLVvYeNOKmDP
34hnC5zH2yqeXqmuSoWno919wT3n8QvJbbMmZakQ/sU9v8ZbF8+1aXrXlJMK
Rt8oD5tn9fB9jCWDruGpsHSEV8iJ1wjXCrXYdzwoFaqefvZuWjfCo/9wGu/0
TwUbyfuFG5PG+NZc0ocMl+24iE5jEZjix2zOHLS8kgrdj8Om0x6Z4R5vaB3F
L6WColXgtbon5viX/us/H5imwqWATaXmhQu4sKqycrhBKpjk31YoY7iIX3j0
8/o5nVT4HvdJ7NCNi/hYjSPdlFoqSNiIWzydssIhwYR7l1wqjN95Opt40xZf
33XAclAqFYhpVG53+RKuEDhcmnUwFUy5+OkOytvhlVfVZSR5t/uhvFyj+8oe
/zhL7b7CngpK2YPPiRYHnM8Smh6xpoJg61U/nqLLeJr2UVybLhVqE1uOVUY4
4oPdS+Gc1KmQpH+6+HuEE06P1/R+2EiBnqcHjpBJznigrLCe53IKJDqJLBiA
C+7AymqX83YbCx4qe3LGHS+JGbhlPZECRP5h7u6f7vjbHdGLUmMp8CPdbbK5
1APXXd7yhZ4UKFU2Z5Dd74UnXHnQGvUkBcp3CBcIvfDCe6a9qM9DCog6lQm8
KvTGKWPzcR/rU2Dk60OTYDVf3PdM5XDNnRQYzTSlfBf2w+ue2BzwrkqBb2UM
UuyM/rh4w+tC+qIUyAz6wVe1cA1ny+i5JxObAmm+Tie19wbj55jDV1fDU8DX
YjPAsCQYj47AVNqCUmBNpZJipxyCb3o1dep6pYAL2uo45xOKH1twY+B1TQHa
tyXfg/jCcHc7Ga1PV1KAd9LB36U/DP9iWPbS52IKGNOPSGoqReBCQ5a8hFkK
VB4+EZ27GoFbqPNYMRqmwLFXMykejyLxUaXUufwzKaAZd0rwhnk03soZvNmu
mAKHhnqD3H/F4Z1+yQNccikQqSvsKbkrAR94XZznJpUC5jRNPz7wJeKT+e3K
ggIpEPVwf9C7Y8n4zOYIvR93Ctxi518cfp6Mz1+Yfjm8PwWqT+rcDPNNwTcE
dnoHM6RAE33u642hVJwmdJ/axM4UaNlV9Vo2Ig1n+ii8X3YrGVYouwkqIh3n
KVete7+cDEmW3KqWzzLw4xKRC2gyGUa4W4Yk8RycjM1szXyRDJnvVJ0V5HJx
zW8V8QvDySDfX0b/QzIPN73dLVn4NBnWLdS8O5QLcGuWid+/Hm9jxbi9vtqF
+BWXLz3nHiSDrZQhq7hLEe4nx2C/eScZAi0sdy7NFuPBqVyKBlXJYGYXnD8S
eQOPXpHYdbs0GVqGKpsdpUvw7EbNUvPsZNhPzxKZHlOKtyjHv38Ykgz0/eNi
pSkVeFtu/p19AcnQ6nvzgfSlm3jP35rrjt7J8DrS68RRvBKfaH3Gw+OYDOy3
BZX6mW/hU3zv5twvJYMv3Vr5B6pq/EvQwv0+y2Tol1mjjdmoxteIPcb++skQ
mi4028hyB98q4Rcb1UqGZLUSoVeitTgtjeyqxOlk4LNN7bYRvouzd+mkv6Js
6xs3Ubujdw9X1EwdPiaWDFR6ijK3VutxVF1SlCyYDLpczRbGdxrwU0z1V7/w
JMPPPY+67Z0accPBMabsvckgesK9JWqjCb9weObNImMypHZtUu0easbtkn/e
Ut+VDPqRw1zPK1vwuTLJ1IWVJDBu5x0/6vEA/2N3RrbwSxJYfmdWPWf7EGeQ
cBo89zYJep6oB9yxeISL377NeLsrCZ5SuKocrwBu3ygb5piTBPnVbgyM/u14
8HH0YzIxCWhGZv78x9yBZz8+Y6kVngQV2u67Jss68J5eOxU5lyR4JtR3cW76
CT6l5VlVYpsEld1/7aNiOvH1sRCO/aZJUHjPasL+6FNc/F3+yqpqErA8knqW
VdCF4za3rByOJ0G9SZP7CdNu3PhL89Crw0lwJFN5aJC3B49eHq1+xJ0EJhKf
33s09OJfaBlsQ5cSgYO5S4Nf4RlOFc8+uvIpEWYnVzdDRQZxTlYR/NKbRNik
rZy+8t8QrsGD8Wp0JQKr3rnHhmnD+MXis7H3HyZCwiMi9THPCO4raroueS8R
OttHV6wqR/DKw17jzPmJwJT6jv3F4Cje1hBKBqUkwoTBpN43hzF8Qjn57lJk
IpieOsDfTjeO06tWx4+5JcLRRnd2TP857mD8QTVHPRHEUjpDa6Un8OC3C3WM
lESo1Lbav7Q0gWdbbwgEyCcCg6TU6qGHr/AeJ47NC/8lwvoFoLGwfoNP/RBx
HGZLhLNetx5XYZP4urf8K4I+EbTrR5Zrhd/i4iHnGkVWEmBu168996je4zit
mXDmlwToxSa/7/vzHjeOc0ihe5cA8z/+OAdfn8KjM8Kc53oSQCVhvV0m9gP+
teq+6N3CBLC8/L2u//lHnPpwd5pgegI8DwvWnvaYwbkbxnekxSSAXiDB0sD+
CdeExbdengnAF1jAxO44i1uf3Dzz+XICGL2IW1vg/Yz79zA+MLZMADGJt+77
xz/jt0ZFM1U0E0BA5G3klO5XvMNIgeY2lgDT1CrHXnLP4a8ncXe+ownw5ERH
w4MvczjjZzOtHQIJUJFdYvczcx6/8jeFtvtXPARy3ebgE1zCeXVPxxjMxcOY
Y08y060lfKiSimnmXTx4xGbvMVL6gR8xdGHd0RMPf813JkVZLuOzNQfTkx7F
wx/Td8oNf5bx7J3v2PnuxUOLo8F6X+4Kvnn3LK9KbjzM/7HS15n7id+loynq
TYyHYJ6H6iy5v3DrCw8FjcPigU2OfpeB9iretVtSzMspHtYv5zCL9a/hyXZ0
8rUoHjCuZrdhpr842QoNFIV4oPuPN77t+1/81z5vpQGxeEgTer2v7vkGbto+
c+Lr3ngwO6s8dvXhFs7Emf/YZ1c8GK0WC1Xe/4c/vqpH0v6JAwbn9vT3llSE
CG+HuvDHOPh7fSrshPsO4oW7X9+9l3GQzN5sP7CDmojplT2HD8RBJk35np4M
amLBu0jXojEOzr+tpY3u30k0jwRYZEXFwaj0539U7rTEFfEjU6IBcQBNVMwd
4nQEb9A36wbXOFgeM7Hd94mOCJY2dRgxiYN4lw80zC4MhHwY6zdLrTiINC1e
YKQwEp9e9TgvkHHQ38N5VZV1N6EZpeSxWzoOoqyapYWeMREbbxd+5QjEwZyN
7kWpRmai9kiFr/iBbT2sdaZHyliI/dP7A9W2YsFAb0iI7uxe4t2J5eig4Vg4
feBSts5VNiI5rWo3y9NYEJC7MCu3Yx9xcu5iYv79WLhfMqnklb2PqMwaSrtf
EgstWunhheP7CbflmsIVz1igxz/f/xvJQYicthUMvRwLPCMMFc44J/GiiKds
74VYOHn0cIfWP07i+LnYKhn1WIhjzEjnSuQmaCrtG+y5YqG5TP20wM//iCWe
4h4pllgQOW7epveKj3iTNDG5SB0LVHdGEe1TfqLO5/Qu3/kYOBXaXG0+IUBc
VJcyjH4cA2smQZfsFoWIsw9trpxtiIFXLZWGDwOFCaXD+YF7q2KAxvmJDDub
CMHCwXwzOzUGRPYu+J9WEyUezi6sVV6KgbfM0o8kPogRFaZiTM6mMXBfPNDy
Z5o4kTpoKSCnHQOPH4YUN52RIByahjXuH4uB8c2vDDf6JAn2yLqc3t0xINd4
c12E8RBB/WfudgJVDCwabRmlfzlEfHcW7jj/Kxq+DZh2CDw7THQapM+9ehcN
0TI7P2aMyxLuot4qc/eiIavlmuX7CXniQs4d7TsV0fBwP+b+3lqBOM382cY9
LxqYtnzai5YUCIFfRvF/wqNhQ0mGfMxxlBjsVH7LaBwNlo1sg8eylIgHx9x/
DJ6Nhp983depyGNEec2tXWlENETsus1p+eMYEZDOc4hHKhoyNvQP6F04TkjY
bgZKbUXB5vORDCNPCrF/4mja4nIUeBoxZgmqI4Lq7NWb9Z+jgJFdfVcEP0a8
UHg/pDISBXJuK7PDrjgRvrNd4GxZFFCtf0tPNCIJV5/fR/bmREF22rfic69I
wuyb3OnxhCjIfbDnt8eFk4T8WImbuU8U3C50ZzjjoUpMlYR3OGlGgX6oo+v1
3lPE+KuqimUsCqipbVR+WagTPXuHYn2PRoHsrJrrxi91ojaQSy9cIApYw9o4
eOVOE4Gmdz7mrUbC8xY3+aXnZwj3lLFuwflIuPd5R5BRzFnCrme9+uaHSFCw
yij+h58jtBRPetYPRMKT9DJ/91Yt4j+2CZr+kkhoinHUXV/VIfae3vyikx0J
DvylxXw25wmaYKFnLxIi4Zcu89PBkfPE/HenjGnfSFj8NEPubNYlHvXuOPhH
KxIO3LXItirRJ+5SiTEGq0aCRB9R7yliQJQpnV3YdTwSrMzbpuKqDIi48swm
VtFI4Hn7/ARdqyFhGiKlLvE3Al7x+v5h3m1CaLXoSNUuRQDPucRfgjdNCHLR
a8/R2QiI/ON9uO+UKSFh0fYSH4mA7jjLOaEUM2L9mIGD8c0I0AzWsOPUv0DM
u/iffZcfAYsNFO0fLJbEVEWRrG1qBBDVrSdpBy2J7v1z6y7XI2BYiWu0sOYi
kbkUGBOlFwGD5+nc5fSsiVixMmfm0xEwa83EPthhTQRe6D2fhiJgKTPQfPaI
DXFpYB93kUQEFFu7LHcJ2BJHKitvNf0Lh4dhiR1DnHaE+PtniSd+hcPESVx4
ssCO4GVfce+YC4flj/7zz0XtCZpwisrg83BQLTedG0AOxJjlaP+n6nCQUI3M
y828Qlg73OiMLg4HruZjNBakI7Hk6toqlREO1twWLNLLjgRTKEutW2A49Fmn
c2tccCZUyzRTN3XCYYRXzzP2qCsxWsMVV6wWDqmWDSuf812Ji41fwk4eD4ev
rkU1NbRuxPWuSK8Y4XD4Xfhjs/CDG9H0pcP4wGoYyOY9UCpt8iBUf6Scb5kL
g0kd+69N8p7E6O+LmmbvwyBN+sKTknuexALjP5UbPWHwJuTwbdTiRYjJqPDL
5IXB6IF8eZU5H6LpKCPncFIY+A48Z+wO9CVU0au9HuFhIJi7w/EOux9xUduH
+r5zGHyJ9znzXMefyHar/6SKh8G7jAWJgKUA4qB/6LvPR8JgNy39p5Ub14mG
0PMvYyXCIFRpc93TKJAYTlvsGWYLA+6mJfeOwSCCoUmqxvxTKPzYEun96hNC
ZMOfsn+vQuFaRMt80ocQ4mB3b0HJYCiMjuecyjgXSpAT9klfmkOhffag6Jh0
GOH/p9TdMzYUco2eHLxNH0HQ7/Rw5AgKhbM0w5F7IiOIzN2k7QOPUNh77Hsb
oo0k6nmnDKgsQqHifKMW+54oYh7xKscfDgWSPfKtwMkYwiIs/V/peAg8XTaN
yDmZSPzU0umh7wuB420iupKfE4lYbqYU58chcP7yK+UdiUlE870wIaVbIXCQ
0I4Yd08mWKfc1fqCQmDn4xLPv+9SiMrqQyyHvUKAvb072gGlEshn7kXale14
NGV3VVEq4chi7WBhEAJXK25udNmnEU9PnI9bkgyBDs0nQxf2ZBDm9Mz6BgIh
kCb/zEQ/MINYHuvhfXAgBMyURSatFjMIfkf8ThhVCKCewuKvLzMJv5zDI+wv
gqFHgia79kk2IbPKzEEJCYb3k95JtSwFRGd77/sb3sHgNNSzXlNaQJgmRFTS
OgWD2++rvDYqhUSUyKbysGEwqAo/eSTmUUR80J03t5EOhgfUFlO3qW8QvnyV
oj2CwbCOhQfXG98gWOZsFqQ5gkE0qntd9e4NQiXkTdDqjmA4YEJ/V8S2hJC0
zFDbVxsEc1vHnye+LyWMVpleTuYEwUkWyx+VZBkRnhDuUBEeBCVG8lVhN8uI
dw894pRNg0CP+s1Apnc5kcqpO2K5KwgcIChpS/Im8XeExaLGLBC8vjAzXVm5
RZgzvea4qxoIKS7F55lCqgk4VT5aLxMI/2n4RWmx1hChD1U0Hv67DkM+pcQ7
5dsEfbmDQl/pdbg01Z5mU1NLXHmvsPAs/jqYxNuH8InfJQa4/lWOeF0H/u+G
edHX7hJJiRl8r9Svg96TSc7vB+8R7L4dDF++BcBd+0/Tpcl1hG9dQue38QDw
W91iEl+sI17PGwcttgaAzNiFETPteqLAavHnalIAxPY+mZjf30CInOGd2nUk
AFoYaHrdGxsJeT7vJuGAa8Cg5hN2Wvc+kW5MuIldugbfcBa5vUP3idVUJmkp
rWsQtDjn9+fcA+I+XekNeYFrMKxczm+q+5DAfwzFE53+sGadPWXm3UqUSOWp
q932h9dDHKeVdgFBY2dHfTrTH1b5gma8MoHofr3ho+PgD/17mkcV2h4TWp0S
NpZM/iDYkzS/i6uduLv18z+bX37wVWbX1cgr7QSbctuE3Ts/MJOn9zRrbSee
3zbUunrXD2oaoj8z23cQ5llhytf1/aD3P1Ea+/4nxOUrb/fk5fvCXQIzYZzs
Ik68v/WdIdIXFkdlhc1OdhN79X37fV184YxjkCNZ0020UPZFGZK+sBJkyPI+
tIegZz29xfrFB8JDbgtLq/YRkxHsk8EjPtBW1PhhvKWPuPvn4/3FBz7w8ehB
YfJwP2E0E+j1LMEHhJ/UtlwTHCAqmhvmoxV8YJA0eUzLO0j4S4f2rfH6wNGd
a0X2RYOE1g3tSjtaHxjYt0/mgcgQ8St2zkb1lTf4dFyyr+AeJlQvCLz5F+gN
el5cA5eURohpmvhe7z4voNo4OnGubIxo8jO5+aneC6Yqd4X8WR0jYhcORugX
eEEMZxXTqOY4ITfRjsu7esE/qmNRe1bHieDqtebvB7xgt7/lDgGzFwSfrk2F
rZUnPDmu97fG+hWx3CUbPqbpCYxf9eaqe18RXSpbVuQRT/gjYt7CIv+acBbN
+U+AzhOaO7nqmejeEI/WB9Pf1HjAhTfUGyc7JgnTouNhuuvuoEjt9FAbnyJQ
7gcqtY/ukGmQec372hQhnBEdqDToDntC6Dh1m6eI+dgXfrxl7kBVt+YmI/eB
CPR2d53VdodX3YLleTLTRMm5Wxb+N90g6LqQfbHmDBGpcf6NU6obtI5Fvu9K
mSEcT64bW153g2S/Oo+Hr2aII8qn9FX13IDNMtDogNMnoktkWpPlnytcLvc9
ej93lpj7y3WsxNAVXko/VhcT/EoMrrY1phOuMDQhL7/o9ZWo/2GvECXtCtQr
ccpF/V+JgM+Nh5yoXSH/uhnzY785greiVNPJ3AXG5U6Zyn/4Rtjo7xNN330V
SCP/XPN3C8Ty3eVXHy87wp3uA1jy4DIh8v2zGOWEIwR8bezey7JCGEm89cpk
cYSB93O4stYK8ehGN+vp+ivgxHFYIWp4hYhIzT99Z+MyRAlItaq8/Ulwep66
75vkAOoSdQ2jHGuE5l0VulErBzhQR5WrZb1GXJ+XNZA64gDu55f2h95eI6Zt
eX68nbAHF9bE0v2n1okagyXxk0L2MBHyWp0x+DeBKeVmMzdeguUhR55vHBuE
u0fSrF3UJWDxW2Y1vLpBlNWGH2kzuQQCp0dKo55uEPTiLsPuW7ZgPjSdQHpv
EqOcqvQT6rZQ8rk2VebDFmH357tPyWtraH9k7+y8QEXGtxJGSlQX4YtMbt71
YzRk2+7x3sPVllBKSfVYdaIh7fNFPi0ZWEJ0Y2fM0A0asqn1KY9H9QX4eybN
upRpF2lARR/jY2gBH9kkdapmd5GpEfE2wTWmIHfWnVOmho5kTs7gTDU2AI0R
YGgL3E02CMwq6O00AO2Xlzb/e7ybNL+nqL3/jj4EEpFBE/92kzWjLyMyd+oD
S1HaaZtQJlLzAPdK7h1d8M+V8R+OYyajcwufldLoQNPYIRfGu3vIXZrauxyt
1MCCDFNv52MjZxC1/qkHqnBVVbZu5iQb2anQWCK4TxVOcTU4y15mI8P/48En
Okmw/3TbEm9gI3f+mPVXE8fh/r7aXnR2H7lDdnMKe3cU7j6yzs8O209SBfl9
Uzy62NpikHlUmYWDZA5cOddur4o6zSofJl3nJaXXrsFBl4vojb60+0tPEfLy
Z09jz5yLKI+K5bdvnAhZ8dJ5uf3JRRT7tsWJpUSEFGyxPGjBaYVC/jAM7RsS
Idn9TiamtVuhouXpmXBxUZLqL+MFqv02aPpk7PvGCVFybCtn81XLJXSgZhyN
SImRexdTs8Q+XkKvG4U69XAxUut9nJwXsx3KX5Q60aYvRvY8vn5pr7UdMqFw
3De4LkY+CrZ6dmq3PeJimBm//EyMrKCWKKi3cEAuQvmr3x3ESX/alhMJ1I4o
woqcFo+TILXuMoTbyTqiwxGH9B4WSJBCpmb92AVHNNRQ2yZ+V4Lsvb1lsnzf
ER25lXU8bVyC5DRQ8zFyc0K1AtOGBTySZHPp6D3BKWf0W7vP7kSJJBl7TuT3
H+arKPv2jRXDOknywpoXPq5yFQndj0DqHZIk7RmuocisqwifCuy5+UGSNFy2
nP+m5YK47/530YpPivQv9t735oIrerw5+zI2SYq09eJv7vZyRQ0SDbkz+VKk
lmaPaUO8K2I6pnxp7y0pUugnV0nCA1dE65Qk9faJFNmr3iqLs7uhrL+dZ9V+
SZF1vHbj0jJuiF6llktihzSZ/4PFl0vVDdmv/JN5yyRNuuZdfLzs5oYOmYob
NApLk5yLO7XKn7kh/urWT/za0iR1Z82PlBk35HX6V2iwiTQ5n22QEfjXDc3+
OyR+10aabCNvThpJuKNeXQX6AB9p0j5T05Exwh0l7Ll6qyNfmtRxXGFZy3NH
7sY0e7PLpcnjeH7dxzp3xIawSJU70iTL3Pffj6bc0eLajPw8SJNNlJRolxMe
SFBUKfHHW2ny0IQSww9dD6S/z/Iv2ydpssL9XYz7ZQ9kXM7gv3Nemsy4KRXn
lemBXOmP6pz/LU0ykaO712o8kDM317U7/6TJ8EnfeN8nHkji1qkLr3fJkJ6s
XQnXljxQnUbz7wJWGXK+2ollk9YT2d7SjznKIUPantqXFPifJwr/ORWXxytD
6l+7mByi6YkuBfoKjh2UIQcO0LHutPJEUxUJdWVSMqTq3dsp4T6eKPVqTpeq
rAyp8OlPalSZJ/rQ9dd76ZgMeSvoxj6Gh54oP+7c/o0TMqQQt0Z67Ign0kyN
U3yBy5C5DQv7mb54Ijkfv/eBqjIkm3ZGRsKWJ/KIN2ddVZchY7+qsO854IVi
ff4OqpyRIanDpzOTpbzQxmABj46WDLnccjg7zdgLxYUnuM3oyZBX9F5wHnDx
Qj0638JsDWXI6e8BOZkRXijyhpNSvbEMaRotzM2Z74X4qSdShk1lyBGhvtyc
Oi9UVuKe88hchtRodeXh6fVCkqv/9H0uyJBtRhz5+e+90MHz7f1UF2XIY8ut
vHyrXuhFlNcuEysZ8m68bUERkzd6GW/MGGwtQ4qL7eYTFPZGj/YIf/SykSGL
2+8Vlih7o2c8jDnHbWVITnNjfhEdb9TfBEcHt3Hy6lZRuZ03EpGtfi97SYak
TykXELvujQwlN9xstnGw1NkblWne6HWNOY/dNl5/uiwoecsbYSIq749tY5eL
OSXVbdv16a61v9nON/sHE5Z56Y0SWz27tLbxhYzZ0jvfvdHT67+WU7b5vDic
ICJL44OklLCz5dt8tfoUyu9x+6Asd/qJ6G09XbavRRXkfNCKYkD+iW296F9w
RYO6D9r/Xbm4bbsfTTliYooXfNCNkwZz+y1kyENHBm82e/qgv2yGocpmMmTF
oKe4cpwP4iOOuR4ykSH5LvNUPbjhg9LLHR+tbM8jc2eHxIkWH2T8fcwlRl+G
ZC50uNU66IOeBfakLZ6XIcOP7ZHCPvmgMov98ge1ZciN0cbqtr8+6CXLqr7M
2W2/0u28/UTcF2m+btS7rbbt15IqGTXMF3lEnz91kJQhJ0/o3Oky8EWP1zfn
XNC2X90KantDfdFG2q8AL8VtvzKpyp7J8UVDfzPC5eRlyEcVc3cHan1Rapa6
P8jIkNVvlOqGJn1RfL5U0HmRbT8u0aQ9++GL2rnX7tTyy5D+NKMe/bR+KK17
1fMz97ZfZJyOdsv6odryz78+7pUhZwKLWyDcDyU8zz7B9leaPJPmnPMoxw8x
PFyNR7+kybqbx/0f3PFDzIvL71UXpcmQ4XGVpgk/tGh1o/f9tDTJJ8Tw+La0
P/oX4WCp0yNNRii+KKom/FHfkKK3Vvv2/aNZGlxl6I9kphn2iD2QJh94UMjy
YH+URsfE5FAtTRo9dXuaP+6PvMdZJaTipclkh9f9cQHXkIcvlfhOdWlyLeBm
TUzKNTT4Xq6lmyJNXkjxTIiquIYE1foNHY9Ik9IPWLTDhq8hVv9fojqC0mTv
7pOj/iIBiDlv+nPqbymSurZ64vJAAJJP1kzZXyZFev4K+KTOG4iaewy+WE9L
khV2q/m7FQJRcKaWpeq4JPnqpYv+0OlANPRVSZGuS5JED6yfGPoEojtPM17K
VUmSdEEaNy6NBqLUhbEHAlclyVz6/RZh0UHod+jJ3enLEuRUgsEVS/9gJClC
Y271RZykuzH/IXc2BDE8bbrdnnOQpOyae16QGI4SaE8+1PguSMrzFF8+IRGF
bFp47p2g4yGXBNWGYo5EIePzNQ4qH7nJ2+JzR15iUSjg0XVp3cfcpLjiESp3
wyhEH/IwvseHm+Q735N5MywK3RZjDH77lYtkjFp6wvYuCtXYNYk9G+UkPyzj
fF9To1FzbEdRbQs7Wfj7U5hiYTQySim5t5bFTppTxX0Nq4pGomado2Y+7OQL
5ucNfG3RyFiZIdtXkZ0cEL98Rv97NGKWfe5C23SAbLmQ4vtYPQY1l3+oCnmw
n0zu+zCasRGD/nh0/Uav2Eg1llwHQbpYtOPc5l52YCP/nNfdqmGNRZfHfNpp
S9lI21cdEp0HY5G/08y3I85spPKX0uBlnVhUY86q3UnNRk7vsjukXR6Lulcv
Hrwjz0oeIeZi6LXiUFfboviJM3vIr+El/OnGceho+GSZBs8esrDHtJHfJg69
61e/HPWNhaTX6Z9S9I1Dt3dsRefFs5BvL9QoXSqJQ40aY6d5R5jJyICrn9pX
49AhJztndxsm8mXzMn6tKB7hSynj0zUM5LLEjo6vt+KRjt4QVWoQA8mUv+ek
cVM8ClzuEPLTZSDJYGm1o8/ikcVWOmVxnZ68rWF3evFPPNqc70n21qAnw169
Om9jmIBkGt7eHPxBSx7+22Z9hjkR/ZL/LJG5va9qOg99vM+ZiDbWNYq31GhI
2/dvbcVFEhFNqZ5BLj8Nmfvkj90ulUSk2ML27MrYTnJX/BHHxw6JKLB7VcGR
spN8w1vpodCZiFoO1l3t4qYmo1BSOM+1JKTIoxqXvfKPyP1+92hPRBLi/1HO
+bHpH1GTPzrrmZyEDn/k3B3o/48Y/nPg9GB5EtpsWGAso/5HcDfnM4cMJyGe
ErFblexbxEsOgzMrbMloIutTteG5DeJKsvW4sUMy6jpyP95uZZ1YsV+RrnVO
Rrbh9gzH2taJACw8YpdHMirt8vI9n7BOJC2UK9ZdT0ZnC7okzcTXiYazX7N3
pyWj5Zazzzus1ohNelcLaE1Gp5nXjld/+EUkh1yfFd6Xgnbnqa+J7F8hrved
87bk3MY7e5y155aJK/v4aPP+S0FbfbIZzW3LxMlyEGUTT0FXN85x4VeXidWe
f7ZUlBR0s/9MkdTAD8Jsb+jHSbsUVFL2afhE2tL/WriycCoU7yvXlJChRCky
zw3qR2RnhyhTZlcUlUy5IUMKUdI1XMPhDJxzdGTomJJZnINEyVDKEJKhSElI
KRL9Pfwf1/fttdfa+2F/62mj4p3YMWLder2su8m9jBkU++jg/7IxFQbzVwRJ
djPIsU+JQ7A1FVzykiYWNs/gYPNT6ZgXqbBzc4bW4u3PmPiB70zgRCokUp/f
EImYxq8aCW8thQgQJ/N7zObaR2Sxkod4zxLgv9aXO+xbJ3BYatNYpScBIpsK
B5P+ncCV8NhJdz8CuDwdWNUzn0Bd/Yj5+isE0LC1yJ7tfY+1bB8e/2QCdKlP
ZzA/v8PKBuP9AywCfO4m7hfQHMfeXY+0bzUT4LErX/yxpTH8FnlYf38bAewC
NTS+NI/h/iNapok9BDivbU2J+HsMHzTKnDaYJgDqTC7qbxvF4qaVOOa2NGgR
JF7dyDuMnTKhyfY70wA+6f9iMN/g56iFdE65NBCa0Av+y+wNquKnOy6aacC9
dZJHkTCEzEf9VcLGaVD22IPUrjKIuc1l41cC08A2XT9jMKIf6S2eh453pcGF
cPA/U/ESdR7POBBfpUG+5XB7QMBL7H0UEDT+Og1Yy1GBu/a+RP7Ga6Vh79Kg
/0jkFqPSbrzyMFmh8Gca7FL1ueXq/QJt7teIbJJNh2hG+/4P1R04W3x4j6NS
Olya365bb9yBcUWPzHPU0+HR1IXAB33t2MTsuK2nnQ692UbeP5aeoUbO6Kqv
eTocv3x6a5d5G/JReKc7Q9KhRZ9qGq/cijmkRF7J8HR4Ujrd2d7WgkAUUfCI
ToemNT6bbT4tGEzY4baakA5dVjucXpQ+xneJe/o1stNBdnJ+J8WkGdnRjs1J
HelwQ/VWzqRlIzpFDY8OdafDgoC92sPSBvwe6b6q2J8OxXvexoWLNqBquK9O
41g6jDTrsdrespAScv3+3GI6JKQMMPYm1GGg773MkzJEOHfA0kzoSDUaRL/W
EFIkAs1w9eb38ioUIvM+6lAjAv+5I5VflauwsNlz6pg2EWp9eozkd1Tie0nl
A/qWREhPOygjIlGO5Xucnv6yJULcUAWHA60Mo4z/da79mwgPFEgOFNkylAr4
GKXlQYTXDxYq+Q4+QLs2ZpdKOBH+XJ6ciXxXjLIjA25T0ev1VN1rmvzFOP+N
73vu7XU/jeM6+QeL8D9p7+0yaUQwenbkXS+5AJ+EqHiKFxJhOmfAMuLffNRW
KOT4a4AIFnSxSt+t2cijN5TW9JYIhoVTu3JDGNh7kl8p8j0RJqbWTCOr76B/
uI/F8iwRRB96JPC60pHZo5o5x00C3e/bSjWWKRjyyVmjZBMJtoa67vScJ6PR
n/gmHxESPJI/9ZFjloTjqp8/TEqRwOrkbW253+m4/UaR1rAWCe7oUIeazqbi
R/KbJxmHSCBne8CWmpCC1SWbnB2PkEDHT0T9XVAy2gz6Rr06QYKo1aWeWttE
lJmjiqWcJEHOmduzZb3xOMvVmW/hQAJJo8Akffc4TNir3tXmvs4nWF1h0mLR
+ZiLW6wnCZJl7QbtzW6hskviN0M/EvC9lJndxx2DLbdnJBuvkCDEg5kimhmN
v0eKL1Qlk0DQmRh9NeEqal6Q2udEJEGtVMpHgztX8MyXhJVfmSQQ31ASK/40
BJtXfFIM8kmQd0bT/YDNZfx+Y8j5fREJBiePH5KuCkBF/hMKsWUkkJAPiDqt
5o9xEip1HSwSaP1jamRw1wfr7lBi/mkmgbE3118JHF44o8hnJdJGAsI+yUr+
GA/cdT9UsrKLBPkDn7PPqp/Dkwen3jv0kAB8SFr/W3bDGyyH+8sDJHCSbB+y
7nXFCsMnV2gjJKCW5b9jrf6N4jZ5gu8+kWCPbu0XlLdF08EtAzFzJKjAxMLP
0icxzC3mrtIiCcT+Yw4GNZ3AwqlvF9t/kcC2qzjoc5sxDv9zTtuPgwwFKY/F
Ox0RhX682iDMQ4ahuQFT29e6aBBxtLN8ExnOh9hr7+E5gIFc5SR7kXW8X8+R
GaiOOQm73ZfEyUBjcyq8fiOLvaKpalQpMnSLOjlHxYgjTybHD31ZMhAlLu76
EsWDOrv9m8aUyLDnrzl3Dc45Ax/maPxNDTJ87LjaM6lSbUDbY2WvqEUGuqzf
yMWOxwZd1Q3Sz3TIUOMS/phIWTBY09ec9gUyqK80PMh6xod7W+mVQkZk4Bof
k1J+sQ3PmgteLztOhlHvQ1s4/eQwrSf8uJ0VGczqVEp3sdWxxXlG7KcdGfS3
ubWrf9LCH+OnRjKcyRBxoucuwVYXlb07mIfdyLDxx78SkV0G6Dyve3nUgwwq
fhfzbEeMMDG0UP+GLxl6NSPPf3I+juw1ST6FADJYm8WRxtASZ2/FvXoaQobN
9cNXvrRZo4zgMs0nnAySmRGe7Fw7jNkxsO/BbTKI9rS7SS06Y/Vdk982/5FB
tUWLZeV1GqdUap4sEshwVSrP04rHHU/okE7pZZGh1tU+cm7hPIY3ciuO5JBB
3Jr3HEvAE+8fC56PKiBDiPTxnkZ9bxSxt7v1pJIMnEc1726d8MOBANFS6w4y
8FmUEE5JBSH/cnTY924yVHYeMQuLDka9qK+G5H4ycOeT+sbmQzArqXtgeJwM
P/OnDKe+hKFHURKn1xIZ0l6LOChpRqHoS97JglUyUPSjDwwvRWHTj6innzkp
0BtlDxFPo3H70cuJlwQpcEpN8+RR/5vYPeAoHipLgayT0X3Cs7F4mGe3aqw5
BYoi5gurEpNwWi1ToM2aAjlNys5ZSclIthab2+hIAcuSEIW64ym4QOOu/M+d
ArpnT4j02aQiU2tanxhCAQ29pQmT4DTc4l5hncugAJOnxiD1OxmbY9UPfMij
wHbjScHzcRS8VJwnrlxEgXJfadP/SWdg+0/ym6IqCjx8NaLNssjEqKRwj4p2
Clj0a/HfrqLhTL1xWPN3CnTq3gvh7WPgY/EBxphpBgT79WQb/M7DXNvfS2mW
GSCpVhwl75iPMSky1iZ2GeA6ZKMpV56PRvzeG+6fyYD7Li9X3b3u4ZPVZfdr
IRlwhnvOMbKPiW0TO+TEczPAIf3iI4nSIuwsP5Nn9icD2MTYP2a5D7B47ubq
GlcmXI0itkp0P8BEdaZ9OX8mjP751N+w8gAt8ue5JcUzQdhj1C7VpgyfZ0Rf
+KCeCWoSYT2qa2XYHZWjFO2cCZPesX2i5hXYZzlVUF2VCWcelf+g11XhftWt
2zfWZ4Ihp1Tbi+EqTOI2jD/VlAlclVMpTWtVeIyV5cPRkQla+gdJw1iN1SoO
aifGMoG2RStzuqUaSVytxW/5qTACpTu62TW4MLogtVeYChuctKRy39SgZb3M
fze2UqGMM9taY7kGeQLD/ZRkqBAZnHzJVasWQ0e1NAMOUmFa/RJbIbcWneru
lnK5UeFvlZWiryEPsZLYLe3oQQUb8eXCseSHKBywllzgQ4W6vg9fI5gPsU3J
2d8ymArng5GzeeAhHiKK7KPEUyFiLGr0wsE6JPkfyZ5OpoLeWutcg1kdLpj5
iegTqUBQkB5udq/DQs5nX8fvUIHBecSiK7EOt/tHlatVUeHp5m3CH0bqMMTs
vmxkHRXeZhNCSAt1+EpxmNDdSAXjgNy5ee56jH+rfTm4nQrar5KCc9TqceXE
nFbjKBUO6rS8/BVYj06KO3NFJqlAH+9j/7xZj5UbzLacn6bCtwPT9+np9Xix
Nv873yIVcpfWjk1U1uOwwukqG34aeLWW2jh/rUdaYIdL/GYaLPjbeDn8qcdT
jTpczVtoEJrK9FoTYOGQk5jtPmkauP7O3mWjxMLBhLb5zQdoMDVxIYzPaT3f
DBykmByigXiQ3cK5cyx0Usg5ch1okPW+NMD3HxYONEQkzZrSwCP0Zk3kTRb2
f92v3uVKg2R2m0ptAQtJwOjhOkeD3LHSB8HlLLRPELx22IsGMianVkfrWNgr
//FZUSANtE02GNW3szA9wD7gfSgNVshzl9RfsdC2oVliRwQNNj650XpikIWv
HOme8bdpcL0x7WzyBxYScvk3Nyeu+xNw+1g1w0Lrr6HVy6k0sAz13BK/wEJh
mHTdR6bBDgJho8ASC7vjbbi9aevzehnN6K2yMOV1YzEjmwYvlB3fSXKy8aS8
ht1APg38X0iI5fOw8QWbN8ekjAaThvPPngmxMYk/+MT16nW9u66/3UXZaOn4
7mt1PQ2G357MKdjKRqFcq4zZJhooMj98Zkiw8fk8y0DxCQ1u9ZK4THes8/VV
P7p20OC5+r6dd3ay0SKenEzspsHEsaEL+dJsFHjNpd3VRwMOV74tp3ezsVMu
cITrDQ0UlKOcnsiyMdF/9NbhsfX9sKy9R+XYaMY21wiapMGST194gTwb+fnr
eoumadBHZ7bLK7Cx3UEp/P0cDU4/KkywXsfxOelyOxZpcFvp1/KedXx8fkOH
zS8avJmfP9m0zufTvxQY/4cG48yMJc513BY3LNnMRYeLJSv3l9b1/+0//mh5
Ix1Ua+oastf9mcjVeO3bTIct7CzftXX/PP7ywt5b6OAoQvoltIuNT1ipNQxJ
OrzWLC/rWZ8/duOf0wO76GAcJz9gLsnGYw4XeYTl6fDmjF71VfF1fs5giYkK
HSoIp4muYmxsnTtmf12TDpVXBZoWN7Mx5nDl72otOui19EcbCrDRKG537qwO
HQ6Yn1Ey4WNji+zvBVdDOow3+tsH/GFhzCXvTKIpHZz/BN2g/GKhIasfuyzo
oF9rCqGLLGy2L0s57EQHC5m96q7TLKx8+Kxk0pUO93Qqlkffs/DeznftSefo
EM7qtNu8nvcTJ0W5x/+hg89W4Zjg5yyMPK4mGx9EB6vBGMOSJywMKDE8onV1
XU9TyjOtgYUOwUFht27RgUuwouFiCWs9TyWSNBPocPBL/pRbLgv19PMqXqfQ
Ye4a7TQ3lYUy3P1fVGh0eBq/SfTsbRZ+Stc++7ycDodX3lmEu7BweMnqemgt
HQy+vWjmsmbhcxcvmkwDHY5vFNE/aszCcvmM/sBndPDdXOs1os7C8MpfJ7aN
0aHUbNtc4VI9CveytdwEs+DT1ZoFufV7wqnTf3KjWBZcTe/eYHS5Hheps37l
ElnwpaO6XPZcPQ6dk2ZyyWfBU7OtZ3cdrcecb1FSBbpZ8JIzL2r3ah3+T8yI
e8EzC1YiLVpmPOtQOdRFluqXBfEMNhjb1eGON0FHjC5nwSbF0o4LBnXIkZMX
RorMgoNrcsO8EnXYvp93VpeYBUmXin/1tjxEV5v2/pvNWXCa50vr/q0PsdNu
ZlPn0yw4LKequPinFnUdhXBLVxaE3zAVTp2uRXEXm6Lc11ngl2zKdmysxece
Q9dbZ7IgZvnn1r2etWgQNq3Mu+0OTNc5SsU9qEF5Bv+1eN87MHVD41uBRjX+
CMlLNuVnwB7DTXZac+Vo1VJvpifIgHa3QKGQl+XIFHnFqynMAOV2P7vyinJ0
Ll67LibOAN8wN7HtV8qxYdzRf2Q3A4gXCVK1HOV425zfOugQA8wHMnfXiJSh
hOwlUYYXAxSljloR/O5jwKVbzwm+DFgSejXWtv8+trOo8bf+YYAdj/+k+FIJ
hju2cfoGMSDDgPDm940SHEvc/e1gFAN6Xz3L2ZRZjMyfPT0dZAZk/9t6j+d5
IW4wnk5uyGRA4zWdS/LEQnQmcJiX0df7CZ6x9XIpRAENjRZSDgNeCIb1enwu
QP+zsZXupQxQUeu7Y7mpAJ+V0vztyhkwakJvrehhouxqubpJFQP0/mzbaExj
Yi95NFe9ngHL5fPDsxpM1JhcdJNuYACXVck43897GLtfYKfoIwZcNeufsW66
h2PXZQe5WhiwS06goj3uHv7/f0jYrl/x4bLtPfw/4lgxdA==
     "]]}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->True,
  AxesOrigin->{0, 0},
  Frame->True,
  FrameLabel->{
    FormBox["\"Time (\[Mu]s)\"", TraditionalForm], 
    FormBox[
    "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
\\(2\\)]\\))\"", TraditionalForm]},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{Automatic, Automatic}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for co-propagating case.", "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->131368739],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", ".5"}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".5", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".02", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"sol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", ".5"}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".5", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".02", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdmjGoLEkVhp9iomJmLBi5RgaaSofGq6nRghoqGLliYGBsYqKGO6Yb6CB7
Ey/XEi4X1sFLKa5Syl0KoXBLqpmqLjr07cz8B843yduP3umuN93fq/Of0198
6/vf/M4nX7169ZVPvXr18Z/Xz8u9/uu9L/zsozff+7fxD77+mb+/84N/Gb/x
7Z//cXsjGX/49uff/caH/zT+5eXzD+M3Lyf8wPjTr8/2+pTGr0/2+ox/M/7x
x6d7+6/GX718ovFHlxM+G1/O9s5fsP6T8Zcu630f63vCeh6Nf3S5/p9wvQfj
31/O/wec7w7fPxr/9vL/v4vjB+O3LvwLY35+ej2+eD4YP1zPj+NH49v6jO+u
6zf+3/XvZ/yT69/f+HPX3wfnezL+8vX3xflPxr+53h9c79n4dn+Nb/ffOFyf
D+PPXp8f429dny/jX1+fP+Pb84n1JuMfXp9v49vzb3z9vJDvv3ZZ9+8W+SKW
L2L5IpYvYvkili9i+SKWL2L5IpYvYvkili9+/Sdj+eLX94T1PBrLF3+9B2P5
4s93h+8fjeWLP34wli9i3RGxfPF8MJYv/vhxwfqM5YtYvojli1i+4Pczli/+
/Cdj+eKv97zg/i64/8byRSxfxPJFLF/wfGK9yVi+4Plf/P14Id/uV4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4Y35/ev3zMF7F8EcsXsXwRyxexfBHLF7F8EcsX
8e33NJYvYvni138yli9+fU9Yz6OxfPHXezCWL/58d/j+0Vi++OMHY/kili9i
+eL5YCxf/PHjgvUZyxexfBHLF7F8we9nLF/8+U/G8sVf73nB/V1w/43li1i+
iOWLWL7g+cR6k7F8wfO/+PvxQr79+xaxv0TsLxH7S8T+ErG/ROwvEftLxP4S
sb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKx
v0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/
ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsL8b3n7j8+YH5IpYvYvkili9i+SKW
L2L5IpYvYvkivv2exvJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/vDt8/GssX
f/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lYvvjrPS+4
vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLd6IKEeS6jHEuqxhHosoR5L
qMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuo
xxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jH
EuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHjO//fOEX80UsX8Ty
RSxfxPJFLF/E8kUsX8TyRSxfxPJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/v
Dt8/GssXf/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lY
vvjrPS+4vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLf6OSO/ZOSXjPyS
kV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y
8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktG
fsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOQX4/tfXa7zH/NFLF/E
8kUsX8TyRSxfxPJFLF/E8kV8+z2N5YtYvvj1n4zli1/fE9bzaCxf/PUejOWL
P98dvn80li/++MFYvojli1i+eD4Yyxd//LhgfcbyRSxfxPJFLF/w+xnLF3/+
k7F88dd7XnB/F9x/Y/kili9i+SKWL3g+sd5kLF/w/C/+fryQb3mzIO8X5P2C
vF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q
9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvy
fkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5H3j++999+PPf80X
sXwRyxexfBHLF7F8EcsXsXwRyxexfBHLF7F88es/GcsXv74nrOfRWL746z0Y
yxd/vjt8/2gsX/zxg7F8EcsXsXzxfDCWL/74ccH6jOWLWL6I5YtYvuD3M5Yv
/vwnY/nir/e84P4uuP/G8kUsX8TyRSxf8HxivclYvuD5X/z9eCHf+jMV/bGK
/lhFf6yiP1bRH6voj1X0xyr6YxX9sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2x
iv5YRX+soj9W0R+r6I9V9Mcq+mMV/bGK/lhFf6yiP1bRH6voj1X0xyr6YxX9
sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2xiv5YRX+soj9W0R+r6I9V9Mcq+mMV
/bGK/lhF3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb
8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D
3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I
+w15v6GfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKf
vKKfvJovfj2Pxr6fvKKfvKKfvJov/vtHY99PXtFPXtFPXtFPXtFPXtFPXtFP
XtFPtvUZ+37yin7yin7yin6y/X7Gvp+8op+8op+8op+8op+8op+8op+8op+8
op+8op+8op+8op+8op+8op+8op9sfHuf/Gy+iP37/GfzRezf5z+bL2L/Pv95
8e/zn80XsX+f/2y+iOWL2L/PfzZfxP59/rP54tfzaOzf5z+bL2L/Pv/ZfPHf
Pxr79/nP5ovYv89/xnvjZ/PF88HYv89/Nl+wPmP/Pv958e/znxf/Pv958e/z
2+9n7N/nPy/+ff7z4t/nPy/+fX67v8b+ff7z4t/nPy/+ff7z4t/nPy/+fX57
PrHeZOzf57fn3/j65wv5Vg901GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVY
Rz3WUY911GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhH
PdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhHPdZRj3XUYx31WEc9
1lGPddRjHfVYRz3WUY911GPdfAHf+jMD/bGB/thAf2ygPzbQHxvojw30xwb6
YwP9sYH+2EB/bKA/NtAfG+iPDfTHBvpjA/2xgf7YQH9soD820B8b6I8N9McG
+mMD/bGB/thAf2ygPzbQHxvojw30xwb6YwP9sYH+2EB/bKA/NtAfG+iPDfTH
BvpjA/2xgf7YQH9soD820B8b6I8N9McG+mMD/bFhvoBv87IN88oN88oN88oN
88oN88oN88oN88oN88oN88oN88oN88oN88oN88oN88rNfPHreTT288oN88oN
88rNfPHfPxr7eeWGeeWGeeWGeeWGeeWGeeWGeeWGeaWtz9jPKzfMKzfMKzfM
K+33M/bzyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3z
ys18Ad/y5kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R
9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy
/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTe
n+YL+DZf3jHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf
3zHf380Xv55HYz/f3zHf3zHf380X//2jsZ/v75jv75jv75jv75jv75jv75jv
75jv2/qM/Xx/x3x/x3x/x3zffj9jP9/fMd/fMd/fMd/fMd/fMd/fMd/fMd/f
Md/fMd/fMd/fMd/fMd/fMd/fzRfx/wELeC4L
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHf8V2P7wD/nnE9DqaRdSDIqMkNmZITsEBHKLlKkSEayIqth7x2ZFUmI
hDz2yJ7ZGaGMrN/9/l3v8+rzx/W6r32f+5z7en+/vq+np8PAE/cdklcqldfq
VSpFWjdNgo3ePsk+SVZLsnmSapI6rpuZUz/JCkm2SrJNkgZJGiZpkqRnksb6
tjZvX/uubq+6SbonaZSkR5IVk2yn3dhe+LZNsmWSeu7JuoX1K7kXe7ZJ0jtJ
a/W2SfbQxt8qyc5JmiVpnmTXJC3180wdkvTxzJx91SR7JVlFfQf3a2qPnZKs
rOyknz3bue9e6qu4X4skvZKskWQ/9zvW98477ZhkzSQHJNnfPHxrJelrbIMk
GyYZmKRTkn5J1knSOUmXJIckWT/J4Um6Jlk3yXpJDkuytrkH6e9vzcH26mxu
V/MPdG/qBtiX/TdKcoTPcaT2xp6B+7G5Z+pWift0VJKrzCVvE32ZcfIGWU9t
ob6p517LZ+nudx9ciW+/hb7u1tVRH6TNt93F904ud+j4StxXdO4Sd5M7uo1+
7BMrcV+31sc9Od1e3Efu6rYK+rAkJ1fi7m6voDc2Z6j9e+g/ST++hvobGRvq
vsSG26unwt3jDnKHT6vEneulzf3aUd9IV+ymriOsPcGzb2VOM+tHuMcOrtv7
/C08dy9ll5p30dJ3c5o9iO+WZLT+3VyZL+4795l73dsY/rMrMSt76t89yZmu
bYz11reb/j2sa2fdHup7afOt63nOvfUzv2PV8e3jWs74GGu5l1dX4r729hnY
E3adZx1nuMAzjdNmZjvo66PsZ9551vep2ZtnYZ77WouvfU0e6+qVmFXu/trm
9XXPvvovqiznRUe/Nd+Q736xOQfZn+c4N8kxlZgt2MPsX1JZzpF+5sMR+HBZ
kkMrwQuYcHglODDAOLHLkxxXibm73tpL7X2FOdROqOnR356Hmk9uybD++rqa
S811Pi/7bOx3OlKBRTBooM+1gd+QnKMrwQueDTZsZg96dfM9HGPdRPfb0J4D
lUnG6fliJe4GvTex/0DzJ9t/kHswv6ckuSvJjT4H/LnBnNLmnjKXt1eCJfBh
SJKb9Q9xLfkEI05U0G81fpP9hhi7xXWItcPMhz1bmDtY3zD3Z+/tKsGzHtrD
PAeMuNtz3WlOT2PDte+wprRLfo0wb6Q693R8Je4adw4WnWr8HtdT9Z+mPsXa
kb5vvv2Vxu81Z1SSqfrgFCy6Xz/2fUnO0A9PmE9m58IkDxo7UznDnLMqwYCz
lYf1jTbnQe2Hamp31wdTxljH/rtah2+6fvRztGdWYkaZ1fO1S+7ghxuPuGLP
sHasZ+TcvTwX9X3sv5d556iP9cycfZz5s6y5wFhpn2efC82dXQnuwBYYw9ww
I88ZG2ec7wtbnjLviRr/k/r66hunHx93Au7AkEPsgT7HdzjKM8Id+HGFcWqe
US4zTu3BxrlnnbT7GRtv/VzzOcsAz/O862QFnVmfYN48dephVH97sPcL1nA/
Dzd/gvKsNVcZP1J9vvb/KsGaaypxz6+0V5v0C1PvJK2TvFIJJsJb7N2StMpi
PpmTDyrBoOvNg3Ew71p98AcOvV4JNsEOePFmJbjzmnFi99hzpPXH2vN46260
5g1t5AR9N9pnsPuiv1oJLt3qnvACbsAfuPKuNnKyvtsqwanblTvM47wjfL67
tN9Xp264e/AsQ9yTXm/rx37LmjutO8U+dxkfas2H7sP7YFaZva8rwR7mDu58
ZLzk0b3asAEewA7uMEy6T0H/NMnnSR6oBE9YR6uT84n9HzCvrMc3Snu0cXwf
u/dCe5Rsekj7S3We5xHPMtZzTasEl6YZL/UvtaeZ91WSb6x9RN852nybd/xW
MOy7JI9Wglkza/RHrf3WFXuB75va781/rBI8YoVJj1eCR7PVfzQ+Sz8+5pc5
/KsS7IEtTyqL9cGmOUl+qQQP5uibbXyx9s/WXaR/tn58493/cf1PJ1liL3TY
A5Pgxe+VmH948Jw+7N8qwSDkCn3PaP9Wc/7va2omuM/T5s5xr6ftXTLsOdc/
fR/ok+1D7A/fETEYxO84f6tz/5kVZuRKfeTBKPj0kvn4YVgmm5jxf817SX3D
FPunEhwgTh48gSUve8aZfl/isOI1ddY8C16h32jNdfaBl0f7TFe7L89VteYN
z8BZ6mWxcs/qZ+GHe7eYUzcLG6mTRW2Rxb70esda7udN9i73uNk67j88eS/J
ClnkU9cgi/Vdn+U2e/G8//jM1DTMImezLPbmHMwI88acwCsY3yiL/Dv1NcmC
U3AIBsAC2AEfPqsEZ1bKlsfh1wz70o/axlnUNM0ip5k2tfda95H5UyrL92O9
xzzy4RPM4OfSF5XgBT+rSvbgW+izfe7zPWQNsXZZPFd5buyv7cPKz8NPreMZ
F9rnQdcWWcSmV5bXfWX/acY/9xnYA0atmnxLKzFXzNSj+ss493ORQi4+GPFT
JWZ/kTnM6Q+V4MLqWcTJ65jFHP9ofJbr9/b40T5lffuU3yEL/0/ai4zTD/78
rNAbHyxbMwvfHM/yq358T6njWyuLnF9rfOSvnfydfBfwZ50s/NjcsxW9d+tm
wbQ/zFvqe8PXOQsf8qy+hX5b7gTs+dPaP4zP0wejlino8KlrFjY6c8tcbSVT
NsiCWeiszBHMgT3/VWK+/jU+3xz6dMuCWbBloyxyyEc/IgtmrZ9FLjUwB97w
xyu4lFtfR2bUlRd1nNnNXeu4Bwwp57mQTX96zvWyqO9ek0/Oplnsx77sBb84
/5ZyrL6+etbDMPQttBv4ruDO1ur4Vnaum9kPDhFjrmEAbGnod15RHjW0toGx
bc3rkUUOOrXbqeN73+/7p/elZxacWklpIo8ay64m+nrai9/FPqi5d9u6d1Of
n3M0z2KeeyVpqb7QsxHbWRagN1N28h3s4HM0NaeFNcR2zJZzsKl5rdyD/ruq
t1JgC4zbxWcgxn8TzHUu4FDbLNj1W5JnkszNYt6WOGfEYd0e5mHvnmSvJKtk
wZ1V1eHSalkwob3+Rfr6ZdGvk7ntzCdvnyxyYAx8aq+9tz32NJ86nrmdz0Ee
+ftmwY6+WbDmV5mxlvYBWfBovyz4tYY2KxzjmeDDIT4fz7nUHugHuQ+1fdRh
YNmrg33K/X6x9iCfYf+aPdkHtnTJYqaYJ+a+i/uXnOrss3BH+xs/MgsWbKyf
GT00CybAo5ILG+g7XP/61v9eWV63TIatZ85hSQaYS/2fMoB8uDNQ/4ausOsY
n50zbJIFD7CvyoJX5fPCMJ75X1lGj4r51MElfreo2gv92CQX+00PzIJD8AOO
HGfO5gqxwdYWxnjX/Hzhe9QxZ3PrB2vDLJh9gjqxevpg05AsZor5aalvmyRD
s5h75h/WwIXts+AM9jDj9FnBum2tbWD9NvqoOcm6bcxtUNOrkTr9T85i7uEA
nIAZI7WRlfWdkgWvdvDZelpf32firKeZu7N55KxkHvrwLPjF2UeZR34z9V72
aK5e+lpYM9p3x98CmJnzs5jTXfQThyP8DQGutDJ3V31naCOt9THze1jHChfO
rrHP8mzH+y3PyYJTextvZ82e+ss4NmxhXrlra9mrt71XtQe5zDIcWcNzddDu
41qeE6aVfOqjjx6rGbvA/P2NnasfGWsud39cFvxC1tTXUZvaC10P8DtyD0Z6
jr6eZax92ePgLFjcyfOij1dfR5uZZLaPzoJJsKO/cpk+uAMzrsiCE4fpu9Q9
ypzLrTtEfyf9+NZ1v4Otg1cTs+UswoZHsAT+wI1rfTb4AGdgzFFZMGmgdQPU
J2fBiuvN38j8I9zncHPZr6v2puYeY+7G9u+mbxP3nZ/kSntNdr9B7gdnmFXm
ejv3P8447OFuHq/cqK+MYd+WBSPgCGy6ydwTXLdUh08319Sz74lZMGSo8a31
baVN3a36yj16+KzM871JTvX579C/rXlDtW/XJgdO3JkFN4br4/1t5pnxwaO7
sriXI7K4p1PUR5rT07y7XUcop5hP3k4+G3KPPpgzymf/q0j3pZq+ZTV8pye5
zxj2VH0ln5hVZpBZfEBfyZ0ztM/MggNnKQ/pu99eZc6D1pxhPj6Yc7Z1o9z3
dG38D7uOSTIti/l8JIt5PS/Jo/r21gevZrhiT7cWe5bnuNBzUb+v/fc0b4z6
OeaRv7+51Mx0xf+Y/nPt87g14xTYclGSSVnM0gDt2caZe36fhBcH6LvQHGov
Vp7QB3/G1/jRn7S+v/3mJLkkC1aw9lMfr36JOutTSZ42To8D3YPeh+gjxl3i
XnFHYNmEJM9mwYQJ+q5w/5J5E41NUJ9nzlzzntPPu4FX1yV5JcmLWbDj6iyY
Mcn3Bkde0Pe8/sn6WWEMPyP5OcjfDK7KlrMH/Sh7MlPMD3NzTRa8Yv9jfQb0
V7Pg0Q1ZsAaewBfYcEsWPHmtJs7clnN5nbWc5Q3jN1nzhvqN1g5y3+utu0F9
kPnkwqJ3s+AJrLlTG32Y/tt8Lnh1q76TzPnA55ric6K/bx/s99yL+jftRY+h
+tDfyoI/d1l3p71PNk7NgiQfug/cYQaZPeZopL4yxn26V/lIH0yADzBmqjHu
G2yCI58m+dz4g/pPNzZKe6pxfKO18X+S5DP9Zf+P3YNecOghZaE+uPOFPrgz
xvM8rO8sdWJfZsGQaTU+cr9K8o3vAmZ9rX+G37BBnv4bPwumfJcFy8aaO0P7
W23kXH0LfOd8Z1j0mD1mGj9PH4yCeY+7wpYfanzLspgl5gr2zNYPUxZnwR0Y
AVN+0Y/vYnMv0h5vXhn/yfhTNXU/2hv/0/a81JxLtGEFnHhWgRVXqP+mDZOe
sQfr5fof81zfm0+f35Msqcn91X2w/8yCQc8r6JOsm6g9z/WPLBjzgrkw6n9J
/s1iZphrZojfd/4yD7bAkpeyyv//j6ZezoIJV1k/XyH3Sn1X2/cla8ual7Vn
es5FSfI8OPWagn6D+ddrv2oePn5PPcbn2jD5/k7rP1mwiOd/PYs5fztJvTxW
ZnuBfnyc9RbtN5U6edS/Zo9qHvFb7fWGvtfd63Vzubvv2H+FPNZ39L+rXt/n
WOD7+dt3BrMa5pG3WVqLPPZg3pgv5gzGwb5GeeRjr5j0JnlwquQOKzaMgAlT
9d2r3TaPft+YR88p5jfNIwfGfFrj+8jaD6xhT/a/W98n5q+cBzta5cEauMEZ
Sh8swt88D37BP9i0UJ1ngg+r5KHznDPsgd7GOuo/dU8YWPZifcD92Odha9v4
XC3yyFvoPrAFTjHTzNGv2uxfcupbn2u1PGLc1Y55MGGx9vfGYQI8ggvEnzAH
H7EOeeTTZ6Z1s4x/79o+j7wf7fGYMepm6yP2s8+x2OfHhktr53GOJfqIrZnH
in+tPPyLzV+iv2QKXFqaZJ08Yuj8nOR7c+9gCPz43dxOeeRgd86X/01xqb15
1w/5PcqaZ9Xp0yXVrJcHv5bpg1HYXfPwwSBmqr5zxbwz6/AKFmVJuskk7JfM
GZhkA9mwfh59mDtq/1bwzdf/r7EX9LM3rKF/2Zf1vyzmkzll9rs7r3VcYQT6
pnnwqpBZuc+6zPPB3rp51NcxL7dnpt7Nc2+VB7Pqmvumtfi2qInhL3lH3dZ5
vDt+NjOfzZLsZL/6xuBIQ7kCpxrox7eNtQ3kU0Nnv5F1rI2TbFdj98jjO3LG
dZPeU06tZBxmULO9tU1c8TfxOdiL38voua3PAodWMp9Zbu48w4Hmnq2Z/p09
L/wq+dRMH32a+jy9zG9hbEdrkB3MgV27JmmZx31uVaO3tHYXV+zWSXazro02
/GmtD71dHiyGLW3Udzcf1mEflMc8M4swCW6smofspQ/uwIx98uBEe3175rFH
mbO3davo/8Ze9CS+h8/Qzn6rJ9nX9QfZBUcOyIM7v8iSNbX3T7JGHnzqqL5f
HnXo/TxHp5oaONTHPTq4L3th0/tXebaW7+FAe6AvkWvE+rrvGvZhj9/kEfOz
SR5zi32w8T+8m10U9P7qh5gLO+DG3+bCqUPN5W5jH6a/q7XU/S4/1tdPnwH5
cpv8ZTJqoyRHJjna5+zmmQ70XOTApY3US54dkdbJeTBuY89H/X8yCt9S+cw7
g0XH2h9GbZ7H7xqbqQ8yltfkblqTg17+XtLdmu7WocOgwfrgz5b6WE9Qh0Vw
B7YMUd/anK3MY26ZR+byROMlg7bRhgdDtetZSw/YAod6KOStaF5D7R7mnOQK
g07Og1HoJad20AcPRmgPN6endlPjp9T46D/MveDsSHN28Uwt9HPOU/Ng0s76
djJ3ZZ+tZOTO1p7me+Qdw/pR+ukNn2DLbspofafXxFu6Yvc2r7X6GdrwZ3d9
vdXPzIM38AKOnJ0HL/ZU0NuZ21Z7d9ezkowxjx6H5zEDzMIq+ojBr7H2hxtw
gVkuGdTHHOKr6cd3nn7sc42fY9/zzaEfszQuD37Bif31X+C6v9LRnPb23Ef7
QuPM3ZV5zN7fSV5IMj+PeYXXF6uvrd3PlRkcX+M7Jo8ZuzaPGT1YPwy6LA8G
wRr4coV+fF3M7ay9rnll/FLj/fVfnuQSex/s+z/Mb0C8ZNjRPhPPs6HnHKjA
rg088wB966vT7zjPspnv5gVzJxonb4L7YG/sfkflwayj9XXzGY72GY6sed9H
aHdzL/KYYWb3jiTX+xyDlON8npvy4NLx+rtrww9mlFk9wfgWridYB6Nu0b7R
+sHaW9XEWU+0drB9TnSP2/Lgz1B93EPux0V5zPjJnmOYuUO1b9dHHO7cWZMH
Y67zPXDOU8yBQfBmSh7MQnbUd5c55N7tOsL+2xvbQR8x2HSPtfDnNH2n6ttJ
Hwyaqt5L+/48uDPaFR/MeSyPmbzAGLw5Q3lAH6x5UN991p6uH19vdbjyUB48
K/fBB5sezoM56Hvq30MbxszIgxHw4hF9060p2XFOjb23Obvbi/1hw3n2YO3j
2c5znWmMun1q8h5NMs1nGeO7IH8/3y3v8d4ks4yV3LlQm3szOw+W4TtAHXlc
Hzlw6Ik87trF+i4yr68+ePRkHlyAG5co6E+bc5B5443NccXuZy7cucy+PM+a
2k8bhzMw7HJXOAAP5rlO1P+sORP1H65/Qk3sGXuTMynJ80leSnJNHuyCFVcl
eTEP7kwyd7K5k+xDj/7aA4wzn8zy1vY50l7ti/S7dVp/SHJ1Hnwq97tGG52Z
fDmP+WLeTtEHm17Ngx9w5IY8GHJzHpzB95p++hxr3SB9Zf312tS8bt315h6n
Pdg4vd9Uhyu3er53tG93Hab+Vh4su9Vnu8UecGe457nD+tvNu8WeN6u/aT65
75lP7kn6S9/J2uhv24tned9a3h8zzJx8mQfPYM49yof6mBXYw7yM0EctPIAn
9xuj5lRzYconxtDhxsfmkPupfuKfuT5gbKq52LDoQeVzfbybFdJdWZAHm4id
qb5Q+yzPhm+6Zxyjjf+LJB94jin6zjYPdnybB7Pg0gx7fO06QxlrzlfWTdf+
xjgcmmm/R42dq47/uzz4A69hzvfq+GAMDJlt7vnG/kzyXB4zdqF55MOgn8yH
J0/q+6Gm3xP6Fyd5Kskv2tT8aA5+mDPH2Pia3Kf0z02yNA9GPKvNrMOhy/Qv
1X7GteTZE+53kXXPWDvPc5Xnw55oDnv85or/9yS/2vNp/SXnZvqeFvmOnrMP
v0Py+yO8+i8PlsEQfodaZu4LrjDqSnPnq883Tp/10937Kw8m0QdWZcn3Sh78
YL1O/Wpz/ud+xPiHz9dql89xnTHuPj+LmY28iB4ls16z5xt5MKBOEStMqVuE
v1oEs9BZbzL3DXV63GjsbWtLLizQV7+IdYG1t5hXr4j1beuLIvpR+475rZJv
1yQti/i982jfwbvmwCL4BINWLMKP3bCIecTPTMIjZorZamys5BEr9kd58ORj
ZaUifI2K6FPmNCmi5kPzP/I9f2Id+9/l3h/rb1rECqdWLoIrLYpgEOxoqQ8e
4YNhzYtYsZsVUYvdpohzwI+HPdsX7nNfvjyP9X7zyJ9u3pe+1y/1ty7Cz/4P
ud+D2m2LqIdBzAhzy5zM0EcM7qxSBOPQWUvmtSsiD5Z0KIIL5DBPqxbBEzg1
S99j2jO1yV3dvB+V2fZbZO5qRbCGGHnwaI0ict7zrtyh/+ckHYtg0c/6Ftuv
5Nkvxn5WX9MzPOKZ1irCz/uAFfADnsCodVJsSR4cwS71JeavXcS6xJpOReSV
9XPV6dm5iPWPJF3U52mvVwTbYA3s6FqEvm4RcWLMXT1nb4MiWPNPko2LYFZF
H/Ulq5ZZi/9F82ENXPnX3GXmv2yP/4yRU/aFX5sUMdPMdtXZxoZDFflG3qb6
iHWzFptnHlAEH6nfzJy6nmuLIphVlVXom2vDmbrGc3u+ag7+7r6neZ63brGc
SVsV8e7K3wlW0N7SfcsY/GlQxB2DPTAHe2vj2NvoK2Pcxe2LYBAcWVG2NFJn
7WG8kZxqaGzbJNvpb2yvBj5HE1kFs5Ce9oc1sGOnInjSTKbACmJNFfQd1amH
Wx/at7FxeEI9rNqlCH4hcALfzvZnn16uLey5g31hSwtj/A2Lv1vx34awCA61
UtB3S3JgEfPG3MAi2Pe1uei9i2AMcwmDkD31wRfYsHcR89vOHgfZbx33gYH0
WiRLVlXoBX/Q99Lewx702t1naOs+/PfGPkVwA2Z0VGDRYrmzv3afIrjWQXs/
dZ5pqVygxy/58vOzwo7V3QvW7au+us8AD9u7L/UHuFLb1z1+ko9L5BW9Nypi
dmED3Dm4iGdA+vlcv8sh4swkzPlLH9zpX4T+hxwi53DzDiuCWV2tJ++QJIda
u56CXnKtq77OPgdcHFgEFzZMclQRzwtn/pZx62vDkaPNhWHk/yufOCt9JhXB
l4o1Za/M+k1dc99hX98nDNrM+LGumymwBwYdU9ODn0sd/EbEjjMXBg3SB8vg
y/H6sQcXwSL8MIcZZr6YsyHGStZsrQ0jYE5D9aHaJ9hnK+0TrUEa6IMxPaxj
/3rWbKt/mCsMOqmImT6lCNbAjhH6muiDc8NdsU+2dnvPyLnh8cqebUf7N6rJ
Y4U/vTx3c/PIH+mK/1T97A9vTtNPHayCT/weyXwyM+cmGVUThzWw5AzzTq/x
j9bXQl8v/fhgFUyABW3tgX5mET9TtvCsMAl+wJGzzKHubNc9rW1j7IUky5I8
XwSjersn9WPM5yztPc95rn0UdO7b3uaNVacenrWzB3ufbw0MWs38vZVzrOHe
X1gEvzqY20f7Am1kDX1875X8Hgfo6+ieYzw388mcXFPEbMEoeH+Qa8nofvrg
xaVFsAnWwI7LtS8x71h7MncX1/Q7xLzO6tRfVgSH+uujvpN5463Dd5h7wSJ4
AjvgxmS/Dxw5yvNwFrh1uHUD1Nc33s3nO7II3lC3ibGjfJZ13W+CPai/Qt9h
7g/PjiiCZRvbj70mmn+t+/A+mFVm744i2MPcwZ3rjJc8Ok4bNsAD2MH9hUmD
FfQbk9xcBFOGKOhbmXOD/Y/Xf5N+fN31b2kM3/XufYu9SjadqM1z3Ko93LPA
hh6ebZhC3rbqt2kPM+f2JHdaO1zfdtrcT+7fuCIYdncRXEN20NdTm9q7XLEn
+z34FvBoivlw6VR9cAYe9dKHfq/6ztozi5hhZhH2wJbRyv36YBNcebAIHpyp
7z73KHMesG4XfaP044MhU91zlD3g0UNFzCQ6TIAXM4qYf3hwrj7s6UXMMLKX
vmnWj/HMnO2emhpY8rD9z3bf3bXpXTLsXNdHfRfofexD7JEkjxkruXOBNvPC
nBymD+bArIuKYMETfuPH9fc1Nk57lnXj9M92PdD68a4HeUa+Mz9zYMQlxp9y
vUSBJTDryZoefe1Zuzd3EB49bf6znoUzzXNltuHdocYud51rLfYz1s9x/8Ot
m2AOsZJ/l+v7X5Kri2AXP3e401cWwTVqB6g/pz3QnEmuR5jPz0J+zvK3hKuK
4FnZ92ptdNj0UhFzxEwySy/rh0nwAC7AEVgBP2DOa8ZusM8x1hynn9pXanqU
NTfoI/dY/fgGq9P/9SL4AmfgEPx4WxsZqu/NIth3i3UnaMPWkz3PO+bebh7x
Ia5vWneHue+aR/4w9TvscZI6vrfsxbO8Zy3vj5n6soj5hVvcySnKB/qYRXjD
PJ6ij1rYAFvuM0bNSHNhxMfG0EeZ86F5U4196kqfz6z92Fx8MOcB5TN9C5LU
r8b7fdDYGeqfa5/pmfBN85xna+Nf6Bnu9pz4zjIPRnxTBL/g0XR7fOU6XTnH
nC+tm2bddP3w5lH7PaJvrL7viuUsgt3wZ5E6PljCXD9u/nnGmGXm6M8iWDPL
/J/MLZnzhPr3Nf1m6//JFaYstu4Hc57SP96ci7WfNPZLkqVFcAZWwIC56jDj
UmPIr8Vyjsyxfrb7jbOGPBjyexHMmqegTzBnrnvO1f+bz/GUffFfYWym75F3
NtF3RT/+vRhsmp/k3yKYBUOe910+p846ydwrzZ+s/bx9+Ddn/G4No+DSi0n4
PyCFQa8o6NcZu7pmP/z/FcGfl2r81xrj/vOzlfnIqtHr1SJ49Kq9Yc0bSarV
WGFCnWr4i2owC5215NMb+q7XT6+3rC258La+etVY37b2TevrVkN/yx55NfqQ
B3+YS36PPMp3A4NWqIZ/gTn4YBYMalhdbjdI+vv6mUvmkbn6IkkjYx8o75vz
URE8uUe9STXsFavR533jjavLa6fo+9iae9z/Tvf+yNhK1Vg/SdK0GlxpXg0G
wY4W+rBLhjWrho5v5WrUYreuxlm+8lxf2ONjv/MnylTzv/Ls08wjv2U1Vvyt
quFnf3jWpho1XxfBnm/Ufy5ibn/R17Ya/h+TrF6NmZ9uLvXfmveIertq2N9p
l37sVax/3H6rVWPuvlfQ4c6j6t8p6Kum3PbVyPvB9/WA55mlj9gdfhvuCMyC
VWtUg0uL9f3oM5TxJz33YteO1Yh1qEbumtXw807gBiyBLUuSrF0NZiFP65uj
Tf5a1Vh/tWadauTw7+n4N2v8m5Il1i61N1zrXA39We11k/1HEdyBI+tVQ+9S
jTgx7ir3lrvPv3OFO38XwaG/rGOdr/9P62AdPIExcO6fIhjzrzXkwTHYUpEv
5MIe7Fx+wJE6zjtzX985XkHmEIM/sKKuvMAu5NCL7sv+8KG+uY2d0SaebUVn
m+8MDxooK8gG+MIz8bwNnesVfX+/e17miBllZpnBlZ3D5s5oC2Ps+ZG5zBt5
zFUL5+kza5o5a62MM1+tnTHu7Wre3e+8y8xCW2elnTPW1rpWzn5r84h/W3M/
OlWjxyJniLu/uvOxtvdrHe8lNneQGejgve7ofV7T2Jre0dW97x28e9zBTv57
6fX8+dXZ+9bFGPss9X528R0vdo81vKPUruud5N5tkNb/A/T4ziE=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJy8vHk4VV3YwC1kSIMhU4ZkiAYNiiK5RaZKxqIiJZQyRFJJVDJWKBIiIlI6
5jllzpjhHPN8jtk5xsyhb+1zvH98Xdf7z3e93/PXcz2/az/LPmvd92/f99pr
PzvM7fUt6eno6PYz0tExoH86E5mHDMrxYEp/mlXQAgd5z1TtpyZ74f8rv/oP
d13j+Wu8YI3vI9H49Y00ruhJ401TNM45uMYDafy0ECuVP99jQuXp5iep/ORe
QSo/qma5AeMp5XpUrq0iPoxx4y8/+DBOucp2G+OLX0/PYLxr4VcRxm8Ih9zH
+NZPjHaGiI9KTV8WQ9zgqmgtxu1n7zwwRtzGBffhEuJb1dviZrBxVEuT7yJu
IIyfn7LEwYf3ydKsU70gpDUXLVWBByW+K0yJ9jjY5tA96YX4fHiibGU1Hjh4
P9hvj8GBAvsXf66ZXujb18KZ1YGHn0d9Z2Pdk4AUQGk4+bcXtksaNRbwEIAz
SHXSpj0Fkp15xoqliJBacJ3zby0BlH7N6rd1ZELyMkuA8hciNG2hFJulNkFF
4q8os4dFcNfHKkNthQT74/aodP1qg7asfZmm5XWwfGrl0GLvANxc7V+48A79
DgeH0bKyTuh4NWrLy0MGYTjx5MBCP4iwOY20vBmABDKPXdqeMWh3Ih07azMC
X3vWh4c4kKHnY2VcXxUFrkgaRaXXUMBZhXS15RUFZD6MrsRqkOHF3P0dQsLj
8CYMv3SJfgwy4zZPu6SMAuHc+P5ZdD3zAh+Moev7Ltm/90LXl9fzH32Gxhc2
TwtPQOP7ths5V6PxJ+f+Xr2H7ifmAX21VsgAOHV+Y8tA90M8k6xghe7fKOKP
7yS6f7mKuwlS6P6drzmvcNe2wY/fxiuiFXWg6y7ItYM4AGOzQxy30Py03lud
9kLzM+vP9EkbzY+niX8ASx0BIkye6gl0ZsL1lycVNNB8FnjJRxah+f/m1nHh
AZr/j60H9pWi+de9J3g3G63XRwVz2Wy0XqGFw1VqaL3KW6tDsfXd4OuEF0fr
+6TQsBFb32D/3ylYPAS1VPRj8WCmKLCMxUOv/vYULH6kc0uXsfj5GTlBjZ9v
oU+p8VbA8yAGi7ecgD5qvEnfZqbGJ9MwnxkWn27nxanxOZdMi+frorXUeH4i
Qovn6xq0+NedosX/E0ta/E8cpOWLYDAtX3DVtHxJXMuvvAO0/Jpbyy/CWj6O
DdDyUT7w/52/V9fy99ha/rqv5XvbWr4X/uOHy/+LN/43/n/lpf9rj/1Y49Jr
82D4zzxkrM2bfj+NS6zNW/022jyzstLmeeYKbZ6N6WnrIrZqTl0XhS+0dbEe
3EFdR5P2SOo6Ps5lpa5jbMY+6rpX0x0rxPiO4ifUdecxaLLB4uTwqPNZLE5S
ZLR/YZxET7TD4opZPXQzFlePft18j8VVrZuxGRaHu/2kw8ZQHEbr7Z5lQXE4
93jw7U4Ut6r4R1n+KG7vnfn81BNx/b/TS99RnOdr5ih6fMCBdY7GFzYU5zt3
pBs9QXmRbPnJ5adrElD4Q4q3o7z4/OfSkTFuAkDDslhGYwq8pU8c2ofyyD/M
DXe4hgBHQrjLbldkQpJQ+INTCUTY1RXvZvS5CSwXuTY4mBVBhv+sb/Q8CdJ8
ziVq57WBBt6a0dijDppmhBvkCQNQ6Onx5oR3LxgMiXr0u3dCjc6ry62Lo2DM
sFkjr7sfXp/bNzFuMwBPy2KbhJA3mMPM5DxPj8BPucTCT1ZkcOTPzgpqo8A3
80H1A/HIY7kJL/8+o8Bg5MmFfmMyVLUMPdy3NAb7K4YeXJmjgMkZ4/GgwlFQ
rjMKOZVBAbZWklu6LwUCrAgvg/TJoFbjN3T52giw9L5pfmdHBl3BJ5f7aykg
mjwcILjSD/XHdz8ojBwAO90ayTp0P2//MIvyfO2FVwUfR+b/dsL8EPFcpDT6
7xrB9M1kG9CZBXdvFKkHK0WrDrPFAXhuxV90qqoJOoX7dZnwReDS93SsYnMf
3O0ibGjrJEBxt4vqfsUscHp/KGM5nQhDam+62gQJMKgr97OTMRXeeDZ83yhN
BGn1LZHELjwo+oraESKTwEvxqko1HRH6/J1GbWrwYNXJH8iYiIOkTWERXmh9
OxW9V8+heGCOOrJJ1BEHu0+tI8SjeDh/oTLRE8VPw6qUTr0VDoRyw6y3Io57
Oyt1FfHXFqcdG1G8nbd8WbiE4k1kGmwvIb4vKSXtGeLabcy5c4jjog64YDze
PdnKE/EIFpFijB/qIqubIH7s9j2vQCxfDjHozyNuY3KDHuO6pXd+vUD83YnO
HRivumBofBHxmYWy+LuIb3G7MTeLOOu53mUjxG05mzsNEed8cvosFv+czMq9
5xBX3FTvegTxSL3z+GnEU8Q/PsfySOHM3yVxxDeLzZCwPJIcbVvB8u5+SY66
EOL3TLTdMU5+SaHmby4+mxvLx6Bj/dT8rfm9uIDx3toReuz6PI3eh1Q/ay0y
YuOHB1V/xnh069ln/3947Mr/4rFv/3hs75rHlNY8prDmsVdrHrMl0fjGNY8J
89E85td3icq3mNE8VtgoQHteeFyhemyfH81jsYbbqR5rFHShekyOzEz1mPa2
LVSPPbH2+IFxqRe3qB771O97C5uf6SInRcxjeaoWNRhfYTl7DfOYTGGY7UXE
jS00Q7B1LLgiwYx5bNvHc7XDyGPOLtLZmMeWnfZfEkdxK7ZZONQeeYyQsXPS
A3GZAot3qchjiTbeIi3ROGjJ51mgR3EuvOEalwby2Isp0b/vHiTB9gqlurnV
XhjrH/7OgDyWoaNqbFKbAgN3OBv8JInwvnqyjL+SAH+6m9Va0zLh8nRVrUA8
ETqDLr83jW6CDQ+dTyooF8F6J/VXelMkUPbHC5z72AamTWZNk3J1cGXL1oaK
kgEIIx8wf3G7F1qkVY3GDnRCxvrHcmNto6C7idv9R1E/BNYLWJsqoXpsd1ay
0+4xaLZNke2SGAGRFX8O/otkYL6ww9ZxlALXnDdX3nlAgZ8inXe2OlOAJ3L1
64QNGeTzLr5oqBsD47m4JRimAD1n2x1/wihIC949ExRCgcLSoS9V7hTYK1QT
0WdGBiKeTQ5vNAJ/b23rLLpJhk43znn2Rgp0Mq5eNaQfAMvTEyWi8QPAlPD5
3RjymEth/OvSwl64NOUo1KfRBfviknWST5FB/2nKm4dC7TC5fkZO2K4eknij
hMb5BsFk/QOLp5QmYJE/+I5BqxjMWvhON+3sg20rmjHHpwjwJf7QFsaqLFAz
vVSlV0yE6giZKzk7CeAYf/jOY61U2NV0zGr5EBEqv/2qbySiOHce5ClrTIKA
M8ZTrxiIMJXjnFH8Cw9pLherQ74jL8UIEZxne+HvaJD5dxQPTdG+hwrv4UBf
mPnRBIqHm/cy/saj+BmJ+dkfdQMH33goTXsQnzWRkXNAPOuRSG46VueffMXC
hPjYYuEDa8TbOx8KaSL+629KKB3ilwovuNggzvLZr9cB8Q2+3Rn0iL84nv/2
NtaPKM4IJiL+Y0EmbD3iPgPrqjGesU58EIc4G/7Yd4zLiuv8vIV4yteDfDcQ
V3l9Tg4b5zyLBO4a4u6b6hznUfzHkE55LqP4tx0v7cT8Gew6XOSHOMeVG8yY
D0PS5yPPI+4cVlh9AnHnA1+NfiM+IPb4NJZfeSl1bjsQD1juycTyq7wtjozl
Y9z6Z1pYPu46+tSRmr8aH1Wx6zlZ3Tmw63HMF1OoPmyWeIFxLR02egnELbV0
+v4Ljz36x2P/01fuWfOY1JrH5Nc8dmvNYya9ND4VQOP7uWkey8yjeeyvCc1j
LLE0j2nXm1I9dvw6zWPmXoJUj23kMaB67Ob0eqrH0p5TfmM8MS8mH+OJKgZU
jw2PC9/E5ufPhnwpzGNSey2rMR7d/e485jHP+3TfLyAO4iYvMY+pzR+Nd0J8
ZUHcrw+tO9fmLXcwj+298LJ/B4pb3uOChtrIYx3uE4efIl424/U7FnnsZVmI
ND/ymJSqlNni7164t00qnAl5bPwtyz4B5yTIOCnjXok81s1bGU23lQB+cpkK
+uUpsG/CKbNxJxHU9Ks8PpYR4ORBSbPq8Ey4+ss/FhdLhED+XxqGIU0Q1XzC
3UCoCLiVNepUR0mw8/YGnvjnbcAlHp28jVgLymVV3+3TkJ823tfqP98LGx0c
N2a2dMDeFKvZzsxRMPxB6C2N7oeKF8e3mrMOwI3PhkoZu1Bf2HClN35pGK5Y
n+BKOU2G3wX3jGpXUN83hVt+rkaBWYKtQZkFBUQC50IPPCND4JKcGiVyDMKY
b9hFtFDAMTuie3hkFLok+1gKHSlwKTLmdOsdCgx1RRhO2pMhWYXvPKfWCLDH
lmU0W5Ih+GH+y6/tFBi/xOmUxjwABenZHsVJA2B8qGh8494xCF4dTvVu64Vw
1WtSfyO74NvVtqxHtmSY+7ThxOy5dmgqvyejW18PttGswlHKg3Bs1swhi78Z
NJudpg8PFkPD+9vK4ep9sJtMkK7f1AjrmCVF8wOzgW7e19uqmQhXKq/ahMsS
oLPYmYkhNRX877GIOyoRYauKDdulYZSPvR0ZnvuTQZiLu0aShQiCNQE/Zevx
cPAawOceHMgKXvTdP98LmyfsT/lXojrnWA3bNg8cxHUe03k63QuVMYxkMtZ/
bbJ7cdkGB0yDBDUTzGNcUab+iFe571bWuo4Dz8pJz22IZ9S54B8hLnePSfQa
qt94NG8PbEb8s75y6BPMJ4GF794inmt58AUH4hJpYn0+iN+b72JbQfzjjMpX
HsQF7dSu+CFed/ZCEQcaf3x5ew4v4tpsu9yeIs4jWMj/EV3/9dlPaU7Es/Pk
/95B3EtU6V47ivNY1tQVZsTtL9b2WiD+8qrhbhbEO3d7mq6gvPjNt8iA1XWq
965xOGB5vX37N6yui/0V0oHlV7zyFoNdiM/riQtg9Vu88LFJLB/d1530xfJR
uDbvLpZ3nPdY6rDrJQxufJRCfAj0OLHrp4QH47E6sJ+bw+ww4s9ymL9M/4ce
y/vHY1JrHtu85rEjax5TXfOYYDeNN655bImD5jE+f5rHvl+keeyTDc1jKx0X
qR5jOkHzGIsTP9Vj602kqB4rrmSgemzg80+qx5qqg/Iw/jvmKNVjKe6BN7B5
kyFxc2Ee27BTuwrj7InxmpjH1te3LRkjntrxwgPzmKT6o2OYx/7+evy9C62j
J45NCvPY/eG6vduRx/AeLl6SyGN79eZOP0Z8dV1mezDy2OPSgH0aUTiYbSAX
jyOPEZaiJQvaUXwez7sk75gEjOO3NN8ijzHsDcno5STAuS/8he4FKeBVHnBx
A/KYONdKWmURAUYLxyWW3TPBMkWGbyGaCE6ut97wP2+CFIfMdvW5Qvj8XcfB
jEQCJYp49bB9G3wdJcl/fFwLZEp/7+T7AQhSpZCG5HthwVp9aNixA75sEUwR
fjkKfMeOmag97AfnjJ0Gor/6QWje7nqb1BhkLc0ECFQOQ/+KuPfuY2T4E/fI
iW7rGBT+unHWkpUCLinp6lm6FAhuNTgoFkUGK9eTUQrXxoDDV6qctZQCDDGZ
xocZUb3k5m4dpIH8J6Lv52hJAXMnlQENDzL8mFy/TUpuBPpOSP/2RvXZgGlT
t0QfBaa+qHHGbxyAYD1d+eysAWC/F9K4C3msQu5zgtkcqpfzvULP0HdDTm11
KUsIquNu3/6t9q4dMnsr7Zo0G8BfvVD9vMMgPLOteN1r0AxHD6uW308pgcaL
bAcf2veB3qHuok+HG2F+ZRul930OvHrL+CdtiginldvKVU4TwHRXw5tYjTSQ
uDlZ9kWbCPeX3j9JnsbDl1+BP2QLkuGwrNrFm1uIcFxar8OtEQ8b+FfvqQkk
QQFvZJDMUi/cIGQriKF19/qljdsWhoPApqCh92jde/QMDB+gOFki/vLf5IQD
k7uuCQWYr1yr3pZicRg86nfsJg7cgx/EKCNOvhDqGob1L1uEpvqQfxib8OdF
EVdmVs94g/iju6MGyYj3jagnbUc8TPU2fQTivBypLMyo3jsalycojnj8V9ud
7xGXfydeJ474dHpnpATiBHv5E9g4L2LDuD6jcWr1b5li4yTk7KjF/KZfIuaY
gPx2aHzJEvPbAO+RSVvErylNHvBC8f+UPfobA+JXjb80miIeUrteLB7li4bg
S+sFlC/rT78JxfyjTJ54ewjxkA0LUZh/0pPMp6l9lqTiJywfVx2V7mF5x7Rj
8SF2/dLCIqsM4iV+nc+x61uHeo5gfa6mUJDUKcSJ7C0lv/9Dj+X+4zHJNY/N
sNG43JrHuNc8FtdB45lrHnPeTPOYvCnNY+rGNI8xH6R57O17I6rHhHlpHqve
ykP1mLPTIi+1D721juqxCOZIqsfqvurmYPzQFQGqx1w2t1thHls6qvpHFPH8
dfyVGJczVJPHPCa1eVQc81jsp+/3qfuuYhll2HPqu8d2oxa0jrn5qk3Yc2ol
qnCPIIpPhVN/8lfscMDqdne/G+ICb0JEn6F4do6pfn/5PQ7Ws9XR96F4nuG+
3GmPPDbbqWIxapsEwWf6Xpohjwl9cLoSzUEAQZPffdVZKXC7WkZ+lwQR6COC
4ly/E+Dnq+qbnOaZkHjllup0JBG4OKTVvd2a4K0XUSegqhBEnmYH+7aRgIQX
tcrTbYPOrzOlsltrYfRIcCmT7wB46O8r38WPnv+Tx+5uXNcBSSq97/nMRiH9
5UetT7r90F+U1ZPg0w/LP7en9EqOARv3azmTwGG4pqXBpiRFBvN75ak20mNw
vunt1soS5KHnCRnu8hTo5tKO1f9BhkzZ+2OnhcfA/IIR1yYcBWKOl2zkESMD
/tzPxEguCqQlvisRNqTAl9JT7AHhZJC99efHqNAIbFVj/+BohOoxN8WudeMU
KLAdGXVgH4AfxR2Z9fkD4LL39DIgj7GcffVmLy8RJkUlXpk4dYMee8VnsVIy
iPHejS4Yb4fqDFHvxbYG+JJdL7Du6yDkun+QuRjZDEofNrstJZfCRsJClXBs
Hwg+kT56/0YjeD3ecVCJOQ+gWdZciIcExpzxoVI3CRBxB5/tLZwOTp/6eq5e
IwJx0Gs8lZ4A2cL+vL/PpoB3Vkfpl21E+OG2nrUB1dVWmSUr256gdbRoKzX6
i+qQsgf3RWpR3XX+7JbkYhxYcF/LzUH95snWTZvfojqtvUNiJgjVaVrAed8H
1WnJF3oV96L4sd7YK9+FnoOcHw67+KL4OUE4yVCE4m3+4/EfrMhvXyzOCSsh
/r3l5K04bJ8tT5Tsi7z0dXdS7m7EGSiCCjGIt6REPzNFXKjf7KEU4o8a8mo+
YP0jZXuQEeIcOe77MK64w9QP82TPrpiUfuSxS9yPr2CejPf5VuqNOJ3m6sMx
5LHunwskbsRPex7Y7Ih4kfHLuwUo/meCL0dj/e+OeRGGK1iePpd6WIrypfcF
2/QiypeuWP9tWL9Z09T+SQFxlkHdP5iXeA7sou7zPFAeL8Dy0Yz4iJqPTPaq
PNj1gxt32GDXm5ueWcCuVzDtqsLyUYR72+YriK9rYu+Z+Q89lvOPx8TXPNa0
5jHZNY/1TdL4RCuNv1rzWNgGmseeStI8FnCO5jGniW1UbrfZkOox5hFd2j7b
ZU6qx/7gy6geU6xbpXKcpD3VY2GB+EyMO4j+ofo/xXbOAvPYB5blXsxjUQJl
5dS6jllLCpu3o8S4o0aIu0T9ssHm7QGzkyrmMTN9E9V6tI5zErkPMI/FvmJv
5UNxePeauHMd8tiAOqn1IeJirRUhDshj3jXv4kwiUb//iW6pCXkswMovnxd5
7E1+SqiIdRLY9oS/34E85j1fFXaMnQDh8el+23ApoHXxuMs+cSIUvtq7KzmH
gJ4Do7cTlTOhjnVq9+twIjTTn/vqeLsJRBNnnULDCgF/v0zhYx0Jcg8IMOGk
28AgBHdEL/wX0Ce+3G9xewAWLX9aXB3uAY75AEaXx+1wRrtWW2TPKCQcFqg8
IdIPnKWHLQYV+oFppFXp584xmEg4PpR9Zhj8GWoL30+MwmH+WzU7YAzuf5O2
uHyHDDYdo2+ThCkg8LXc6QKJDIf97Bg8flHg9aMkP8HXFDBhzdyqoUGGvCvN
ZQpNZChOkxjQBVSXMdExPM0ig7zDntql1WEoKTjmt0ObDBqngla6/lBgdP7k
OjHOASjS/hrgUzAApzqqO7SQx3z9uI58OEaE2rOhN0V/d4NV3Jbaq/NkqDmi
NZqq1wHftq5uZvTCQzYHPH4+NQiWHItexIVmOOC2le7keBnUtKcEOfb1QRO9
9LW0r43wSmJ1uYj4DQZCJarY1Ulgr032T3pDgB+a5nuOaWeAXdp0wMITIqx7
lf1ASoAAB80zg3kWU2Ah3m1n5x4ihOza48+L+k1eJ6ap9j3JMHLN0XSBmQiR
UTufxRDwUHHD9NWZLUlwFM+e83axF17yf5epRvGQJJXCdywGB+euOMxsnUHP
UyH2r7MofuxzdknUueBATGX3Rl7kNwYl7/C/KN4+i8ma3bbFAd1inMBNFFcl
B1/ZpGDxb6j9V9QaB1MMmXdlsD5xKvFsKOIdW274EpCXkkejn+5A/NknU61A
xMtfKS9cQ9zp4PMeAcRrtKzKsT60w4ve7w/yFRtDaSjWh5oIaMi7Iu5jxzt4
BvH8ntayTdj7LLh2GNuXc7l7mcsOxX9Ta5oHtp9mYkEcx+oxZovEgE8oX0wy
Fh9i9ZjOIEMCVl/9Phpqh/WDKa/qqf3gBEMlA5Z387KqYdi+vSbdAw8s76Yl
yjwwj23wvGCmjHhHoYoaVndd2JpddgHx5IMWybaIK2WbBsz+h/v8Wf94bMea
xzLWPHZozWNf1zw200Tjt9Y8ZsxE85gu5SLNb/o0j4l9onnMR0SX6jHZLJrH
htQ2Uz2m0fqC6jH58T9Ubu+qSPVYailHOsYFvVqoHrtS1mOOzednlokSzGMG
xto/qfPJ84gb81hN6IFD5xHf9uOtGeaxjAjJdOx59GPjQZsKtI67WHW2Yh47
ceqCJDeKw6iA0zsikMd2PhhTfoD4mwdLyyYobmOb63iVInDwae8z93LkMTa/
gZTMNjxUDSTW1FxLAvEunazOFVRvtx4axW0mgD4bd+KZmBSQ31ezxCNGBLcL
izF66QSIy85PuSiQCTlse1tqQojgx9rGi7vSBKY2hycKzAthONcpyL+UBFNs
8hu0mNpgkmT76jzHL1A8Y7o503AAmIjfzKaDe0BUw+7OjYk2SOJZnXWdHIFw
tzbTyyN9cHvHz8RMUh+Y/wgf9ZQYg+05jWX7loaAXyBGmP7WKOBrXgkrHx+D
nwLE98k8ZDBMWTH++ZcMcwxHmHvYKGB61L9BwJ4CoaMCth8cKXD27PW5Vw5k
GAw66PTGjwwXr2o52uykgMPJ/QvTLWTQK97MWtgyDIHfZJ9vVCbDceUH4g6b
xuB0H67HG9VjOSLdy79RPebGaueqjDxW33W/8iCqj0q1LgrnuPbA3bLR/NV9
FJA6PrdOu6wDvEX8xtfrEAA/z6xUrTIEBSKhn19btwCjememhHM56AQd2xQv
0w8benJY3q9vgtP+/foHz/yArI85egHPSPBFCT9igifAb/FCE9XfmdAULaD2
/isR8s7Fft+kTIDZ1x8+pi6mwkfmkqtVaug54qe6qLaMB1nNPjct0RQY9yu7
IsmDOI+HyOMuPOQbB97wDk0Cj80JP7zoiECOjDq3vh4PBzgP3GbuwoFhesuj
TfMoTiraddyq8FCWl5IuHojiMDn7724UJ3/2ldjaoriqXgpbf+MODu7cMDyd
jeKKTnebRR62f1tYGINDHuNY+e0sjzhlY3Eltm+WvdX8TDjyj0r0chK2b9bd
c7jEHvGLT7MCo7B+cKiRAdvnv5SrGXQDcWFC8ttjmJfosuf+ojhvWtTchO3z
263uLxlH8e/EPLUV2+d/n5LVj733vPTHkD8McRnBkUJsn19MO/QE1ve5n6lI
xvq+wonEKsw/M+YXpbH8Klp07tiO+Jnu5Gjq+z7vBep5kgu2MjbYfo5y+S/q
eZLbJy4tYB7by70xUx1xoRGZt9g4FI7UBsxjRh/+nLPD9v+9Kt7+lx7L/Mdj
29c8FrjmsYNrHrNf89hnPI0rr3ns4zqax0a/0DymqkPzmKwRzWO4itO0esyN
5jGhH6xUj2UStKkeEyhYoPKj1oxUjy2VrU/B+HahFKrHwj8GXMHmsza6OBbz
2MwBXCnGZxM/0WEeE4iw5DiHuLbJb13MYwNhXFyYx7q/eudidXVW+69YrK42
4tfczIHi7cfjSZFryGPc7R/MnLFzQabL3OrIY8yhXl5/w3HQEDhllY3iM2Tb
wxeayGPzYotx3aZJcOOz27pA5LH1xeG+0xtR/+KZxXAiJAUEbgZd7tlBBLym
2l0DHAF2P+YM/zqVAaUdAeEhr4kQnHN553qdJrAWM2K4KFEIX0LfjkjkoHzM
2lfC3t4K51aIRYH3akCbv4ftg+wAkBSHGGfkesAxKsFj6TTyWMWzZNukESjs
3ekMiX3wrDFBZNCtDz6c5LgqID4GrvnpZw5GDEGCCgvzKmEE8tb7vhU4Nga6
llWHjn4dhWairoVaJxl+llyxe3WMAm4Oc6EK6yjwySJi64o2BWKNNjdWx5Bh
37WtpukHyVCbqxVYwUIB40ucFaXIf/FqMhm28cPgaPD5b9h+Mqzc1MzzFRuD
hfIE/t0bkMfK9lrmpg1Au9emcwLIY6wCbwT+viDC6Qq+0g3MvaC+R/x7oTUF
FjZw3HQ81QmrFV/AW64RSAME/OXoIdCNFtGomm6BDk2tN7oGleD2NUmAJ6gf
tLZHWF653wQuTGbfd2cWAuvA++9yTSTI4qffxrGzEQ4LbE69KZ8DnJYp8o5D
RHg/Kf6515kA18S9zVec04GJzkBN34YIYjETdzMFCRCYUB/cw5AKb+16JH/v
JcJLVzOO6HE8BMvc1//mlQyTNqyEgI1EcHp+16WrBQ/3+b5Zip9KAiHjzc2B
y72oDl2avfMLD6f1N7ro5OJAXM7zIaA+VGp1/qEi6kONRWx2JLgh/+TE1Wui
Oi30UsLfaux5yivsH4P6zbSJ4WY1FG9mLx8/w7wkE85ZpYDiM9TRgIJ5aROn
dThWF7VGX0zF9qm6a5Q/YHXRpkbaPkxzKwN1P/nhFG0fxjBCSgbLCy4ZHWER
bF/rIftHjGtebHTCuF5BynfMP+PdZDzG+aRutGPc0TVSBdvPn4jU2Uatu6z8
o6n7XTdbmLB6rOfl6ziM739VRcB85XXDLuck4l3Cjx9hvrLp0juA5d1HqRsJ
WB/0/sAdRyzv/oRyyGMeu5Ozns0KcffkZ3v/S4+l/3PuQvB/zsGueWz/msek
1zy2vo7GOdY85rDMQjsHa07z2LvTNI9lrfJTefWiOtVjTUDzWFwuI3VdFlhY
qB4zOzpLO++n8ZO6r3jWL+4rxn0cn1E9Nnfsryk2/148fI8xjyl29hRT98co
z0ew50vgo7k6A8QrMjOVsfkUOnXjKvZ+/IngPs4sbH8sY2In5rHDabxPNiKP
7Uo3bhBDHrsWk7v3DuIgEBy9F3nsWYu9VWQYDt7QOzyNQx4Lv7y0ra4VD7tf
L11TM0qCTMN7nxSQx/6cCopgZCNAMENyTZNPCjRPJR17JkIEiUNiQ7HxBMhS
sunZW5IB3RZ2GX0viZDaKB+rdawJOt1Iu+4VFcAjWYEEjS8kCNfQUvZJaAWb
heJK3epqyKfUbWxAfdqOWNPzF391w4ALt9Ll4FbI3Ga7Q85iBEgmEw+kLfvg
dFL9T93NfRDuWu74VHQMtEs+/ww5OARXdccLMqVGQCo39w7u6Bgoo6rUXWYU
lnyCjyalk0G9oVWNH9VffELKfRueksHNZkwzSIwCb4bfvPjZQYaIhBM+gRWj
4K2utD93gAyu45zh3aiOOv3piDen9TD0SC5yiguQQe2vkjcT6lv1ZJuI2iv9
0DzzNHvL+wFYvvBBo37PGKyK7+csyCaC6jq8iZkeipuad79a4ijQb+fAZkvs
BK7B3BMbjjeBaqB+v8uGYSDwleuR3raCM70br82rasCLqeYIMQ8A/q+NeeuG
ZijN2+HzJK0YAviv6Eoq9sG33U6JLKGNwNy3x3aj/jdg3NIj/PwICfTrVh53
/STAhb9u+8/EZoJkyrUI349EqNv7d8QV1X8x9xzyWS3TwP8g/mysLnq+SH/S
vIDWUcSWPUX0eQrUfOn4XoDWcam7lWNwAA8qwgqlxpuSIbX1eIEtE+qTZTyn
N6A+tPPJyEl25iQ4dqfnoDTqQ6X9FVUaUJ02V+njEh+M+oJ859OWKH7OEWI8
51AcSpoYbpy2wcFr/5TcayjepEDrFxa3DDpd6voobiO2te3F4pb9k3EVVl8d
yPvLsoj4ucb6MKy+erXVrdgd8emsh9xuqH7L/LhBhR2NM8V1thLbH0sxCf2G
7Y8FOu4fxPbHauM0Qx4j7qR5760v4pbr+5ux68sFll2x918T5T5niNh5jzdc
57H3Xxs5ep5h50ZSPUVysHMjIypPorFzI8Zd5zyw83KP5a0vtWFequOg+4Pu
hzjmpoTVewfxJzmw828XtHjPYPVeubT/OOa33ZkvV68ivqKxc+G/3B9L+8dj
/GseO7bmsb3/sz82QeOrVTTe7U/jSXM0j9lw0jwWoEHzWF4EzWO/4k9QPbaw
pEPl6/b8pXKt/DwejHvpTlH5rOMTqsc2CA0nYPwppyHVY+2tkpcwj3XBa2PM
Y0JxvYUYr3Idr8Pi4en7z7eweLjFlbmPen7M2zICO4dTnlFlip3PaYl+EIHV
53J9nk7MyGO3z4y86bJFPtx/Otoe8ZzrPGbsyGOXh/JNt4bioIglMf4V1i+c
wClqIo89LE+0mNJJgkMM67s70HM5KC4xsYeFAE6dtrPkBylwqMHNjn47ET54
fm45FIXywnlV0zEgA3iUO55+9iFCfnZC41mJJtjEbLw3TKoAKr4OczWFk6A3
0Pm2qkMr/Dza3ynMVg1P75KEFsn9ENJwbQmMuoFRy7yDsbwFBAt4BGQ5RoDQ
HZP7kqcPtERKtq4EkODQwEpotsgYtG62FL+eOwj1sDs3/PowjNbcZZuUHQN7
2d32WgkjIO/fufOtJxk2lPL5MKZQ4HXCJ4W5iVHYGTfo1jlNhiq55SNHhShg
0+76WF97FKZZOHij88nw5mb28lYrCgQKje835R6GXDLdpaSQUZAjzBR0o741
N9F7YmWoHxiyrL0bHg4AbvTzoAHymNa73hvxRCI48KadPRaO1tWF58qPXgrc
9pR48ty3C0qyuj0uXm2GWEN8WczjYTBfLAvNuNQGgrlBwuYKtaCpQv71PXAA
ZHAaFdIlzWB0cbD02aEy8GB79izjex/k8YV5hR9oghsNe5Ok7hVAnYyMRVkM
CXy4q7wmjzaC1eHjXV/zc+BG355fmTNE2EX/IDo8ggDSdu9LzB5lwFefiJUm
LyLkGF+UKZIngIGHujfpVyrMWX7mMD1BhAgel1GGVTzw6cwtW+1LARXJ+1VX
eIng7xYWpI76UP0fQv1Wb5LgDavcmcuoD922ZHNoDNVpLzLnhwYKcHC8Yy4l
GNVp3/UfZZuheBvvPnnqsyOqB8hqCTgUbw/72WexOKdX8Kyh5kuuyAMsnv9c
aDHB+tA9Qz+OY31o8aM2B6wP5RFcJh5E41j95S/Ycxv1QdUtDi8RT3SQ2WCE
9bO3HEMPoPGFhUUCPiEetOLXKYt4X/9W3mvoej1IOx6IeEzF+PQsVu+1ZnKN
Iq/2/3yjj3lVUHjyTRbiW+rVM+6jv2tbdKZKDvHhPJ1uL8SjrHrmerHzId7M
JzBPBhGuO2HeuynLS9DAzjUVjAdj3vPyLIjFznUkvm8qeIB+l9ZP6z1z/2E9
lvKPx3jWPLZhzWO71zwWuOYx7580/nHNY7qTNI+15l6gch5VmsduHKB5bGvp
MarHWpJoHjNlWqRyUS1LqsdU/lKo/KaJLNVj0d/LPmK8MlSY6rHMEgZjzGMz
IcS9mMdWvBJ/YHybR2Q65jER30rUOSHv3ardhnksrymsGNtn6BrX8sH2Gbom
r1P3GRp/uPasw+KK4cRkAPJYb/3v9FuIPzixIDKFnqf0Qocrr4bgIKf2SepD
5LHszhDudNRfpMRuymjWSALR0Ocb7iCP1eo2Wz9mIoDi8FcfG+sUSArijzMS
IsJigbTPQggBMhq3C8qczwA8w8f7vU+JMB61zDG/sQm2agaUn3b/AeccKwxz
fUmg2C6Qu3yoFWZvV02wyFXB5ZBlg+HCfohOtWTkb+yCGAng+ENqhv1ptmos
mcNQGnb5JFMBCSJujnpfZCBB6GrtzxzhMUhWG4ziPjQIoJ1eUhUwBAw8+3f1
yowBYxxdT+fGEcg9P5xbrEcG+jdpZXGzFLj4XbljUWsUXH9M33r6jQw8Ig9K
gq9TwJQ76sS7HyOgJrkrgOUlGXwVgn8wxlOg2eyMJ13KEJytDeLA/x4Bbcvj
hwJQ33pja7nd3op+kFo/sJCqOQBtMjdlw3ePgU8WL6sJCwk9Pxzv+3b1wtKt
mJeSvKg+vMskGKXcDe+DnaO+RrXArruSDdrrRqCid/FHPbRD/nr1g/Wf62G6
e1lhy8FBIHKd6R6ObwFbRe3HDqcrwILMmFdk2g8eJXnSZgtNIHjmybCqYzHc
neML3rO/DxzJn8t5WxqB4aWB83uW78BeNvGl8xoJ1mnYsX7a1Ah7pKRXIwOy
gfRMJVKrmQibb03TJz0hQF2sq7RwcTr07q+vHLlDhLKpTPwnCQLs23m4m08l
FZYZ01oVDxEhQXHDlNoEHpraVMJ+BCRD0eNpK8ZNRCjfUmwyhuo0UsW5L6Zc
SeB6zUi/BtVpvu4fdpuhfvPS4n5/v8c4ILJ8OXAV9Zs85Vu2YH3cTBvL9r0o
bq0V9QDr46Zb1ldfQvFpa3wmyxF5qbdCf/ALik/8JqPJKDQOQwW/95ZnOHB+
55zlj8YxO9rILI7iNj9h+5DicxysThm9ICO+ZGZ0YBBdX9uVmNrrjYOfLbXc
hYhXs5v7KSF+cqz4Wynqf/eRI1VOIX51bFjWE/1d89NF+DQnHKQXidNXoL+b
p6uwfRLdp9v9c0xhyHt+KzIKZog3TEfqvULc6uGUgeN1HCRuVw0TxL6LGbbt
NEd8e1KEAAX9Lqnx8Ok//6HHkv7xGOeaxwgbaFxqzWNyax6LLqJxizWPnR2h
eczEmOYxKSWax47k8tG+SzolS/UY5yWax7ROTlM5iyYz1WNGMEzlOjjiFNWr
mfLRGL9e0eeMcdZPAYaYx9q+tSxj54cZdivlY7zoyqNgzGMPOZoP6CBONhxn
pO7zy6sR7BBntT7u/Rp5TCHn0CVGNM+SUTHf/2D18P6uWAXkMYPWjxbXEc+a
N26oRfEQnGTr9Qz1Be5MWsHXkMeUuf4YbEEek90rS5xUSoI2i7Dff//0gkvp
VOsAAwE2HJ97r2uUAgkC/Xs9BIjwncn788RLAtxNMNYy4c2AXH+dOS9XIlh/
u7IRphvh2s2+xXtl38Ge4xXvtDMJTl3ZUJsx2QJ1JqV3OM5UwovfbtJRr/rB
QDLl+aJqF2x5/LD22nAT1A7KFnzXGYYvscW8yZdJUBYq9TXgBhGsrh738RIc
g2Yx3bv1qK97TRyRCvwwCFbXc9vd9o9BjXOTRYTZMBSuEuIWN5HBKvnY5kDU
D65y+6QJBI5AySXBDd6PyOBx84h3Wx4FAlScGlYERuDA6BHl2vNkIImwpHWP
U+D8gwrl6SND4C3D8okiMwI8Sukv8ahvPfM74cfUu35IFJIJ/LBuACY7uXhC
d42hPGdWWb+DBM8DHBRc1xPh5x/KZ2GBMdgd8rTtDn0PvJJ1TEmdbIXwQzur
vX1HwKZoudpCtQMqhqtNdtriwVg4x9ZtaBCWydl77+S2QpL1ZysJphrwGTHu
zhAeANfeEwM+c83wzIFkIDBYBgeVjB1riH3QybZnfdeXJkjxPBL2zaIIGiOl
tdMWSBDUdEgk5WsjLAZpqKQRv0Er/fFDW9RJkH1nn+RWCgFS7/CcFIrPgo0M
hzak/iDC0z+MJfHXCICv2ryoNpUGjO61AnWXiXDEe2nRbhMBBKcVXWLCUiAQ
/4ogJ0qEbzK67Zw9yGNkWxXrpCTIP9tT8WEdEYgLfG2ZqM5nMHYX5vyAg9EN
or/Xz/TCaoqHKxbPI4IhUtj3Qe6++q1YPNP37nHdgjwjutonI+eKg54c6wO7
kGfelaiczkbjuCXcOLYTjfM1SmueCY1TwOa8QwjVgfMmv5PeZuDg2jz3XXpU
ByaKbvs9VYOuP/t2A6Th4MG1eYF+7Ds7ARuuQjRO4a1F82g0ztEkPbFNiCeG
Lz9SQPGfLDBw/u4LHAiYRp77g/7uM/XB0H7kt98H/8QQH+BAvpJ9IxviLXnn
u5fQ/c9FtT7Zh/LIzDmz3Ap7fzFcPYj1v7IW9zY/RvVbnoP/Jayf/a889vUf
j21e81jomsck1jxGGKdxtXwaF17zWAKR5rGZMWMqrzhK89iuIzSPicvvo3os
8e9Z2n7awCjt/WZxNPW7LeDoo/IfTl5Uj8m1nHyH8cXEWKrHnjrW6GLrDhlP
KjCPfZALy8W4z+cwR8xjpiduX9DGzmNMC45h+5D8Fh212DnAgYvjV54hjyWq
7fuInQPUnE/ixOpqTr3b/V3o+TI0u5RhjrhoUZzvZ7SOXHm8849e48DRrueK
FvKYVJKdr2kzHj7vlWjSkE2CT9ruf58ijzlJQibnOgJwhz1WSlRNgZZmhmkv
fiLY9rWcFX9GgINp1c3HCelQ22db+vEuEZQ/xfqdaWqEowaM7uLL+aC2e91I
mDkJwsuuS7d+aoGdp7RTUs9WQHOJ2aj15X5osus9MvSpE65EP1nP1NYIE+lH
bTeRhqB0i53kwDgR0klWAyqpKG7iWV1MflNAyieDr32lH1gs39BNIZ+ZHqc8
IKD+LpXDxU7ffwhYRU6UZXwfAa/26I9VCohvmbMcKxkGp6l3WrflyaAxpBWk
zzMGscYPI62thsFwl/bZIT4ydJ9cX5iNvBf9hjSwFzcIpAt5p2YNhmEmRS85
AfWtC/eeHidf7Qe3VPqnVh/R389ivKMmNQbHrTlDQYYEf9zVrHfvQP3b17TD
Hshjwr5dHx0reqDpycq5Gc12uCLJvi556yhYfbgVst68Exw/Llc8M2sE6OK5
MYnqv/u9sdz8S21gk9w79vZAPYhFTWRsoRuEoPMsjeb7WiFj/0qUv2gVuCld
fr2Q3w9bhbfjvuU1g+Cvyh07ecrgZsnj+dLsPmAzZS2aedIEzcyhWS7NhRBC
uKM53UGCpR1petefNILg1TNiCRl5IEeWc4uVJIF8h6q4SQEBtqv+UeW3zwT1
xb4TqlFEMKjYcuzIcQJ8v0PGzwykgg2XY0W1KhHmv/EwpU/jITx8LNGqIBna
h0UINluIsKKwRburHtVLh164lwzj4EWynXrcPOor34hPYO8r5b5YGUagfE8b
UKmkvq+sLH57BXlM5zaP5XtUv/GzaR40R97glDc0GEK+OnlBfl8w6lv7XnYH
BCJfKdj1ew6j8SeJB0LNRnDQrfloFw6N713SFqnbgAchPwZP5gkcnJKb0ZtD
XDbxwbeMOlSHuLmrx7fioMl8uqVxrheu72KxOIjGZ1DVc0/NRP3LNtU0djT+
nJK40A+UF8vcvNIRQTgIPEFpNkJ5scUdFzSM/FZRtn6VzwUH802crZvQffrx
j71rQr9LonqzotQtHGjvYwg98x967Ms/HmNZ85jxmsd2rHns5prH3LPWzvO/
pPEbbTSPqTykeWxZhuYx9kRe2vfpETtp5y4iaR6TmiNRucs1GarHYh91UflF
A3GqxzI6J95g3CrjMtVjXhJFZ6jvf5uVAzGPdb4tysL4RjHZs5jH5EhHzU5j
7yNkfAmYxx5ffpSNnZ9J3rkkcxf7ri2huQc7P6Ng6jY2htV1b9MfuyCPlbLf
SDZFXI0uKOYJWq/3iuxj+oE4eJQdcU4arVfBJy+XqCY8BIGs5MzuJJj5oGez
stQL9lON6ZtX8XC9YG5d2r4UOJghbXaDlwhn83BS6Q8IsOSrpP3eLx2WuAgb
z9oRgdXf7rNLViPsa+FhrJbIh6HkkYbJMyTokP1wzvRiC7BzvWxQOVEOjzgS
y2cl+4Hxll4DH30n7C5NPfgthwDGT9LjPW2H4EdKP4uAMREK6DPuS53vAVKP
gveN7RQ4px/4qUq/H3K3bjXie9EPNaqBu8ckx6BHIXLdmeRBSBa8O2pqNAx2
tUPsmcg/ZheT3QLbh+AvK0v34aOjcO64Wqi34hioJF9/F+k3BMrPWdQLs0dA
mkuDIRN5T2p3mNYFjkE4/aD/dciFIXCuu6UhgPrWy8cs2r7w98OeFsUZnQP9
ILDSVRm1cwx89yddtFcgwZah2Sy9fUSo2xb8Jw15jPneBaOek71wOGQ5iy2s
Ax5dLBjyiRiFo3sWL9S/7oIOBcMT9x2awVlEwX6n9zC4ETZf4jPvgJDakww+
MXjwnHSX5VwZhLBVeoNHEW2w6yJd6xeBOqh86Jer9mMAnG7INrUztcJWP6UC
nrBK8G+mFz3woR8WdH5ZZgc2Q4t8czjrs1IIPHDd6Hh4H+ieVXhJp9EEZEnL
/fdZCyFg8z4DjzQSnCuxSyQrNYLfTY8WtcEceI3/NDSyQIT6RcfyU+g59ZVh
y3WtxnTwWNhRW4CeU00TJRt5uAhQrJxXNF2YAp9sTrbu30mE6tjRg3odeDjC
u1Io5ZIEp14MkFdWe+G7jcnGBOQB7YSlG2+dceDZv92tF9u3j8B/JCK+h47L
PwfVP3LNyQssyA8PX8QHSSL/SO9cwi/V40DdXifWAflnlr9Iz74RDzf9vhnb
bksCPzbxBEkUn0/cTq87ip6/h0luZccPJUHC7pr3N9Dzl4d+541CdL1d7WeV
JuEk+Bh1Ke4Kut6a7midHfJeWLime+Ik6ivFFP3YFnphkaVeKR/57f644ZTi
d1R3BY1oOiK/KfbPXP2C8qV5dTTbFz33gxMGFrDnfvHpjPKP6P5tao/8tka/
694GIZnu/8BjD9f4p388xrjmsa1rHhNe89jC2Nr/xyOFxj3XPPalnuaxmHU0
j7XspXksgofmMbvnwlSP9R6meSwtoJ12TsPv+1bq+f+QFipv8Munfs8VqXwm
kHoOpISb6rEDdg81MY+13yIYUvtKcmE6xp/vqJPEPHZ5q4CWFuKhgS9yMI/9
sBV5hX1XG3XY/rAl8pgU/Sw75rFdJqs3BhG35D8ywYE89o2hzcoY2x8zKMox
Quty/jsdmc0fB/6H3/RuQetCzBeVaUXrHnn3xi4RkSSwW3Y2dUDrHmbyrGRw
CdV1sfUdP/hS4JCSyvMD3ETI2rnxQLUdARZl0k1LldLB/O4vfKwVEfjPSu24
FNII7e3y9FfVv8HU1SOKpnIkkDriyfyTtQUMu+016Xf9BOVpElFvog/+ZB/0
nTnXAayzjy7avMSDcM5uOr+ZQVjaeefqz2+9sMRYouwl1wW5uw0SvqiSQWGL
b6fnhz7wsb3Dom7fB1fDv0WRxMaA3e4Re0v5AHRMT1Bc+gZh7+omTbsDqB+U
/8Qo0zkITQePhz6JGoYaHV6+b3JjUO8Zt+oWg65b9kmsURmG21YKJjeR945x
JRcvXx8AH5HJtPtag+BLf4yktG8MKOrMA5tK++BvH+5JUXwfeHw6ufOr+BgM
eevF1B5Bni7f38K3mwiy9kFxschjdBGv8ze978XOJbjvqesE/4eplX38ZAhW
l28Lr+iGypqJJsEXrbAkpt3Tc2UEVF+oMtT0dYIrm0LErhNNYPY4/YHExmEY
G1XIaTjcAaWBfUx1Bmj9oxUPKHcNguCXnGwbrzaIlnq0YbK2Fj5vkiSUJA1A
QXsS+6nGFpC7o9wMIxUQf4T7Zvyjfphkvp2ip9gMfBeG3r+4XAJZng+iKJf7
4BXPVh/6gUbQJYkIWVt/h5tiZu8+2pIg06WzmWeIAI7ff8Rbe2TBLZ1Xhvu/
EUGgeTyfcJIA3rPSvv3b0oBk0isnoUWEBS9pnbBxPLAFftMx9UqG+XBWrucb
icDiSpT7gPq+J+d+M3XiUP/yZfvlRNTf4d3PuBZjfUfDFwXhm6h/tNOVBKxf
u953z7EWDxRn1xixchzclDe7OI184nIwZ3gb8tXi+LpNnw8mgZx+5x5D5Kva
HYZi2PntfnVfNT7rJNi6aUwGO789l2D2Mq8N9V9pErfYLZLgp/eUSO9KL3zM
tSs/j8aZ5BFpGjmcBNbRMeCGxonEv99diPxGN8S3i3cWB+ue/s4+ifw2wLGJ
xRH5rT38XezhXFTv7TcXUUL3s96Q/fRxlEfP9fW1I1B/yun+Rntl+r/zWNw/
HqNb81gdK41vW/OYx5rHlj/TuMyaxwLLaR5j8DCicoeda/tjrjxU3ibJQ/WY
aYU2rX9saqDyBamTVI8pODXQ6rduXarHTDwc/TA+w1NF/S5VXXfzScxjgdMn
eDGPyb38SP2+XmKRhw7z2PrYSBENxInqMRGYxz4k7bp6E3Hb18YphpbY+UOD
Y+tQPNyYdf3cjbjmzIJUPKp7b3xrmNFH3C12NGIvmv+YcyqaGc9R/VbnEjyF
5v+4XlAqG/IYe3/aKwZu5LFzvrHExV6w8DFPT5zHQ/ah+HR1+hRgan2iTuYk
Qmwxc3zCNQKIMZvwGUylgUKAmn39ZSK0P6a/EX+3EfbGrl4bMc+D+/R7aq5s
J8GTbEnlmexmmM71knbdWAa7k3cv1Gf2wS+mStevn9ohfO9ePsvLDeAumWu2
yWUQBoQ+XSEJ9cKfr/a69zg64OoYp9M3y1G4EHe9s2Qc9UlWp45t0SWBZcMe
i7rtY8Ah827Dte5+oHu4s8zcZgD0jb1bBVC/6be5ujOxfQCK5E+/y183BCYf
tPZ1Ir/t+5v1aC5jAKZ/7jLYWTYI7Z38QnSIXxqs2i2c1Q85GlwayXsGYLSr
oenA7jGw/VN7Qe1aHxgHf3ZTZusDvkJO/XuiY1DRFaB6fxcJjOVzg7ZwIb8P
Ki/qII/NGH5nrRzthZdvPU7RtXdBbD0z4YcnGbiIJPeE3z1wlKgzyh3cDgds
rS02HRoFHmmdF8u3usGFvpqJi9wC9EdPMlVsH4Hfd60eXEV+OzhvdPm2MvIb
o3FYO9swHDn5+bybZAesxjv4xyqieHfSjiERBmHmVR2HILSBREi8xlTzL/hp
cbvzo+sAlJY9e379Qgt46NnzUY6Xg6v6BVYtVA+/ZjjLK5bcBH633+0PvVME
sqot8ul/SJC49eg2uN4IiwfmXPNXc+GCwiX9E9wkuCwk5FPynACT2x87KLNk
QCVTqADdQ1Q3X52P7tlMgKN/0m3iY1OAZ/4MWV6MCP6XEmsCkDdGio2X6I8m
QdxMrn488kYg93IV9r15iEZZrjnqN1PL9/Ri35tfd1XYHleNB48ic+dd0Tjg
M606uISes/hn4fvjUHwOh+hHXRRKguH3VR7a6Dn746bLTylUB3ZKVXjO3UsC
kbJ3HkTkMcoRla9TnXhYOcswUBmYBPh082hROiKEfya7fEHe23NqXTm/QxIs
vYkv9EHX52TtHNuO7rNiB7SMI09C5Os0I3SfQ6rTHduQ3yovipYIUHBg4Drl
W4/61kulfrcJyM+vrGfiQ1JwsNUp6kvtzP+9x8z+F4/FrvHva3xpjXuteYx3
zWNsax5zil07d/GCxlV+0DwWuY7msaHtNI996OamvS94u4nqsYgLNI+VTVZQ
+fvbFVwYnz5UTdv/P9U3gfEIHbdnGO/hekT12F/JAMA8hvPJbMXO+wU/eYjD
eN29+hbsnB7XbotJ7Jwe/7TBY8xj3o5vpKnnYZ4vLKoij0V6SV3D3gsP/p1r
bkZcY+bgRXnkscyfNne1EXewFzm0DnmMbVje2tgXBxb33nIQkMcIKg46SgS0
vn1nc9pZk+Dhd87Teshj1dfTX9jP4KE+9uLMy5ZkiPVcPh7HTgRpd/4Xz40J
YKLT/ZH5YxpcFRXqpjMigpzMgyvC5xqB3V45MuFxLjA6Xi/zYCEBeWSbWJdV
M+ST3x10ny6B5qg9QHBF9RTHy/ev/rQBZaNw1M5D9bDpHuk837pBOHP9eOUS
Yw/8FnngyzPbCo7j7++dfT4C34NeVZ0CEiQFOr7eLoe8GXPKsA55g0fqmZH9
Yh9wDo1weS33gUXmIq5PYgzUdf72POzqh/z4txcmbg6AqfbtIB7ktw0S78ZP
VPYD/tuOZvtTA2DpNOQTjXxVtYVj+611/TA419l5gbUfQlbd1DhR/+jKczz+
/hIJIDRMsducBCdcnTO5RMZA79FHvTdbSDBsFkW+N9IL754ZDOZsG4NnlnQq
IpJEVBcXXmlK7IZHmonFAe1kmPNnlFF62gvTpteD79p1AjennnXNNOo3a1sq
tAZ6YNdUcBT/w3awkBz6/VtqFGxFLq9kB3RDTTrT7KFdrbCeXXmq/+gIHOig
d2PGd4LtCbG5k6JN8Id8LC/h7xBEt05dIuW3Q39k+V51jwYICHJ4PuszCKMX
z6iMBbRCSlLm6cK71eh5ZrHJa90ADLYfgeA3zZCi+vXZdHApVOqzKSZE9oFL
/FHOBvomMK70Hso6+gMW3ETs3j4lQQIjj97UCAE0P8iyq7zNgkyZ1OwD34lw
my6ATliZADOdN76LLqXCt5dP6prUsP9/WuWl16OorzTP+W18Nhk+M408zWIl
Au/8+mlJ5KtrjbnqJmGoX3jFfTQG+epd9FM+LdSvDajgYuwccHBhRKc4Evte
WDlISbgeD0yLAeNXu3HgG/jhrzDyyafjkgwOrXhQ5jv8Wko/CfL1T3ktLPeC
Zl6m6Bjy2Kjy5go/5DF1B9bb25HH1nnO6c0hvr/tne+GV0nQl+zZL4F4hPHh
4lJUv3HoHr72HtVveekntYdQ/RaEPzq7pQmNs/HVL0mxJFDYKeEfivwpUrBN
VRvdz573hZMTvTioy2BmU57/7zwW/Y/HZtf48TWPca157DWFxvsiaNx3zWMj
GTSPBbufp/Lz/DSPPVameUyLbj3VYw9Gz1B5MXMhlUs8PkP1WONkKZXXZN+l
eowg7eeG8TSOA1SPhRhxHsM8VpGlFY55zFfA8AvG99tkJmMeG5b1LlbB/CYl
boF5rCyVZfk69p7CFm92CHmMfdfNF9h5aWvdbp46bP/t/rfnv1DdbrvnD70m
ige2Ui2d5krkYVn7BgZvHDS/bqVkII9tmczZ4IRHz/U/v2S6VnGgqLVBrATV
1SaftpeqTKF+Oe7wSYvEZFBItaS/uZkIfLPtX3HaBJi683D6jnEahC2LfDfV
IcI8T674bdlGULfweqv/MQe6JSzqYZoIL6RE6hX4mkFzOb5mI7EYGHHRDgFq
fRA9dGvV6lwb5PmqE53Fa+GYg06BzosBaBVlEd2L6hjZPPNVv7FmuDixSV47
dxiMba9M+NgSYeWw8n1cdA/Ih09HeR+nwCahNtGnwn3wdamPqSyCBIOuT9cP
Is+8XtW2YiP3gRJ+ft31gT6QOeKYFoD85jX60rwA/Xuo+Z+T/Z19cDg2r+I2
4lZLt5PldfogO4XzPBuZBL5qkefoUd2VkxZYJPWSBKxdksPH0olQWypW8kZo
DB5aL0139xBBZ/ttc7G3veAfE7NHqZsCRg0U3VJd9LsLfLRjFXsg335zCS83
BSKZDOe0ULxXzZteebi+G+YFtAT135LhOm8cswjqQw/9ahG8hfpQn4t6j1dQ
H3py27qUcfZeUPv0//Ry7/FQbW0cwEmJOYoYhRClQhIdFcflCb2oNFHqTRER
oXQh6hS55y5J5qDkLmqGCCkJhVTGZVzGdewht5mUS6Ejztoz/jr/v++/v7/W
5zPPfPez9nr2StroPtgFjTvInbePjsFpI9M9fO59YFzfGNzO6QCaY1zILYVR
GG8t0RTa0wNfo5rsa4it0OTuUFQWNwwNlo1N9rROkH5krrm1vhFKygpyj2Gf
oZJQ/FE2ugNM7CNkyifq4GQ8xSL14CDMbxN6l/e8DYSDj2yi364CMyvS9oRF
FkgeJt1ab9cKqj4xWxVryyBd7ta3MOR49ImqXt0QOvilcJTau4pg7adzBq7e
GASOl8//FKED/6Li+5sJBTBn0kn6rIiBuNkMY3UH2vfZr9s5ZkCFO2lKD7nn
45KB7vh8l1XAcIC3KwWKMlkUfL6LTHSx8UHP3/vPPGKFYylgB0WpKsi9CceJ
RxGobmUu5hxZx0cFT3+lZXRUt8Wtlhggl07Of1zjbEuFUEvGaDhyKSJSk6iH
HBvX951i36ZCwrwkXwZ+j67VG+F7qK9reDeQUu5LBckJ651qKA/45ZN/ETnZ
uSNRSwg56XUve+AHctLhjN4mddQfXgn7RmGtpUIMUBlzc/8/x1L+ta/8tpT/
EOLlokuOySw5djqBl2stOZb1hOfY64Vj3JwuznNMMpPIO/f0n+fmkT48x7J0
S3l+KraI4/ny6gpu3lIpzHVMwuXpde46NQav4nn8wOPduGNlv7NtcMdGLf7I
wfPXg3ZhuGOeFKdH+Peq0hp+Zrhj2ibKzc4oV5u8tXETcozpbvNyAeU6IhWh
dShXv3vZ+SxyTPvAdKERqocQJ/KDp8ixumI52ptgClSnx6SQkWOrhhaIBah/
fmCQ6L5nmgKzZIKbDqoH4TiFEzvHUb313ZWs8c8Ha1pKsZEIBgRrYVE9Yzp0
Cr5RbhYtBGPxi88EzVC+/iJZYV0rKA9NhAY1l0LELM1ysgcDqrCA8amGNrh2
4K0LtacKrMYL9n8TG4D4U5XYTCkDAoOGLizwfQJKo5p5ntxn2I4pxXpW9sDc
QN2n5wJtoKthrkiaGgaHsfPdWEI/XF21+ZBuSQ8UaBXrNYqyYVcoVhhtyYJX
d+YY3kcx4JuVGdaR/QIbktZn/Vg5AC2xJYzI6yzIPLrC0wH5dlSmjawiihx7
GjMlG8wC/hof7yiUF6knJTVmsOAkhUpI68BAYa/Zd2n5L8DP4DNMkmdBE1sv
N5Ef+WTkGi2G+sDvga1JYekYVPkmgK9aP1i46qcKhnFgdZI8yJ3DwGUOS7aO
YEIaqUY7QIsDf/Wd2TtnhUGQ+YVD+w4yoT/K7jb/eg5UKY/MqGpicKyglF1J
6wNvz0AtyggbnnlKd+i/7YfdOwZNfC16gaU+c0WFxIa1FwRtiQNMkKraE2h0
rQtkTqfcdd46Bt3yUXbaib3QH+nUmOzTDlJO0qI5kSOgcN6usEmgG/60rUhJ
WmiGkKodbo0vh+CqkpbkvXAGkFbYHMu1+wja+1OURX8NQmbGKblar3agRvrG
n9jyDjyqG7oPhQ4A/4IUcWikFc4eXC/mFfwawtzy9ttfZgHdmvTOj0mHKJWf
5Y9IJVA3NFPaWYzB3gbjrU6GdGgN7xQRFCiEds8z5a9MMEhL/PWo6WsLkAWT
c03J+dBN/NjntAr1+XFO6u60FhhuT1/XVUsB3bINGePf+8HUglqDv1eRfi/R
a4nq36XOfys+d8QsdPq7GvV1Hj8iG9+nUUDeRFNdFO3vDif4HRlFvqkEFEfp
raDC6ftisZLImZYpi914/yapwrTehlwyDIM8vH/L3vBloQ/tN2lOM0bTnlQo
U9HPpaD95g2da9HHUP6wqNvD5wIVRPVDxQ6hnPLDNQSftzwpGFzXY0qFays2
WePzlv9rx24s5cn/6sfGlvL8JcdElhzLZPPy2Tu8nBXJy++l8xwL8Oc55iHC
c0zmN55jDzWmufnKNTzHjmdRuXlw/kmuYyvLXnBzrcTUcTyPffHdgztXtj+J
65itlx33O7I0+QOKuGO1K/dwvyOzOmfogDt2LFs12gCfx2h+vh13TLz1eIET
Pu8xQbwigRx74Wb/Fb9HTlb/PlTi5wUSZrKL6LkWW9AQr4/fr/I1LT4YOXbG
JudnXCAFLqju8LmJHHsbPZk7jfrkroOvrwuNUWBipudZMeobNMwu7TJlt8Bx
tfgotRP5oCzh8HAXAYPxKpNFKx06mDLPL5v88AykWr0E1xhicFeoVDL0Jx3c
axQIyYRS+A9dqoDxHgO9d/y2xNA2eOC6+f3BkUrgZAdJRTFZkLo4TeLfzADD
P7MvfeX/APN5ytX2JYPwpb5CeuhlN6wdXtb9VY8Ozs+Vy27qDkNFstT+LWlM
sN8yvDZ1Ofr/2kTfEJsbBf4SWstpNwzC2S3Hn95nwvPHOmNEHQ78IVXiM76b
BRXrRgsLlDFgl3iGpyB/ai8ZJruascAt+vxs7T4MMqvMY5Yj94hybNPZBQy8
sqN/7Wroh0SmaP20MPJKsGr0wF0Mmr/QVgat7gdSzkzWh0sccCp5+PvoKeTa
b4LSZx2ZQFp3ub1KiQNvOzTqZ9B65mmhRpVkJjhOruGw0XpUUgx0HyViECfj
GLMgi36Pak3M7yYHROyWN/jnYBCbPr1XcVc/vGya6lx2hwObOrLsL53AYFuJ
Ss2h/zLBOHqVJHMDB6YiX7qkx6F9WAy5wiunBx5nhhW2C7NBOTeWqd3aB2rf
Y3sOpzJAT44kQnAdhXxZZ7+IjT3QfMEiVGmCDs2vbWePBA/Dlo1uVwj+nbDb
IXWs/AUNCJcO6ZvmfQaFw0+KqAYd4Cbkd3yxvxYsw+y0A4iD8O2LhmpwUBt4
THKyhrsrwXqZ7gKhlwXWQ281b5BaYdDI6u9rR8qga/XVXoYACyiVta6rIuhA
k9lnaz1fBHbvwzU//YnqpEEv1E6aDuppNVFPOQXQP/KBL1kV1VX/M1UC1gJ7
pl+ZVNdTYaGoN1hAAAPPy9YNBOTVxNzk51oyBbb8yCyPxs/Z/xoxwe9jDBS+
Yy92jgIFVebZ+H2MjNW6vhs+tUCpo0hcYzYF+sKFdlog396+vH8rHvkmEdKe
nIr6N++UwYlO9Lx+fDh1LB+5tNien5GHXPINIzddRi7lGgU92Ykce2eapUd2
o8KRIu8oLeSYeP2HNeIoN5hfVtPsgvq0Kb4MOZT/A7sXky8=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdmjGoLEkVhp9iomJmLBi5RgaaSofGq6nRghoqGLliYGBsYqKGO6Yb6CB7
Ey/XEi4X1sFLKa5Syl0KoXBLqpmqLjr07cz8B843yduP3umuN93fq/Of0198
6/vf/M4nX7169ZVPvXr18Z/Xz8u9/uu9L/zsozff+7fxD77+mb+/84N/Gb/x
7Z//cXsjGX/49uff/caH/zT+5eXzD+M3Lyf8wPjTr8/2+pTGr0/2+ox/M/7x
x6d7+6/GX718ovFHlxM+G1/O9s5fsP6T8Zcu630f63vCeh6Nf3S5/p9wvQfj
31/O/wec7w7fPxr/9vL/v4vjB+O3LvwLY35+ej2+eD4YP1zPj+NH49v6jO+u
6zf+3/XvZ/yT69/f+HPX3wfnezL+8vX3xflPxr+53h9c79n4dn+Nb/ffOFyf
D+PPXp8f429dny/jX1+fP+Pb84n1JuMfXp9v49vzb3z9vJDvv3ZZ9+8W+SKW
L2L5IpYvYvkili9i+SKWL2L5IpYvYvkili9+/Sdj+eLX94T1PBrLF3+9B2P5
4s93h+8fjeWLP34wli9i3RGxfPF8MJYv/vhxwfqM5YtYvojli1i+4Pczli/+
/Cdj+eKv97zg/i64/8byRSxfxPJFLF/wfGK9yVi+4Plf/P14Id/uV4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4Y35/ev3zMF7F8EcsXsXwRyxexfBHLF7F8EcsX
8e33NJYvYvni138yli9+fU9Yz6OxfPHXezCWL/58d/j+0Vi++OMHY/kili9i
+eL5YCxf/PHjgvUZyxexfBHLF7F8we9nLF/8+U/G8sVf73nB/V1w/43li1i+
iOWLWL7g+cR6k7F8wfO/+PvxQr79+xaxv0TsLxH7S8T+ErG/ROwvEftLxP4S
sb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKx
v0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/
ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsL8b3n7j8+YH5IpYvYvkili9i+SKW
L2L5IpYvYvkivv2exvJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/vDt8/GssX
f/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lYvvjrPS+4
vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLd6IKEeS6jHEuqxhHosoR5L
qMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuo
xxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jH
EuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHjO//fOEX80UsX8Ty
RSxfxPJFLF/E8kUsX8TyRSxfxPJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/v
Dt8/GssXf/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lY
vvjrPS+4vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLf6OSO/ZOSXjPyS
kV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y
8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktG
fsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOQX4/tfXa7zH/NFLF/E
8kUsX8TyRSxfxPJFLF/E8kV8+z2N5YtYvvj1n4zli1/fE9bzaCxf/PUejOWL
P98dvn80li/++MFYvojli1i+eD4Yyxd//LhgfcbyRSxfxPJFLF/w+xnLF3/+
k7F88dd7XnB/F9x/Y/kili9i+SKWL3g+sd5kLF/w/C/+fryQb3mzIO8X5P2C
vF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q
9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvy
fkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5H3j++999+PPf80X
sXwRyxexfBHLF7F8EcsXsXwRyxexfBHLF7F88es/GcsXv74nrOfRWL746z0Y
yxd/vjt8/2gsX/zxg7F8EcsXsXzxfDCWL/74ccH6jOWLWL6I5YtYvuD3M5Yv
/vwnY/nir/e84P4uuP/G8kUsX8TyRSxf8HxivclYvuD5X/z9eCHf+jMV/bGK
/lhFf6yiP1bRH6voj1X0xyr6YxX9sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2x
iv5YRX+soj9W0R+r6I9V9Mcq+mMV/bGK/lhFf6yiP1bRH6voj1X0xyr6YxX9
sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2xiv5YRX+soj9W0R+r6I9V9Mcq+mMV
/bGK/lhF3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb
8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D
3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I
+w15v6GfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKf
vKKfvJovfj2Pxr6fvKKfvKKfvJov/vtHY99PXtFPXtFPXtFPXtFPXtFPXtFP
XtFPtvUZ+37yin7yin7yin6y/X7Gvp+8op+8op+8op+8op+8op+8op+8op+8
op+8op+8op+8op+8op+8op+8op9sfHuf/Gy+iP37/GfzRezf5z+bL2L/Pv95
8e/zn80XsX+f/2y+iOWL2L/PfzZfxP59/rP54tfzaOzf5z+bL2L/Pv/ZfPHf
Pxr79/nP5ovYv89/xnvjZ/PF88HYv89/Nl+wPmP/Pv958e/znxf/Pv958e/z
2+9n7N/nPy/+ff7z4t/nPy/+fX67v8b+ff7z4t/nPy/+ff7z4t/nPy/+fX57
PrHeZOzf57fn3/j65wv5Vg901GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVY
Rz3WUY911GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhH
PdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhHPdZRj3XUYx31WEc9
1lGPddRjHfVYRz3WUY911GPdfAHf+jMD/bGB/thAf2ygPzbQHxvojw30xwb6
YwP9sYH+2EB/bKA/NtAfG+iPDfTHBvpjA/2xgf7YQH9soD820B8b6I8N9McG
+mMD/bGB/thAf2ygPzbQHxvojw30xwb6YwP9sYH+2EB/bKA/NtAfG+iPDfTH
BvpjA/2xgf7YQH9soD820B8b6I8N9McG+mMD/bFhvoBv87IN88oN88oN88oN
88oN88oN88oN88oN88oN88oN88oN88oN88oN88oN88rNfPHreTT288oN88oN
88rNfPHfPxr7eeWGeeWGeeWGeeWGeeWGeeWGeeWGeaWtz9jPKzfMKzfMKzfM
K+33M/bzyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3z
ys18Ad/y5kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R
9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy
/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTe
n+YL+DZf3jHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf
3zHf380Xv55HYz/f3zHf3zHf380X//2jsZ/v75jv75jv75jv75jv75jv75jv
75jv2/qM/Xx/x3x/x3x/x3zffj9jP9/fMd/fMd/fMd/fMd/fMd/fMd/fMd/f
Md/fMd/fMd/fMd/fMd/fMd/fzRfx/wELeC4L
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHf8V2P7wD/nnE9DqaRdSDIqMkNmZITsEBHKLlKkSEayIqth7x2ZFUmI
hDz2yJ7ZGaGMrN/9/l3v8+rzx/W6r32f+5z7en+/vq+np8PAE/cdklcqldfq
VSpFWjdNgo3ePsk+SVZLsnmSapI6rpuZUz/JCkm2SrJNkgZJGiZpkqRnksb6
tjZvX/uubq+6SbonaZSkR5IVk2yn3dhe+LZNsmWSeu7JuoX1K7kXe7ZJ0jtJ
a/W2SfbQxt8qyc5JmiVpnmTXJC3180wdkvTxzJx91SR7JVlFfQf3a2qPnZKs
rOyknz3bue9e6qu4X4skvZKskWQ/9zvW98477ZhkzSQHJNnfPHxrJelrbIMk
GyYZmKRTkn5J1knSOUmXJIckWT/J4Um6Jlk3yXpJDkuytrkH6e9vzcH26mxu
V/MPdG/qBtiX/TdKcoTPcaT2xp6B+7G5Z+pWift0VJKrzCVvE32ZcfIGWU9t
ob6p517LZ+nudx9ciW+/hb7u1tVRH6TNt93F904ud+j4StxXdO4Sd5M7uo1+
7BMrcV+31sc9Od1e3Efu6rYK+rAkJ1fi7m6voDc2Z6j9e+g/ST++hvobGRvq
vsSG26unwt3jDnKHT6vEneulzf3aUd9IV+ymriOsPcGzb2VOM+tHuMcOrtv7
/C08dy9ll5p30dJ3c5o9iO+WZLT+3VyZL+4795l73dsY/rMrMSt76t89yZmu
bYz11reb/j2sa2fdHup7afOt63nOvfUzv2PV8e3jWs74GGu5l1dX4r729hnY
E3adZx1nuMAzjdNmZjvo66PsZ9551vep2ZtnYZ77WouvfU0e6+qVmFXu/trm
9XXPvvovqiznRUe/Nd+Q736xOQfZn+c4N8kxlZgt2MPsX1JZzpF+5sMR+HBZ
kkMrwQuYcHglODDAOLHLkxxXibm73tpL7X2FOdROqOnR356Hmk9uybD++rqa
S811Pi/7bOx3OlKBRTBooM+1gd+QnKMrwQueDTZsZg96dfM9HGPdRPfb0J4D
lUnG6fliJe4GvTex/0DzJ9t/kHswv6ckuSvJjT4H/LnBnNLmnjKXt1eCJfBh
SJKb9Q9xLfkEI05U0G81fpP9hhi7xXWItcPMhz1bmDtY3zD3Z+/tKsGzHtrD
PAeMuNtz3WlOT2PDte+wprRLfo0wb6Q693R8Je4adw4WnWr8HtdT9Z+mPsXa
kb5vvv2Vxu81Z1SSqfrgFCy6Xz/2fUnO0A9PmE9m58IkDxo7UznDnLMqwYCz
lYf1jTbnQe2Hamp31wdTxljH/rtah2+6fvRztGdWYkaZ1fO1S+7ghxuPuGLP
sHasZ+TcvTwX9X3sv5d556iP9cycfZz5s6y5wFhpn2efC82dXQnuwBYYw9ww
I88ZG2ec7wtbnjLviRr/k/r66hunHx93Au7AkEPsgT7HdzjKM8Id+HGFcWqe
US4zTu3BxrlnnbT7GRtv/VzzOcsAz/O862QFnVmfYN48dephVH97sPcL1nA/
Dzd/gvKsNVcZP1J9vvb/KsGaaypxz6+0V5v0C1PvJK2TvFIJJsJb7N2StMpi
PpmTDyrBoOvNg3Ew71p98AcOvV4JNsEOePFmJbjzmnFi99hzpPXH2vN46260
5g1t5AR9N9pnsPuiv1oJLt3qnvACbsAfuPKuNnKyvtsqwanblTvM47wjfL67
tN9Xp264e/AsQ9yTXm/rx37LmjutO8U+dxkfas2H7sP7YFaZva8rwR7mDu58
ZLzk0b3asAEewA7uMEy6T0H/NMnnSR6oBE9YR6uT84n9HzCvrMc3Snu0cXwf
u/dCe5Rsekj7S3We5xHPMtZzTasEl6YZL/UvtaeZ91WSb6x9RN852nybd/xW
MOy7JI9Wglkza/RHrf3WFXuB75va781/rBI8YoVJj1eCR7PVfzQ+Sz8+5pc5
/KsS7IEtTyqL9cGmOUl+qQQP5uibbXyx9s/WXaR/tn58493/cf1PJ1liL3TY
A5Pgxe+VmH948Jw+7N8qwSDkCn3PaP9Wc/7va2omuM/T5s5xr6ftXTLsOdc/
fR/ok+1D7A/fETEYxO84f6tz/5kVZuRKfeTBKPj0kvn4YVgmm5jxf817SX3D
FPunEhwgTh48gSUve8aZfl/isOI1ddY8C16h32jNdfaBl0f7TFe7L89VteYN
z8BZ6mWxcs/qZ+GHe7eYUzcLG6mTRW2Rxb70esda7udN9i73uNk67j88eS/J
ClnkU9cgi/Vdn+U2e/G8//jM1DTMImezLPbmHMwI88acwCsY3yiL/Dv1NcmC
U3AIBsAC2AEfPqsEZ1bKlsfh1wz70o/axlnUNM0ip5k2tfda95H5UyrL92O9
xzzy4RPM4OfSF5XgBT+rSvbgW+izfe7zPWQNsXZZPFd5buyv7cPKz8NPreMZ
F9rnQdcWWcSmV5bXfWX/acY/9xnYA0atmnxLKzFXzNSj+ss493ORQi4+GPFT
JWZ/kTnM6Q+V4MLqWcTJ65jFHP9ofJbr9/b40T5lffuU3yEL/0/ai4zTD/78
rNAbHyxbMwvfHM/yq358T6njWyuLnF9rfOSvnfydfBfwZ50s/NjcsxW9d+tm
wbQ/zFvqe8PXOQsf8qy+hX5b7gTs+dPaP4zP0wejlino8KlrFjY6c8tcbSVT
NsiCWeiszBHMgT3/VWK+/jU+3xz6dMuCWbBloyxyyEc/IgtmrZ9FLjUwB97w
xyu4lFtfR2bUlRd1nNnNXeu4Bwwp57mQTX96zvWyqO9ek0/Oplnsx77sBb84
/5ZyrL6+etbDMPQttBv4ruDO1ur4Vnaum9kPDhFjrmEAbGnod15RHjW0toGx
bc3rkUUOOrXbqeN73+/7p/elZxacWklpIo8ay64m+nrai9/FPqi5d9u6d1Of
n3M0z2KeeyVpqb7QsxHbWRagN1N28h3s4HM0NaeFNcR2zJZzsKl5rdyD/ruq
t1JgC4zbxWcgxn8TzHUu4FDbLNj1W5JnkszNYt6WOGfEYd0e5mHvnmSvJKtk
wZ1V1eHSalkwob3+Rfr6ZdGvk7ntzCdvnyxyYAx8aq+9tz32NJ86nrmdz0Ee
+ftmwY6+WbDmV5mxlvYBWfBovyz4tYY2KxzjmeDDIT4fz7nUHugHuQ+1fdRh
YNmrg33K/X6x9iCfYf+aPdkHtnTJYqaYJ+a+i/uXnOrss3BH+xs/MgsWbKyf
GT00CybAo5ILG+g7XP/61v9eWV63TIatZ85hSQaYS/2fMoB8uDNQ/4ausOsY
n50zbJIFD7CvyoJX5fPCMJ75X1lGj4r51MElfreo2gv92CQX+00PzIJD8AOO
HGfO5gqxwdYWxnjX/Hzhe9QxZ3PrB2vDLJh9gjqxevpg05AsZor5aalvmyRD
s5h75h/WwIXts+AM9jDj9FnBum2tbWD9NvqoOcm6bcxtUNOrkTr9T85i7uEA
nIAZI7WRlfWdkgWvdvDZelpf32firKeZu7N55KxkHvrwLPjF2UeZR34z9V72
aK5e+lpYM9p3x98CmJnzs5jTXfQThyP8DQGutDJ3V31naCOt9THze1jHChfO
rrHP8mzH+y3PyYJTextvZ82e+ss4NmxhXrlra9mrt71XtQe5zDIcWcNzddDu
41qeE6aVfOqjjx6rGbvA/P2NnasfGWsud39cFvxC1tTXUZvaC10P8DtyD0Z6
jr6eZax92ePgLFjcyfOij1dfR5uZZLaPzoJJsKO/cpk+uAMzrsiCE4fpu9Q9
ypzLrTtEfyf9+NZ1v4Otg1cTs+UswoZHsAT+wI1rfTb4AGdgzFFZMGmgdQPU
J2fBiuvN38j8I9zncHPZr6v2puYeY+7G9u+mbxP3nZ/kSntNdr9B7gdnmFXm
ejv3P8447OFuHq/cqK+MYd+WBSPgCGy6ydwTXLdUh08319Sz74lZMGSo8a31
baVN3a36yj16+KzM871JTvX579C/rXlDtW/XJgdO3JkFN4br4/1t5pnxwaO7
sriXI7K4p1PUR5rT07y7XUcop5hP3k4+G3KPPpgzymf/q0j3pZq+ZTV8pye5
zxj2VH0ln5hVZpBZfEBfyZ0ztM/MggNnKQ/pu99eZc6D1pxhPj6Yc7Z1o9z3
dG38D7uOSTIti/l8JIt5PS/Jo/r21gevZrhiT7cWe5bnuNBzUb+v/fc0b4z6
OeaRv7+51Mx0xf+Y/nPt87g14xTYclGSSVnM0gDt2caZe36fhBcH6LvQHGov
Vp7QB3/G1/jRn7S+v/3mJLkkC1aw9lMfr36JOutTSZ42To8D3YPeh+gjxl3i
XnFHYNmEJM9mwYQJ+q5w/5J5E41NUJ9nzlzzntPPu4FX1yV5JcmLWbDj6iyY
Mcn3Bkde0Pe8/sn6WWEMPyP5OcjfDK7KlrMH/Sh7MlPMD3NzTRa8Yv9jfQb0
V7Pg0Q1ZsAaewBfYcEsWPHmtJs7clnN5nbWc5Q3jN1nzhvqN1g5y3+utu0F9
kPnkwqJ3s+AJrLlTG32Y/tt8Lnh1q76TzPnA55ric6K/bx/s99yL+jftRY+h
+tDfyoI/d1l3p71PNk7NgiQfug/cYQaZPeZopL4yxn26V/lIH0yADzBmqjHu
G2yCI58m+dz4g/pPNzZKe6pxfKO18X+S5DP9Zf+P3YNecOghZaE+uPOFPrgz
xvM8rO8sdWJfZsGQaTU+cr9K8o3vAmZ9rX+G37BBnv4bPwumfJcFy8aaO0P7
W23kXH0LfOd8Z1j0mD1mGj9PH4yCeY+7wpYfanzLspgl5gr2zNYPUxZnwR0Y
AVN+0Y/vYnMv0h5vXhn/yfhTNXU/2hv/0/a81JxLtGEFnHhWgRVXqP+mDZOe
sQfr5fof81zfm0+f35Msqcn91X2w/8yCQc8r6JOsm6g9z/WPLBjzgrkw6n9J
/s1iZphrZojfd/4yD7bAkpeyyv//j6ZezoIJV1k/XyH3Sn1X2/cla8ual7Vn
es5FSfI8OPWagn6D+ddrv2oePn5PPcbn2jD5/k7rP1mwiOd/PYs5fztJvTxW
ZnuBfnyc9RbtN5U6edS/Zo9qHvFb7fWGvtfd63Vzubvv2H+FPNZ39L+rXt/n
WOD7+dt3BrMa5pG3WVqLPPZg3pgv5gzGwb5GeeRjr5j0JnlwquQOKzaMgAlT
9d2r3TaPft+YR88p5jfNIwfGfFrj+8jaD6xhT/a/W98n5q+cBzta5cEauMEZ
Sh8swt88D37BP9i0UJ1ngg+r5KHznDPsgd7GOuo/dU8YWPZifcD92Odha9v4
XC3yyFvoPrAFTjHTzNGv2uxfcupbn2u1PGLc1Y55MGGx9vfGYQI8ggvEnzAH
H7EOeeTTZ6Z1s4x/79o+j7wf7fGYMepm6yP2s8+x2OfHhktr53GOJfqIrZnH
in+tPPyLzV+iv2QKXFqaZJ08Yuj8nOR7c+9gCPz43dxOeeRgd86X/01xqb15
1w/5PcqaZ9Xp0yXVrJcHv5bpg1HYXfPwwSBmqr5zxbwz6/AKFmVJuskk7JfM
GZhkA9mwfh59mDtq/1bwzdf/r7EX9LM3rKF/2Zf1vyzmkzll9rs7r3VcYQT6
pnnwqpBZuc+6zPPB3rp51NcxL7dnpt7Nc2+VB7Pqmvumtfi2qInhL3lH3dZ5
vDt+NjOfzZLsZL/6xuBIQ7kCpxrox7eNtQ3kU0Nnv5F1rI2TbFdj98jjO3LG
dZPeU06tZBxmULO9tU1c8TfxOdiL38voua3PAodWMp9Zbu48w4Hmnq2Z/p09
L/wq+dRMH32a+jy9zG9hbEdrkB3MgV27JmmZx31uVaO3tHYXV+zWSXazro02
/GmtD71dHiyGLW3Udzcf1mEflMc8M4swCW6smofspQ/uwIx98uBEe3175rFH
mbO3davo/8Ze9CS+h8/Qzn6rJ9nX9QfZBUcOyIM7v8iSNbX3T7JGHnzqqL5f
HnXo/TxHp5oaONTHPTq4L3th0/tXebaW7+FAe6AvkWvE+rrvGvZhj9/kEfOz
SR5zi32w8T+8m10U9P7qh5gLO+DG3+bCqUPN5W5jH6a/q7XU/S4/1tdPnwH5
cpv8ZTJqoyRHJjna5+zmmQ70XOTApY3US54dkdbJeTBuY89H/X8yCt9S+cw7
g0XH2h9GbZ7H7xqbqQ8yltfkblqTg17+XtLdmu7WocOgwfrgz5b6WE9Qh0Vw
B7YMUd/anK3MY26ZR+byROMlg7bRhgdDtetZSw/YAod6KOStaF5D7R7mnOQK
g07Og1HoJad20AcPRmgPN6endlPjp9T46D/MveDsSHN28Uwt9HPOU/Ng0s76
djJ3ZZ+tZOTO1p7me+Qdw/pR+ukNn2DLbspofafXxFu6Yvc2r7X6GdrwZ3d9
vdXPzIM38AKOnJ0HL/ZU0NuZ21Z7d9ezkowxjx6H5zEDzMIq+ojBr7H2hxtw
gVkuGdTHHOKr6cd3nn7sc42fY9/zzaEfszQuD37Bif31X+C6v9LRnPb23Ef7
QuPM3ZV5zN7fSV5IMj+PeYXXF6uvrd3PlRkcX+M7Jo8ZuzaPGT1YPwy6LA8G
wRr4coV+fF3M7ay9rnll/FLj/fVfnuQSex/s+z/Mb0C8ZNjRPhPPs6HnHKjA
rg088wB966vT7zjPspnv5gVzJxonb4L7YG/sfkflwayj9XXzGY72GY6sed9H
aHdzL/KYYWb3jiTX+xyDlON8npvy4NLx+rtrww9mlFk9wfgWridYB6Nu0b7R
+sHaW9XEWU+0drB9TnSP2/Lgz1B93EPux0V5zPjJnmOYuUO1b9dHHO7cWZMH
Y67zPXDOU8yBQfBmSh7MQnbUd5c55N7tOsL+2xvbQR8x2HSPtfDnNH2n6ttJ
Hwyaqt5L+/48uDPaFR/MeSyPmbzAGLw5Q3lAH6x5UN991p6uH19vdbjyUB48
K/fBB5sezoM56Hvq30MbxszIgxHw4hF9060p2XFOjb23Obvbi/1hw3n2YO3j
2c5znWmMun1q8h5NMs1nGeO7IH8/3y3v8d4ks4yV3LlQm3szOw+W4TtAHXlc
Hzlw6Ik87trF+i4yr68+ePRkHlyAG5co6E+bc5B5443NccXuZy7cucy+PM+a
2k8bhzMw7HJXOAAP5rlO1P+sORP1H65/Qk3sGXuTMynJ80leSnJNHuyCFVcl
eTEP7kwyd7K5k+xDj/7aA4wzn8zy1vY50l7ti/S7dVp/SHJ1Hnwq97tGG52Z
fDmP+WLeTtEHm17Ngx9w5IY8GHJzHpzB95p++hxr3SB9Zf312tS8bt315h6n
Pdg4vd9Uhyu3er53tG93Hab+Vh4su9Vnu8UecGe457nD+tvNu8WeN6u/aT65
75lP7kn6S9/J2uhv24tned9a3h8zzJx8mQfPYM49yof6mBXYw7yM0EctPIAn
9xuj5lRzYconxtDhxsfmkPupfuKfuT5gbKq52LDoQeVzfbybFdJdWZAHm4id
qb5Q+yzPhm+6Zxyjjf+LJB94jin6zjYPdnybB7Pg0gx7fO06QxlrzlfWTdf+
xjgcmmm/R42dq47/uzz4A69hzvfq+GAMDJlt7vnG/kzyXB4zdqF55MOgn8yH
J0/q+6Gm3xP6Fyd5Kskv2tT8aA5+mDPH2Pia3Kf0z02yNA9GPKvNrMOhy/Qv
1X7GteTZE+53kXXPWDvPc5Xnw55oDnv85or/9yS/2vNp/SXnZvqeFvmOnrMP
v0Py+yO8+i8PlsEQfodaZu4LrjDqSnPnq883Tp/10937Kw8m0QdWZcn3Sh78
YL1O/Wpz/ud+xPiHz9dql89xnTHuPj+LmY28iB4ls16z5xt5MKBOEStMqVuE
v1oEs9BZbzL3DXV63GjsbWtLLizQV7+IdYG1t5hXr4j1beuLIvpR+475rZJv
1yQti/i982jfwbvmwCL4BINWLMKP3bCIecTPTMIjZorZamys5BEr9kd58ORj
ZaUifI2K6FPmNCmi5kPzP/I9f2Id+9/l3h/rb1rECqdWLoIrLYpgEOxoqQ8e
4YNhzYtYsZsVUYvdpohzwI+HPdsX7nNfvjyP9X7zyJ9u3pe+1y/1ty7Cz/4P
ud+D2m2LqIdBzAhzy5zM0EcM7qxSBOPQWUvmtSsiD5Z0KIIL5DBPqxbBEzg1
S99j2jO1yV3dvB+V2fZbZO5qRbCGGHnwaI0ict7zrtyh/+ckHYtg0c/6Ftuv
5Nkvxn5WX9MzPOKZ1irCz/uAFfADnsCodVJsSR4cwS71JeavXcS6xJpOReSV
9XPV6dm5iPWPJF3U52mvVwTbYA3s6FqEvm4RcWLMXT1nb4MiWPNPko2LYFZF
H/Ulq5ZZi/9F82ENXPnX3GXmv2yP/4yRU/aFX5sUMdPMdtXZxoZDFflG3qb6
iHWzFptnHlAEH6nfzJy6nmuLIphVlVXom2vDmbrGc3u+ag7+7r6neZ63brGc
SVsV8e7K3wlW0N7SfcsY/GlQxB2DPTAHe2vj2NvoK2Pcxe2LYBAcWVG2NFJn
7WG8kZxqaGzbJNvpb2yvBj5HE1kFs5Ce9oc1sGOnInjSTKbACmJNFfQd1amH
Wx/at7FxeEI9rNqlCH4hcALfzvZnn16uLey5g31hSwtj/A2Lv1vx34awCA61
UtB3S3JgEfPG3MAi2Pe1uei9i2AMcwmDkD31wRfYsHcR89vOHgfZbx33gYH0
WiRLVlXoBX/Q99Lewx702t1naOs+/PfGPkVwA2Z0VGDRYrmzv3afIrjWQXs/
dZ5pqVygxy/58vOzwo7V3QvW7au+us8AD9u7L/UHuFLb1z1+ko9L5BW9Nypi
dmED3Dm4iGdA+vlcv8sh4swkzPlLH9zpX4T+hxwi53DzDiuCWV2tJ++QJIda
u56CXnKtq77OPgdcHFgEFzZMclQRzwtn/pZx62vDkaPNhWHk/yufOCt9JhXB
l4o1Za/M+k1dc99hX98nDNrM+LGumymwBwYdU9ODn0sd/EbEjjMXBg3SB8vg
y/H6sQcXwSL8MIcZZr6YsyHGStZsrQ0jYE5D9aHaJ9hnK+0TrUEa6IMxPaxj
/3rWbKt/mCsMOqmImT6lCNbAjhH6muiDc8NdsU+2dnvPyLnh8cqebUf7N6rJ
Y4U/vTx3c/PIH+mK/1T97A9vTtNPHayCT/weyXwyM+cmGVUThzWw5AzzTq/x
j9bXQl8v/fhgFUyABW3tgX5mET9TtvCsMAl+wJGzzKHubNc9rW1j7IUky5I8
XwSjersn9WPM5yztPc95rn0UdO7b3uaNVacenrWzB3ufbw0MWs38vZVzrOHe
X1gEvzqY20f7Am1kDX1875X8Hgfo6+ieYzw388mcXFPEbMEoeH+Qa8nofvrg
xaVFsAnWwI7LtS8x71h7MncX1/Q7xLzO6tRfVgSH+uujvpN5463Dd5h7wSJ4
AjvgxmS/Dxw5yvNwFrh1uHUD1Nc33s3nO7II3lC3ibGjfJZ13W+CPai/Qt9h
7g/PjiiCZRvbj70mmn+t+/A+mFVm744i2MPcwZ3rjJc8Ok4bNsAD2MH9hUmD
FfQbk9xcBFOGKOhbmXOD/Y/Xf5N+fN31b2kM3/XufYu9SjadqM1z3Ko93LPA
hh6ebZhC3rbqt2kPM+f2JHdaO1zfdtrcT+7fuCIYdncRXEN20NdTm9q7XLEn
+z34FvBoivlw6VR9cAYe9dKHfq/6ztozi5hhZhH2wJbRyv36YBNcebAIHpyp
7z73KHMesG4XfaP044MhU91zlD3g0UNFzCQ6TIAXM4qYf3hwrj7s6UXMMLKX
vmnWj/HMnO2emhpY8rD9z3bf3bXpXTLsXNdHfRfofexD7JEkjxkruXOBNvPC
nBymD+bArIuKYMETfuPH9fc1Nk57lnXj9M92PdD68a4HeUa+Mz9zYMQlxp9y
vUSBJTDryZoefe1Zuzd3EB49bf6znoUzzXNltuHdocYud51rLfYz1s9x/8Ot
m2AOsZJ/l+v7X5Kri2AXP3e401cWwTVqB6g/pz3QnEmuR5jPz0J+zvK3hKuK
4FnZ92ptdNj0UhFzxEwySy/rh0nwAC7AEVgBP2DOa8ZusM8x1hynn9pXanqU
NTfoI/dY/fgGq9P/9SL4AmfgEPx4WxsZqu/NIth3i3UnaMPWkz3PO+bebh7x
Ia5vWneHue+aR/4w9TvscZI6vrfsxbO8Zy3vj5n6soj5hVvcySnKB/qYRXjD
PJ6ij1rYAFvuM0bNSHNhxMfG0EeZ86F5U4196kqfz6z92Fx8MOcB5TN9C5LU
r8b7fdDYGeqfa5/pmfBN85xna+Nf6Bnu9pz4zjIPRnxTBL/g0XR7fOU6XTnH
nC+tm2bddP3w5lH7PaJvrL7viuUsgt3wZ5E6PljCXD9u/nnGmGXm6M8iWDPL
/J/MLZnzhPr3Nf1m6//JFaYstu4Hc57SP96ci7WfNPZLkqVFcAZWwIC56jDj
UmPIr8Vyjsyxfrb7jbOGPBjyexHMmqegTzBnrnvO1f+bz/GUffFfYWym75F3
NtF3RT/+vRhsmp/k3yKYBUOe910+p846ydwrzZ+s/bx9+Ddn/G4No+DSi0n4
PyCFQa8o6NcZu7pmP/z/FcGfl2r81xrj/vOzlfnIqtHr1SJ49Kq9Yc0bSarV
WGFCnWr4i2owC5215NMb+q7XT6+3rC258La+etVY37b2TevrVkN/yx55NfqQ
B3+YS36PPMp3A4NWqIZ/gTn4YBYMalhdbjdI+vv6mUvmkbn6IkkjYx8o75vz
URE8uUe9STXsFavR533jjavLa6fo+9iae9z/Tvf+yNhK1Vg/SdK0GlxpXg0G
wY4W+rBLhjWrho5v5WrUYreuxlm+8lxf2ONjv/MnylTzv/Ls08wjv2U1Vvyt
quFnf3jWpho1XxfBnm/Ufy5ibn/R17Ya/h+TrF6NmZ9uLvXfmveIertq2N9p
l37sVax/3H6rVWPuvlfQ4c6j6t8p6Kum3PbVyPvB9/WA55mlj9gdfhvuCMyC
VWtUg0uL9f3oM5TxJz33YteO1Yh1qEbumtXw807gBiyBLUuSrF0NZiFP65uj
Tf5a1Vh/tWadauTw7+n4N2v8m5Il1i61N1zrXA39We11k/1HEdyBI+tVQ+9S
jTgx7ir3lrvPv3OFO38XwaG/rGOdr/9P62AdPIExcO6fIhjzrzXkwTHYUpEv
5MIe7Fx+wJE6zjtzX985XkHmEIM/sKKuvMAu5NCL7sv+8KG+uY2d0SaebUVn
m+8MDxooK8gG+MIz8bwNnesVfX+/e17miBllZpnBlZ3D5s5oC2Ps+ZG5zBt5
zFUL5+kza5o5a62MM1+tnTHu7Wre3e+8y8xCW2elnTPW1rpWzn5r84h/W3M/
OlWjxyJniLu/uvOxtvdrHe8lNneQGejgve7ofV7T2Jre0dW97x28e9zBTv57
6fX8+dXZ+9bFGPss9X528R0vdo81vKPUruud5N5tkNb/A/T4ziE=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJzsvGlUjd/7+J+keVRCGpQipIGQpisNFKlUSqEoKkSJiiZFoihDUUhpJDmn
eUAlRRNN5zQP6j7NEyqiFP+9zzmfJ++1Puv3f/L7fd8Pvo+s9XLW3X3ufd2v
fV3X3vtIO7iZn2BlYWFRYmNhWYz+9SI4hiwqKXCEdS+X+HESvA7Wc5v81gv/
y/+X/y//X/6//P8Od/oHv8rk3IsZvJzJd9MYvIiPwfddY3DLCQY/9YzBBcMZ
/JYnJ50DvwWd140zuMxyfjq/4JBA5z+J3XRep7WTznf0ufBiztV8ms5N+BuG
MVc4ICKD+XWpYHfMKTwwjTnnsa059Ps3b/fGPK3dQMkScWn5jTNSiKvs4krE
XPrHL+sDiJcFbVumjPjk/tseU4i3yhTo2SL+oJzzxgXEzWPHhn7g56PZtcUV
8ffunLxnT5AAflhcZZ3sBaesFtNkxP2uvgj2cSHB+1DfqfWIqx10fKFeRQEb
MsdoijsJwmx44iIRjzZKn71XTQHPR2Oqh66SoJpL6NG1qV5o5Fvmq/KJAi+1
c5uqn5HgxuzS1sPfe8E94LplQAMFNF6su/ioD32+0vK6w89euKNRrnK4hQKK
iu/kt24lQ7XrDN+V372wTebNgZouCoQPP8hLjSBDc3j+HDsLAXFJkp/mCAqk
H33h0txChr8mfxJfLibgz5p7Xnz9FKj0TaS9mCYD2VMiRnoJAezdILCURoHc
2Du/V7SRwV/ZfL4IfZ7XvfVrGro+z5Yx/v5bZGjXIm/99hc9n4YlPPnN6Hk+
sVmiqECGjMmVhnzofgr80+6Z1lMgovz3+nVUEjSLnXgbPtMLX6/KvqmpQeM4
RCPtjSKB6zGWvKPTvRA163/ZDj23XE03qxgPEthf/vvpJXpusGfu2kX0nO8U
GJ9Z6USCkzLCCjyI7xCl2OLx9bYasZBB47XRPrkUj69BvdyeE4h32T3p40Pj
lb8p4tkC4vs77dXdEH8e4CQdg3im7IskNnSdqtdG/acQ3/dqV8MhxLtnfKMX
IR5S+6zrGOLr3rVs/Yyub6bRpv0bXefyswuChxA/5/jt2WXELx9r8J5B3E2o
IMca8bHFm/rMEL9xrFfsO+KeBr/uWSH++VTF5p2IF1yaNJ1GvDa7+T7mrgZP
bTG/9fX7fsz73O+sxNepU525Yoj434RQMuarztZEYl7wRXydKb7OHXc2fP27
cj/DMY89vazFBPGqSwdZMO/VT+7H19cybUw0QLyv2ToUX+c86+V2HP/ymd2S
2xGPlIuuxfEfbh7ajp/n6sGgbevxe7QoZ+XUv8BL/43b/4NfZPJAJn/D5M+Z
XGgJg3czeXE/g08pMTjndQbnE2L4al/MPjpXSGXwJ1u46fzHntN0brLWgM6v
1K2m87xXKdyYH+c6QOfeO7/Q+Qr/+mWYk88M0Lm2nMoXzK+dGXLFvPL73guY
x3jIr8DP35QrJVcS8Q1eNXcxX7+mkQuPV/Q3kZaNiOs8SdDA45K5EJVng7iX
xe86V8TbeDiCsa8mhbbfPYN4dXwgRxCKZ6/szouLUTwbbg0Xyke8OKf2yrmT
JPD+vPPMNsT3Waze/RC9d/uNY79Xe5LAcFmieAvilpkaN36j91Re7kPA1AMS
xFTvWnQVvadrLj3h8ERearq0RGwl8pLt178Lh5CX4mt+q8p3UuB35OyTL95k
uHjeVoL40wtzNjykunEK1FjEfzx3JgP6hmaKDXkIqEiWKeNeQoVSw6kaA/tM
6F1kwLVfnIBr3HZ2XVJUeD/y8vbHlVngK35Ad4MSAf3flnP3b6XCK45etsU5
WXBI4W9vijYBerf+nt8LVPgea+V46nsW8AY/bd5pQMC3Bzx7R7ZT4d09OR/B
d1mQ3st2UkiHAFvT4Nd/pKlwYOjM+ST5LCBflIEXygRctDhgIoHu57OuYU0F
uh9Ba9ulduh+ogQHI7hGKfCk+aPI6K4MUPzTdcSKC3m1XtklEntY/Zj8VjUy
vDxb3fkceW8VNwtl6iOK21KqhkMyCRa/06hVRj7X7PI4NYXHy8n3S6ErCTq9
h1qOoue83VWoE7+/xel32S3QOO4oubGN/l6/vHk/F3ts0++uw2i8WByVHLai
z+dzPNn0BfHNMzHz/ug6rN4Xu44gfv3q+d2diLPXhYp5nyYBP0U+ygxxVfKt
gjTEj1V25XxA89QN0V8lmxB37hy0DkScS6BkSwjy6oAhb7og4l1fnfxP4rhd
pWFmiOLn+omdj1kQD7B+wn0U8d2cRn3v0X1aOZn8nEX32fxpyYkjiKssXr70
KebOoqt+IV5FI5VgbtC6eTIZ8Q92K20x965bNWCH+P65tG+5iBdOs6/H11F5
L73WHvGwx6svFSKuNfzKCvML+vxx+DqSG09uTEKcKN+oh68j1gPP8HzNlhv6
7RLiYsU9m7CHy0Vfe+DnKW2y5dA+xOuLtkxM/wt89U/uzeTH/sH9mJzE5CVM
PsTkFziZvmLmXR3DDC5zksHHQxm80pjhsXWtZnS+toHBRyX46LyzNZLOGzYz
8q4Vsjp0nhZlQ8+7+AQYeReLjOAI5sMJt+Uw3y6fRc+7pN22/cScX+/YKOaf
phJ9MG9olrSizyP7bizF83JZvlUx5lMfpC7h+ahwQe8jIF5jWamFx2XoWyI/
nme3N8uxURFPduIjzyGux+UoHoG43sPyXANnEsRSlh8UQ3Ho05fcsRn5qvXe
yM4dKL9a4fFodQTij7cYrFRDvppPXMVreYsEE8ULqbMov9r0p//6c5SHfMpc
CJ9vJYHRwTT9TygP4T1/4KISymdWufnc0QwhQ4/U1TWPUD6TsOTY9LvvFNjI
PbmGsysDONbeWtcjSIA7R7mDrwQV9vidldHhygIVjwu6AZsIaA21mXp3gAr+
rT8eJ9/JBtnPXtY8BwiY4to+mxBFheZxIaWvBrlQucjsk0YQASrsMftUqqlA
Uese883Jg903dh9USCWgpjpxgZeggnylmNMpm3zwztvb/y2fgPQ8ysu+Riqs
NR+T//U1D8pG5gSMXhJw/NidYrGnVLg98GR94f1c6DMdrd4bSoDWl1Uz5Yep
oPT0SMuxd9mQdSJN5ZcNAZ6LCq1dxKmwUXu3RuWiLLDqaf5epEBA0HL+i/oT
FPgi8ntX2/kMcOhTu/4Y+blQcXvwHwp6DofuHHJkJwOt0cxTdhbNL10RMv3o
+Uv1fFbtvEQCzY7+Qm70nP/uGT+Bx/HQ8j1lrWgcW6dOjOFxLJTqOeuOPv9L
r7r+7nn0/q7+7PwKjVeQf47vOpQPa+5wZg32J4HHmbX86ug6CvGRrSyInxUP
Cz7lS4J1/l0DkogrchUm4evY6dLIUeg6bx1Zw/F1mrUumo+hvxsUHKRrhXx4
xPtJxyHEsz5phz1CvP3qUPQUip/sdVYiaxCvuDDu5Invc9kD1i/Ib0dL/Oc4
EU90s6txRvyRzMJLZcR3elw5+Rf7LcrC8TjilZUTBxchvnfKcgnOJyv4xN9h
vqnS7Rw74oa22rsxP+x1QBfnn4Zd4144/9QxE0zEfG53RLojrptU8w7/RM9H
mm1T8Dziq/MPJ2PvWZn8snyLeIDyuQzsvSfRV2Kw3x7+uboG+y255eqamX+h
x/7DHf/BA5l8jMnfMbkWs37cwqwfdzE9FveFwW1fMfgss358/JThMaUTB+hc
iEefzlu2CtG5btUnRh0qvIfOsze40vn0r2J+uvdYwui8uuDZKObuwnkamL+K
rT+HuciW4cXYV+pz3x9JID42GnGV/vkIZxLmsnVJDWvx5xvJc5gXuMpePoj4
9YyGb4dwXtfflobn6+fnN7udRnxXms9hRzTu6SfFZ3EdYSCSJ1eE+LwkWbAC
zeMtj79lqyOupbL1VR+K548i3r7N6D2aN+w4i9+j8Afq7tdQPejqPP7C5iUJ
epvJbdEof8iNLSX2o3zjfkNifooqGbpkQ+t8UL6RntJ6eBrlV16B7GLubhlQ
cSQuxAG9vxtymhcHrqSCUxNXQMREJvz8VNWctQH5qvZHGsmRCrMiC7Oek9nw
KSLhB9WOAMuTkZ4tNVSIvneEY6IkD164+VpZPiOAVrf60GZoApbgeE+V4UJg
4Qi8v2qWgJPDJtryiU3wYGw29kLMG1Dy9A56rk2DiOGPTvmNTZB77fvQ5r4i
SJJ+nSBylAaiYiXn3r9qgn1eiTfTNIvQPDF3VseUBhIKLMKfjjbBcYcthUTj
K0hv2TZTKEiDHM4lMfwDVNBx+eCw2zMflMQMst+9IuBm0ndBJ1cq/N3fsE5c
MQckb5uMfj9OQJYS5xOtpVR4E+LoKfQmE6yjpd9EyxGwLWmbVsdnCtCeF304
kE6GGZ1ffy4tQvlbTHbMbTRfhPffXL3sLgm+yN+U247y282jxVHuaLzEPphN
v0Dj2Oq4InoJGi/X5NEzlchLBd8ymlVDSKDqHOX9Ao1XRNfS8hCU78W1/pC/
GkcCNkP3zn50nQPJY6xHEJ9m9z6lHUsCDf2sq5WIX+xccWMN+rtyH47PbL1J
gkv+9zaPoet0cd/aQaB42MjX9yobxUNaxx4SJ+KhKRsseBG/wBFiLn2WBKue
e/CeR/eTYii3JxHdZ2RukqMdyuuqfJJD5HFdHFv/yhtxk2j7A/worzO/cz+W
G/EVp3UCcF6Xpsl7GOd1L7Q76HndA2mdv9hXWymvXi9HPFesZe0f7L0jylmY
13UN+gkjLmQy+xV7bMlsWC72nml2YtkSXF/bntTGfOzF6yPY/zWeZmbY/0oF
SQPY/705lD2Hcd4iVVx0B3Gfze8sf/4LfPXfuPM/+DUmV2f2wT4wOYnpMTNh
Bn/A9BjXDIPfXW1M58qRzH4aLxedr9U9ROfDVgyPnfIVpfMccVF6/VhbuY/O
lw4m03mFGFUIc4ueLDrP2ZM3Tr//V3oHMc9Z0DlP9yH/HhHsq7mepgBcP753
Xnob80MVayVx/Rhy7cs3BVz/Ko8b4frxWNUSCdzHWFhdYhWI7/9kSiCeXzYI
r+jB/Zb9tf36kih+GgZzT+F+i3+gVsdP3McwFYlgO4Pus08o7TjiU+bHw6rR
e7HuVewWc/RePD93djodxW19vsDXYJR3Lf426czXQoLTq4R0clDeNRrFV83W
g+pKM5/7KSQy1Lh+HohG7+NsIMuGUVYqCGZMKPqYZcLsurV7KGIE3G+64Uw1
osK2DdZXn2tlw4ZtnyKfGxMw+so66FwpFc5PxZgkeuXBnm8sKuxPCVg69veu
h1MThD9q+b1p9hWk3eSJzBKhQWGr9levNc3w18lRoXLVW1D+GuMa+pAG+Qnt
4z8qmqHwinCSe8U7WAj5duscbx/cKbsQ8GllC0T9/vs0aLAMlrzpepu2qw/a
V3xYqJptBlP3vhWK3mVQcVu7e71yHxiSHv8oOtsMg0fXWaRGlkLp3tCH7nU0
sBLw23flWRPU2MzpkYrfgMMj6onTujTYFZPSJIvyvRBrflVB23x4tjciZVEB
AZe8Uo59Qt93hapCujf6vvMrdyQnoe97xCI39fQk8vxE2q9YUgZ4BZ0uCeEn
gFobyOtci+LT90zP40KU93454bLtB8p7f3NWBOA6Yn/rEXc0jpcTY+8IoPHS
5LLNbUdeesN2vpctCdURhS5rpdD84iP9fDAAjdfh/SH+r5pJ8DQ+mTUDjZd4
ec2Ne4iPeOo+qEHjWLNHsL4I8exQ04rD6O8uXOz5wYv+rrtgj5IS+rsLVjrP
65Hf7pJyt9yJIsGgs/nG48h7DfF5knPIY2bJ4Yv5UF7H+/2UghiKk30mrfJ/
0H2ONowaHkZx5cbZtPwkus9wp/eKkYhnpLHvvIXyN56Sx8MSiAfX6Bbg/saR
qPwVV5F/uHtjInF/o83G38sBcY/3KXcH8bz/98cL3K/btfh2Mc6v3Gc8ckoR
P3F97TucXxmbGwhg3sQlo1GAuN3b57swfz1tEYPrzdU/ijoTEVfcIQe43owX
q36E8zFy0gY9nI91akjI/RvyMbv/Ulee/kcfLJzJnzA9VsPk2/sY/IMYg/9g
emzlXwaPjWN4LOIhg5vfYXjs3mkHOg/LYXjsybg4nZcVutE91mNizsjTdEcZ
fbnxaHof7Gccjc5XGah9xdzTY4sv5iw0Nk/Ml/gflMce2ztXfx/37Vu+bniC
+fvWfc+xx1LKYj1UEb8SypaOPXZRLtsc9xP4xETnXyJe6rG6DI/XvcEX9qF4
fnzA2bAYxU/Rn8rFy1GcFKdvMNqJ4rBqaDUL6zkS3OFZZxCDeMwvpdx+FLdU
Ac4fufdJEL9syYwHitviFrUnalQ0Xxtn+93kIoOej9qefagOWs8mmFg9QoHd
XuH97noZUCTu576ei4CVfVEDypJUSPtz9roifxaanynUBVQnEmqdJ4VCqJA7
v8kmqTcHTI4UWvz1ImBrWQxrnGoTBGdlST+JKwSvl2bSLycJSO3KYTm9oRme
Nzx1XmP8FkJCbl1yjaMB/ym1J4P6LXBRs9rquF85fAkQTvl+vA8ip75dNdVq
hYa2vpXqXRXwU2a5c5hwP6RObaq58q4VVLSqXk89qwKbL3frz7v3Q75BTvS2
2FYQ76/fCWur4Ht2h6aWVT/sqZedW97cAgfcqMKN5z6A0LL9JXtr+uDwMfuJ
u+Rm6Hvl4xB/7h0Y3udR3febBkvfNsaMXEF+UzNJX/v2NUSrSs1my9PgsZDN
QcOHVGiS9ZLa5ZQLNJ7DzoHBqK489MVyLx8ViBq9ey9iMkFw1rFCQoYA1aVZ
s3Ko3jyhqmkSP0cCaqeNwa1fvSiOnIRwn2ooScj+CvLY7sjLl3CfqsN6WjS1
jgKNgQRpspoEzSf5E0WRl5ZKXd58rhnlY9pLHN3lyTBu6DTQNdcL/b8Sdlii
/PneTI9JBcqffxuvueCH8ucrncpxvejvCgqaXipnI0Nt0vw5ATS+vDcaei3Q
9R/MBEn7fED1y6XYji7kN2VlRWo5ipMOSsOTsUgSZF337DiE4mTuOcfBXBRX
Ema33HW9SaDbaSUzgu7T81y0dSXO/y+lVx07RQLaEom7uohLDqR3nkfcTSTr
RhvymJFCbj8HztNSQ57hfEkjQ63iPornPzuH7+N86b6suSPua+mnDgUbIy7S
b0/D/ZOvrqo+uK+yRtG4A/dVJspDtTEfG/Q4gTll7P4rbcSvHZlWwnw7+fEv
/B7d+/20Xg3XU7UX+v4Nff7/5jH3f/D7TC7IxuANTN7O9Fj4GgZ3DmHwD1yM
+pFvC6Ofz5/A4I82Mvr5fp2n6PzlakY/XzFYls4DLNrpHmtOtqZzdW5N+vrj
pQtcYpjfXyFO74PtLlWcwnzXp5PJmN+YXklffzwvu0QHe6wkR7JnNc6vztSR
MG/aFrQXj8v3VXlmWoh7BxdI0Ndl/EESz1/PzqhVEIgveTzpiucvm9Mew7GI
S51YekMY5fmQfKxEFsWJzetzljEo3t4YT74v8kRx1bnUoxn3N9YUDqmi+nF3
7n2v2WcoXxVQAns0vy9WHeF72oq8Klzzt3YXGayKSC9OzKP76X7skjCD+Kq3
5stmMmDDDzsp5aUEHNvcJteoTQXVc2/Kl09mwdFP13rH9AlYXznI71hHhTt5
o7qxrXmgwyczQkkj4IqW4kB2aRMs1byb99m1COYqdoVKWdLgsFZgzt/lLWCf
GqEFvWXwLFl38IRBH7yILy2TSm2FZQbW8vmGVaAr2uageqQfFLrCGgiudsgQ
PxPSJlELYx3pSprWA6A4vHoNV0M78CXOlI7W1UPgH2fiMm0ADtYWjca+aAeH
S8vGK43roSVTvHZz1QCIaRQl9sS1geSfv0dep32EOWVJAw7eAXAmST2WX9IK
liZKX36sqAAJlo93hMf7wLMpaNuwbTNwd16VzTQphdxP448DS2mQxZN0aQVH
E2wMXPNmsUMBTAmYDJEaUb3sffXa8FYqrOoQVZHJyQKT46c40rQJ4PoiVjzV
ToFE9ZszEs5kCFz++wnHH/T8r44q4HVkwyj39DPofZ8P9wjA68h8fFMrZhop
8GpJt+WSXyQodFaMP4W89934xf0b3RTQVL3MtxBDhmBjm8xbLASot0Vl7exF
49tr+Lq7hAxnz7bHe7ESkMadlXqjkwK2Ce1rFPzJYLoQOiD7txckhLKStzeh
65uPDTotJ0PT4W8hLMiH7hZrR3+g/K2e57e4fSmKw3vFDY+Q31LNLbj5kd86
lROX8ISRIDzy8/IulKfJnt58QRHFW1P8Nr55NxKUPxvnvInuf/hbeEQQ+l4i
nD0i0cjPXaVHrwkhvseumoJ9Ncd3NNIc97ve5ivjPsnBe2n0fsu55vBo3G+Z
HHSg91u2Ll4riL2Uz7dOEdcpu6tEdLCXIq7af8efT5CvTd+AOMf52wqYpytv
88C8vn/XwzWIJ/aINP4b6sd/euw/65Le/8jH4pk8iumxVia/x1yXjNvE4KNM
j/1dxvCYZDfDY8/SGDysm+GxqJALjOs/YXhsYfsmOh+3N+fB/HbZETqvqn9I
91h7rbQU5l//HqF7TLkt6gfmJs8zqZjv8fK/RB8XR5VD+Dk//y5qg/v5T22G
6OvsSaum2PH4Xt79+/JuxBtrzydgjw2uYvV1QnyQZ9MFSRTnjdcb/HE/offg
AYccxJ1O5G00Pon8PG4QporipHT7y0fzKK50duTcVUJ1wVmZY2OrULyJLE6t
KkTxKQVfaniLUb15dFWHG4rPgKbjGwq6KLDoyH6h2HAysC5UBc2iOL/58fJ8
0BIqqN0PXXzVIROCfuc2JYsTYK9/b3XBcSqcrHup8/JXNmzteHY9wp6AvwnZ
90kyTXBRPlCxXboQ2IuDQgQHCMgf+xr+7HgznH1dEH3fvRTkrPwO21bSwNyo
tSxIqRWWOr+P3fGyAvrJLa0tXP3wvago8YBhO4yPsN5Y8rMWwp5tjll9dQCe
LrAnBCh1wvqY+blbe1D+K/JS5Ur7IKR8CTMM2tMFen0rxRK2NQGvlMCuk0+H
oN1ApTNDoQtavm9PrGJtgqCpytMXbg7BqymnZ63NHWBztfVsOrkRLvAKsgY+
GoTHd17K1Oe1wbYXTw38Zj+CmoglRU58AOY8711+59ECWaEeLe2r3kOVu1Cn
4rU+SN4g6Rz2qAlkYj8/9XV8Axrb160x2UGD6VNZC0/cqMC6xM0vQD8HmqNd
57Y7EyBip1kUMkgBzmLLh8KiGWCoIP7iMzsB3QYZO3A8CJX9CcHz2ovbtmk4
Hn7nT18zRXlXlWzC/OO1ZFhiW6P+AXlm3djSs7eGKCDg3v16r2wGuCyIPHjA
gep6vXVhGRPo8568T9IuZUBcqkXlIA+qf+VGHooOI3/+dEuv3ZgBz5Iqs36i
z69m1f1hg3wI5+Z9LzwgQyzn/rHTyIe8wW/e7kL5+ZaHMSvNuMkQtthmhzXK
3/S7f173QfPgQDb79Lt0Etwq1lG8g+ZBqZ8vL/3C+3OsuNfM+JDgffkVtpUo
3jKEfS7ifhq328rho2ievWun+gz30x64bHyKvbTIzWsRrjtYfhunYP/0Lt80
hvsnwuomYTcR171wQwjnaR/J0ztccD0lvbx4G4r/AqcvBXgdQfhHayDuv639
sTIQ9992Pnj5BPffjjd5LsL9tIcSTznm0XVUh2+Vzv8LPXaJyf2ZvIjJ05hc
nrm/4jOTHxtgcEKNwX2Z+ysy1jA8FvDYhM4Nchi8NJmHzh/YXKbz4vW76Dx2
ZhudF4+10z1W//g4Yx2hlZW+Lilc0iKLeWHDM7rHVhc4zmLu8P05J55fImI3
+GGuFpV6CcetSFIpiyz2m7FpC+abneTbscdSzv4dw/PUET6VrXie0vPWP4r7
+Rbn6285oPH6ujvuC+7nK37rePoJcZlHNmbpKJ+/e22L4S7Ej3JrHzxTTYHQ
DYEfTINIIN4dve40iqs7GToeZ+opsLG4OLuiCeXtL7aUJKI6JZfFKuQCjQKf
zy+P8+gmg+rm1cqsbCjOtz3i3i9KhcDJ1FOnWjNBVmG9oKc8Ae4RnbzJt6mw
zCnQcvuaXIhTZEt75U+AUNaOox6o/ipQYL888uY1DKRPKNqj+mvAxVX3uVQL
5Kg1sRBzZbCybOBT5Z4++PI6elebWxts6ByYVWL/CH+MMojZ0X4IytMfDNnQ
CTYpBtUjOymgbFrqwtYyCB8ulwn9InXDsUfGpzKetoCK4hsFzUfDcHlXBOXa
5h54O9R1fpd+O0Rru982Sx+BhdyWsUdre2Dyr31ZuBLKy7Z32X5LHIHAn3vz
OwO7QZVG/QbmLcAhrP35us8wBD291atX3QHFLgfFa2MaIcXdTyLt7iC8/eQY
epPaCtHXVxumDVYBe+zeK6v9+2F0b+hHm0PNEHO/QFLDrBS0Bu+4NaA8bW5e
8lbCWypcOPVn9rd7HhR5WXBdiCfA214swHIO1RG6P8M/iGSC5zP1kmoRAmgt
bWa4P/C7lliE+wNK/kdmRXH+XMV6ZQblyQVr34YH7iUD/1ubM4koT+a/qnkt
bwrVa/p2TqFvM6CM1TLqrAABPJMm1+3/UKCu+ppcv3ImrAo8silhOQGdp7dW
jP6iQOyCdPMkdybIn+AL+ShMgJM4N7vPKAWu+0xeYN+XAaWqUS4pXARInrmm
EoDyt7ucrS8f+ZFBt/fPTQk0r616sawgvAHlOX3Ui+79JJBPcLQ+87MXdL1d
cs6jPO1Oi63Y3dskcF1yL2wNqkOv51rZfsV5wsEkiwhXEvp+lAw79L0sTtRJ
47rDbWUmrwaK8xTZkyx4vs4fSll/FudRfxpNQ1GcU20X+nA/TfWsRWIM4jEC
7Mva0PPRmDpdLI34yGkf9xTEP8bEbAlDnvQ7bV28AfELNtyh+PP9YSZ5Lejz
1JjUdPz5/2mP/XOf2H88FvwPj+UxeTXTY0NMrj/I4NsNGHzVDWb/fzPDY0td
Tem8vpjBOS7zMvppW2/SuVw5w2Nbkxn7WlPOn6Xvr2CVcGXc55Qn3WOOHcs3
Yh6T/4vusa8H7ixgXrrnlS72mELqysuY7/vB85i+Xilt1CiH+Ob+ygnMVRcX
vcXrkjR+w/P2iEvt1m7FHhOYfvwWr2d5N0XvJqHx9effkYfXs05MutgMI/7y
jNGwAoqTW/Nvym0QFyo5ASPIY5fVOrV4bpDgyYCcZhny2IlFHW37UJ1y6sT0
n94vJEj1TrP/juKw9CaveiWary+npQU6bc2AgC/rms5zEjCaMXm9W54KY4O9
lacPZkEE20+bgK0E3NVYUSqO3lPzjkMOR8/kweGx27mi6D29M3xQOHW8CaaS
Z8pD44oh+Fvrb9bzNDBUEtn47msL9DsRztfrPsDzduXbnN19oDHO69HX3A4K
r8MEDPrqIb1Xdzh2cACuNpm89jXshkdLV8Spf2sGnmsCY8Pmw2A59GeLhQ7K
H4uSL2qEdsIuy4C7sg9GYWy2NE5Cl4CJt5dcMrl6gGetb+5llnHgurJ23dG9
BEh3abX2re+BnXtuV1zlG4fVtSGWFWZo3iuRu+xW1gmlxpKNeqRRYJPyP3pc
vxtSN6RFSIw0A5lNs4nTbBhWSD5arhncDrRwTn/zyjp4vj6vfgdpAJ6nWRWV
mLWgPOD66aiUcrhbR0ndfaYPPGwMHV9ubIKbXAsLLkcLAd6k/HAYI0DwiG5k
zAoqhJyebtMfygS/BL1NAhsI0Brwt6egfKb3/vCa/oskWMS5UesPGseZeXVL
PlSHarw0H0m1JcPfbfkOTgtongosM3q4gDyg6ecUtDET7Hp5O5YhXx20/imn
LkQFiRXGg2y5mRDRtO8oIUvAyU1XVqbyUeFP4ccO6ceZoLRo390jMgS0P661
I36j98WYXBculQkFOvove5ehvFEqc7MWyveU/6o9XZDKAMXU3EE7lL/1KKmd
GmmhgNn+p1cJTTLkUI1MBn6j9+XP6Bc+lOevfyS5530OCTzOfaj4ifK0ONb3
pGhcFxy9mJ/jSYJdMl/mm9D3ane74o/787Yl2U4JKM41hIwVcL/X50mMzmXE
F2xS2L1RHXq87O0gXu/4FeXysQfx5SyFI3mnSVAhEFVqgfih632cAuj6IldF
2XafRXXWR5bvFxBfdSTWkRXxIomlktFnUF3mUi/o+i/22C0mL2byd0zuxc7g
X5lcbYjBPcwZvILpsXe6DI/l7WXsE1tVzeDcJxn7xJrHo+k81pmxT+y96D7G
emgGHx/mSfIX6Hzq4CTdY9OWn1QwL3A3pe+vcF7MzYp99dF3NhB7bKBV+wrm
M80dJZhPjduVr0Nc9OIUO86rK1pYC/C+VtdtXTS8r5V9I+c1vK9145bfV7wQ
r5GpOreAPKavJV3GhfMxddWV7Hh9PKIsvwaNl+kblZdn8b5Wxad7zuJ1qDU7
uwzQ/Lgly7JYCs2PD3pzl5mjemFk/EHlBKoXIIumbI/qhZ8pJz2jvqI6gkut
jDUqAz5uzrmvwUdAX5XzkTZNKlC2SXMf68uCPHMN8VA9AlZs37PNaooKt2q3
eiY15oPVTNNv0XIChMuo01fsm2Grs9/6HLtS4N0tw11cToPBkqDgy42tsIv/
A/vNnipQe8W3I9O3HwIcH6vVHuqENTnmGQ+iKeDn8peW8msQdhXGtyY97IHA
6y0+d3+2gxIp/Ej19AjIqzv9PVxHQHjadt/si8i/1GbtxA/j0Kdvza1OoUGr
+b16VRkaJPjsb5WXmoB9J74U2Y/QoH9BoOzEbho0LrybyEBczmj3e65lNNjO
/iheA/md8pu1qE1sAqqyRi0Ll/ZCCUUwMnm0A27U1EpxW42CuoR1kNP1TnCp
rZA90UcBzUDfdXuWD8HL/XJbaZdbIdlS4tib8kpQfeOnZKnbD/lqx31VX6E6
9lmUcalaEcT/tt3ZaUIDfUXBIVUDKuSYlpnckMgGB35S4EkjAlxHvMaSUL2m
9Jr0fBGZBMq/evVJyAODUYciO1E+xu2h/oVrDxl6TAou30b5mOueXVy72akw
9WHQp9s5E7b+pOxXkiCAqvR0qYIsFb49lCmq3J4FFpLbvqtsJoDSsz+uCfFh
d9r3Q5pZkPG3y+U54qIvi9fOC1IhnH1LwYHsTJBb31qbh7xXxNd7MGUG+bPl
7irjmQwIKlzo27yUAI5Pp19z9FJARWfKreANGeZs3tD2sRJQyXknSxfNj74L
Vh0GaH78avP1xjiaH28P6a8YQvPpIpnSvRPXSShvry8sRc87Pphcin2lnbR3
3h/5itL2Xgeva3DmG5Ho67avY5e4If5rjdpl7LGZHodyGRTniw5lu9m4kSAq
62bjFbwfeNHVr5GIt/eYplxGnlx93/MQBfHCaBNSHOKSn67xL/MiwTcLnuH2
f6HHfJj8/j88Vs/kGzkY/Nd/1iuZ+133HWXwi8z9rtEWDI/1bN1P59+amPmY
HeOcUZxmCp1/FDakc9ulNnTedTiX7rG7UX50zhnoQd8nto7aoEbfj7H1Bd1j
ej8L2bGvMgoly7DHmnxCr9HXPU0s+jE/lBb1CZ+biJI3lMYe8wwpf4XXi++G
CE35IL6ukaaO14vlXgyH+SHOvurugf1ofMMHtv/lQ+Mi/15IUw73Vxu2N/ii
8VV5tSUiGPFF/U8jZ5HH7C657219QAI7HY+EIOSxsPS9lWebKcBVzlliIk+G
xJntmzvnemG4xPloHopb0buLhTf+zADjN3/WaaO4rdAkC9Xtp8KhpAGRdZ7Z
8G3zT0V9cwKMHi0My8o3QZHKvaPduwtBN855fmgYzeNXz0g4tDWD053779kX
l0Gd/u/tmSv6QOoUNyS8bQPfgdqFxFWfQNyivZx3zQD4G+xdduFXF0QZzcqI
nGiGsxcez6eJDcPA7egz/CgfXNYhurMGPkNja2VmH3kMLmyKJKkt7wPNXxrv
BO7SoLrkZcCb1RPgp6EuObu7H8q8tnnn+/SDg0kwB3ndBHhnfA0hXegH41hT
j7CyfqjZqjaRLT8Be1j7d+eF9EFOds9tZf0+WCk4I71rzQRs3CcsH5qJ6uML
bQ3N+r0g6JUsl/d4HJJLz4eGtnVD8C/hjTmjLRCYcYljXeEw2G7qLXs/0gYW
2vtlFcifwK/lt/ULnQHgleNZL+naDKWKPSmhYaWgui5/3cNPNPh4NvOoYjAV
0t8F9Vyl5oBt9Ia2dE8CrHjHl6qjcWGrNkw4J0eGkaVJ6/LRuER8q7qyrYkC
hsOH11ovJ4Ovv/Kbv2jeyeJ8r5XBTQX1VE3+4JBMeNLdr2G4GtWPcX9YrVSp
ED+W9H7z8yxYHMgnG6GFvORrfb9ZgwqNP9dr2nRlQVrHCU0qyl/dYt5Y8KB8
my9avynPPAv+Zm+KG1UlYMm+oHe/OKng8uOD6yOfTDg0TxUQkSJgaQ4pe3QM
zZtOvs/5j2XAUmnD4OfcqF421nh8BvlW1PLlLkF9MljtWbVNF/n2tsqKVnXk
Z864djbj5yTYoM922hH5efXNrYfGUTwn6S8kH0d1xIgOKeowitu4Ic1QvJ/2
zQL7mk1ovl4hUaSB+2ClFjWaGijOR0y9PpPcSVD26ytbFPr868fOouzIk6m/
BXxzfFE96/rkvgzyZOzEbPQexC+u+ezoepkEVrqqb8yn/uc9dvQf3Pc/+yv+
sW+/i8kHmB5bxNxfoTHC4GfOMrhyGLMPdpzhsVBZczr/28vg6dYCdM5Rm03n
WuUMj+nvPkHnX9fZ0fe7fpS/RucUjhm6x2yPzwDmmansHvS8K82fB/vK2c2D
De8TU3bqu4H5yd3e3LjPaTW5qgefMzp8TFQTe2yz7LJ3uM9p4l2jE4p4OMv0
NPaYaVM16Qri+z+iSyOP7S0C06V43w6X4Ig+Gt9axcWnVc+hPPOxUeMjxB9J
Kxpc/0gB2bhC9bA4EjTO9W4bwP2KpmOfo1C8nVe/47J5FxmkxdfXHUHxJqxg
5TuD6pQTF9giuBQzobzW2cYa1SmNH5YJyTlT4f67tzV3uXLAcSIzUe8YAZdm
26N/2TXBiwTZM4ofXgE7We+kuwANXHKEZbItWuBrcblha0Y5eAaFhtu69cF1
8oeERTnt0HyI88/Pk/Uwl1/7bUXdAMy3V8gZxH8GwQ8REtr6bVCuLTlJ0RuB
C5HG1wbUadDw0ChSQImAfYJbSHmrJiDyRqBEkG0/xB15/9Yvph/Mv4duEkNe
Ku8JCaj6NACl6UGSrmODMCMjKX1TeQKO3s0OzBYehFsDW24fPjIE799Jzstv
noCK78snswUGYEY1pPvJmwF4nfAuQUNhAj70Wl++LNQHFEeOuO7rNNis2L38
EfLk3S6NtjbVXigjP/bYf6wTuDPibFhDRiHP6EUZR2gHjDrc05BY3wgB+T5s
wccHQWqffCC7QQuEeS3dQfUrB7/xpfw8J/qgSpulKbeNCnWzsrePSeWD18ji
SOEsAnwjlFicBijwLO7bQUf2DCi4JVMszE6AocB2icE6CiwzawLXWhI4HjJJ
0JtB82+Q1yMzLir8vJ5+YsEvE4Yy9tXuR555FH6AJ1ObCkOnVG6ofMuCd/q3
Ypv0CXBcXK2nZUoF+XNXBEwds4GVVyTSy4yAUEeBY6ro8xl87uebx7NAdrQy
2x99nghQWHZKnArZvccOUBdlAXVkaFOJAgG/15S7NM5SoDDDltgqlAkiqpVP
zogQMPfJyfVGD6ovIhelfsolQ26L1Knviwh4zqP4p7ueAqos7Kr9HSRIKQ1p
nUT3//Q695kxFLdeRTbxOj4kcAghtQkgz5QNMs73LeF5Rt8P4C7GON8X3lc/
Iog+/3T/M7ljqH78pceyywvFeWYI1yJF5Kua+If5n/1JEH/1aJI2zq/9Pcqr
EI+bMD++O4QE51xjndP/xR5L+YfHRpj8MfP8ETfTY5qjDH7cj8H7mR7LZZ77
PiXIOPc9xjz3vc9EkM5Tt5TSeaS7EWO94MA5OtdoXSJAzwMTwum8psd7DPOF
ALbdmIsOH6N7zFB5syD2mILigAH2WOq0yi3MdyYuU8Ye40o8OroJ8basECvs
sQuvyO/xvhrtyqpD0Xi9WNTpBV6vEcyue3UDccvpyU9zyGNXg7fdxn3gHfNl
4sfR+C5OiD876IH8Zrz6bSY+b+It8XEpmgfnbLxmJVNJ8OVUo8FuNA86jFw5
mt1OAZsP73PiHMkgQOV36FhAdbfooX1iS6jwadGqwSz7TJA2Gf5xSJwAnx69
L3J+VJC7KHA+5XEOVD0zCmd3JyAg98f5qagmeK0GN6I030A1n89b+600OHxE
nm9jbQvsiG66u9PqAwzm8Xx89b4PeNdeal+c1AF8Vcan91o1gn30mEKl1yAc
ZC2z8F/dC3WBlEchYp3w/GLYl+MnR4H7hrDO/No+6C0b/ej4ggZem8wDlktP
QKWYhC1n7AAEHKCyrHgyCM83dcedVZqAlTmyZXn7h2DJFauP+w+PgKGs3IjL
jgkwt/zqr5k/BLJdmTYtCyOgmHbwfo7GBJw5yDEQ/XQQlq1ez1UCw1D2Imin
/dYJOPisZzTRqR/un341PJfeDy4HuH4fRZ506nUpcLpLwOOd/vY5/L1w8XrW
60m3cUiJE9SPNOsCtfUN/Eo7m0AuEFX3yUOwXiI4PhNaYYl0BgT2V8CyfDf/
bcv6weSZR1q7HnpuK8IGIjhfQc2Z1Laj8wRsvH7MYOwvBa4YTgUma2RCd5ic
acEKAlbb9OeXo/fx9BXR9YvQ+1h0S7nzGXof+TcfO/51ERU+K8Qte2GUCcI8
jjwyYgT8KPS5zbGTCl0s3pK+LNkQv0Xlx6VdBHwuFc4sO0QFXQ21a8dfZ8Pq
2zLH9GwIoOmUxMuYUeFcr6Fm2Mls8Pum/2H5fgK2lI3vslOkQvd5nstZAVng
FUY5e3gHAf0Hc35uRHna88Ira7g9M2GVnqtMsCQB3x02mP8cpoC7ubrfYrUM
+BujlXAf5dOPdh0fbkL5ZMthmuuUFBl2tvbyuaE8cwrOFLxD9YJazYRRXSSq
Oywl7G3RPLt4l5YG3kcnfJ4vJRjFeart0ANcb2bYWzjic6Z/xM7K2J4kgXBb
nzY+Z7qluRy+oPgfLzTvd0Y+VHj6pEkIn3eY5vfpQc9tuCrB8iqqZwv0Fe3e
/As89t/OUb78h8dmmHwvF4MLMz2mMsbgJaEMfvcmgw9fY3isepLhsX2/GLx5
B+P8UfdfxvkjcVHG+SPuVj86H+xPoXvsd8F9Oh8tmqZ7rP70232YR/8opHuM
LYxM37evH74nGHvMiN2Gvm9/z/dxC+wxyc9jXUqIv1ctcMMes/Zqf4P7nzd3
tFTjc7UdmuIHcf/TqfW5Dz4veeO7SNMeZxK4mNk8wuclQ3durwxC4xggoSdy
9QIJLkU9iPmAONvRHNto5LEjSay95iQS2PuKuScjj02OOQTndiKf7xczjbhM
hjcDtFd6f3sh5tXjjF4eKujXyTg1RGTCeN7BIUlpAgyc7zgL3aGCtYQ7obQ2
F04eWLjKHoDmX71RG6mqJjBzcFEPfFoEn7qtNlvb0MD1yp2gAzqtkPf3bHzx
YAU86l5p/wK9v7y8V1+khnRCqozpg+U0Cpy812tRLjoEG1dJtH8Y7IWCS/67
eT91g7GRwLxY4BjoPXkQFsrRDzoKk2mKwv1wa73s761rJ+CyeJdqVd0grKjd
dOp76DCE3rdocN02gerAVdlNRcPw2kjVe+n2MdjwtuNC4MoJ8PgzZ7F+ywhs
5D+oc8NuDBquODr494+DrlkHR+K6YWAvaSnmzB2F6JtCdkbaE+A12+XvUjgA
Jpf2X8ioGQRXd281EZTXkXNUPjXn0kB7k77H7ykCPmqWmvpLTkBU27iDlcJn
0PqqQzj7tcLRhJX7eaeHgVzjb3vFvA3ut7ddU3haAx1a1k2HWvohwMyU/1J5
E7gfampcH1gERzXYUpZa0SDnSCZHyFoqmB1OM5YxzALFOT629i3IS2VTBjhO
+Ksui+E4UTrVfwLHyex5WuvoDxTPLKc+rx/PAIE404YMIVQP11lLDqtTQfpe
SsZAcxb8zGqzVkD1Y/t785ST9lTwUGMT+UjNhuzwvT5NhwioX2HUtwr5bZN4
sntXXjY0rrm3tu4gASCXoKisieY1hzjr+s9ZUK9OG16qh74376PQOREqfPS1
tBSvywSeIk6b4HUEHIhc3xU5RYHeZB3lvOIMmA6UH7cSIOD4q7r+wg5UX1wv
1qedI8MeuUni3p9eOGjo13C1lgLnTmv93fiaBH9aiPg9P3phbA3XHhUUzx8i
r/qvQfXjK2U+jnDc539TOofPH22U8G/rQc/hkdVfC7x/UuqWtBf+XZFzZjua
otE8fljvdAX+XZFPrKOrLiOPbQumfd51hQR28SVJ3v+DHvs/nQfPZfK3TL6I
ef5ogukxcabHlo0zuNADZl15i8E7oxgeK35nyVivZGXs2+cQXkrni2vb6LyM
zPDYxXPX6VzFYYcg5vkbnzDq2ZoT9PNHEYOTFphvl+RinD8Sraf/fsWFP9nF
2GMaUXCPXuf69VzA8cnduu2ZCuLay3pCcHw2LuuIw/v2D/k6S2UhvsQp9Sf2
WIwDd1kk4kbbI3dGIY+lL5cwk0Tj1X1C71csGsfUYDPTBU8SbEuh5bbhfYbp
Nm8Ea3HfPmr7WA4JNkcZlcwijwU4hVaFdVPAYmQqcdVDMjxo+6YRwULAuk+R
LkJLqWDea8v2+VUmxA/VpV2UI0DOjlVTJ5EKbPMG7SnJuRBiFjVXG0aAiMvp
6x9nmmDFpFub2EAx+NuYB8r60OD4RK6scVorpHRdUXprUQW7hEyt3Oz7wUF9
dCu/VReI8hxxyt/TBLJLaWevPx9C+VnNxYuPkS+Pvzm+FeVl+jxhwisDxkF2
Sf6cfVM/iIn4JRsfHgDLJRdPERsm4E+zWZjK0BAcP1528bLxKPTaHTZu1JwA
+TRZe65vI5B9M9ou+MkYhNL25ffcHgePPcb6kldGwVatQVOjbgzeb6z4esZk
HLrfX++28ByBBJfDtTEXxuDvkMnXtopxEBSebvb6OQjspEvU/R+HwXjxDk3b
7ROQmpRHKyH3wR3ujdTg4D6gvv9QoyQ7AeKeNerWrL1AwC/1jKwO4L9huI0N
RkH8THsCxa0d5tZorLcOrAPNhOR9RNwAvJw5lsVr3gx3Vtd8oSmVQtup/l+7
XtNgfsdHfx4bKpyiKfoFPUN133hpta01AV1qoZ8n0fv4qvzThqs3SHBFxmZv
FXofO39viugcosBHIx7bGPkM2LTcaHMdBwHRbLIh7ZuQr3QebhX1zQL27B/S
f9UIePUKtunaUqG6z/faVEY2zO86u2Er8pU0m974/BEqfJnO8KRVZ8N26TC5
JlsCnOJNn6zWp4KWM+tbdtFsCAoUtHhmSADbZGy5nyQVTILFFLUFs2BvTJPc
FkUCYhZqejh+U6BcMXFNyspM+HD2UsPuZQSEmbulV/WivKuzRW1LBRmGJ577
NbMScEy55s6vBgoINl4q0R5F7+OGLrfCn71g+iFw7Ab6vi++kq3qkX+OOo/e
CEDf9/NI7Wu6x57O2nXh/KGUbx322NJ7VsFliOvpBryQPEWC2u4ZBUDxn2bo
1ViP69YSz0elF1GeY3Xl3Pz/YJ//v3nMn8nf/MNjPEyP+XMz+Bqmx3r+47EE
5ueZHtuSyPCYhS/jPLgyL8NjOU0Mj42Z99F5z7a9jH5a3x06X1FVRPeYaX0S
nceYfKR7rHza0wbzF15mdI9FBvuIY48V7C35hj1W2kiNwpzolrmHPdZfqqu9
BfE3Yu6Pscf2R2q64HNkRzckChYhbummdA2fI/so6OaG98NUxEjtb0YeC730
7CHeD1MBPJx5aLxez/SwGHuTwHgrTxw+J9JXcGPBF3nsGzVow9tXJNjQobTa
AM13pdEq79b3oLr73TrKswwyWBYdIbIWEZByxab82nIqPP0qGF7bkwnO5qpc
JuvRvPwpuwmyqaC5inR8VDgPbosruvA+ICDyrRG5VqoZ5uxWpZqxvgVzTcf8
mQc0MGGLCXNZ0gaNgRVLBaKqIfbR4b6NT/uheibdt4+nGzJXnlncE9IMKgV/
3prLD8O1mx2SdptoYBbyucN8JQEuUe8KnVZNwJP3+jcGrw9AWeNbeOs3CIV9
4tKzihNw92Q8h24jyqME5E1pWmOwb1q50EZwAkQiNo8d+zMKYYdORqb/HIMv
ugcOlomOwwNPduNjL8agxGPRZ3aVcYhSf22RWz0GRqJ3bMUejkLVVj/XgeYx
iBT+8VlafxwWabGqxiwfBgHWgka9R6Og7nHy/ZjWBMQFystkRfVDdsKJoLkf
/aBn21N2Zv0EJJy7/5BE9KL7YKm3fN0NZq9KcicvjkFY/P3a2hsd4KE+4Fko
3whinyiGh44PwrqasVNvh5pBWD8q/YJaGZz4U3Hfb00frNdrsth8nwpWPB7r
Oo1yQXyNs05CEAEPbR+H4/NE22ue3itjI8OfDksnfJ7ITX/twViU5/BM+6w9
4E6GT/LWjQEozxFc9OZFoTgV/FvsiR+Ls0DeusjlhwIBbdamHZomVKjV2V9k
fRjVm6m3j5SZErBsL/ErAPnz8ybhlOQX2bCwlmU6HflzrumrGWFABbGM1We3
y2QD6bomiWZEQMG9z5c+rqHCzvS4kXVbs2CY477gFxUCOIcsRwxRnXtM4/YO
WYNMMOo34Cah8YyyIBI2DVLAeNWUsqZQBvwoKeV+yk7AQGv3WCqqN2P5p8s8
JMigosxeZILqzZNc05TTHynA6zB3gfcJCTau/TDeiOpNbu2aYPx7RCxapW4+
p0lAdOm/xb9HdLNF8wz225N+Tvk29L6o/An9hs+JP9/OwrEC15t9K8TenyVB
a+y0ge+/YL3yP/2xV//wWOk/PLaM6bHfTI9tYHosgvm7iLEvGFyd+bsW70jM
c0niVnRuIsLwmL6fMGP/2JlxOk9+yfDYV76HdK5mq0g/D256K43Od0/LTGB+
ln+HHebOAhF0jzU8SpbCHrO+VCaOz1Gul+eLpl/nmlU69pilbkMs3s/sdmIt
CXuMp/LsMvz7Tnbu5Zc+IF5dPfwHeyx7Pu88Pn9kUbxHmc8F5dW3rFzx+aPE
9XfSqtF47Qj+MXsKzTtGp6clfuHf5xHKrW1FHnOoe21QVEICHdr6Z9eQx642
TdncQvPjl4PaquNlZAh9qbYiHc2Pt7ZL1ymg+D+wAOvWs2SBNWefeCSK/++Z
+z9+fksFe0rEZIpHHhzIbhKJjydgGBwcnuk2w+Zt545lf38LvDnkuQsZNBCn
cu4It2gD2dqWW5+SamDK2NJxeSuqp/a6io+mdINV08IO8r0WMLkDrJFRw+BG
8XP8fJsGandjjz0oIECCUIpMkZgA2pc3u15LDYLQAOdgpvsQyLfkq7htnoC3
Idmgc2sEHKfdSrX8kK+6/Ycii8aBvPJzxeO+MWiccTspjnwU3d8xLpg5Bj/t
n25LSR0HNvEzt9ZeQ14jRO9nHhwDLyXlTrtIVGdajN62XT8OD3VBa3HTGJj/
2cWpxzICPmE5fyL2jcHEge+Te34jv31M+51pPwCiaZuOyWoOQqNxqzc/8mrt
1Mj3znQCfGgntuZqojrnnq+VzH3kSyFNo9g7ndB/bGmmyzSKF9bN6uUSQ3Aq
I9lgr18LlOT+WbRE6z2culb0g3azDwRVxSqVWpE3LPNK6kXyoVvHQI41kwDx
lHuvZwgKVF0ebYhtIYNd0e+KtMUExGWej9qP8pkrm3/83UigPB8IYT2Uz3CR
I08+4KaCq+AF+9ZrmXA4Kbtq22oCQvNp0Tu0qSCYx10wO54FMhwjh4P0CdDO
rTj63JQKLPz72NWcsmF5bEvHOzMC4r0dBs/oUsHHwM56O3c2NAh51HruJqBi
aPAZixwVqIdKNCK0siBTlP9w5WZ0nbs6NwbZ0P2fbW41sssE9mK/yO3iBNSt
PLjcaJQC2fLxDUf2ZMDTxAy2q1wEBFWuvMzRRoG0A31drsZkGC35eoQ83wsv
znfVhqO43Vc+Pp2P6s2vtzRS9qO43aftLVKO4lw4NOSUAIrzX/dS/KdRnCu7
JFJx/WKX93AhB70v839LxPH7orxmbdM9nIfcDLO8jub9y2VjzyX+BR479g+P
BTD5eyYvZXIJpsdO8DC4ItNja5i/z/Mym8GTmB67WsDwWHkSw2MbVjE89ohL
hFG3rvrO2L8hYEzn1C/xjDyNI4LuMeIYmc7DslzpHhNoUHfAHPre0T1mbrxP
BnvMrr5kJ/bYxoixGMytab6l2GM1WtNlW/G65AxrEfbYc6kbqdhjBVpCh2sR
3z9BO47nF+Hk0vp4xA1UDoxpII+t+1hVtRaNS46tUl8HGt93JssjbS+RoMNE
ZAcbysN1B6rNZOsoEMY7GdZfRoLFGxXOvEHxoBFQo5eD3ovkAXHnKQoZEu8O
HPZB74XMFgEzrtVUiOZtlWVblQXb9zxrM1JCdU3R3ttrP1KhKYlFSuxdHjgu
lky89YyA5ugl7eftm+GIDTUxwK4U3j8LdM0up4GRrlPbfGQbbOs4cqrn6kcg
T6pnHGUbAKnylwdeyn6GFXYdTiJurTC3t+xI2sQw7KisF6jtpcHdftmQ+B00
sFvxaMBfagJUvvmI2sQOwjv2yZYxtWHgfdnns2vrBOyxYS97LTcK6doToq4Z
Y/BM+2FNo/c48E85H1zydBy6rO4smbwyDo26pyyfHxqD9uHJpcVeE8DmenLv
zZpx+DIk3+L1G9V9Rxp+bHIch703X/M8OzsOr7xjRUe9xsB4WvJ+ZtEIGMgX
fzl+awzEe7rv9CIPakefkfrEOwgadud8dpkPQV1CUAEL8ipv/UBS7i4a3D4o
3cepS0DgiHzMHMon2xr2hZ4I6IJZ+1tNHXea4GHuogfE+yFIdCbNZXO2wuve
h3UGchVQFcISeedLH9wDCf8qsSZg//Mz7ttoAaz0mBYO7iHgaBJ/QMcPCugI
qZ/dNZYBvnne5slCBHDtGVv8HdVf4dYJbAmo3nzd4VlbjcbdgD9Es3YW1VNr
WztXCGXCPj3WjFMiBLjrH56fVaDCzcq+4MWeWbC1ToTDAdWbUxmev3qRr9RD
RlOs+bKhs7TvZQXyFW9i0QNXDSpE1MUvutyeBRqSzedC0fdzvWpk9UWGCqId
j4fllLIg3tIuxRzlY5X3HsdwsFMhYPyIrqxTJrBE5L9hlUD5ZLJZRsc4mk8J
jZYVZzMgfmWM4n4eAuSmAl/noXzytuVNrfxzZJDNOf/8DsonT1De8UTXUyDJ
Pcmaq5UEHour597O9IKSp9uZQfR9vYd9FvdfJ8HpzhIdvA8txMTvWjZ6L6S1
SjfqnET5yUqBr1twf3j/r3F8LqZsPuov/l3KVakSet//H/rq/2+f/z8eq/6H
x9b853eqmR7b8n/4nbGotwyPsYpY03nLaobHDgcwPNZzfo7OOR0YHqt+nMLI
D+e66B7jss9m1JueaXSPuQveOIG5Wcw43WNPnf1lsccKazcdxR4zUPV8RF93
ONnZiD02HP84dxvmb9Sq6OuVuTclcJ7c7XyDin8XsbnreiH2WNX7idv4nFoy
xVTRAXksh5pRgM+pJc+8nxlGHmPfaH9U0ocEkYcKJPjR+AZ2dOY7II999My6
bFhBgseJo7uHkMe+STzZmUSjQPO1IynzPWRQ/cXNuYaNgLXzrrSNqF6oyTH6
2aicBWnPpwb9UXxmWMReN2pC9SZl28UUlnyQ/uLo94tEQLlYcHShVzOU3Lg6
65JRCsc9m2m8TTS4dWrWfryyDSgi3KI+ap/gSajAeK/8ADwmjio8DvsMkoUu
u81Wt8GwXsbyfVtHwLhCo7VUug9Sur4X/U6gQePklR+/Vk9Ai8htBzWWIfBd
rWnv2D4MnUJfDoRvn4AwFbuf6U9HYZ7ouXO6DdWVBpcpxTrjcI/3V/gK9P8T
FBcF87xxOK7S/3l2+RjcmrkoLSH5Be4/pMz9fwEEAvv9WwLtP7WlDvJ6sOo/
8jZW9lYL7T/Nm6y9uqbsP/pziiyUK+s/WlGR7K9W6j+RjgeRv7/rPyHttfHi
Yew/gYFBTWOc5j8NjihA/DjoP2uIf7ZGNe0/cDQE/ZK04j9X/jcakPLhPzvl
2cl7Hu0/bFTT77dN3T+yRBDhVPnVP1dayNSWVug//MUsjC+I1z/+kuwpmuDH
P9uOjuUpSOQ/9Q358UNc1D8CbYcdXbK5P9BcZpyJDeI/ZO7/ap8M0z8Od7ns
/pOwP/vOv/OkIeE/8zpsCm/H0j9pgGaGlWWtP0+09oEE8eA/ZICoXqrr0j/8
ifbcj12vP45nYk57CuE/95Py0H4c0z8X2IWIYwKxPw3VQ8DMLOE/1P47wTg1
0z9UNpS/W66xP+4Ij38tPuE/aVsv84oy0z9D6csHupuxP8nt5YFLPOE/eSfe
rKwe0z86Q/dlixGxP7Hn+tFULuE/srPSADEF0z/7zWTIT2CwPyR/ROprHOE/
sMDTMfft0j9aQptSjn2vP5X7cyMZDOE/MFKvV4Xc0j8s3VwJ54quP+RQpH3W
/+A/caAIPUXR0j+znjJAae6tP3qwy1Lu9+A/qTCgcQvL0j8/zwHTz5etPz17
GTCO8+A/nf7d1DnI0j+TE/1PmnCtP57H+geT8eA/MAf0oV7H0j94GYtKsWSt
P89j1Pn48OA//zUnlg==
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]],

Cell["Intensity of fields 2 and 4 for counter-propagating case.", \
"MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->304022153],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"GraphicsRow", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", ".5"}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".5", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".02", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(2\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}], ",", 
     RowBox[{"ListDensityPlot", "[", 
      RowBox[{
       RowBox[{"Chop", "@", 
        RowBox[{"Flatten", "[", 
         RowBox[{
          RowBox[{"Table", "[", 
           RowBox[{
            RowBox[{"Table", "[", 
             RowBox[{
              RowBox[{"Evaluate", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"{", 
                  RowBox[{
                   RowBox[{"t", " ", 
                    SuperscriptBox["10", "6"]}], ",", 
                   RowBox[{"i", " ", "h", " ", 
                    SuperscriptBox["10", "2"]}], ",", 
                   SuperscriptBox[
                    RowBox[{"(", 
                    RowBox[{
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "+", 
                    RowBox[{"\[ImaginaryI]", " ", 
                    RowBox[{
                    SubscriptBox["\[CapitalOmega]", 
                    RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}], 
                    ")"}], "2"]}], "}"}], "/.", "params"}], "/.", 
                RowBox[{"countersol", "[", 
                 RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", 
              RowBox[{"{", 
               RowBox[{"t", ",", 
                RowBox[{
                 RowBox[{"-", ".5"}], " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".5", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}], ",", 
                RowBox[{".02", " ", 
                 SuperscriptBox["10", 
                  RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}], ",", 
            RowBox[{"{", 
             RowBox[{"i", ",", "0", ",", "100", ",", "5"}], "}"}]}], "]"}], 
          ",", "1"}], "]"}]}], ",", 
       RowBox[{"FrameLabel", "\[Rule]", 
        RowBox[{"{", 
         RowBox[{"\"\<t (\[Mu]s)\>\"", ",", "\"\<z (cm)\>\""}], "}"}]}], ",", 
       RowBox[{
       "PlotLabel", "\[Rule]", 
        "\"\<Intensity (|\!\(\*SubscriptBox[\(\[CapitalOmega]\), \(4\)]\)\!\(\
\*SuperscriptBox[\(|\), \(2\)]\))\>\""}]}], "]"}]}], "}"}], ",", 
   RowBox[{"ImageSize", "\[Rule]", 
    RowBox[{"8", " ", "72"}]}]}], "]"}]], "Input"],

Cell[BoxData[
 GraphicsBox[{{}, {InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdmjGoLEkVhp9iomJmLBi5RgaaSofGq6nRghoqGLliYGBsYqKGO6Yb6CB7
Ey/XEi4X1sFLKa5Syl0KoXBLqpmqLjr07cz8B843yduP3umuN93fq/Of0198
6/vf/M4nX7169ZVPvXr18Z/Xz8u9/uu9L/zsozff+7fxD77+mb+/84N/Gb/x
7Z//cXsjGX/49uff/caH/zT+5eXzD+M3Lyf8wPjTr8/2+pTGr0/2+ox/M/7x
x6d7+6/GX718ovFHlxM+G1/O9s5fsP6T8Zcu630f63vCeh6Nf3S5/p9wvQfj
31/O/wec7w7fPxr/9vL/v4vjB+O3LvwLY35+ej2+eD4YP1zPj+NH49v6jO+u
6zf+3/XvZ/yT69/f+HPX3wfnezL+8vX3xflPxr+53h9c79n4dn+Nb/ffOFyf
D+PPXp8f429dny/jX1+fP+Pb84n1JuMfXp9v49vzb3z9vJDvv3ZZ9+8W+SKW
L2L5IpYvYvkili9i+SKWL2L5IpYvYvkili9+/Sdj+eLX94T1PBrLF3+9B2P5
4s93h+8fjeWLP34wli9i3RGxfPF8MJYv/vhxwfqM5YtYvojli1i+4Pczli/+
/Cdj+eKv97zg/i64/8byRSxfxPJFLF/wfGK9yVi+4Plf/P14Id/uV4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4Y35/ev3zMF7F8EcsXsXwRyxexfBHLF7F8EcsX
8e33NJYvYvni138yli9+fU9Yz6OxfPHXezCWL/58d/j+0Vi++OMHY/kili9i
+eL5YCxf/PHjgvUZyxexfBHLF7F8we9nLF/8+U/G8sVf73nB/V1w/43li1i+
iOWLWL7g+cR6k7F8wfO/+PvxQr79+xaxv0TsLxH7S8T+ErG/ROwvEftLxP4S
sb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKx
v0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/
ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsL8b3n7j8+YH5IpYvYvkili9i+SKW
L2L5IpYvYvkivv2exvJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/vDt8/GssX
f/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lYvvjrPS+4
vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLd6IKEeS6jHEuqxhHosoR5L
qMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuo
xxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jH
EuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHjO//fOEX80UsX8Ty
RSxfxPJFLF/E8kUsX8TyRSxfxPJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/v
Dt8/GssXf/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lY
vvjrPS+4vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLf6OSO/ZOSXjPyS
kV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y
8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktG
fsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOQX4/tfXa7zH/NFLF/E
8kUsX8TyRSxfxPJFLF/E8kV8+z2N5YtYvvj1n4zli1/fE9bzaCxf/PUejOWL
P98dvn80li/++MFYvojli1i+eD4Yyxd//LhgfcbyRSxfxPJFLF/w+xnLF3/+
k7F88dd7XnB/F9x/Y/kili9i+SKWL3g+sd5kLF/w/C/+fryQb3mzIO8X5P2C
vF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q
9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvy
fkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5H3j++999+PPf80X
sXwRyxexfBHLF7F8EcsXsXwRyxexfBHLF7F88es/GcsXv74nrOfRWL746z0Y
yxd/vjt8/2gsX/zxg7F8EcsXsXzxfDCWL/74ccH6jOWLWL6I5YtYvuD3M5Yv
/vwnY/nir/e84P4uuP/G8kUsX8TyRSxf8HxivclYvuD5X/z9eCHf+jMV/bGK
/lhFf6yiP1bRH6voj1X0xyr6YxX9sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2x
iv5YRX+soj9W0R+r6I9V9Mcq+mMV/bGK/lhFf6yiP1bRH6voj1X0xyr6YxX9
sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2xiv5YRX+soj9W0R+r6I9V9Mcq+mMV
/bGK/lhF3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb
8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D
3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I
+w15v6GfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKf
vKKfvJovfj2Pxr6fvKKfvKKfvJov/vtHY99PXtFPXtFPXtFPXtFPXtFPXtFP
XtFPtvUZ+37yin7yin7yin6y/X7Gvp+8op+8op+8op+8op+8op+8op+8op+8
op+8op+8op+8op+8op+8op+8op9sfHuf/Gy+iP37/GfzRezf5z+bL2L/Pv95
8e/zn80XsX+f/2y+iOWL2L/PfzZfxP59/rP54tfzaOzf5z+bL2L/Pv/ZfPHf
Pxr79/nP5ovYv89/xnvjZ/PF88HYv89/Nl+wPmP/Pv958e/znxf/Pv958e/z
2+9n7N/nPy/+ff7z4t/nPy/+fX67v8b+ff7z4t/nPy/+ff7z4t/nPy/+fX57
PrHeZOzf57fn3/j65wv5Vg901GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVY
Rz3WUY911GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhH
PdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhHPdZRj3XUYx31WEc9
1lGPddRjHfVYRz3WUY911GPdfAHf+jMD/bGB/thAf2ygPzbQHxvojw30xwb6
YwP9sYH+2EB/bKA/NtAfG+iPDfTHBvpjA/2xgf7YQH9soD820B8b6I8N9McG
+mMD/bGB/thAf2ygPzbQHxvojw30xwb6YwP9sYH+2EB/bKA/NtAfG+iPDfTH
BvpjA/2xgf7YQH9soD820B8b6I8N9McG+mMD/bFhvoBv87IN88oN88oN88oN
88oN88oN88oN88oN88oN88oN88oN88oN88oN88oN88rNfPHreTT288oN88oN
88rNfPHfPxr7eeWGeeWGeeWGeeWGeeWGeeWGeeWGeaWtz9jPKzfMKzfMKzfM
K+33M/bzyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3z
ys18Ad/y5kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R
9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy
/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTe
n+YL+DZf3jHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf
3zHf380Xv55HYz/f3zHf3zHf380X//2jsZ/v75jv75jv75jv75jv75jv75jv
75jv2/qM/Xx/x3x/x3x/x3zffj9jP9/fMd/fMd/fMd/fMd/fMd/fMd/fMd/f
Md/fMd/fMd/fMd/fMd/fMd/fzRfx/wELeC4L
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHf8V2P7wD/nnE9DqaRdSDIqMkNmZITsEBHKLlKkSEayIqth7x2ZFUmI
hDz2yJ7ZGaGMrN/9/l3v8+rzx/W6r32f+5z7en+/vq+np8PAE/cdklcqldfq
VSpFWjdNgo3ePsk+SVZLsnmSapI6rpuZUz/JCkm2SrJNkgZJGiZpkqRnksb6
tjZvX/uubq+6SbonaZSkR5IVk2yn3dhe+LZNsmWSeu7JuoX1K7kXe7ZJ0jtJ
a/W2SfbQxt8qyc5JmiVpnmTXJC3180wdkvTxzJx91SR7JVlFfQf3a2qPnZKs
rOyknz3bue9e6qu4X4skvZKskWQ/9zvW98477ZhkzSQHJNnfPHxrJelrbIMk
GyYZmKRTkn5J1knSOUmXJIckWT/J4Um6Jlk3yXpJDkuytrkH6e9vzcH26mxu
V/MPdG/qBtiX/TdKcoTPcaT2xp6B+7G5Z+pWift0VJKrzCVvE32ZcfIGWU9t
ob6p517LZ+nudx9ciW+/hb7u1tVRH6TNt93F904ud+j4StxXdO4Sd5M7uo1+
7BMrcV+31sc9Od1e3Efu6rYK+rAkJ1fi7m6voDc2Z6j9e+g/ST++hvobGRvq
vsSG26unwt3jDnKHT6vEneulzf3aUd9IV+ymriOsPcGzb2VOM+tHuMcOrtv7
/C08dy9ll5p30dJ3c5o9iO+WZLT+3VyZL+4795l73dsY/rMrMSt76t89yZmu
bYz11reb/j2sa2fdHup7afOt63nOvfUzv2PV8e3jWs74GGu5l1dX4r729hnY
E3adZx1nuMAzjdNmZjvo66PsZ9551vep2ZtnYZ77WouvfU0e6+qVmFXu/trm
9XXPvvovqiznRUe/Nd+Q736xOQfZn+c4N8kxlZgt2MPsX1JZzpF+5sMR+HBZ
kkMrwQuYcHglODDAOLHLkxxXibm73tpL7X2FOdROqOnR356Hmk9uybD++rqa
S811Pi/7bOx3OlKBRTBooM+1gd+QnKMrwQueDTZsZg96dfM9HGPdRPfb0J4D
lUnG6fliJe4GvTex/0DzJ9t/kHswv6ckuSvJjT4H/LnBnNLmnjKXt1eCJfBh
SJKb9Q9xLfkEI05U0G81fpP9hhi7xXWItcPMhz1bmDtY3zD3Z+/tKsGzHtrD
PAeMuNtz3WlOT2PDte+wprRLfo0wb6Q693R8Je4adw4WnWr8HtdT9Z+mPsXa
kb5vvv2Vxu81Z1SSqfrgFCy6Xz/2fUnO0A9PmE9m58IkDxo7UznDnLMqwYCz
lYf1jTbnQe2Hamp31wdTxljH/rtah2+6fvRztGdWYkaZ1fO1S+7ghxuPuGLP
sHasZ+TcvTwX9X3sv5d556iP9cycfZz5s6y5wFhpn2efC82dXQnuwBYYw9ww
I88ZG2ec7wtbnjLviRr/k/r66hunHx93Au7AkEPsgT7HdzjKM8Id+HGFcWqe
US4zTu3BxrlnnbT7GRtv/VzzOcsAz/O862QFnVmfYN48dephVH97sPcL1nA/
Dzd/gvKsNVcZP1J9vvb/KsGaaypxz6+0V5v0C1PvJK2TvFIJJsJb7N2StMpi
PpmTDyrBoOvNg3Ew71p98AcOvV4JNsEOePFmJbjzmnFi99hzpPXH2vN46260
5g1t5AR9N9pnsPuiv1oJLt3qnvACbsAfuPKuNnKyvtsqwanblTvM47wjfL67
tN9Xp264e/AsQ9yTXm/rx37LmjutO8U+dxkfas2H7sP7YFaZva8rwR7mDu58
ZLzk0b3asAEewA7uMEy6T0H/NMnnSR6oBE9YR6uT84n9HzCvrMc3Snu0cXwf
u/dCe5Rsekj7S3We5xHPMtZzTasEl6YZL/UvtaeZ91WSb6x9RN852nybd/xW
MOy7JI9Wglkza/RHrf3WFXuB75va781/rBI8YoVJj1eCR7PVfzQ+Sz8+5pc5
/KsS7IEtTyqL9cGmOUl+qQQP5uibbXyx9s/WXaR/tn58493/cf1PJ1liL3TY
A5Pgxe+VmH948Jw+7N8qwSDkCn3PaP9Wc/7va2omuM/T5s5xr6ftXTLsOdc/
fR/ok+1D7A/fETEYxO84f6tz/5kVZuRKfeTBKPj0kvn4YVgmm5jxf817SX3D
FPunEhwgTh48gSUve8aZfl/isOI1ddY8C16h32jNdfaBl0f7TFe7L89VteYN
z8BZ6mWxcs/qZ+GHe7eYUzcLG6mTRW2Rxb70esda7udN9i73uNk67j88eS/J
ClnkU9cgi/Vdn+U2e/G8//jM1DTMImezLPbmHMwI88acwCsY3yiL/Dv1NcmC
U3AIBsAC2AEfPqsEZ1bKlsfh1wz70o/axlnUNM0ip5k2tfda95H5UyrL92O9
xzzy4RPM4OfSF5XgBT+rSvbgW+izfe7zPWQNsXZZPFd5buyv7cPKz8NPreMZ
F9rnQdcWWcSmV5bXfWX/acY/9xnYA0atmnxLKzFXzNSj+ss493ORQi4+GPFT
JWZ/kTnM6Q+V4MLqWcTJ65jFHP9ofJbr9/b40T5lffuU3yEL/0/ai4zTD/78
rNAbHyxbMwvfHM/yq358T6njWyuLnF9rfOSvnfydfBfwZ50s/NjcsxW9d+tm
wbQ/zFvqe8PXOQsf8qy+hX5b7gTs+dPaP4zP0wejlino8KlrFjY6c8tcbSVT
NsiCWeiszBHMgT3/VWK+/jU+3xz6dMuCWbBloyxyyEc/IgtmrZ9FLjUwB97w
xyu4lFtfR2bUlRd1nNnNXeu4Bwwp57mQTX96zvWyqO9ek0/Oplnsx77sBb84
/5ZyrL6+etbDMPQttBv4ruDO1ur4Vnaum9kPDhFjrmEAbGnod15RHjW0toGx
bc3rkUUOOrXbqeN73+/7p/elZxacWklpIo8ay64m+nrai9/FPqi5d9u6d1Of
n3M0z2KeeyVpqb7QsxHbWRagN1N28h3s4HM0NaeFNcR2zJZzsKl5rdyD/ruq
t1JgC4zbxWcgxn8TzHUu4FDbLNj1W5JnkszNYt6WOGfEYd0e5mHvnmSvJKtk
wZ1V1eHSalkwob3+Rfr6ZdGvk7ntzCdvnyxyYAx8aq+9tz32NJ86nrmdz0Ee
+ftmwY6+WbDmV5mxlvYBWfBovyz4tYY2KxzjmeDDIT4fz7nUHugHuQ+1fdRh
YNmrg33K/X6x9iCfYf+aPdkHtnTJYqaYJ+a+i/uXnOrss3BH+xs/MgsWbKyf
GT00CybAo5ILG+g7XP/61v9eWV63TIatZ85hSQaYS/2fMoB8uDNQ/4ausOsY
n50zbJIFD7CvyoJX5fPCMJ75X1lGj4r51MElfreo2gv92CQX+00PzIJD8AOO
HGfO5gqxwdYWxnjX/Hzhe9QxZ3PrB2vDLJh9gjqxevpg05AsZor5aalvmyRD
s5h75h/WwIXts+AM9jDj9FnBum2tbWD9NvqoOcm6bcxtUNOrkTr9T85i7uEA
nIAZI7WRlfWdkgWvdvDZelpf32firKeZu7N55KxkHvrwLPjF2UeZR34z9V72
aK5e+lpYM9p3x98CmJnzs5jTXfQThyP8DQGutDJ3V31naCOt9THze1jHChfO
rrHP8mzH+y3PyYJTextvZ82e+ss4NmxhXrlra9mrt71XtQe5zDIcWcNzddDu
41qeE6aVfOqjjx6rGbvA/P2NnasfGWsud39cFvxC1tTXUZvaC10P8DtyD0Z6
jr6eZax92ePgLFjcyfOij1dfR5uZZLaPzoJJsKO/cpk+uAMzrsiCE4fpu9Q9
ypzLrTtEfyf9+NZ1v4Otg1cTs+UswoZHsAT+wI1rfTb4AGdgzFFZMGmgdQPU
J2fBiuvN38j8I9zncHPZr6v2puYeY+7G9u+mbxP3nZ/kSntNdr9B7gdnmFXm
ejv3P8447OFuHq/cqK+MYd+WBSPgCGy6ydwTXLdUh08319Sz74lZMGSo8a31
baVN3a36yj16+KzM871JTvX579C/rXlDtW/XJgdO3JkFN4br4/1t5pnxwaO7
sriXI7K4p1PUR5rT07y7XUcop5hP3k4+G3KPPpgzymf/q0j3pZq+ZTV8pye5
zxj2VH0ln5hVZpBZfEBfyZ0ztM/MggNnKQ/pu99eZc6D1pxhPj6Yc7Z1o9z3
dG38D7uOSTIti/l8JIt5PS/Jo/r21gevZrhiT7cWe5bnuNBzUb+v/fc0b4z6
OeaRv7+51Mx0xf+Y/nPt87g14xTYclGSSVnM0gDt2caZe36fhBcH6LvQHGov
Vp7QB3/G1/jRn7S+v/3mJLkkC1aw9lMfr36JOutTSZ42To8D3YPeh+gjxl3i
XnFHYNmEJM9mwYQJ+q5w/5J5E41NUJ9nzlzzntPPu4FX1yV5JcmLWbDj6iyY
Mcn3Bkde0Pe8/sn6WWEMPyP5OcjfDK7KlrMH/Sh7MlPMD3NzTRa8Yv9jfQb0
V7Pg0Q1ZsAaewBfYcEsWPHmtJs7clnN5nbWc5Q3jN1nzhvqN1g5y3+utu0F9
kPnkwqJ3s+AJrLlTG32Y/tt8Lnh1q76TzPnA55ric6K/bx/s99yL+jftRY+h
+tDfyoI/d1l3p71PNk7NgiQfug/cYQaZPeZopL4yxn26V/lIH0yADzBmqjHu
G2yCI58m+dz4g/pPNzZKe6pxfKO18X+S5DP9Zf+P3YNecOghZaE+uPOFPrgz
xvM8rO8sdWJfZsGQaTU+cr9K8o3vAmZ9rX+G37BBnv4bPwumfJcFy8aaO0P7
W23kXH0LfOd8Z1j0mD1mGj9PH4yCeY+7wpYfanzLspgl5gr2zNYPUxZnwR0Y
AVN+0Y/vYnMv0h5vXhn/yfhTNXU/2hv/0/a81JxLtGEFnHhWgRVXqP+mDZOe
sQfr5fof81zfm0+f35Msqcn91X2w/8yCQc8r6JOsm6g9z/WPLBjzgrkw6n9J
/s1iZphrZojfd/4yD7bAkpeyyv//j6ZezoIJV1k/XyH3Sn1X2/cla8ual7Vn
es5FSfI8OPWagn6D+ddrv2oePn5PPcbn2jD5/k7rP1mwiOd/PYs5fztJvTxW
ZnuBfnyc9RbtN5U6edS/Zo9qHvFb7fWGvtfd63Vzubvv2H+FPNZ39L+rXt/n
WOD7+dt3BrMa5pG3WVqLPPZg3pgv5gzGwb5GeeRjr5j0JnlwquQOKzaMgAlT
9d2r3TaPft+YR88p5jfNIwfGfFrj+8jaD6xhT/a/W98n5q+cBzta5cEauMEZ
Sh8swt88D37BP9i0UJ1ngg+r5KHznDPsgd7GOuo/dU8YWPZifcD92Odha9v4
XC3yyFvoPrAFTjHTzNGv2uxfcupbn2u1PGLc1Y55MGGx9vfGYQI8ggvEnzAH
H7EOeeTTZ6Z1s4x/79o+j7wf7fGYMepm6yP2s8+x2OfHhktr53GOJfqIrZnH
in+tPPyLzV+iv2QKXFqaZJ08Yuj8nOR7c+9gCPz43dxOeeRgd86X/01xqb15
1w/5PcqaZ9Xp0yXVrJcHv5bpg1HYXfPwwSBmqr5zxbwz6/AKFmVJuskk7JfM
GZhkA9mwfh59mDtq/1bwzdf/r7EX9LM3rKF/2Zf1vyzmkzll9rs7r3VcYQT6
pnnwqpBZuc+6zPPB3rp51NcxL7dnpt7Nc2+VB7Pqmvumtfi2qInhL3lH3dZ5
vDt+NjOfzZLsZL/6xuBIQ7kCpxrox7eNtQ3kU0Nnv5F1rI2TbFdj98jjO3LG
dZPeU06tZBxmULO9tU1c8TfxOdiL38voua3PAodWMp9Zbu48w4Hmnq2Z/p09
L/wq+dRMH32a+jy9zG9hbEdrkB3MgV27JmmZx31uVaO3tHYXV+zWSXazro02
/GmtD71dHiyGLW3Udzcf1mEflMc8M4swCW6smofspQ/uwIx98uBEe3175rFH
mbO3davo/8Ze9CS+h8/Qzn6rJ9nX9QfZBUcOyIM7v8iSNbX3T7JGHnzqqL5f
HnXo/TxHp5oaONTHPTq4L3th0/tXebaW7+FAe6AvkWvE+rrvGvZhj9/kEfOz
SR5zi32w8T+8m10U9P7qh5gLO+DG3+bCqUPN5W5jH6a/q7XU/S4/1tdPnwH5
cpv8ZTJqoyRHJjna5+zmmQ70XOTApY3US54dkdbJeTBuY89H/X8yCt9S+cw7
g0XH2h9GbZ7H7xqbqQ8yltfkblqTg17+XtLdmu7WocOgwfrgz5b6WE9Qh0Vw
B7YMUd/anK3MY26ZR+byROMlg7bRhgdDtetZSw/YAod6KOStaF5D7R7mnOQK
g07Og1HoJad20AcPRmgPN6endlPjp9T46D/MveDsSHN28Uwt9HPOU/Ng0s76
djJ3ZZ+tZOTO1p7me+Qdw/pR+ukNn2DLbspofafXxFu6Yvc2r7X6GdrwZ3d9
vdXPzIM38AKOnJ0HL/ZU0NuZ21Z7d9ezkowxjx6H5zEDzMIq+ojBr7H2hxtw
gVkuGdTHHOKr6cd3nn7sc42fY9/zzaEfszQuD37Bif31X+C6v9LRnPb23Ef7
QuPM3ZV5zN7fSV5IMj+PeYXXF6uvrd3PlRkcX+M7Jo8ZuzaPGT1YPwy6LA8G
wRr4coV+fF3M7ay9rnll/FLj/fVfnuQSex/s+z/Mb0C8ZNjRPhPPs6HnHKjA
rg088wB966vT7zjPspnv5gVzJxonb4L7YG/sfkflwayj9XXzGY72GY6sed9H
aHdzL/KYYWb3jiTX+xyDlON8npvy4NLx+rtrww9mlFk9wfgWridYB6Nu0b7R
+sHaW9XEWU+0drB9TnSP2/Lgz1B93EPux0V5zPjJnmOYuUO1b9dHHO7cWZMH
Y67zPXDOU8yBQfBmSh7MQnbUd5c55N7tOsL+2xvbQR8x2HSPtfDnNH2n6ttJ
Hwyaqt5L+/48uDPaFR/MeSyPmbzAGLw5Q3lAH6x5UN991p6uH19vdbjyUB48
K/fBB5sezoM56Hvq30MbxszIgxHw4hF9060p2XFOjb23Obvbi/1hw3n2YO3j
2c5znWmMun1q8h5NMs1nGeO7IH8/3y3v8d4ks4yV3LlQm3szOw+W4TtAHXlc
Hzlw6Ik87trF+i4yr68+ePRkHlyAG5co6E+bc5B5443NccXuZy7cucy+PM+a
2k8bhzMw7HJXOAAP5rlO1P+sORP1H65/Qk3sGXuTMynJ80leSnJNHuyCFVcl
eTEP7kwyd7K5k+xDj/7aA4wzn8zy1vY50l7ti/S7dVp/SHJ1Hnwq97tGG52Z
fDmP+WLeTtEHm17Ngx9w5IY8GHJzHpzB95p++hxr3SB9Zf312tS8bt315h6n
Pdg4vd9Uhyu3er53tG93Hab+Vh4su9Vnu8UecGe457nD+tvNu8WeN6u/aT65
75lP7kn6S9/J2uhv24tned9a3h8zzJx8mQfPYM49yof6mBXYw7yM0EctPIAn
9xuj5lRzYconxtDhxsfmkPupfuKfuT5gbKq52LDoQeVzfbybFdJdWZAHm4id
qb5Q+yzPhm+6Zxyjjf+LJB94jin6zjYPdnybB7Pg0gx7fO06QxlrzlfWTdf+
xjgcmmm/R42dq47/uzz4A69hzvfq+GAMDJlt7vnG/kzyXB4zdqF55MOgn8yH
J0/q+6Gm3xP6Fyd5Kskv2tT8aA5+mDPH2Pia3Kf0z02yNA9GPKvNrMOhy/Qv
1X7GteTZE+53kXXPWDvPc5Xnw55oDnv85or/9yS/2vNp/SXnZvqeFvmOnrMP
v0Py+yO8+i8PlsEQfodaZu4LrjDqSnPnq883Tp/10937Kw8m0QdWZcn3Sh78
YL1O/Wpz/ud+xPiHz9dql89xnTHuPj+LmY28iB4ls16z5xt5MKBOEStMqVuE
v1oEs9BZbzL3DXV63GjsbWtLLizQV7+IdYG1t5hXr4j1beuLIvpR+475rZJv
1yQti/i982jfwbvmwCL4BINWLMKP3bCIecTPTMIjZorZamys5BEr9kd58ORj
ZaUifI2K6FPmNCmi5kPzP/I9f2Id+9/l3h/rb1rECqdWLoIrLYpgEOxoqQ8e
4YNhzYtYsZsVUYvdpohzwI+HPdsX7nNfvjyP9X7zyJ9u3pe+1y/1ty7Cz/4P
ud+D2m2LqIdBzAhzy5zM0EcM7qxSBOPQWUvmtSsiD5Z0KIIL5DBPqxbBEzg1
S99j2jO1yV3dvB+V2fZbZO5qRbCGGHnwaI0ict7zrtyh/+ckHYtg0c/6Ftuv
5Nkvxn5WX9MzPOKZ1irCz/uAFfADnsCodVJsSR4cwS71JeavXcS6xJpOReSV
9XPV6dm5iPWPJF3U52mvVwTbYA3s6FqEvm4RcWLMXT1nb4MiWPNPko2LYFZF
H/Ulq5ZZi/9F82ENXPnX3GXmv2yP/4yRU/aFX5sUMdPMdtXZxoZDFflG3qb6
iHWzFptnHlAEH6nfzJy6nmuLIphVlVXom2vDmbrGc3u+ag7+7r6neZ63brGc
SVsV8e7K3wlW0N7SfcsY/GlQxB2DPTAHe2vj2NvoK2Pcxe2LYBAcWVG2NFJn
7WG8kZxqaGzbJNvpb2yvBj5HE1kFs5Ce9oc1sGOnInjSTKbACmJNFfQd1amH
Wx/at7FxeEI9rNqlCH4hcALfzvZnn16uLey5g31hSwtj/A2Lv1vx34awCA61
UtB3S3JgEfPG3MAi2Pe1uei9i2AMcwmDkD31wRfYsHcR89vOHgfZbx33gYH0
WiRLVlXoBX/Q99Lewx702t1naOs+/PfGPkVwA2Z0VGDRYrmzv3afIrjWQXs/
dZ5pqVygxy/58vOzwo7V3QvW7au+us8AD9u7L/UHuFLb1z1+ko9L5BW9Nypi
dmED3Dm4iGdA+vlcv8sh4swkzPlLH9zpX4T+hxwi53DzDiuCWV2tJ++QJIda
u56CXnKtq77OPgdcHFgEFzZMclQRzwtn/pZx62vDkaPNhWHk/yufOCt9JhXB
l4o1Za/M+k1dc99hX98nDNrM+LGumymwBwYdU9ODn0sd/EbEjjMXBg3SB8vg
y/H6sQcXwSL8MIcZZr6YsyHGStZsrQ0jYE5D9aHaJ9hnK+0TrUEa6IMxPaxj
/3rWbKt/mCsMOqmImT6lCNbAjhH6muiDc8NdsU+2dnvPyLnh8cqebUf7N6rJ
Y4U/vTx3c/PIH+mK/1T97A9vTtNPHayCT/weyXwyM+cmGVUThzWw5AzzTq/x
j9bXQl8v/fhgFUyABW3tgX5mET9TtvCsMAl+wJGzzKHubNc9rW1j7IUky5I8
XwSjersn9WPM5yztPc95rn0UdO7b3uaNVacenrWzB3ufbw0MWs38vZVzrOHe
X1gEvzqY20f7Am1kDX1875X8Hgfo6+ieYzw388mcXFPEbMEoeH+Qa8nofvrg
xaVFsAnWwI7LtS8x71h7MncX1/Q7xLzO6tRfVgSH+uujvpN5463Dd5h7wSJ4
AjvgxmS/Dxw5yvNwFrh1uHUD1Nc33s3nO7II3lC3ibGjfJZ13W+CPai/Qt9h
7g/PjiiCZRvbj70mmn+t+/A+mFVm744i2MPcwZ3rjJc8Ok4bNsAD2MH9hUmD
FfQbk9xcBFOGKOhbmXOD/Y/Xf5N+fN31b2kM3/XufYu9SjadqM1z3Ko93LPA
hh6ebZhC3rbqt2kPM+f2JHdaO1zfdtrcT+7fuCIYdncRXEN20NdTm9q7XLEn
+z34FvBoivlw6VR9cAYe9dKHfq/6ztozi5hhZhH2wJbRyv36YBNcebAIHpyp
7z73KHMesG4XfaP044MhU91zlD3g0UNFzCQ6TIAXM4qYf3hwrj7s6UXMMLKX
vmnWj/HMnO2emhpY8rD9z3bf3bXpXTLsXNdHfRfofexD7JEkjxkruXOBNvPC
nBymD+bArIuKYMETfuPH9fc1Nk57lnXj9M92PdD68a4HeUa+Mz9zYMQlxp9y
vUSBJTDryZoefe1Zuzd3EB49bf6znoUzzXNltuHdocYud51rLfYz1s9x/8Ot
m2AOsZJ/l+v7X5Kri2AXP3e401cWwTVqB6g/pz3QnEmuR5jPz0J+zvK3hKuK
4FnZ92ptdNj0UhFzxEwySy/rh0nwAC7AEVgBP2DOa8ZusM8x1hynn9pXanqU
NTfoI/dY/fgGq9P/9SL4AmfgEPx4WxsZqu/NIth3i3UnaMPWkz3PO+bebh7x
Ia5vWneHue+aR/4w9TvscZI6vrfsxbO8Zy3vj5n6soj5hVvcySnKB/qYRXjD
PJ6ij1rYAFvuM0bNSHNhxMfG0EeZ86F5U4196kqfz6z92Fx8MOcB5TN9C5LU
r8b7fdDYGeqfa5/pmfBN85xna+Nf6Bnu9pz4zjIPRnxTBL/g0XR7fOU6XTnH
nC+tm2bddP3w5lH7PaJvrL7viuUsgt3wZ5E6PljCXD9u/nnGmGXm6M8iWDPL
/J/MLZnzhPr3Nf1m6//JFaYstu4Hc57SP96ci7WfNPZLkqVFcAZWwIC56jDj
UmPIr8Vyjsyxfrb7jbOGPBjyexHMmqegTzBnrnvO1f+bz/GUffFfYWym75F3
NtF3RT/+vRhsmp/k3yKYBUOe910+p846ydwrzZ+s/bx9+Ddn/G4No+DSi0n4
PyCFQa8o6NcZu7pmP/z/FcGfl2r81xrj/vOzlfnIqtHr1SJ49Kq9Yc0bSarV
WGFCnWr4i2owC5215NMb+q7XT6+3rC258La+etVY37b2TevrVkN/yx55NfqQ
B3+YS36PPMp3A4NWqIZ/gTn4YBYMalhdbjdI+vv6mUvmkbn6IkkjYx8o75vz
URE8uUe9STXsFavR533jjavLa6fo+9iae9z/Tvf+yNhK1Vg/SdK0GlxpXg0G
wY4W+rBLhjWrho5v5WrUYreuxlm+8lxf2ONjv/MnylTzv/Ls08wjv2U1Vvyt
quFnf3jWpho1XxfBnm/Ufy5ibn/R17Ya/h+TrF6NmZ9uLvXfmveIertq2N9p
l37sVax/3H6rVWPuvlfQ4c6j6t8p6Kum3PbVyPvB9/WA55mlj9gdfhvuCMyC
VWtUg0uL9f3oM5TxJz33YteO1Yh1qEbumtXw807gBiyBLUuSrF0NZiFP65uj
Tf5a1Vh/tWadauTw7+n4N2v8m5Il1i61N1zrXA39We11k/1HEdyBI+tVQ+9S
jTgx7ir3lrvPv3OFO38XwaG/rGOdr/9P62AdPIExcO6fIhjzrzXkwTHYUpEv
5MIe7Fx+wJE6zjtzX985XkHmEIM/sKKuvMAu5NCL7sv+8KG+uY2d0SaebUVn
m+8MDxooK8gG+MIz8bwNnesVfX+/e17miBllZpnBlZ3D5s5oC2Ps+ZG5zBt5
zFUL5+kza5o5a62MM1+tnTHu7Wre3e+8y8xCW2elnTPW1rpWzn5r84h/W3M/
OlWjxyJniLu/uvOxtvdrHe8lNneQGejgve7ofV7T2Jre0dW97x28e9zBTv57
6fX8+dXZ+9bFGPss9X528R0vdo81vKPUruud5N5tkNb/A/T4ziE=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJzE/Gk8lP/7P3BnKcqStNn3JMkW2cohsiSVCKWSyFKKlKWyFVFEWqRICMk2
Y88SIrsiZuz7zNgZu8p+vWfG787n5vW4/t/r1vfxfX3mMWbe5/F+nsdxnuck
bOVkZEO/adMmGcZNmxjQ/7oRmIaNq3Fwhf7UVr7rGCh8ouU0M90P/9/mlv/J
PTfy4o38+0YuQ6Tlt1hp+VF/Wo6foeVrg7Rc9SUtv86/lZqTpC5T8wqrE9R8
WYqPmkuftdlGyeVqzlHzKR2xEUrePFbCRcmlbVjuUHK9sVPzlDz5dFMZJfc5
GX6fkttUMTqeR3lQ95yFKMpN3EUaKHn/fPCDCyh/K7c1/hLK09rGPs+jXMA7
Kd2V8n3rz/6ZsUHfizvq0NaZfjBMexUvUYODTRfjJVOdMMDvlT0bgPIHRmdN
a3/iYEdlvKJwHAa8giM/75zvB/s9adpfu3Aw9+l9fqIPFsiSiQsn1vvhT6DN
fN0ePIyJnzAs7MwAqRPfSuokCNCaZ1Sz7TcelhaPVkp258IR3KY6vRQC6LlX
KdhntsDeyNBVT48ykNpaFX9qlQg3W3UUORo6IDpiO5G95jekHsPR8xMGQVGu
dLfJh34o3pUwnlPZDcb6eqEce8Zh89aU9qh/A/CJFLjiHz4I2D1Xh3IOkqH/
N4OD861RuCybbBLnPA4P5iKI+LoJkOD5JJX2awIMB1mGml9NgNEuwfNfdMch
+M99YX6BSXgbgVu6RE+G3M/ssw8zxuDSY+WkJPR6hbKaAjx6feLko+Ek9PqU
kMe99uj911Y6PGLQ+/OJs+W1ofc/szIWrYE+j9+kesPM20G4YSr2Kwt9HgGz
3V6i6PMzmnndY0aff/ZtWHvd7nGIsWp5+7W+A466SKi0Vf2GR5Xkzb39g7Bk
KFFFh9an6LtrLdfDMsg8oJ7IgNanKfbeBV60nlKzq38+ovXEvqR3PI/WsyxC
z+Q7Wn8sw3vPG5T1d6t78wOt/wzpo38GOl4J/kFFpuh4Wedyjmug4/VunWkr
5fg6j+bQ86Pjyxmj70Q5vlpl0lGUeihYGihPQfXA9cyXTKkH0VUWav2MdjWQ
KfWTxCtNrR/rgN77lHob6X8RQam3rRp3qPWGYVu8TanPLU2G1Pq0UeWh1ud9
urPUep7RX6HWc4jre2o9J8vS6n86p5ha//4mtPr3OULbL6/wtP1CaKDtl8mN
/XVHgba/9lnT9tf3jf3YP0Dbj1Ib+1F+Y/8+39i/6hv712tjv3/7z37/Px+u
/f/Imf/X+X8d+7/vVfCf7yWxsQ6bNtbhyMY6CG+sm1Y3LS8KpeV3ttPWufbm
JWq+cIG2zjbqvNTc/8IF6nHxE6Idl4Qve6jHUdKJjnoctXF01OOYOvxpjpLv
9QrLp+QX6wWox31nw4wtpU7kQ0NWRFD+POtALSUvPaamQqmrwKIrYhdQnvTy
631KXdWbFhTdQ7l+hFJnK6pDPoH5BiZUh0zj8wW8qG7NJ7hf/HVE73/Lo88L
5Znm5ZcfoTo/V2wkJhmNAe+TjJf75/pBRW7ez7QTHXfm+22Bt7DwRbO8+PRa
PyjzuLkJ7sDDWn7h6VPZGaC1iS2mQYwA8kz/CmS/4UHxhdtDbqNcOCnFtcMk
igDFGnW6bG4tUPFmRX03phTs2l95huGJwLfv29PFIx1gbS5n8qWwHo6oM6mR
3Qbh5vPHzKlTfXD7rnv3vpBOMLXP8wbZMZjwH2rS4RsA92sP5B8rDIAhWZwx
XZwMk+MKCeqKI2Ay9yFouHYM0rYaNLxXJwMHHrOkoTEOAZHMC3FsE6Ae6Z8L
i+NwfXKNXdp9ApKFjNyMXJFzJTMn52+Pg/L3zQQVm3FonCyFv9wTQHA+4Zw+
Mg4r1yV50l6MgORBo1nM/nHo5o7RlZYmQ/ugC5khewBuc7fuzxYfhOKe2EIB
STI8ame1417uh0RZU8dvnL0Q97xAERM1Dlsqub+Znu6Cprf9bM7eaF+2dhV5
TA4Blq/utpJOG3yKi7OXX66CO+az339xD0D3Tk1bdZ4WEHll1va5qwQ+u5je
ZH9DhNAtF5kHVvFQ3vu9e004D2xGLCsVfxJg1fVaobUDHo4r7Xfauz8bOCbV
zOE6AZrqf9yy58XDIw26C/ilDPBwPMq1VQq9Xk/By4KMXJL2OaLpmg7dN783
YlgI8DygTmUVj4MQ+S9GqruwIHHl4f22xX4wCB9t21yLA6+dDbszPDCQ2Z55
Q2S2H4RGpfZGo3oT/Le4JGqPge7rYm/2obpSSS/aSajDwecsJ1/ftxhQrPa+
cQfVVWisK+F9Aw6urhJmVGoxwK3ne5HtD9qnu0uvazeifdRi7+Xbj4FT+4z8
VP/2g1M0Y8j138i9nso/+s0YMKgp8opCr5/+MzvQ/wsHbT48DecyMYCxthZs
Rz7PRE1686O/m3fXho4YhAFr+Y/zQ+hz3rroxkNx+7z147x45HafodlritvV
6iKaV9Dn931SJxWN9tHbI6/o/6F91MNeE+2FciapUSNLW+T8D54ydvR6Opme
I3TofVolvlUF3MaA3WHnYw4o78n3FbuN8nsa2G3X72HgxHL73ryZ//eO/V8/
lvsfx4Q3HItioeXyG449mKblh/C0XHfDMUd6mmM9uebUvOkszTE7Sx5qnqRn
QHXM+4khNQ+i20Z1LNrr3F5K/mjyHzWPtmWkOlb7aXMGJdfnzXCn5GRZe0uK
Y4zdHz9RHKt3e1VBybcdn1s1QzmdXNX4eZT357OepTjWhJOfdUa5ZuLh6WLk
mINLVvAWtJ4dqk2D29E6X2c/uNkYOWYuphPqinJze82SY8gx/p1jD59HYqC2
cjIwE9UbQxVv2J4OHAi7CL3efwkL5R8JxFurqE/iGpRbZcFDp6wIJjw0A7rS
kqblhQkwIsEtqJ+Mh9xQkeaIlhyQmDh4pTSUAHKL0rM1Gi0Q8O0hIWv4O/TL
GRaKYYnALpLjy5nRDl57uGUDB3/C2CeuJH6uQfj3NNlNv74X7OJsEzTD0H9P
urEoeX0UBlq62tMvkmDwZJxN5zIR5vNtrEGEDLUl/a7tW4ehU+ezS+fICPT5
nPatVCLDH5WzntGDoyCwlsfMEjkOeR/9HwSFTcB1xXJxpy3jwDwlPmO+NA7n
+faPie+cgFu/VKM/HhwD5SizcKvMcQjnl8yXRs55O3k8JRUMw8ec2cwchjFg
5Do6VKNGhqNPIjk4XAZgPB53N6RsABg/nzBNlyADo/rk4oFzBFgxvYtjVO+D
9Q8XkxJ3TwCf7AHz+ZJusGMn+/DQtUDgjFyDxuwwFNoJa4nMt4OyX81bJdwv
KOr005jTHQTvuaNbQlJboeVKsYs5oQJOH+O25saQoOiqmc2MTgsoD6l7aG0t
hW6iedr9LCKIvxBQk7rSDLHxHQlp+QVo3wv1SLETAfwsI53y8KAVrzizopQL
pdonwjIjCJDSHj62rIGHyn9RIpKbsmBgWbbKWYcAng+Fb63Oo/Pgk5/XtPrS
QScheY55BwE247hyw5Anr8WvNo60ov1itc20BHmyxXAg/j6qt4kwWzZetN8J
2tzHWVBdXebddlAWvT45WfD83SYMMJlzYNzR641kfoSSUV3lg8xciy3qG+38
lhjQ+fH9pRNbUvtQ/ybhPYP5igXW2wHfWOkJMB3kya7fiwNOzXtKj+KxIK9f
kLyLjgDmT9/G/GnDQc0qzwHfU1jwfi7iG7fSDxFfUpRvIA+3L+p3uBAxMPL+
TqYx8vCdNqtDFPLtrYDfg+pXGBiYvCGhgepcUvaqxg/0+c8m7F3kuYk+v438
qjr6/ENmMV63Uf4+9d8fH7SPvN/tcWBA+Vyrup4l2kfExV/7M+9i4O55enYs
yh3KXCKuI+dDf5sJtT7CQNg7cXqb2f9dP5a1kZds5DwbjqlvOHZow7G+KVpe
XUfLO1/Q8pt/mGl9HTvNMUtdmmOZb7ipueSB41THYubPUvOkK2vUfOxN+h5K
rlA6Tc21a+/NUvISDskkSm5wX5/q2DtjB3OKY24Lxmcojr0Tv1xKyR+V/6qm
ONYnFbJ0juIw45oEtR/ze2l4B+V81UvqX9D68y8cstuM1vmvXIDEZrT+aZoz
ccXoPHKzZBuDI8o9+Q670yHHdn65yKT9DgOVLjipp+j4dpsES1DqxK/cJNMD
1YlmygNpSp047Hn56RoTHowLooeDnDLAaLP45AI/ASpuNovrR+CBfHIl3cg2
B8YDbdIePyHAMx6n07Y7WkDhqpeqaHQJSLw9JNMWTISTsqkfU5Xb4Uzm761G
OnXA335gQr5iAAS4325Oqe+Bfx+FrH+2tcIkrrfEN2ME3CvrXximE+HWC6ty
vjECMMjt4LoiQAaC/DP6PZuHQIgRF0vUHga+96Ff8XJkGJgYbeUpGIGKfXrX
mhXH4clrn5qDvGQw/EWfk149ChG8utnbX46DnOT89blPE6DDkDVhxTcKFxfC
/06ZjsOXwcu2mZMTgL+YyhezMgQB/X5iH/AjaN0sTO4jJxsjk6a/qg2AfPHt
k4x2A/B4lNPLdj8ZCp8N2WZ8JMDRTz29HGL9wF45YaH0eALOLX2+48rTCxHP
rRrOXWmD8Witdx5DIyBkjfmcEN8J7u3fNlmbNUHQ3xAZZfchuMxkdyH7Sju4
rH+/ube6Do6Ly1uq9A4As97awtWqVhg5XTP3Sb0SXh+qCZr7ToJlrFKgSlAL
NHA1FanNlUKRZeVSGYEIPAcdZwf8m4FelDeXhC8EbbZUt5+SRFj0e1H3FfnW
lDzGOqGSC1r6N6JIyDcOTgHlogN40OYVD71vkQlhMiNdPEcIwA/5j6Z6cCDy
6WdsWDQW7v0w2dyyCXndyybxENWbsSxGTBY59vHY8DlWVFcBJsG+v5FjAWpu
33k6MSD4ujx5mOJemXr8+350/rVt5HlXjgXBxorCbORVv77kNf1xHBhkRn+5
cCEdMhX725S2EWDCfsdHOZTn5xIPbDJLh0+yq07iKD+zyDjYRUT9pFXlAw4S
FoxfWbbqMxIArOSds1HdOgQZYLt0sdD4iqx/D9WtwVhYmznqAy8J+q13VmIg
gDH0O2GhH3afZpdfRPviqlnx/k2oz6y8xBXAjfypJ7qVm6Lv1fTVuEUL7a+a
91vuzlGuC7V+fDyN8nLSsEX0LQyMs1z0uYq+74/XkQoiyLGbsl3vVb0wIJ75
9sKR/4Fj/9ePYf/j2M4Nx0a20XKJDcfObTi2p5yWu284dmec5hij20VqngQ0
x9bbuaj5MUYlqmM3nGmOfaico12XU+KjOiZ+ZpSaL7lPz1DyGFemT5Q879Ck
G7Ufw6+dpzimKkmkpzgWaxBcRMkbtQnhFMd4b+82OovyXMuoLRTHhi5cbHdE
+ZtBQv1r5Jina6UFI1rn9405fsuU/nlul7cSckzg9KSaHcobg3T9f6LzlHfx
m2TTMNRPfuPQuoYc27IrcnG+FQdfGA4Y+h7Dgus1KUcympeYClMs9Rnw8GJE
xWyvcQYMZraO7OYlwI9+xYdiz/HgY1yqNsmQA7iuGKOXDwkQ/EDzQtZwM7zc
nvSLy7MYVt9Y0D9zIkJ6he8cb2MbFBStv/jaWQNBl78Zf304APjN22LWJ7sB
NZ8f4s+3gCXzhW7GXSPw/Jq2RQ4vEUb/aCTNoLqUof8Rv85DhucP+jpMxAZB
k6uZqap7EOIU+zlypMgQ8fHCB634YUgcXko37xsFRz3f7hOojzKb35xHlzcC
D+dttISRb/+UBW7y8ZEh9neQgaf0CJQYN19m+T4GpxLXLzmj+XQEY7kj7uIQ
7Fq/9KGwfhj+nXkmXHaYDJmvjN1Etg2A5L0sukt7B+CcX6yoNppzmeiY3tMR
CJB1q6CIL6IfbJsnc1r7JiBYW7Yx5GIfnJB1w4s+64DXqVpbv1eNwvsD/lf9
NLshGr+t6ZtEMyzqzFj9jBwGh5PFW4/v7AThpuETJpcbwfYuW1XxjiG4+klD
p/FiO+y5wM79pqAOZH1DmLy7BsA3fnngGb4VyGpheja3KkGI/rXW4VoSvH5Z
IXPUuQVYH8sfMYkqhUdGfzrlGomgXeYtvEO3GRLzw9knBQrgx6ey8Pg1Athf
cXDUu4OHaNHnRMGT2eCq+qc83Y4At7bIXNL+gwM7bnfSrpl0UPltdnsK9Wl/
/vzjnkP790vQ/TNhz1Cdn9l2oBbt3+D1V/QraO77UD69VJeFAdPTzNLjaO6T
NZ7yv48cU1DOtWkvw4L0SInER+TYx0cCu15N4WDrmGAJ/k06kJleKqqwEQA7
nSJ5aRYHRzj73sUWpgPvlomdMtsJgLvDfShiDAdTayU1eWfSIaD32elvWwmw
jXNlhwrq357jPKffxGHh3K6QAmbUvxX8c+epxuFgfJb7tSUDFsae3/Jb/dcP
xjLmH5XReTz8ZLjYCTSP6BxWnMKg+n/z9ge+k9K37DjVdMcBA1e+dWgaov0y
cp/e/Dpl/54yaduE9ld2Ss3aCtp3HX6jhtLIw3Ure5ElNLc6HBWaDvofzpVp
/3GMfcOxDxuO7dtwrGmSlosV0XL+DceeEWiOqU9coOZZyjTHemVpjiUQDlEd
g+Uz1NxKY4yaO9W92029DvmRSM3jCx5SHXuc8imSkl++/YHq2FaSmCHFsX1/
bb8LU15/T7SA+r24jjlQHDt+dNucAcovuUwPU84X99+lBVL6YezSh+hHaJ1r
pl7co/TDCj4Gf2ZRzuZQ9bQUnUe61eRUrqE8OIG+7QNyLFnaxPE76rfpdl8t
BXQcjy8ccOdEjv3K4Y88LIeFsotZR88gx6b+KZOz19H6pAeFi6pmwLmajzde
chHg9v63/2q88VA9PmuwgsmGuGHZpX5nAjwl4DycypvBT3tQfdinCFK21Y2x
mBKh96qZcpxrG1wPuvVqT2w1XHWm2yyE+pv2lUSisUw33FFt5bBkagas4/ug
syHD8PLnZvpeVwJ0KXHv+1LcB0NBmLFjJydAWltqpPM62scP+FUFkgegYrL0
rSma7+6ckxT+nj4Em0S2kfZcGAFZgYqMPEUyzLMzXtH8PgwyPpWpJqxj8OVs
zbER5JuMB53ZhPEwqHzgFOm/Ogq42Hy8qwqaT8svHWX5PQgL8WNrbFND4DSb
ZPRelgzPXnI2H+0jwUDWlzeOOBLsDk6v099Hhp+/xnMY9hLhlNDRp/bofN89
gz0xgLz9u2/8fKtaPzATpc7FPuiCSv+fGS2hY/CewbZl7UcPxAklhatXtkJB
x8BRhuQR+B3LqV6X2wUYlqk2NgU8cB2kCx5QGgY5H+Hx9qEOYFEdPyS4vRHC
9raJPpsdhD3VJyZ+CLVDkcvy60NztcB56thRm+wBaJ67qhtn1wr7OlZLpBbK
gSnz168rXiQ4fCvQQGSwGcSOFLDp3CyG0o7ZycLbRBBKki20rsRDpGNcNXNE
Ltzcv4X3UTwB5F804Dy48VC0T8nMmZwB0lKJJKwk8uFwxA3nJhzYxj/J+T2N
Aevm1xZsyIdDT1IvySHfyk6zWLB5Y6BUt2VNA/n2K2TqEE8XDh6G7vQ56I4F
leWA421ortxjNKc+PoHOs7ME+XXHdLgldBx3mYUA2p0ribpzOBDaTcf5sDod
xmRO6bUgx67SOaodmsRBodCvRa9H6XAvppMfWAnAnF4YPIH6tKZj+vv+oT4t
Z+tCkCnq03S1uYwkUZ8mNVFjZq+BBbYQ7glOdD6UzNxcYIb6tFcxmA/pqE9T
jjJ60YeOW4vb8Y6r6PMf+ivLEobmRLt711Ovoc+fvdOb3w/tIyn6rT/SUP/p
+LDsIyfaRw97DofcQvkvocqhu2jfzVgK/KD/f+DY1f/kHht58n8c27rhmMmG
YyIbjlluODaXS8vrQ2h5XjvNsTfONMd85GmO3f2wl5rLlO+jOqb2muYYtoFA
zd1NRKiOLWG6qfmmAE6qYwlH/4VRcmc5I6pjjbbdpyiO7WHG+1Eck2kW+krJ
D+Q0nKA41lvj3q2P8kUy+RfFsca4cmvKei5dtki8g9azqX4tgbKeN9uuPBin
fC+RF1cvIMeiKucWLqE8J8JY9S5yrEnqyEfPUAwwfQ15LIIcI9o2up9uQX5G
itj6iGPBichQW77UD0GXLOzfr6DzY+zJpgCxDLDRPm54bQ8BuI99DRR0wQMb
fpNhi3U2hAmuZ1vdJMDzAyKYkwnNcCpZgl3nyzfwfvGgbb8GEfpDKyX0JNpg
JkYti/tNFewQcZz4wTgAAUlnunWDu2D/LXsnAponagY7juTzDINbdlnG5YF+
MImzF00p74GPthneeZ7jwPWZXjq8nAR/Bu5K0CWSoOV0lEOyGBkSWL/KBpIG
4X7obM3S9mGIusI3th3Nm6VW/7a/GBkCRbfzJleyR2D8tJcKA5oTuXD7BOQ/
DgEXV+9zPdUR+PP04e1TyD3d6b0nP5kPQqtrXwi9whCIfRKZnD5EhuWDl94l
FKJ+R2X/7bh3JDDPe67iiv6uVxBHwEc1InQQApWUZFF/w8jSV4Dm2Xtb+A7s
KOiHycb4D7yHeuAhqUCjG9DnjxRwquHtgy0lFz8V8XVAPllN1eTDKAztkE4K
UuyB3TyR10/9bgE9o+Lp99ojoHdsrN/JvAuYzMq1ld7i4IeH+5WMv0Nw8xrT
au7VDjjnhO0/q9cAkeMdri/eDEJV7T1Sg3kbFOtkZtVrVkNYqHq4tsQAuMEx
hvJnLXAld+3CvslSYJ7L/1HYTwSHaQ6hPLFmuP1EyYVRNh9wOxt2+AwRAJOF
TZ3SwQPr2JmC0ANZkCGvkx6rTwC5MjvRnD4cvDXhzJPKw8K0q67oTtRf8a57
i1PvT9Xs9hRE9Xn7QO8H6n1JOndWLzwO4HKIrRYb6vOjyVZei/3A7f+6NmMQ
BzNf5KLvbUsH9bivBnpbCGBnzL/vBOrTjmIqP3wOTYev8zmiDKhPe5CpOtlD
xsHil0vD0p7p8I1n4RoTcozo38lphd7ng+FkvtSWdHiW82aJA70P6UyER38n
DlQSts8yu2DhWVh1Dhb5+eZXgsUAcvikW2Mx+18MpHh9PGCBHJ5k+ny2B/Vp
EqZnWJTiMXCM72y6MOon264EHU5DfVeiT9yhJjcMtL4zvUFC++hVvD8vZb6e
lbvkJoN82+fGdZL1f+jYl/84tnnDMa4NxwQ2HFsi03LvDFr+dMOx+UaaY8mb
aY6xHKI5psJFc2zskwDVMfojNMdY7DupuZn1t12U3O5hG+3vXs+bpuT27xlf
UnKSGCfVMcd4QT1KPbR/aD1LcazV7lE2JVeUuiRKcUzWWZLlJOU6v7VDLsUx
x5sfrztQ7l/b6dVaIccMHqTN0FGuV4Syrw2g/DIRd2QN9cnpsZV2Zii/8aXr
3BnkWPS+e6KBIajefFdPbEWO3d55bWtCMw5C7XPj9PmxkDdOl2uAHDsQempw
chEHdLd+ztNzZsCNi39NfXcRYD+z0/xmBzzs+5MHz8WywcIo8u6qNerTgk7+
aAxshrShl6IHpgpBuHJtLvgQEQwOPxVtHWoFPwUJrSfplYC7lb25opUET4xF
rdfouyCptHNWarUJCNftP6gVDoH+erHsnZv9IHaNYQLD2w1rr9uDTZvG4KXs
58I9x0jAFlFqM1xPhKSME17vhclwJncX/6TKIDz6wnDj/vogdB0k7JVH/qRc
blctOjIEdbYaN5PeDsM4S4j7gjzyjaGmYWDzEAz83TEorTsMoT5Ot9uRe/6y
EjaNiwOwRe27sMv7QfiAUx39dpAMPWe6bXI/kEC67r7npA0JKnDbMktFybDi
7V0jZU6E87fjGM9dIwDdeJrSLTS3mm9Nvi4mRoADxeU7XD/1Amn8BrtF6ziQ
lqJWV0TRea9q77FMceT354ODZx3H4MbcRS/uwF6IievGZPK3w6M9aUzqCqMg
Lv3wgWdSN9BXYAO3djZDi9l5YzfiMLAGh02yP+kEK9ZcoftCTaA02uq6+Rpy
2WS1WlCjHWKCDT4cs6yDn2F6m+7UDkCT4OtnWyRbIdHAVWRKoBz+ePtq7DAi
QVLBMd9L6HidrbyatjheCFVKdsGq6HhFK6jfjvHEw5BjlfNsdDbcsq2dvnSH
AGSL/k1SCzgQaN977ichHUKLfDIOoHlzt8XYlWeonxE7qfK52hcDcmz2+7xR
P1N2oTD3GZo33T7ZSj1Nw8Ck2sl9kciHbT/MTBK6cRDsoc0fHowF478+2hPr
qN6O2dvrj+AAdyFOP1o6Hc5K1vPwMROgov/ZWAyaK/VldAJ3n02HeAPZbaVo
rnwsX/8Tgxy79teZXh95qBjsL6+DHAs+Psnm0YP6isuPOzTeY6H9z/ohv01o
blU/NWWEztebCGl3fqLz9f6wt7HVqM692sMWZlGfNq3ycEKgAQOHA+2SDP70
g/dz7rZqtF8eG9LfFw3DgLvGQJoF2i8vrzJl+SDfdhjk8dq6YOBjW5dwxf/Q
sYT/OEa34djAVlrOu+FY/IZj31Jpud6GY3J1NMciv5hR81MSNMe2Je6h5nG3
uaiO/Rg8Tc3vL+GpefbiNapjhAUcNVe2tac6Zt1a8JyS/4ztdKXkteIDJyiO
idj2i1Acw7WqZlLyywLeWyiOFRExD3RRznlS5BPFsQJJhsCbKDcM/9xpSulv
s0zMKI4JMnXf7qM81+Hq3pyBHNOuaPY2RvnpK4feyaDj0pIund3zHAObzBXS
5lC9acz4++xEjjXhmoXu7MbCeY48wWF03tQaZs1J/YsDDL9uvg59BjC+XdQZ
5yTAqpgczzlrPPwKwynNTmaBssT68GsLAiQsz+Z63muGGTp/j17jQrjdHvyl
i58IDafHr/Wlt8Iuj7jKa9MVIBPrMSuSQQK+fDK/ystOKCnI64xWbILrktfF
Xt8YAvWc0GvLjP3w3WOPf29hJ/Ccnogp1ByD/HNnJ1KRX9qyZ2RIPETQEGo/
zi5IhibD4d4VzADMG8QeiREYhKHgi9Z0kmSYLv+yeCNhEMxaFG+FpgxB/nDJ
sxgZMrBPeZ65FTgIM130vnI+Q0DP2cZAj/Kh46IjjWheLZUk6o/vHYQGhext
owfIsC8vPCn+MerHnhATWI6SQKF+c4gEcuyN8dp2gXtEiB+IsroeSADTA8dq
VpFjabtmcV+9CKBzdDR/ur0P9oWuBWufn4AxKb8ek/h+2N1Qcz+Q0A3+JboW
hsLjkL/07W12Wh9MhDUwf+VC3/fx+SFpujHgMh414fjZA8G+BtPaeLR+YnMD
WOwIOB0WKGgL6IJDl02It9BclfJIvmFwzzAMRjklRnJ0QFTd5WRlxXqgH/X9
sHBpEIJzcdcKfrTCtMKf1Sm5SiBu7ci1KibBtpAJ0vPJZgiqc3xVlFoMDyWs
HC64EMHQpCMLm4eH6S2XKrJVcsE++/pETwQBPFWlXjHvwMOuXdMcaVkZ8Ho5
7WkJ8jpgd63Qt0YcmBNcJUaGMABFbJohlOco5gx0j6L9fivrzcWiOxgovqRe
GobqkFvhrjcLqjcxB5+6TajemiQjfQio3kZYCumhHwfC28E+vwQLMgMCxS6o
37sQo7ochbwKl3gmYLk1HWw4Va6pIq8sd0olHxnAQben5PTwAhZGn1oGq28m
gNs7i/aGXhzk/hnWy0vBwkv55RVnOjSflqiUS7Wj/WXsrXrvDBY697a+qEHz
piC7UrQADgdaWMu/yksY4MqL4X6K+rSVjvOqd+txYLx501WlAgxEfsjXUkdz
6Alx/hk9tI9U2yVM1FE/wHDD1mvz3P/OsfiNvHgjX/2/5zE2HOPecMxsw7GI
L7R854ZjJhU0xzhMaY5JidEcU9KiOTbFvpPq2OlYmmO5txqo+cGCXVTHEtl/
0+4X6IlRHYu5uOUZJTctS6E6JrKDT5PiWPZNmRUhlE9a6qRT7yMU55Ip91Pa
Y+eFdFAudj0vlOJYpt/IrxuU+xTc4nEGyLEsHhH8JlQnLeL7MZTrlvW8OvmO
yLETIXn7KdctVyW9buxG67+gUhXqHISBZ2yyOgTk2NGOum/vUf9/eUDUu4Id
9f+Ti20vUV2x/eMNKUPn30Cd2Efjo+lw8uD2n6/R+ddZPIe36TIeHl9u0C4u
y4IC561OdOYEaF1p5Sy0bIa7tb8DrjcVQMJI8Nk0DiK4k5o8CI9bQS95yPeu
YQUYtacJNYaSQFCoZO2DbCdkFS1/vxraCHU7NK5cFR+CMz4zR1Kv9cEh7qwe
CO+AOBUN9nu/RsHtt7hssjMRuGvidNmeEmB7pajeAnKD7xt2Z4/qABx3rDqW
aDMAL6Vj/K/tJ4P87+dWl6UGQbpQlyt1dBDsSyWGiVJkGIldDTMSHYRrmjtd
93UNwq4z1fuxKO9XelBEshuAzruilmvIxeQY01P2EmTU33FpRDuQwD4KP5jM
RYKygyxbk0TQ+1+J2L3pKRGe7zOOM00mAJdhSpMzPxl8VGtC5asJ8MTac+Do
rX54pK1TEPptAoKjjei2oDkpOeUXH8e5XnjiW87SlzsO3vTlLh6G/SCdxyDk
UNYFHK8fv+5MGwNPr3kdrrJesFpu38Tu0w5R3zRS318ahdHunNxHNt1w2r5Q
4bVNM9x8a5pllT0M84IvMKE1HSCVH181kfMbzpN/7YKeQWD3ZdgUdaYNmr69
WbrGVQ2aLhW1WYIDIHc2QeCoYQtgj4zavDlQCibNAu6bCoggrR75c8sCHm65
VfpcGPgKW2UsyUsVBEgpWRn5JIcH+5am4zZvM6Hku1fBFzUCpJNsEwtRf2Wd
Rhf4KwQLSR+z5pdRfzW/d3ie8lxW+GDbJhs0f13+/GmV8lzWAaZl5vPIh8ZL
/66/ycOAfc09lgPIh4ndDHteIGf+RkotFxljYSxOcYF1tR+yr/RbkSjzrLwI
ubgAC8nXeS4oIN8EjkrsfUZAc5B4aWdEIxZeWK8yXmYgwJGjNokTyDGtOLMe
kzQsJDxzngpAju0tLG6WRPPm2VNV8pI3sVBrtXubDJo3FcyP7CIjV89XPkjQ
FMbCnEnJtkeoTyO6nfQ/jHyu67pLCOxD85do/Nwh5POS+Q0zV9RnKvEzlj9I
Re75Pn0WPP+/cyzuP44tbeQhG47t2XBs94ZjmxNo+WAwLdf8TnPMczvNsQ9C
NMcayLupOfEmO9Uxnes0xzjiaql5BSduJ/U554yf1DwjZnSKkrPdaH1Cvb/5
9DHVMRJHPlAcGwib7KQ4tlXzPYaSvyh1aac4FnP+3OIJlG+2r35Ecazn7MJB
imPHD14maVGe59/OaEVxTFimMLqVcr84dPrUEeTY7udDp0+jfAv/UeF11P/v
I/pFqwVi4MW7Qx+bkGP/bloGySLH7FwUZXi3YkEpP/qjLnIsKt1ns+g8DtYm
+l1t8OkgGrLb1YmDAJqTmmdNzfAg1lE5HvshCzCaR5/tNyUAo3XLyX+GzcDh
39lXb10Av1bWjSI2E+GZkspdu0utoFiXb/u5rhyCttE7VLqQgJlNx3ehvwPq
Lj06TGRsBF8Xj7zrk4PA+z7hN2drL3D9MB59Gt8O8hfmRMxujoLvw1rj5H1E
uOLAIjTDSgBVAb/vKrxkqN3/N1i4mwS7TW1q79SToPGRU7LyPjLIjG3Lb0Fz
1cPhqZNXTg2CJ956OB71afPb4V/I7wG4mZg1GXJ+EHDHq/QqUb4i+onlmdwA
WI75f/tiOgAN4wrbDyIP86Yqbo9cIMECXfFKxBIRdi+Ft6kix0rVB9LuhxPh
wODnw/I/CMB0Mp/3F3LMe+TuZVd6IrwoxjXq4PuB+Y2AQDc7GUbDsh/yovk7
1cfy+U3PPtCYK7rWJz0Bve/ee6fl9MMt1Qexzfw9UC3PapuuMg77zllaVwX3
QYfafbbDhA6YiF3NKBkbhduHz6xHCfWAdU9i73BKCzT/uOpPOjIC1Yu6hwZt
OyHnhIR8ObkRWknM9wIMhoABy/ZW62cblPqnqPTU1sCam8zbM+4D8CR7Xdgu
tQWkjx0ifLAtA02L8xY7F4ngkmzA0i7XDBrG9JbGz/Ohb/69RMEUAa7LCt1d
PI+Hr/v1xOSfZ4GF5r3b3ucJ8NLq8qnwCTTHrdoGXruZDtcYcfzCLATQrbDt
PI3Om0Jj+M++qG/5M808w4z6ltx6p1ReVIe7pi3S+zwx0GaSUiqH6jB3F+HZ
TtQXPe70+hW9iIGKr35nfVBfxP8rYUwd+TP1vPHtcQfkT2fP/mPIn4NcWZcP
Ia+29mB2zXzCQvT1LT6bkFeOBj4H2FDuVconIxeLhd/XontG0Vz5+TzLfZUu
tE+v2hb23scC0xt+IKP3eXDzxNVdbahvif+5TQmwcHRNyIcB9Wmhv7nMk9Dn
eZSQhsuhw8KCR/zQMPo8hNzzfvGU5zqsMa31tRhYX3bH7frzv3Ms9j+O/dvI
HTYc273hWNcELR+N3Xief8OxrkKaY2dxptTcj5/mWF88zbEA221UxwxlaY6x
eldSc96H76mOhVbXUPPDW/KojgmE7fGl5n+vUB1Tk0o+RnHsT9jpEopj6XP7
0ii5kJR8FcUxBozRMuX5FmaO2XsUx6TerHyyR3mdlfz1o8ixaR1WOopjP++U
ieNRbuBrw7oFObZHDN+jj/I1dhCaQPVjYnFG9/AzDERbMGhWoPpp6U6daEPH
q/9FRrA+IxZYzvWabEWOLbf/yyyfRX5W+7w6U5oOzVoJQfe3E6C4pHhLrhEe
rDGzFrc9skA8BvNoyIgAl94JaOZooblSeqgsiKkA8Hr0oTorBHivevyjiFor
9NWGZzial8NCmHX0XgsS3A7/ynsnugOSVEwvOIv8hvB2H52E74PQ+JIotXyt
F7TWc70wHW1wu8y25zvXKBQbGr/N7yAAm13DinNwPzRLuSpGtEwAS5PV/cUQ
EkRZOFj0nCVBqBFr0B009z3w6Baquj8AuyTqjgsiz/Kv9jbXof5qOuBwX0oQ
6rdECo/2DQ5A8KKo5mE0P2bKKFtGMA4A+51EMTf2ATiR6N0iJk6GHeFj7kN6
JMhKCMwh9BPhfUi7Q48wGbDfLU4oxhFBqfdjCVsLckwtJJJDgAznO/hntPcj
b0+v7HqG1muYO3C/FvK2ovqs8q4kAhiE2bwRPtIP71K4duBCJ8An7PTja2ge
SjHQdvM80gu7GH7OCqWOw1UF/u/s3P3wI2fJBbupCwKeEWNmLcZAaJdb/JfC
HlCOeL+95GsrhGRmRYjHj4DOYUE53YlOICQsDGBammCWxSX2BJqnNXrf9Zco
tYP0+N46Hq06+DCsGxRcPgBG5pERu9daoBTj5SAc8AO6G+StZA6T4MKwJgvB
oRlKV9o+zgsUwhYt80ZfLiIcFJevFXyAh7uan0w+BmQDW0vIg6HbBNjW2P12
yzoOOh48YHBUzIBg4r7wPVwEcD9eI8eL+pnvIV2PlXoxEJhF6ORD/YwW5tcu
W1SftbvvD3FRzr+yy4prqJ5VW8V3yqA+7dDWe3qvcjHQYB+2Yzvq0+yctZzl
WlBfkXjy1aIYFi45pezJQP3SZ42zbz4g375svu+ifwcL1vh1HW/kkgefQ9VD
1B/+cQxiOR+EhT8HzTl+o/6QbjZz8RZyrLYkXSrVAwsfdwrf3YHyvMSgSnfU
B7KGx74LMMLC+OAtnVXkWN3+LWffoD6tY6Fl7hofFspqjeY00N+94f94cxD6
Xs59S3uPDWDgbQS+5Obf/51jMf9x7M9GbrDh2K4Nx1I2HFOIpuWRG44x59Ec
2/2R5lgzD82xz9Y0x0RGt1Adk2KgOfZ5qIya2/rbUh2zOV5Fu1+p9Jzq2H35
XB/q9f9DQHVMtJOgRnGMft/LzxTHYmcHUyi5e8fdrxTHxGJ0hSiOeTf021Mc
235X8yDFsemJ/GlFVA+dfyIx65Trdf98pBpR3hkR9Kn7JgZ+POSp0kOOtStX
dHYhx6Q8xWcNn2Lgm9V9XD5yrHQ2/ngwckzJ+Aej9CYsGDjk7G9G5x0B7rKS
9zM4+HjvuTJHRjqwMWQ7JbITQCK50Ln6DB4Mw5tjeS2zIMS9t0LUkADMm0vM
vJSb4dd1ucrnBfkQ+OpKx/V55NjalfQFwVaIfXwFJpd/ALlQS2lNnwTS+vVy
ibYdkKUm9/KOZQN0rs78dHw/CN/P5vAw0/XCbcMzzbxybUBqm/oR1TwCbYWy
Hs9eE+C4PJd8Kkc/Oo9fZAp0noCVqyzDR0+TIEBcrKdjmAidQuZFf5AzOX8f
trUoDkCVrDLD6ysDsM319KETqL9iFQqbwZ8bgCKpypnnyDPLwLKgYZTX+yze
Ne0jQYjpSvE7HAk4LRUtT6G+TpJO2UFQjQRG2nV5JXVEOBE7wxCC3j/pZndK
TwoRBB/wEf8QCfDC3EtYCzn2VS6s4qImEezWl99vRXNXlV/pIQJyzGCLjYNX
LwGUh/ZlFoX1w7jj0LHT3RMQdmLLoq42yp+4W2bt6gOJ9MnSWcYJmMx4yDdp
3g/7+54Jlw52wRHBJMGgb2PQ/KQ9lVWpFx4Hrf9jCm2DWx5vYt4sjYCf/L8e
yv3NdK0EDcr9zaFnNpco9zcHtgu2HwhrB8P8okGPJz9B3eLG2UeMgzAk88pU
WbcV+H8Gr7o8KYd67vfjb21J8M5oVsP3UzPoOLMfnH3zDQ58S28/rE4EohM5
yikKD1pYhQ8KnjlguB72Iy+AAMdqGK2/ceLhoEn9Yc+SDOAuPyI0vQ+th+Jj
Jk7kg7+t09V1AywIW6xX5CIffA+77KRc95gwu2Bhi86zyjxZ386i+tw/SpwZ
RvXpYVkpsIjqU+VH6bkyVJ+1ak9GV5AbRV7GCh5jqK+wGvT6htyQl8qvlUB9
1NKmkc3GGuj8+8akfQd6/zRXccFHyLcS/6E3vxyxUMcYuHwT+RaV81t6BuXu
sWHHZlywEPrB2bkQ5bv/HH0r0IHmlEnZ0fBLWFj9w+R3F82z9BG6xG7k54qZ
q76+NBbyoozDJJbR/JUjs7DWhIPxvMI3j/5hoE7IuOPOv/+dY9H/cWx+I5ff
cIxzwzHvDcdaP9Byjw3HMrJpjoU40hx7yEVz7M1BmmMKPQxUxyq6DKj5mcoS
aj64pEp1TIG9gvZ7KG4bqmPsm+K9qM/ZWotRHWN1NlWlOKbIuuslxbHXrI3J
lFyfvT6J4thxP2crTZTPnj95leIY9+O3FXYoz4jyvyyLHKv85GxDcczsxUBk
Pcrv8pkM5SPHGPZP/tVBdSLvcKazHtWJow9R+kUABvoldJaxqE48t1mdO4Uc
M0iiK0pcwYBr+KYniei4/HBl3B0xjQOjVcXVg3HpYLh3unSWjQCBCVmrt0/h
4S//Xr5GvSzQjTYSqz1NgEnnNuY/0s3wLqT1jY57Pshf1n+YRSaAhm+W+gJz
K8iQyY4zqT+AdGv/D7wqCd6XlcXGKnUAw5W39hNF9cCKPZhq5T4IBqU3t6al
98Bsdp/z5/hWsDErf+P4YQR4hRwU2c0I0JxbHP/YqA+erAgnT/JPwJGbHYuW
e0lwtOvjI8NXRBBL6LxRJESGg09HjEzXSNCawulpi/qs/e859Deh/ur4ty91
FSIDwFI46z+lPgD9wneGm1F+3yX7wMVSEkj1fpCojyVB4V1X/3AxMjyNlmpS
liGB37IKJiaPCCsj06G6yLGVoM8BLJno/09Yeg1MEKBsSU3ODjmGm7g5oGxG
BLP5dd/Xlwnw5MXJFXM+Mmhz9vQUMhNBQ0H+knRvP/h8ft2RtpcMB25NbP3n
hnw+fmnQo6wPjO5evVCnPwEdncIH7V70g5N+RFPJ+244ZnqRc4BhHLa9i/vk
F9ELfX8idxxVbYffv9pNq2EUytq28cZkd0Fftk6UniwegsQ5r1scGYYV2D1r
QGiHFEfHxIKXv0BrZ371V9VBMLd+mHI3oBVS+HNOnbesgHWZC22b35BA/3f2
j8ymZjDY0xXLSSqCxvZ8ix2WRFjlN9NKKMbD+9jZmX3WuXBfR4KXPRr1XQtj
dYHiePhk1OZ+VC8TuqM3J3cdJoCHaQ/pHAEHbn5JU1/qscA4fJKsyEAAt/qV
nZTnad/dUF5+g+aCd54tYpTnaf9pRIRQfk83+3q76hlHDDCStM9Rfk939PHV
6GzUp0nk6s9WFGFA5sQv5VuoT6u428zIivolYcGyvcy7sfDvFmsv5X7Bfg57
xyvIz4N62Ye5zmFB67Fu+Rjy7WH/s4wl5NXv4G2hwXZYqPF7pMCGHPsGoRhx
lCf4dfgyXcaC9L+Hh+8jx5LHIuKDWnGQovdI/psSFji2n8iKQ45F2c02zaP9
wjoT6dG9GQunjUoT+Bf/94793/3KuY2c9z+OXdhwrDSClltuOFaSQXMsUZvm
2I09NMcuL+2iPU8rS0d1TLqA5hgzUxHtuVzcLqpj8UI/qPnLUi2qY5UH8B6U
vH+OlerYw4OryhTH/K6e86I45mLdk0TJj7qNRFEcY8lmKD6OcslQsinFsfgF
AweKY2olkb4HkWOMjZniFMeS1e9a/kS5u57fcARyjD6XwU4b1cP2qc6iMlQ/
x9/Jpwz6Y+BlWpB7IqoftZRJXcp1ifyde7U/LGIg3LtXmHJdovsVExRP4UCd
zolXNTwdHgcc0riAHONSW+15oYeHZfvua20KWXDHTsmr4hQBtKIidXDizXA0
k3Q4RT0fBCa9VheHCcD4xqPYaqEFbBeSIgl2P6CXp8CI8xAJwjHch+u2d0Ah
6+Maa/l68Nl+mNf60iAwllTvZ3fogQGNJQEzqVY4N+K0V9FhBC7mpiwLofO8
0NWqO6SEXvj4dC9PWds4fEnhZrw2RgQvxQ5hhpNEOKJw9GeuIBnecZR5STSS
IK6hfo9CIQlqkr7WziKXbh8Au+xlEvBlq+2U3DQA8o+Uh6dR3+Vb5nfoWSIJ
EoVrLxm5k4De60LXOppPOy/xak2LkeCFQc4A9xciJE2dC2ZBjh2d1hPTySXC
clXhXPocmhddr/f5IMfOeT1i2GaH+rSRQqMVVwJkYuhO5SHHpM/Zrs8JEYGp
b9LbEs2Rl+rltAUoz5uxuU/9iiKAg4yQhb9IP5zbHhH/12cCHNb5uPNy+4HT
d6TwnnAPbJmzExNXGwdZwzRt7GAvtNbenk4paYeCR+qyZ11HwdppakpjqQtM
sHrMXKl4ODs/4EVvPwzT/WJixkId8OceOYXkUA/PCnu209sNwuHLfFZD31rB
XuZTnwJPJcSQcofC80mgdizhOGG5GeivXzh+n7kEFA7cs8jzIsKbD/xBHV14
KDQX1VJX/ApfCNoiJ7MJoLK2EPJIBQ9jAYGzQr8ygeOYbrzMcQKsxYzUsY3j
oHyz8xCbSTpod/JosW1D/blhR5YIcqk2ukd4MAed99e7LbYgl8yz5V9dRnUr
XZ4QGobqPIhJKeAvqmfP2To7vZ84aGI4WSf4AQMkOl3mgjnUd/k/nL6G+qKn
XEsP/k1h4I5skjc9qttlSUKvFvInIuh3E/EwFixaEhbuIH+kK11di5BvQXJ8
mzVNsXDtTnjwIeTVhUke2XyUL5zIj9qC8kcRksGSKDfJviybg94nUlZUfFUF
C1/fDQx+R++jkU7feReP9u+mkNBcViwcZtBRdvsfOPZwI//4H8dmNvItG45x
bDimtOHYyLuN5y42HBPH0hzzFqY59nYXzbGxBppjus1r1DwhkuYYV1QB7f6m
3BwnJf98u5Saa9wUpzr2Zo/aQ+r1f5N/LpS8Z6leieLYIGv7Ler1sdPMVMf8
7D1fUxwLeMQiRXHM9FbkWervv5RV+SmOyd6JPrEfORY2gZuiXGdgDuhwrEU5
aG7p9UaOxVobbD2BHGPc4yyfhxwrZ8tmMUaOBfrt2B6DHNv0PC6JiOpBPEJ6
5s8fDFQdrF64jOqhCa8ruz6Jzqd26U5Dz9PhriQfBsdKgBthgaq7dfDAmaL2
MFY0C6I+njnApE+AH6/FOpoFmyHiYlw/K3s+DAZGXuYgEeB1aYrd54EWuHGs
2z/10A9wdnB4fkaYBH9tImz7yO3w+HxflnPRLyg18S0J1hqEU99PM47L9oCC
Qs3l49UtUPetkeOi5ggULn/mYkF1JKDmgQ3k7IWcL1XcEVHjIPHtpO3nCiK8
OLveaMWKXFGIfNtB+T2m+ie+T8kksLLcYmXgSQK2xbHJHcgx+ueH5ZS7SHCo
UKl98Sf67yEhZoeRY5Z6XT5Mr0jQqKDVV3meBAlFS1d8kWPVkdn8u/lI0Nd4
S7nvPRFI6ao9bajfu9a7aEWXj+YtwzTnnf8IcO2VXGMo+rtjsYM91XeJsPtA
4EDHM+TuwcNNy8ixJ+Y538PkibDOraSWLYz6yrDkff7Isdd3d+5rzSdAJVPe
+xPG/ZBvcnSn5ZcJYFfFPOrB9YPhsRMzTQE9UHn8iovg9XG4EsJbNCTQB25e
fUkSIh0QpL5XL+DjKLxWmNqTL9sNr+c/2f/c2gz/xDDEky+GQd4Qaxtu1AH1
RodZMTwNoPYn7oxJ0CCYEY/XMo+0wrBk5UdsdiVgdgcFfmgjgWjx4HWCYAtE
p/WWdtB/B/5w+VeM74igttKq+ugPHn5nfAqImPwKX1UPyzFWEeCZxmW7CX08
WFscbdPXzoKFcdYdjqg/5/d5HPRhHs19Ysd7ZzrSQQE7JFHBQQCvlLy0ATQn
au99xSE5iupTmNs1Bc2J66fHPlPub3L9E/1K+XcnnLUEqij3N7/0tUpGobq9
vkNsR5cfBjqVhrYHU55Pu61oePg32tfLgzujmzDQsTxDfPCnH6qZillNUJ/W
rNU2vc6FBZ/EQrndS2gePPlx7BqaQ89u70i9rYWFA2I9ayqoT/t69Y7XCsp3
XE0px5/CgovPl0+JKL/xrjngAXKsIBcrWX8EzafMN1PDUf25iUb8CEaONS1X
z/Czo36squD2s/+hY1H/cWx6I59jpuXbNxzj2nBMK5yWH95wrCWV5thFOppj
C5w0xy4k0Rzr+LZCzYN8aI6Fu+dRc3vrFqpj4hMl1NzGjZXqWOxe3H1q/8Y1
RHXsoN6PI9T7lTcMLCiOhR8w+ELJ21+fDqQ4trXybJoGyq3UxE9SHBs/EN5O
uV6qNdESKIoca+d6+53imGG1e2E1xb31zRJ2yLEjvyJbNVE9+PvJL2FQPZzi
2FWPe4KB2hCtsPeoHqQIvpCPHFt/Z8KYPI+BCU7d/YAc43DeyWSOHGu9NcZJ
9k2HSzFOERbIMV0+5jPTWngQX35d9nVXFogsKV711yMAKe9+4i/uZnAswvFw
D+RBVcKZ3fheAjToYPm1Wlsgk5zvm7hcBmy7CO/k0RyIE7L27W1sB0Xvmqm3
Zr9AKK/nnqTMIJR+IUW7rXeD11td8xPOLdCd2qPwTnAE+jncj91tQ30xln5v
aXgPwIlNhNCb4+B10ODdRAIRrgfXTd3sIADflfsuQsgTfMqBWadAEijYXxR8
o0cC03XL7abIJeYslxBlND+ynzhd/h7Nj6fXxKrfIt9UeeRyJH1IUHvDI5lT
mQTyAXsFedDrj9SkavvtIkGW+3pCbjARDqrNpacix468/PIwuoAIdJ1yB1OX
CJAcRqcWgf4u0/adXCc8iCAUlcfuGU4AsXYz00P8ZGgv9bx0Gogw1DGZKXqE
AFUOJ6x/I8dIOkd0W38RwEX+oBCLWz9stSre5lU+AalTuIrw4X6IOz5bR2zo
gXMuxM8aj8fhmXxWg6ReH7QJRBWO3OiAa3/CcQGFoyD1pHhZ42I3tF88uUXH
sBkGBNn7q1KG4aRiDIv3gw6oJsWc/fupAZTDc1gxnweB6+yJv49Z2oBdbIxt
m0wVYEe+EgOnSaDE/fJX9bEWwJF9A+px34GRr+4AcxoRRl0c351ha4YwV1L3
kZA84MCouLC0EsCKazLT2BwPk6me/LcysmD9ycq94xcIEJe2yfX+Kg7+TnFy
fJTMgKXT3NVrewhw1pNvey1y5mzhnajTgljoDmcvtEXOyPd0qu6j/I5byfi7
hxMGmpUuhjxBdcsXU8v4jPLv5zxVJXa4YEC2x3K5FuVGnr/ue6C+7p+69Hxe
AQaUZYd+nEB9XauC9WwCmi9aZExd/emw0LC0+ngQ1bMkfeY7VuSS5mH2UYIs
Fswub+PTRy6tWvFncVF+b77UI30PsIB1ZA7cghyLy1X5u9yCA9XhU3FLMliI
kQ25pY5e778Q9P0ScuyzynF5FxYsXN4asGzzP3Tsw3+uj01u5KQNx9g3HFsd
p+U/w2i50IZjlck0xz4NmFBz3x00x6b8aY7J9CxRc3M7mmNzL3Jp9zFbC6mO
FYYVU3Nbq4VJSn5+1yt36u+V+lqojl3MalakOCaYYH2O4tg1mc+JlDw28uBj
imO7R2TUKI55bHLSojh2y2byA8UxiYPC6kLIsRHG+TCKY6uKHSpVKC/yZNI0
Qo791NavOY6O+07Wp32fkWNvD5VxWiHHGpglia+RY0xudjvfIMecSL/n42cx
ILV6nGkfOu5f7F/jask4eKemrbDXIx2a1IU1FlkI8OZy5TtOTTx4Xmw4U8SU
BYYx/p8UdQnQGqV6/PWuZrAsmE4t+p4HFRMEZ/EutD+XGPZ21rbAWnv2U+/G
MtDYvlbygJ0EBzelVS/mtUO+ReqWzXS/4NPV9E+p/IPgbWmD12zpBm/td/dJ
+1tAXS1JZpJuBKwHup5rFfSDx7YAXN2hHvgS+XCnqMY4jOva0SkHEVHdyt71
xRKAnWNX5BPkxm9VR4XnjiQwVDXTvMJPgmj9Od4CETKMxLQrtaA+rWKHE08s
6tP+1dEL7kSOjbg9/3LjDgnGvsWsXREiQet+WcYK9Pr5e8Zigujzyvh+br3j
SwTGuAfWAcix8ccP4m4XEmGu+jX9v2UCJAz8nfuIHPt9s6Dr4GMiXDYv3bYY
QwC3k4z1Z9HnCRCt/bldjwhTjwNSj5wgwIq2pC896tMaw9kC9DoJ4FRRp3kr
BO0f0/pn1q0ToF++fNQC7cvfDdtu16/1QH8VfjI6bByStVyu7L3eB5kzvaJu
kR0gl2QzLN4wCnM9XS0k125IXPCw4fBtBmktqZ3DJcOQ8SWx8EZ4B8x8nTUK
3PIbSm4mO20qHATHF9+3797fBjGGGVXkF1WQ9zN07zjDAJh+DffpMGmB8mMS
eO5jpbCw60XqbBEREv3/JsoKNUMb19SV5xz5wBM5STBE/fb9si37HO3wMFqx
tO0FSzaw721ec7tGgGM5Tnv0NuPhT6KuybRlBrRwfhD15CMAZ9j8rvtojhON
0hwJMsLC1PJRb8r9wd93hCQ4UH0GrP0IAk+0j1q1kg+g+kw4pGRJ+X3KU6xO
/IIDBnQGW/+ZUv4dqv7ihUO/UL+HPdz1/gsG/kDkFfP5fiAGX508iuq5TD4z
a4GMgUtbJTxHUL9nHq4i0oz85Ph0M2kY+TlVHenriPy8m49lONhKuf7zgzNQ
HgvVWf5eV5FXrdYNpReRYxph9/Uk92OhEy46/EKv5w9M8VlETsbzZITyb8GC
v7n/pND/Hx0jb+TN/3FscMOxh282+rQNx8a+0Bxr+/8Uc+fvVOdtHMCphCJ7
i91Y2qSxpOWUG0VSxjKTpUbU04mZLEWTJB1C2VKRNtugCJ1jy1pyxJSlnOII
OXEWMrasw0jy3N9zml/mD3ieX9/X93J9zvdzf17XfV/H+TQKHNsiLXBMzkPg
2NzmWX6eZy9w7HJnMT9fIZvJd8zm6FN+7ljL5jt2YpffWSJ/dfQl37E1rUJ8
x/oj2RaEY+f2SvMdm/76KZBwbNbr8jvAXP9vZxPCsSS6/AnCsZNyCvYq6Nis
g5Iv4Vg73bqvDnMZyjgd0LGpy+Mdprjv28Zzy1KJ34+Ic6K+Yn+uWVf6/irW
SWum+iE/3HfX1btesMao4FuYKroCHXNd8ejofnSMwZXx2XYmH/IDR479jo7B
ycd6p01bcb8vmJK/FMLbQ2YW0pYc2H5rLUdEmgkGERORir+XQdpdeeWpdg6E
bs4oUqrGc6HP0fkurwbGzFlVw0t5oBN37/vYjA7Qm7BSCi1tgoVOTZvkFX1g
uUK6cEMhC06nx7lpDDDBJihY7fqf/XBu1emkzDQ25Pz2uI/GZIHbi2f7VJWH
IGnqxOun/lzwE0nz/U80B3piHpwQRjdiNLLs1Zx5kKyhwHKc5UL3igEzY3TJ
KVzlyM+3eeDpvXjdxBEeMCOP2Wdj31Xwm91Dp+M8+HqlYMesBM6dip/ig/F5
uSd+RS1iPEhzLPMcCeSCjwsEeKBj0Y7zC/no2GHlhcxjXzjA7bMMSEPH5u5Y
vpWI4EKP+QV/oywOUNTGfE/gejxFp3MybbgQNEPq0sW5K3Rkq5QmOsa1VE/x
5HJgiXPrbGwSG2bWWx9icIZhq9XTdv95NkxlBB8fVOyGattNi7+kDcHjERXx
4TM9EPXLppqKsk6IbNFTmOscgFtFM/G+kSywK4j1sc1gQt2DnrbRpn44+30d
735uJ0yL0R7wDjBgNPaGx7b6Pji+WuPiNVI7pAjVqmq9ewGeKXJXbGV7wTqp
qD3Qsw1eVfJie4LpMNF4c0C8Ede9sUp8x2Ym5Pg6RKkFlgPJ0M+CO8IB/+MU
dyW/VhiOtzrDOFgM9AcJYzOeHCh8W9vOWN4KfheTzQ7HFQBZdkxaDufpqVck
3aIurNtm2WJvCg32lK6SN19gQ2MVp1qssQW2r4r2romiQmrdpFsH1udPzXZB
V7GereWsp3Z6UGHDLO/jGqzn3uRyYVITzhHfRf9KvofnwvpWSv4kuqR8U1gN
51Z/BdErXt04nwbQItXQse9l3uW8xD5qZcG1vfYyNOgKiW8tRH9anFZqW6NX
t4NydO11aDAfp+Jfg16d13Hn5qF76qmXm8pUaFAXNrnNAfOV5x7IB6NjLZdV
Rg4tYL9hbR3c8D/4vvIfx+79y7Hhb/nLfznG+ObY3nhBvhAjyE2yBI7FFwsc
E5USOLZvv8AxMnWGn2uaCBwztCvi52NFV/mOdR94ws9tzJr5jsm+OvUbkXe5
VfId85bcbUQ4lt52nUQ4VtMf/YDIG5wC/AnH3sRdv0A4NnX49XbCMRmqjDHh
2OFNJiWK6FjXUlcbwrHMN5TSWuJ7TG1tm83EXLlVcwnhWPFUvtsddEztXPyB
LHRsYbkrOQrrZOURps9BdCwj+GqY9SgVWFqhj2dx37OKrZRYw9iXfpxL1vXJ
h5XGZD0HdEznlpbxYmiFcXmpKf+JQoi+OyklZcGB5wyJWkkJJsyH1YVTwstg
0UTF3+vbOCAp+7NjfUkbjOfdN3wcXQNJGoacI0I8WPJFK1r6egd8zbk9t+Ns
E1TTZTpThfugPmKnqXk8Cxh+iS/+U8wESjppU3tLP/RoPhPiRmG/mUduWRrF
gkRh+aio+UGYVgxV6HDnQqz4kK6YFwcUC0M0E9AHY70J8iULHugu3fWXTxcX
okkv0xs0RkD5bcmwSSQPHNbViOdY8uA12ULJFh3TsG0sSD6E8yfPcsxxngte
bqkNe9CxwcV+zjFLeEDr+BAkiV5ecq69+AM6dpiuduMuOlayk3HHBB0bCDg8
lYqOaeVVNbtc4YKJnnPTxxx8X8HWH/zRsXPaHRaP7Ljw6KfkLAkH9NY1vNYI
15mrnrSV9JEDqtXPQwwy2OAkNd6n1z8MPeXF77lCHLic+FS1S6cbVD6/usG4
PwQUw4Gw+As9sLo3UUT0j07IymqLONwzAM5KvyYH4nubidUVq8P35njvlsJX
fG9C4xPZbuidKt2ZvTaQAQk96sUb3vbBz+zdzlX72kE8b6HeT/Ql3CvT/524
h9fi0xMXlbNtYNktpWFDpcNcVO/LtFYu7EytG7i7gwnnt/QdJ9WXQ8TXsDr2
Xxx4eIda6HK+FVghB6O1rhVD05Fnq2p9OKBdNeU0Lt0KRcU+scuKCmD+gd0W
mhYHou65v7Hpxrky1SDocSYNSgzoNquEORB8Zy6kHx07fiy6vyuRChdjGkfO
oEt/ne4cJWM9TxRQeldinedoLVYm6txB5m1tPD7f8Vne0OwGFST3Jrltx+er
TxrQrRgtWBeje+pbqLBbaHoycpoN/ZmhFaPoT5GORFKiCLok9VlKER3bwKwZ
iECvUlKs0rKVsO96bxC1Fb0KNWqiiGA+01vpQZWnwX5bsX0f8HlFVarPLJ6X
9EHVcsO/qZBloD/j9X90bOife7y/OSbxzbHKb44Z3hDkE98cq7wvcIySKnBs
WlLg2FoDgWPPbaf5+TldgWPyIwX83NTjPN+xfT9W8vO8hCq+Y6TmyDNErppN
4zsmfuKOIeGYpMx+A8KxVzOyfMeyP+V4E471Pnm/kXAsg1yxhXAsxXHNcsIx
tkmUG/H/hH/0rN9M7O96beuHxL2XYyHxqeromP5OkiWgY2Xkvsp4dOzdoudN
TuiY7+SEdwQ61tNu20jCfREhb2D2YR++7FIvrR8d879Z0R2IjnV7X1/3zjMf
1nlXaEqiYwuuvr41u1qhrihhaelAIUykaA3q4pykONbAvinGhDMTWh4uXmWw
+5qRWUULB5TcDhk8orZBRmd4aIhPDXwwW16d95kLe1wVwhVDOqBJ6/1ChUkT
mJc2aXtM94IRe9loQwALZD1X33aNYEI4u6pkJ70fEqzVCn0D2PBUja7LsWKB
VW1sTRJvEBqkGJ0i9lyIu9GXkIw+HEzY32yMPnxxO56zwZgHe8vTN9U/5wLZ
++yqU+hYzJuLJ8Vwniy/6JUibsgDb9kppig6JtOcsW/MgQcuVbEFi8a5sKDj
JLwaHYtdZeyzTZgHy+I+HCj15kIGvFlNQsdGqnSHHNCxsNJyhdc4V0rlSDoT
c2WCpPO0TyQXgudbFe/nccCDVad3Hh0Tc3FWo+E6J95dGs/9kQP58T/d34Hr
1P/z7fNEdMzwl7WjDHRM9LLGRho6dvIP1rVIdCzYgKGRrt0Nvf2rs+3QsVNZ
X5Zno2ND3kHlG9CxsxqsyV/Qsan5j0ruiSwQaZYRZ5QzIU7Ob0i0rR9Ko3KN
86o6oaSpUkjiGgOyk8vtb7f1AbPFMvCoQzt4/DDpRtF+CT1B+w+6fNcLZKMn
L4DSBh1mBgPSr+lwm2Jquvw9fu41Awo3zJngRal8lL5QDjO2R4YC8XOb5W16
tiukFVTb1D8qlxfDw0TlmY9+WCejfZfuy7fCr0/0l75oKoBmc+DtXYvek/t/
MGK3wLGV9CjNZzRIcI/Z6r2IA1rhfgfisb8iDQ6ka6ZhHVavmRlGlzwamunE
74v1udZ3iXtERYTltYj794RPqnutRceObBRW8IqhglXy7U8jWM8bjzKLSprR
mZrBpsZGKoQMnLingY79OJlrbYeOid7SHxr6gufxIGdRLvoT9iUx8k/s05JH
3SmKcjToHokZqUevsknPLM9gPmc67N4gQQPp8ORtAZg3hI3PXcDz4tBlnntq
HB3wjA5RwL/zXxv7Vv4=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(2\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {192., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[
     GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxdmjGoLEkVhp9iomJmLBi5RgaaSofGq6nRghoqGLliYGBsYqKGO6Yb6CB7
Ey/XEi4X1sFLKa5Syl0KoXBLqpmqLjr07cz8B843yduP3umuN93fq/Of0198
6/vf/M4nX7169ZVPvXr18Z/Xz8u9/uu9L/zsozff+7fxD77+mb+/84N/Gb/x
7Z//cXsjGX/49uff/caH/zT+5eXzD+M3Lyf8wPjTr8/2+pTGr0/2+ox/M/7x
x6d7+6/GX718ovFHlxM+G1/O9s5fsP6T8Zcu630f63vCeh6Nf3S5/p9wvQfj
31/O/wec7w7fPxr/9vL/v4vjB+O3LvwLY35+ej2+eD4YP1zPj+NH49v6jO+u
6zf+3/XvZ/yT69/f+HPX3wfnezL+8vX3xflPxr+53h9c79n4dn+Nb/ffOFyf
D+PPXp8f429dny/jX1+fP+Pb84n1JuMfXp9v49vzb3z9vJDvv3ZZ9+8W+SKW
L2L5IpYvYvkili9i+SKWL2L5IpYvYvkili9+/Sdj+eLX94T1PBrLF3+9B2P5
4s93h+8fjeWLP34wli9i3RGxfPF8MJYv/vhxwfqM5YtYvojli1i+4Pczli/+
/Cdj+eKv97zg/i64/8byRSxfxPJFLF/wfGK9yVi+4Plf/P14Id/uV4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E+BLgS4AvAb4E
+BLgS4AvAb4E+BLgS4AvAb4Y35/ev3zMF7F8EcsXsXwRyxexfBHLF7F8EcsX
8e33NJYvYvni138yli9+fU9Yz6OxfPHXezCWL/58d/j+0Vi++OMHY/kili9i
+eL5YCxf/PHjgvUZyxexfBHLF7F8we9nLF/8+U/G8sVf73nB/V1w/43li1i+
iOWLWL7g+cR6k7F8wfO/+PvxQr79+xaxv0TsLxH7S8T+ErG/ROwvEftLxP4S
sb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKx
v0TsLxH7S8T+ErG/ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsLxH7S8T+ErG/
ROwvEftLxP4Ssb9E7C8R+0vE/hKxv0TsL8b3n7j8+YH5IpYvYvkili9i+SKW
L2L5IpYvYvkivv2exvJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/vDt8/GssX
f/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lYvvjrPS+4
vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLd6IKEeS6jHEuqxhHosoR5L
qMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuo
xxLqsYR6LKEeS6jHEuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jH
EuqxhHosoR5LqMcS6rGEeiyhHkuoxxLqsYR6LKEeS6jHjO//fOEX80UsX8Ty
RSxfxPJFLF/E8kUsX8TyRSxfxPJFLF/8+k/G8sWv7wnreTSWL/56D8byxZ/v
Dt8/GssXf/xgLF/E8kUsXzwfjOWLP35csD5j+SKWL2L5IpYv+P2M5Ys//8lY
vvjrPS+4vwvuv7F8EcsXsXwRyxc8n1hvMpYveP4Xfz9eyLf6OSO/ZOSXjPyS
kV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y
8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOSXjPySkV8y8ktG
fsnILxn5JSO/ZOSXjPySkV8y8ktGfsnILxn5JSO/ZOQX4/tfXa7zH/NFLF/E
8kUsX8TyRSxfxPJFLF/E8kV8+z2N5YtYvvj1n4zli1/fE9bzaCxf/PUejOWL
P98dvn80li/++MFYvojli1i+eD4Yyxd//LhgfcbyRSxfxPJFLF/w+xnLF3/+
k7F88dd7XnB/F9x/Y/kili9i+SKWL3g+sd5kLF/w/C/+fryQb3mzIO8X5P2C
vF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q
9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5P2CvF+Q9wvy
fkHeL8j7BXm/IO8X5P2CvF+Q9wvyfkHeL8j7BXm/IO8X5H3j++999+PPf80X
sXwRyxexfBHLF7F8EcsXsXwRyxexfBHLF7F88es/GcsXv74nrOfRWL746z0Y
yxd/vjt8/2gsX/zxg7F8EcsXsXzxfDCWL/74ccH6jOWLWL6I5YtYvuD3M5Yv
/vwnY/nir/e84P4uuP/G8kUsX8TyRSxf8HxivclYvuD5X/z9eCHf+jMV/bGK
/lhFf6yiP1bRH6voj1X0xyr6YxX9sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2x
iv5YRX+soj9W0R+r6I9V9Mcq+mMV/bGK/lhFf6yiP1bRH6voj1X0xyr6YxX9
sYr+WEV/rKI/VtEfq+iPVfTHKvpjFf2xiv5YRX+soj9W0R+r6I9V9Mcq+mMV
/bGK/lhF3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb
8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D
3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I+w15vyHvN+T9hrzfkPcb8n5D3m/I
+w15v6GfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKfvKKf
vKKfvJovfj2Pxr6fvKKfvKKfvJov/vtHY99PXtFPXtFPXtFPXtFPXtFPXtFP
XtFPtvUZ+37yin7yin7yin6y/X7Gvp+8op+8op+8op+8op+8op+8op+8op+8
op+8op+8op+8op+8op+8op+8op9sfHuf/Gy+iP37/GfzRezf5z+bL2L/Pv95
8e/zn80XsX+f/2y+iOWL2L/PfzZfxP59/rP54tfzaOzf5z+bL2L/Pv/ZfPHf
Pxr79/nP5ovYv89/xnvjZ/PF88HYv89/Nl+wPmP/Pv958e/znxf/Pv958e/z
2+9n7N/nPy/+ff7z4t/nPy/+fX67v8b+ff7z4t/nPy/+ff7z4t/nPy/+fX57
PrHeZOzf57fn3/j65wv5Vg901GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVY
Rz3WUY911GMd9VhHPdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhH
PdZRj3XUYx31WEc91lGPddRjHfVYRz3WUY911GMd9VhHPdZRj3XUYx31WEc9
1lGPddRjHfVYRz3WUY911GPdfAHf+jMD/bGB/thAf2ygPzbQHxvojw30xwb6
YwP9sYH+2EB/bKA/NtAfG+iPDfTHBvpjA/2xgf7YQH9soD820B8b6I8N9McG
+mMD/bGB/thAf2ygPzbQHxvojw30xwb6YwP9sYH+2EB/bKA/NtAfG+iPDfTH
BvpjA/2xgf7YQH9soD820B8b6I8N9McG+mMD/bFhvoBv87IN88oN88oN88oN
88oN88oN88oN88oN88oN88oN88oN88oN88oN88oN88rNfPHreTT288oN88oN
88rNfPHfPxr7eeWGeeWGeeWGeeWGeeWGeeWGeeWGeaWtz9jPKzfMKzfMKzfM
K+33M/bzyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3zyg3z
ys18Ad/y5kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R
9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy
/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTen8j7E3l/Iu9P5P2JvD+R9yfy/kTe
n+YL+DZf3jHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf3zHf
3zHf380Xv55HYz/f3zHf3zHf380X//2jsZ/v75jv75jv75jv75jv75jv75jv
75jv2/qM/Xx/x3x/x3x/x3zffj9jP9/fMd/fMd/fMd/fMd/fMd/fMd/fMd/f
Md/fMd/fMd/fMd/fMd/fMd/fzRfx/wELeC4L
       "], {
        {GrayLevel[0.8], EdgeForm[None], 
         GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxNnHf8V2P7wD/nnE9DqaRdSDIqMkNmZITsEBHKLlKkSEayIqth7x2ZFUmI
hDz2yJ7ZGaGMrN/9/l3v8+rzx/W6r32f+5z7en+/vq+np8PAE/cdklcqldfq
VSpFWjdNgo3ePsk+SVZLsnmSapI6rpuZUz/JCkm2SrJNkgZJGiZpkqRnksb6
tjZvX/uubq+6SbonaZSkR5IVk2yn3dhe+LZNsmWSeu7JuoX1K7kXe7ZJ0jtJ
a/W2SfbQxt8qyc5JmiVpnmTXJC3180wdkvTxzJx91SR7JVlFfQf3a2qPnZKs
rOyknz3bue9e6qu4X4skvZKskWQ/9zvW98477ZhkzSQHJNnfPHxrJelrbIMk
GyYZmKRTkn5J1knSOUmXJIckWT/J4Um6Jlk3yXpJDkuytrkH6e9vzcH26mxu
V/MPdG/qBtiX/TdKcoTPcaT2xp6B+7G5Z+pWift0VJKrzCVvE32ZcfIGWU9t
ob6p517LZ+nudx9ciW+/hb7u1tVRH6TNt93F904ud+j4StxXdO4Sd5M7uo1+
7BMrcV+31sc9Od1e3Efu6rYK+rAkJ1fi7m6voDc2Z6j9e+g/ST++hvobGRvq
vsSG26unwt3jDnKHT6vEneulzf3aUd9IV+ymriOsPcGzb2VOM+tHuMcOrtv7
/C08dy9ll5p30dJ3c5o9iO+WZLT+3VyZL+4795l73dsY/rMrMSt76t89yZmu
bYz11reb/j2sa2fdHup7afOt63nOvfUzv2PV8e3jWs74GGu5l1dX4r729hnY
E3adZx1nuMAzjdNmZjvo66PsZ9551vep2ZtnYZ77WouvfU0e6+qVmFXu/trm
9XXPvvovqiznRUe/Nd+Q736xOQfZn+c4N8kxlZgt2MPsX1JZzpF+5sMR+HBZ
kkMrwQuYcHglODDAOLHLkxxXibm73tpL7X2FOdROqOnR356Hmk9uybD++rqa
S811Pi/7bOx3OlKBRTBooM+1gd+QnKMrwQueDTZsZg96dfM9HGPdRPfb0J4D
lUnG6fliJe4GvTex/0DzJ9t/kHswv6ckuSvJjT4H/LnBnNLmnjKXt1eCJfBh
SJKb9Q9xLfkEI05U0G81fpP9hhi7xXWItcPMhz1bmDtY3zD3Z+/tKsGzHtrD
PAeMuNtz3WlOT2PDte+wprRLfo0wb6Q693R8Je4adw4WnWr8HtdT9Z+mPsXa
kb5vvv2Vxu81Z1SSqfrgFCy6Xz/2fUnO0A9PmE9m58IkDxo7UznDnLMqwYCz
lYf1jTbnQe2Hamp31wdTxljH/rtah2+6fvRztGdWYkaZ1fO1S+7ghxuPuGLP
sHasZ+TcvTwX9X3sv5d556iP9cycfZz5s6y5wFhpn2efC82dXQnuwBYYw9ww
I88ZG2ec7wtbnjLviRr/k/r66hunHx93Au7AkEPsgT7HdzjKM8Id+HGFcWqe
US4zTu3BxrlnnbT7GRtv/VzzOcsAz/O862QFnVmfYN48dephVH97sPcL1nA/
Dzd/gvKsNVcZP1J9vvb/KsGaaypxz6+0V5v0C1PvJK2TvFIJJsJb7N2StMpi
PpmTDyrBoOvNg3Ew71p98AcOvV4JNsEOePFmJbjzmnFi99hzpPXH2vN46260
5g1t5AR9N9pnsPuiv1oJLt3qnvACbsAfuPKuNnKyvtsqwanblTvM47wjfL67
tN9Xp264e/AsQ9yTXm/rx37LmjutO8U+dxkfas2H7sP7YFaZva8rwR7mDu58
ZLzk0b3asAEewA7uMEy6T0H/NMnnSR6oBE9YR6uT84n9HzCvrMc3Snu0cXwf
u/dCe5Rsekj7S3We5xHPMtZzTasEl6YZL/UvtaeZ91WSb6x9RN852nybd/xW
MOy7JI9Wglkza/RHrf3WFXuB75va781/rBI8YoVJj1eCR7PVfzQ+Sz8+5pc5
/KsS7IEtTyqL9cGmOUl+qQQP5uibbXyx9s/WXaR/tn58493/cf1PJ1liL3TY
A5Pgxe+VmH948Jw+7N8qwSDkCn3PaP9Wc/7va2omuM/T5s5xr6ftXTLsOdc/
fR/ok+1D7A/fETEYxO84f6tz/5kVZuRKfeTBKPj0kvn4YVgmm5jxf817SX3D
FPunEhwgTh48gSUve8aZfl/isOI1ddY8C16h32jNdfaBl0f7TFe7L89VteYN
z8BZ6mWxcs/qZ+GHe7eYUzcLG6mTRW2Rxb70esda7udN9i73uNk67j88eS/J
ClnkU9cgi/Vdn+U2e/G8//jM1DTMImezLPbmHMwI88acwCsY3yiL/Dv1NcmC
U3AIBsAC2AEfPqsEZ1bKlsfh1wz70o/axlnUNM0ip5k2tfda95H5UyrL92O9
xzzy4RPM4OfSF5XgBT+rSvbgW+izfe7zPWQNsXZZPFd5buyv7cPKz8NPreMZ
F9rnQdcWWcSmV5bXfWX/acY/9xnYA0atmnxLKzFXzNSj+ss493ORQi4+GPFT
JWZ/kTnM6Q+V4MLqWcTJ65jFHP9ofJbr9/b40T5lffuU3yEL/0/ai4zTD/78
rNAbHyxbMwvfHM/yq358T6njWyuLnF9rfOSvnfydfBfwZ50s/NjcsxW9d+tm
wbQ/zFvqe8PXOQsf8qy+hX5b7gTs+dPaP4zP0wejlino8KlrFjY6c8tcbSVT
NsiCWeiszBHMgT3/VWK+/jU+3xz6dMuCWbBloyxyyEc/IgtmrZ9FLjUwB97w
xyu4lFtfR2bUlRd1nNnNXeu4Bwwp57mQTX96zvWyqO9ek0/Oplnsx77sBb84
/5ZyrL6+etbDMPQttBv4ruDO1ur4Vnaum9kPDhFjrmEAbGnod15RHjW0toGx
bc3rkUUOOrXbqeN73+/7p/elZxacWklpIo8ay64m+nrai9/FPqi5d9u6d1Of
n3M0z2KeeyVpqb7QsxHbWRagN1N28h3s4HM0NaeFNcR2zJZzsKl5rdyD/ruq
t1JgC4zbxWcgxn8TzHUu4FDbLNj1W5JnkszNYt6WOGfEYd0e5mHvnmSvJKtk
wZ1V1eHSalkwob3+Rfr6ZdGvk7ntzCdvnyxyYAx8aq+9tz32NJ86nrmdz0Ee
+ftmwY6+WbDmV5mxlvYBWfBovyz4tYY2KxzjmeDDIT4fz7nUHugHuQ+1fdRh
YNmrg33K/X6x9iCfYf+aPdkHtnTJYqaYJ+a+i/uXnOrss3BH+xs/MgsWbKyf
GT00CybAo5ILG+g7XP/61v9eWV63TIatZ85hSQaYS/2fMoB8uDNQ/4ausOsY
n50zbJIFD7CvyoJX5fPCMJ75X1lGj4r51MElfreo2gv92CQX+00PzIJD8AOO
HGfO5gqxwdYWxnjX/Hzhe9QxZ3PrB2vDLJh9gjqxevpg05AsZor5aalvmyRD
s5h75h/WwIXts+AM9jDj9FnBum2tbWD9NvqoOcm6bcxtUNOrkTr9T85i7uEA
nIAZI7WRlfWdkgWvdvDZelpf32firKeZu7N55KxkHvrwLPjF2UeZR34z9V72
aK5e+lpYM9p3x98CmJnzs5jTXfQThyP8DQGutDJ3V31naCOt9THze1jHChfO
rrHP8mzH+y3PyYJTextvZ82e+ss4NmxhXrlra9mrt71XtQe5zDIcWcNzddDu
41qeE6aVfOqjjx6rGbvA/P2NnasfGWsud39cFvxC1tTXUZvaC10P8DtyD0Z6
jr6eZax92ePgLFjcyfOij1dfR5uZZLaPzoJJsKO/cpk+uAMzrsiCE4fpu9Q9
ypzLrTtEfyf9+NZ1v4Otg1cTs+UswoZHsAT+wI1rfTb4AGdgzFFZMGmgdQPU
J2fBiuvN38j8I9zncHPZr6v2puYeY+7G9u+mbxP3nZ/kSntNdr9B7gdnmFXm
ejv3P8447OFuHq/cqK+MYd+WBSPgCGy6ydwTXLdUh08319Sz74lZMGSo8a31
baVN3a36yj16+KzM871JTvX579C/rXlDtW/XJgdO3JkFN4br4/1t5pnxwaO7
sriXI7K4p1PUR5rT07y7XUcop5hP3k4+G3KPPpgzymf/q0j3pZq+ZTV8pye5
zxj2VH0ln5hVZpBZfEBfyZ0ztM/MggNnKQ/pu99eZc6D1pxhPj6Yc7Z1o9z3
dG38D7uOSTIti/l8JIt5PS/Jo/r21gevZrhiT7cWe5bnuNBzUb+v/fc0b4z6
OeaRv7+51Mx0xf+Y/nPt87g14xTYclGSSVnM0gDt2caZe36fhBcH6LvQHGov
Vp7QB3/G1/jRn7S+v/3mJLkkC1aw9lMfr36JOutTSZ42To8D3YPeh+gjxl3i
XnFHYNmEJM9mwYQJ+q5w/5J5E41NUJ9nzlzzntPPu4FX1yV5JcmLWbDj6iyY
Mcn3Bkde0Pe8/sn6WWEMPyP5OcjfDK7KlrMH/Sh7MlPMD3NzTRa8Yv9jfQb0
V7Pg0Q1ZsAaewBfYcEsWPHmtJs7clnN5nbWc5Q3jN1nzhvqN1g5y3+utu0F9
kPnkwqJ3s+AJrLlTG32Y/tt8Lnh1q76TzPnA55ric6K/bx/s99yL+jftRY+h
+tDfyoI/d1l3p71PNk7NgiQfug/cYQaZPeZopL4yxn26V/lIH0yADzBmqjHu
G2yCI58m+dz4g/pPNzZKe6pxfKO18X+S5DP9Zf+P3YNecOghZaE+uPOFPrgz
xvM8rO8sdWJfZsGQaTU+cr9K8o3vAmZ9rX+G37BBnv4bPwumfJcFy8aaO0P7
W23kXH0LfOd8Z1j0mD1mGj9PH4yCeY+7wpYfanzLspgl5gr2zNYPUxZnwR0Y
AVN+0Y/vYnMv0h5vXhn/yfhTNXU/2hv/0/a81JxLtGEFnHhWgRVXqP+mDZOe
sQfr5fof81zfm0+f35Msqcn91X2w/8yCQc8r6JOsm6g9z/WPLBjzgrkw6n9J
/s1iZphrZojfd/4yD7bAkpeyyv//j6ZezoIJV1k/XyH3Sn1X2/cla8ual7Vn
es5FSfI8OPWagn6D+ddrv2oePn5PPcbn2jD5/k7rP1mwiOd/PYs5fztJvTxW
ZnuBfnyc9RbtN5U6edS/Zo9qHvFb7fWGvtfd63Vzubvv2H+FPNZ39L+rXt/n
WOD7+dt3BrMa5pG3WVqLPPZg3pgv5gzGwb5GeeRjr5j0JnlwquQOKzaMgAlT
9d2r3TaPft+YR88p5jfNIwfGfFrj+8jaD6xhT/a/W98n5q+cBzta5cEauMEZ
Sh8swt88D37BP9i0UJ1ngg+r5KHznDPsgd7GOuo/dU8YWPZifcD92Odha9v4
XC3yyFvoPrAFTjHTzNGv2uxfcupbn2u1PGLc1Y55MGGx9vfGYQI8ggvEnzAH
H7EOeeTTZ6Z1s4x/79o+j7wf7fGYMepm6yP2s8+x2OfHhktr53GOJfqIrZnH
in+tPPyLzV+iv2QKXFqaZJ08Yuj8nOR7c+9gCPz43dxOeeRgd86X/01xqb15
1w/5PcqaZ9Xp0yXVrJcHv5bpg1HYXfPwwSBmqr5zxbwz6/AKFmVJuskk7JfM
GZhkA9mwfh59mDtq/1bwzdf/r7EX9LM3rKF/2Zf1vyzmkzll9rs7r3VcYQT6
pnnwqpBZuc+6zPPB3rp51NcxL7dnpt7Nc2+VB7Pqmvumtfi2qInhL3lH3dZ5
vDt+NjOfzZLsZL/6xuBIQ7kCpxrox7eNtQ3kU0Nnv5F1rI2TbFdj98jjO3LG
dZPeU06tZBxmULO9tU1c8TfxOdiL38voua3PAodWMp9Zbu48w4Hmnq2Z/p09
L/wq+dRMH32a+jy9zG9hbEdrkB3MgV27JmmZx31uVaO3tHYXV+zWSXazro02
/GmtD71dHiyGLW3Udzcf1mEflMc8M4swCW6smofspQ/uwIx98uBEe3175rFH
mbO3davo/8Ze9CS+h8/Qzn6rJ9nX9QfZBUcOyIM7v8iSNbX3T7JGHnzqqL5f
HnXo/TxHp5oaONTHPTq4L3th0/tXebaW7+FAe6AvkWvE+rrvGvZhj9/kEfOz
SR5zi32w8T+8m10U9P7qh5gLO+DG3+bCqUPN5W5jH6a/q7XU/S4/1tdPnwH5
cpv8ZTJqoyRHJjna5+zmmQ70XOTApY3US54dkdbJeTBuY89H/X8yCt9S+cw7
g0XH2h9GbZ7H7xqbqQ8yltfkblqTg17+XtLdmu7WocOgwfrgz5b6WE9Qh0Vw
B7YMUd/anK3MY26ZR+byROMlg7bRhgdDtetZSw/YAod6KOStaF5D7R7mnOQK
g07Og1HoJad20AcPRmgPN6endlPjp9T46D/MveDsSHN28Uwt9HPOU/Ng0s76
djJ3ZZ+tZOTO1p7me+Qdw/pR+ukNn2DLbspofafXxFu6Yvc2r7X6GdrwZ3d9
vdXPzIM38AKOnJ0HL/ZU0NuZ21Z7d9ezkowxjx6H5zEDzMIq+ojBr7H2hxtw
gVkuGdTHHOKr6cd3nn7sc42fY9/zzaEfszQuD37Bif31X+C6v9LRnPb23Ef7
QuPM3ZV5zN7fSV5IMj+PeYXXF6uvrd3PlRkcX+M7Jo8ZuzaPGT1YPwy6LA8G
wRr4coV+fF3M7ay9rnll/FLj/fVfnuQSex/s+z/Mb0C8ZNjRPhPPs6HnHKjA
rg088wB966vT7zjPspnv5gVzJxonb4L7YG/sfkflwayj9XXzGY72GY6sed9H
aHdzL/KYYWb3jiTX+xyDlON8npvy4NLx+rtrww9mlFk9wfgWridYB6Nu0b7R
+sHaW9XEWU+0drB9TnSP2/Lgz1B93EPux0V5zPjJnmOYuUO1b9dHHO7cWZMH
Y67zPXDOU8yBQfBmSh7MQnbUd5c55N7tOsL+2xvbQR8x2HSPtfDnNH2n6ttJ
Hwyaqt5L+/48uDPaFR/MeSyPmbzAGLw5Q3lAH6x5UN991p6uH19vdbjyUB48
K/fBB5sezoM56Hvq30MbxszIgxHw4hF9060p2XFOjb23Obvbi/1hw3n2YO3j
2c5znWmMun1q8h5NMs1nGeO7IH8/3y3v8d4ks4yV3LlQm3szOw+W4TtAHXlc
Hzlw6Ik87trF+i4yr68+ePRkHlyAG5co6E+bc5B5443NccXuZy7cucy+PM+a
2k8bhzMw7HJXOAAP5rlO1P+sORP1H65/Qk3sGXuTMynJ80leSnJNHuyCFVcl
eTEP7kwyd7K5k+xDj/7aA4wzn8zy1vY50l7ti/S7dVp/SHJ1Hnwq97tGG52Z
fDmP+WLeTtEHm17Ngx9w5IY8GHJzHpzB95p++hxr3SB9Zf312tS8bt315h6n
Pdg4vd9Uhyu3er53tG93Hab+Vh4su9Vnu8UecGe457nD+tvNu8WeN6u/aT65
75lP7kn6S9/J2uhv24tned9a3h8zzJx8mQfPYM49yof6mBXYw7yM0EctPIAn
9xuj5lRzYconxtDhxsfmkPupfuKfuT5gbKq52LDoQeVzfbybFdJdWZAHm4id
qb5Q+yzPhm+6Zxyjjf+LJB94jin6zjYPdnybB7Pg0gx7fO06QxlrzlfWTdf+
xjgcmmm/R42dq47/uzz4A69hzvfq+GAMDJlt7vnG/kzyXB4zdqF55MOgn8yH
J0/q+6Gm3xP6Fyd5Kskv2tT8aA5+mDPH2Pia3Kf0z02yNA9GPKvNrMOhy/Qv
1X7GteTZE+53kXXPWDvPc5Xnw55oDnv85or/9yS/2vNp/SXnZvqeFvmOnrMP
v0Py+yO8+i8PlsEQfodaZu4LrjDqSnPnq883Tp/10937Kw8m0QdWZcn3Sh78
YL1O/Wpz/ud+xPiHz9dql89xnTHuPj+LmY28iB4ls16z5xt5MKBOEStMqVuE
v1oEs9BZbzL3DXV63GjsbWtLLizQV7+IdYG1t5hXr4j1beuLIvpR+475rZJv
1yQti/i982jfwbvmwCL4BINWLMKP3bCIecTPTMIjZorZamys5BEr9kd58ORj
ZaUifI2K6FPmNCmi5kPzP/I9f2Id+9/l3h/rb1rECqdWLoIrLYpgEOxoqQ8e
4YNhzYtYsZsVUYvdpohzwI+HPdsX7nNfvjyP9X7zyJ9u3pe+1y/1ty7Cz/4P
ud+D2m2LqIdBzAhzy5zM0EcM7qxSBOPQWUvmtSsiD5Z0KIIL5DBPqxbBEzg1
S99j2jO1yV3dvB+V2fZbZO5qRbCGGHnwaI0ict7zrtyh/+ckHYtg0c/6Ftuv
5Nkvxn5WX9MzPOKZ1irCz/uAFfADnsCodVJsSR4cwS71JeavXcS6xJpOReSV
9XPV6dm5iPWPJF3U52mvVwTbYA3s6FqEvm4RcWLMXT1nb4MiWPNPko2LYFZF
H/Ulq5ZZi/9F82ENXPnX3GXmv2yP/4yRU/aFX5sUMdPMdtXZxoZDFflG3qb6
iHWzFptnHlAEH6nfzJy6nmuLIphVlVXom2vDmbrGc3u+ag7+7r6neZ63brGc
SVsV8e7K3wlW0N7SfcsY/GlQxB2DPTAHe2vj2NvoK2Pcxe2LYBAcWVG2NFJn
7WG8kZxqaGzbJNvpb2yvBj5HE1kFs5Ce9oc1sGOnInjSTKbACmJNFfQd1amH
Wx/at7FxeEI9rNqlCH4hcALfzvZnn16uLey5g31hSwtj/A2Lv1vx34awCA61
UtB3S3JgEfPG3MAi2Pe1uei9i2AMcwmDkD31wRfYsHcR89vOHgfZbx33gYH0
WiRLVlXoBX/Q99Lewx702t1naOs+/PfGPkVwA2Z0VGDRYrmzv3afIrjWQXs/
dZ5pqVygxy/58vOzwo7V3QvW7au+us8AD9u7L/UHuFLb1z1+ko9L5BW9Nypi
dmED3Dm4iGdA+vlcv8sh4swkzPlLH9zpX4T+hxwi53DzDiuCWV2tJ++QJIda
u56CXnKtq77OPgdcHFgEFzZMclQRzwtn/pZx62vDkaPNhWHk/yufOCt9JhXB
l4o1Za/M+k1dc99hX98nDNrM+LGumymwBwYdU9ODn0sd/EbEjjMXBg3SB8vg
y/H6sQcXwSL8MIcZZr6YsyHGStZsrQ0jYE5D9aHaJ9hnK+0TrUEa6IMxPaxj
/3rWbKt/mCsMOqmImT6lCNbAjhH6muiDc8NdsU+2dnvPyLnh8cqebUf7N6rJ
Y4U/vTx3c/PIH+mK/1T97A9vTtNPHayCT/weyXwyM+cmGVUThzWw5AzzTq/x
j9bXQl8v/fhgFUyABW3tgX5mET9TtvCsMAl+wJGzzKHubNc9rW1j7IUky5I8
XwSjersn9WPM5yztPc95rn0UdO7b3uaNVacenrWzB3ufbw0MWs38vZVzrOHe
X1gEvzqY20f7Am1kDX1875X8Hgfo6+ieYzw388mcXFPEbMEoeH+Qa8nofvrg
xaVFsAnWwI7LtS8x71h7MncX1/Q7xLzO6tRfVgSH+uujvpN5463Dd5h7wSJ4
AjvgxmS/Dxw5yvNwFrh1uHUD1Nc33s3nO7II3lC3ibGjfJZ13W+CPai/Qt9h
7g/PjiiCZRvbj70mmn+t+/A+mFVm744i2MPcwZ3rjJc8Ok4bNsAD2MH9hUmD
FfQbk9xcBFOGKOhbmXOD/Y/Xf5N+fN31b2kM3/XufYu9SjadqM1z3Ko93LPA
hh6ebZhC3rbqt2kPM+f2JHdaO1zfdtrcT+7fuCIYdncRXEN20NdTm9q7XLEn
+z34FvBoivlw6VR9cAYe9dKHfq/6ztozi5hhZhH2wJbRyv36YBNcebAIHpyp
7z73KHMesG4XfaP044MhU91zlD3g0UNFzCQ6TIAXM4qYf3hwrj7s6UXMMLKX
vmnWj/HMnO2emhpY8rD9z3bf3bXpXTLsXNdHfRfofexD7JEkjxkruXOBNvPC
nBymD+bArIuKYMETfuPH9fc1Nk57lnXj9M92PdD68a4HeUa+Mz9zYMQlxp9y
vUSBJTDryZoefe1Zuzd3EB49bf6znoUzzXNltuHdocYud51rLfYz1s9x/8Ot
m2AOsZJ/l+v7X5Kri2AXP3e401cWwTVqB6g/pz3QnEmuR5jPz0J+zvK3hKuK
4FnZ92ptdNj0UhFzxEwySy/rh0nwAC7AEVgBP2DOa8ZusM8x1hynn9pXanqU
NTfoI/dY/fgGq9P/9SL4AmfgEPx4WxsZqu/NIth3i3UnaMPWkz3PO+bebh7x
Ia5vWneHue+aR/4w9TvscZI6vrfsxbO8Zy3vj5n6soj5hVvcySnKB/qYRXjD
PJ6ij1rYAFvuM0bNSHNhxMfG0EeZ86F5U4196kqfz6z92Fx8MOcB5TN9C5LU
r8b7fdDYGeqfa5/pmfBN85xna+Nf6Bnu9pz4zjIPRnxTBL/g0XR7fOU6XTnH
nC+tm2bddP3w5lH7PaJvrL7viuUsgt3wZ5E6PljCXD9u/nnGmGXm6M8iWDPL
/J/MLZnzhPr3Nf1m6//JFaYstu4Hc57SP96ci7WfNPZLkqVFcAZWwIC56jDj
UmPIr8Vyjsyxfrb7jbOGPBjyexHMmqegTzBnrnvO1f+bz/GUffFfYWym75F3
NtF3RT/+vRhsmp/k3yKYBUOe910+p846ydwrzZ+s/bx9+Ddn/G4No+DSi0n4
PyCFQa8o6NcZu7pmP/z/FcGfl2r81xrj/vOzlfnIqtHr1SJ49Kq9Yc0bSarV
WGFCnWr4i2owC5215NMb+q7XT6+3rC258La+etVY37b2TevrVkN/yx55NfqQ
B3+YS36PPMp3A4NWqIZ/gTn4YBYMalhdbjdI+vv6mUvmkbn6IkkjYx8o75vz
URE8uUe9STXsFavR533jjavLa6fo+9iae9z/Tvf+yNhK1Vg/SdK0GlxpXg0G
wY4W+rBLhjWrho5v5WrUYreuxlm+8lxf2ONjv/MnylTzv/Ls08wjv2U1Vvyt
quFnf3jWpho1XxfBnm/Ufy5ibn/R17Ya/h+TrF6NmZ9uLvXfmveIertq2N9p
l37sVax/3H6rVWPuvlfQ4c6j6t8p6Kum3PbVyPvB9/WA55mlj9gdfhvuCMyC
VWtUg0uL9f3oM5TxJz33YteO1Yh1qEbumtXw807gBiyBLUuSrF0NZiFP65uj
Tf5a1Vh/tWadauTw7+n4N2v8m5Il1i61N1zrXA39We11k/1HEdyBI+tVQ+9S
jTgx7ir3lrvPv3OFO38XwaG/rGOdr/9P62AdPIExcO6fIhjzrzXkwTHYUpEv
5MIe7Fx+wJE6zjtzX985XkHmEIM/sKKuvMAu5NCL7sv+8KG+uY2d0SaebUVn
m+8MDxooK8gG+MIz8bwNnesVfX+/e17miBllZpnBlZ3D5s5oC2Ps+ZG5zBt5
zFUL5+kza5o5a62MM1+tnTHu7Wre3e+8y8xCW2elnTPW1rpWzn5r84h/W3M/
OlWjxyJniLu/uvOxtvdrHe8lNneQGejgve7ofV7T2Jre0dW97x28e9zBTv57
6fX8+dXZ+9bFGPss9X528R0vdo81vKPUruud5N5tkNb/A/T4ziE=
           "]]]}, {}, {}, {}, {}},
       VertexColors->CompressedData["
1:eJzMvGk41P/b/y9CyE5I1hSFLGVpPaNSEllKtkREGxEpRPaQaBGlbCVKxl4h
a1mTMGPs23vseyGypP/rPeN753Mc1/H/XXeuz/dWx/E4ppHmfD/O8/laRuL8
NcML9HR0dApr6egY0J9uGPOQURURztLrsGyyJUBBwKFrP3/0wv8Vt/kH91nl
P1d52Sq3oNB4CweNmwfS+JtpGo/4SeMND2hclY6FyhmjzahcU+8wlfOtEaTy
tmOyrDh/26ZH5R8e1lN5d5IUH84fd9ZTudKy8RTOczK7b1Pf59bGGzjn6VLa
eQpxJWKenDjipUNfk3BeXaF90Bhxg8aM3H2IyzuR+WcQ59CvodggHto1a7GI
uD3vSuoy4hgl8HMW4jt12x+rXCLAxmAWu50/e2HR572IYg0RBNZqCix7EUB3
6KzYweleIKs3Eb3ridC+P/9SHpkAn9Tfz6bP9cI1X/XEC4NE+Hxsr/BRvgyo
JlVdqGLCIJYt6PG4PAlcq+w/xnhmQcQoOXD9bgy87vcT2SdJ8CTFdHt7zgeQ
UlR35CvF4FuEn4XPWzIUS1Zs/XuuDKYz32oWzVMgzNthaXZDG/jzum7X16mD
EyFGL65aDYB/G+v63wPd8OJWvqpsSStonqpm8b8xArXFjQNDan1w/Y5b2OMK
Cij6d+33kJgA+Wd+lDW/BsFgqF/rXNUw6Nu9GdBRm4B7DiqJJ51HQSxc/WpC
9RgoBiX4/zo9Dh86Hb9JLI/Dxh+33d8kjoPK7zo9W+UxCJu7JSEiOglPnhEX
zekn4P1rjmmPzFFYttgaEZU8AS62g7I+7eNwKJ6Bj3lwFFhPtkwxtI/B1akL
riMHx6Gz6+3ms7ljMNmeNuxxdARuijK36F0Yg6zPBD6bjnFIXie3ZvOJQRDl
5jnGljcEJUeKz17fOQFz9vDq+c0+OJ3+KGxCtg/4FhnpJyUnoHppRuJkTS94
bvpVE3WhC8ZyhGoyjceg/ZzdsUPxnZBzXYaL7msTvFCeal/sGALu4okNbXOt
oFLwqTGl4xscqPJ60qE9AKXzPSdLLJvBhGH81ZHmL0CnPj0hin5e0M27qrHx
6O9PlZeUB30C832XZ7v3UeCYnm7u3XskWK+raZrAlAtMPJ6czR4YeOQ6logt
EWEk8Km8zsZM8Hf7Fm3Cj4Gw+dyGE6iuem2kdvreIcC+EctqI1RXzz00E2Ya
ibBZUG+WMk+ApIFAysXfvfCnkv6dxSwRorN89O82Z4BVQOPvaC4MxhcIvjsF
SCCm/tbtYVcmrN+RsptvGwb5V7yYvGVJ8MmwZDzzchZsa61dNlbDoFMiur9S
jgTudzfLJbhkQZiBp+gBdQy+8DJk3xElwbgL90NDriwI/aOmorIDA9nDnXcW
mEkwLMu5+Z1LJnw8ujvVShSDdU4MPc9+EOGQzc851ZcZUCY8pDfDjv2f+ep/
67GRf3js5KrHpFc9ZrTqsZyfNH60n8alVj2m9GMdlcvnmVI53SGax5oFBaj8
Sqoo1WNOqjSPjR8op/Ltm+/y4lxrqIrKmUy6JnE+SdB0w3n8YrkrzgOTv+3A
PfZI+8mUGOIrArmJOGd+ByK4xx5s1Knbg/hTaZU/04gDT/3P84jf9Pt7eALx
X0GJa3CPVTTbyaYhHuWp0Dh0kQDfJvbcUkAey4nSvMiL6i0pIKbs6m0CCLYJ
TsuievNQ49/89zv6f+O7ql/9nQA7vl5WO408tvkLx0H3fiKImT5XCFpIB7K1
sKkDI6ofBjt1T2kS6Gf+fVyrlwWb2iKMA3dhMHTuNPeRDhI0tAinqCh9AA4b
3ZrebAyqLfTditzJ0L7j5bPh/FIwfq/JLddMAWfSsydYWiuskxW3cGqvBdYn
Mv49/AOgFFIldUegG3Jl7E/LmrTARsWFZLv+YdAukIhn+kABgSfZqgOzGLCt
e68ZIDoBabpHfHSUBiHw4u+M0bAheEJ8+JGsPAHGJxMivO6OgOp6LrMUjzF4
ep23933xOLyRS2thHRmD9ISHOuNHxkFa9VVBImEM6Fk/Po76Ow5evCeC6l+O
w/HgkIkWxTHYWhyZmBU3DmZjzoV3/Mbhcoh74EGLMbh70pjz/toxWON0Qb5g
YQzSNkr3r/COA3d2Yf+97GHotmW9k7RzDFT8eWaE0b/TOGx4h9PEAPhsV27o
ExuCjz3mudpKE6B8YJakbNQHXiG/njn8pABd4rtAIeSxXS7Vdit1yGMNpcrY
jS74MFHho3V2DOaWDGqE+zphz85DO+eBDGGMW+Pfsg2D61TC8f4TbTB06v3d
bqbvMMWmH3wqaAAObZYtkU9rhvGgJxYhfeVgPaJgEkroA+9vJYncLU1ADOnN
cVlXBGW9FSatNhSws2dVKE1Fn69ym92Xnlwwtj2kWfUAg0f0lgLHkQfyK0YU
hhwzgZ2h9/yACAbp4gEuXV+J8FJjHa/+E1T/JRJdDjO9wO5wM3K+gQhq63LW
KY0SIF87qPjjfC+Eqewe4Z4jgkqZo472ZAasMTc/UsuNwWJG5chpERJY2y77
712XBYN29uM28hiYrm03WtlFAonCHbYVaVnwydns2toDGMyND50DNRIklYu9
v16YBYHSln+eAQZKJk7VCag+RV/WEBtOZgFdT0NhPKrPZb7XyZc5SFDxzan9
VkIm2Oz/kDskiYG76GEGWeRVS2e5uCZSBhBnunlucP37Hjv/P3is5x8e01j1
2Fl2Gj+26rG4HzQuQ6Zx6wgaX+iieaygwITKlVRpHlvi2kDlSqe4qB5bua1L
5RcvfKTyULsmHpxb9hRTeeRtI6rHooQrHHF+VcCW6jHOA6RtuMcqztum4h7j
lVCJw7l6Ucqv04iH/7qfrI64Z4A1hnssMWUOs0a8eXvanW58roPHmkuI97u1
9rxG3P9j9sEHyGO5j1+wySKPfbjOKzVTjfpjYvnUOw8CmFaWHuZHHtOwER2/
hjwW88Vdna6KAOfldB/8+NULmUl1SoYU5EkLBoEnHelgMenCOcqAwUXe26Ha
4iSwfR7V+nlTFpgvRCy7KWCw98G0sUklCf7SL7Kkx78HnfAwRrkkDCJvHNif
epgMso29j8+sKYWFsyKk7kwKyCXfWDiq1gr3j+w56aXxFbRSjRfUv/TDYc/w
9A07u8CLJ9yfuZYM00PV0T2HhqHtqcit51spcFqHdYcbBwbRH1MOg/AExJns
vuBgOgB6h7Q6eZUHoWzu2MiIPPJGfnR6dOAwNG72aEiWGoPl80pxgPz2+HP/
a878UTgPHan3e8fgQXv4mwaVcfDDnBcvl40B0VYt6r36OHz9USd7vmQMMIXg
/BK3MSgwyJOpFxuH6vK4GjL6e2JWfNG5XKNwIi3j6KU3Y8BmduXvPt9xkKx8
WzwzNwRlT1r0Gy+MAuUE02H5/ROwVV5UR+jGAGyaTvoQYjkIdKQVu3s7JqD1
0gO5sxv7gNK53XxTFAUIG/LJdeITEO21botscS9M994WaTvQBVNJmb+Zj6K5
0S90fSxbF/Q2yYTZBpHBZDEIJGSGITRNhuH44zaoNT95Jm3pO5x4sM7m+8cB
mB6ohc7pZsglhx8+1VYB2W1Fpmo9fXAvlbMqmJ0MB2tCtmn4FwMh0LJQLJQC
Yp2MdBW1JJAMieG8WPEeHEXil5dSMFAZ0rj/ip8E0Zz29TnETIhi/SuxJI0B
Q5mGpEMdEczEgv1/5BHgkfyujD2ofnrfWDCJoDnf7cLt9RcbCMC/2KB+GfXH
Nle3GflfRLglbnpxEMsASbERDlnksbSTUuuaxEjQOqkX+VAoC96ZW9lJobrK
jsw6/n4PCVbuvVMMaMoCuRti8es0MXg9WDn68AAJHBcX/p6bygKNaT6nksMo
L8RS+rJ2kOCZH2ntvE8WmhNclKNRXuCEvrxJXhLE/ebKJldmQsuFVrHqrRgk
29oxZMwTgZwaVHSWPhNeH/WJmeD57/PYnVVO/ofHlFY9dns9je9b9Zj9FI2f
KKfxoHAaJ9TQPOaYcIbKJ6VpHrMf46PyRCs6qsfS0k9QeZ3IWyp/UcFO9Zhs
cy6Vl98umMD5mxFXO5z3RPx2wfn13yelcI/1Nr4/i3us9MjpGOr89qGlBvcY
U734EVXEvSqjPuMeE5FOfm+F+Kt8kx3fEZ8n+l1bRJzNMmcyDvFd3wcyFZDH
0iJjt29FHjNjfJlQjzxWK6AxU3SLABij0sllxCVnrsYRUR2ayPpJuxYj7xUb
0/vhHpMWhLkeImhndx8uL0iH1J6rzzToMfi0vOX9FUESuFX/rl0/mAm/b+cm
TaH5/z2d0JeADBLI7RF2GKd7D9u2CghKRGKwh6utbYiVDJHOy/QLTsWQ6fa5
ViuYAspOLs3PPrbA2sevIm8HVsMBY7eG25f60e/7rSNxbycskYrWVmxqAo9W
aatfT4ZA53Dx1pSzGPwM/dh9/VIPrOcLStslPQ6piqaLak79wMPjqGP1qR8y
RcWHnspMAGNom0Cx4RBkcxX4Lp4dgWKj71OOuydgxkYg+Pe1EZD4kH+n/voY
1KcHHIcaNH/pbj2+234U+A7/PnqoAs1vKy52HmbjoLW+8EeQ0igoqVzdb56D
5qE1z0uDr4/DLqtGUs/fYbjy5s2Ig+4YOCffs7m5NA47Rj8rmfINwdNHxT4F
C8PQNVpdR68+AY1xZcsnsH6IfKR4gtt5AF4k97bJyU5AifG9N+JfKaC128tN
iZ8CbG4sjxfQ/GYxpCxB96QXNjhxiWRmdMLfPPtN29nH4P19hv2bOLug/sQB
VvcwMsR5Bl+I2j4M6XNTKsllbbBwRTuo70U9DAxu87RpHYDH9vf/esm1QKtU
aHNRYiXMaqU65TH3Q5ipwgZuNM/Jc7zPKukoAWMia/RUGgVkHY8WFo2TQNoh
Ozsv9QNobbXeLVOCwVO2L/U1W0jA9Vtfg/FQFri+pXw6tRODu7k8TEdRfuQo
DeX3mySA+OKayCk0d7U1snNlfiNCYO2bB6npBPCtSah7P9sL3FNJ2pE/ifBL
rU+NmJEBf/k/6r5CfSl/5oEWF8qDWz99TdZhzwJmo6TBQTSPeee3R73dS4Kw
0Zua0h1ZsDhFZ5CLPFYU8sAuVYMEzXO1b4bWZgPLBn37cS3U316fyypRRq/X
vdYuE5sFV0usHjvtw+DwkWV7Msqt3zVs3eaxTHi87T59EKpbFWeh10WLRDBo
uIolCGRCWcyO17z8/77HrP/BvVf511VeusrFVj0WwkbjSqse2zBJ40tZNB5z
n8Zf59A89svBmMqvC9I8to7AS+USfFNUPvpdh8r3Jj+j8qQEVW6cm8y/pXK7
ZT6qx243uJ3F+c8DAVSPKT00F8U9phqLseIe6x/aEkXNp6ejY3CPqcp25+xE
vEvfOhH3WMEH3evnEJ8pfvuiEP990zTDFhBfU5BzKxrx55liI1X2BNgcB+Pi
yFeWPGbBb5HH0jdFc6S5ESAhSSEEQ3z9Mac925HHXLROdeu+J4DFdPRbNuQx
U9Wszc5dRKjmWjv1ITodmC8Jqd6mw1D/6whj4SKB33Klc/G7TJidkdNlk0K5
wCRgGqJJkNJs8E3SJBeS+t+85fFHfZDl5mBSXRO4jYubDlUWQjTZNEX9LAXC
zF/u8VZsgS+s+yJSMiqB7kXR0WDWftjII+F+WrUDdoUU7XY2JoKUYHKufvcg
3JWV/KJ1B3mX8Xq6lG0n+AQQphImR+GKZ0nGK48+sEt+5PxNsQ8eJrLn/EW5
bOSTUMovtkF4secmZUJ/CBRNOkhLKMcRO/v27UM5zLGMV+Vi0Cj0nHJ/9QrN
S5YZJjJz88Owk7ff/uvxMZCOEeqjRznTt1W5VJA8DLff72fcDmh+M9rklsgx
AY76LTJ/KoagyDc+f4vAKIS7sQZw7puAjjCVU238g/Cb4+aTRqshaIooCVVB
c+C3h7tLbZX7YU5O04TVpB/a2UBAUXoCBMNOzTBaU4DY/6Xb4CrygtgOhchN
E2BKXFuD6fWCXBnJr/1TB7SbzRXEpI5Cps6+/pX+TlBQC1WEQ2RIZpaX/rN+
GGbZPhxPqG8D2+1eMt519bB9gqCkShmAjZ+uft1p2AJK7o/8e6WqYL6Uec9u
yX4Q5HHfN2JHhlkm1RuOt0pBNy7L4kc1BcQnuE7wsDWBfePYs1Svj7CWUX+/
exPKayFvDLpVSXDM4GZWfX4WSAlsrzqN5zhTLXjSTIQdsfxleurp4PS6e2vq
EpofTFiXlFDe7JgRml65h/q+2x6zX2j+77r6dun5GBE+svOWVFlkwJPoKSVn
Vgxc99P5LCLPRJMvX1+gZEKClQtfAvLMIZ8T0rYoP3KtdfC5XpQFV2pimnPQ
zx21k2tvABIkDnHJsv7Ogq5rBVHxR1B+fDLxlH4nCc6G7JRdjMsC1oC6p/HI
Y1+3gZaTEAnK8h6vlZjIBB67kork7agv7yX7ti4T4cHD2vjDWzOh+9Vfi/AN
/30e81rlxau8ZJWvX/VYMOvqOth/1sfGaTw1jsYTwmjc4QXNY+tlT1O5xDqa
xxbO8lC5X08nlTv2HadyXdsQKqfcPsWF8xOhcVReqWk/jvNrRkyncH5xKyvV
YwVFIoK4x4w2ceWKIt4x9fkhzt9tlbqEe+zKT6a1SogP6CV44x5juewpbon4
yZY4jVR8HlvTHPcb8QO9NZkRiJ82nCCYI49pPDrpKox8daTTAfNFHsu9R/EJ
cEWv76R/V4H4UvAzfU/UN510qtq+vUNzmqbmpweobx7iN/RpaidCY/yHY+dd
0iHWjUs7eaUXjmW07bBkRh7ruzp+/Vom7G8p950RwWCgIMlE1ZsEf3b5htCl
5sBNvtAJd2eUFwZe90SHN8H2UUKdDdcn6B+TeTSsSAHLLbVun183Q/gxtxHV
unK4kvncgfltH8QsfVoTtb0d8hu4kgcDGuDmL99XmyUHgd7jpNMztR7gWLaQ
3KjbBiWueT+x9BFInf9Sl3aHAvx7bkU+jMVA5KEv91GRCbiy883en0VoPpN5
91pDfQCI+wrvWG6fgKihoX7eO4PwqbLKop9lGOZtgt483zUBbSdO+p22GYJ3
GbzjL2+NgKBg5Zd6NL/dvtB/f6/eEMwODnp+Mh6BY2eGYk8h3uB1PO+X/SAI
fq/1Kekfgsj+P0V86H14gjVeXlgzALfdg7a9ShoAZjnD7cNo7ppJPdKfeKUP
QlMfl2QI9sGkpY7oG+RbpZ9j4NuAnuMbpsVXbvcCXcUxLKl6HA4vnPmsSu6B
J6ficreea4c/KyndKSKjIHfzWnPP3U44omfgfzqxCfzDKA2htUPAUpp5+c2H
Ngg0PPYu1a0eig/Wj75tGAC6+UvWFWdb4DpPu6GwbhVIJRe9NdveD4ReedGd
PmSIahcRO9dQCu+st2h9aKfAhQnsE2FzEzzVziJ8l8mDOo1PYeUDGOxIrxT3
OUqCubLWS7fls4Hst6DCpIPByeFFgf2o3114ZbBMiUyHyT/sL8+gfsf+/jpl
P6o3g/uPMolOBDCq24k9QfX2+hc7L3c/EX62s4t2zaRDOn+7hBQjBno1thzK
HMiT3I37p+IywSpCbbJEEoPKDO7EbSgnHq54dfqQVxZ4pDs7qqGcOOvDOj2q
TgKNTe8cuKqz4PCFLK/KgxhsbIx8LKRAAm2ZjVur/bPAQCiJuxe9fqhBaPd+
lCO2vRL0qenPhEvcexa+I0+eeU9f5fuHCHPGDyld2zPhezz9KUaBf89jN/9/
PJa9yotX+cIq92Wh8Q2rHjs6RuOzoTSeeI/GywNoHhvCjKjcZ57Gyeu4qdzA
+CuVE2a0qVyx8xaVY8GOnDifGHtE5WGtH8ZwLnTV6TjOx7eFX8d5Y0gNN+6x
SFNmC9xj3/fr36f6M49XDfeYiUuSzg7E9WqczHGPNVxgqbXA9y9CZXOjEW8/
1ZU+j7jwNpGWu4hfrE3znLQjQOOPvil+VD+dSc9mTFFdufhQBE2vIx++pXv+
FnGXtJmQ2loi3FGrJ8NLAiznFyrxI4/1Oc4yqLYSgVl089SMXjo0vorhrF/u
hcW/kh+zVtBcyttSIrYzE548svrRjj5306s84eoXSGCj5H9JcTkb2Hft8R45
h4GuzKfK7yebIKY4KifPPB+42iv2VK+lwMwF8U0Tws2Q8PiQ39DEZ/Qs9/jJ
HOuDF9vNGSQk2kAgaG9khmMdMHrsK31kPwBVhReadG90wasNdksyB5qB70cE
y6XrwxAlcUn1gAkGmAZz3UvjHhicebTwTGwcrqhuLHju0ge6Ak0Xfbb0QdXs
zdRm5A0+0PH1mOuHFVFGWcHHA/CsbdT5DfLMOvYXrIylAxCzTX/vaPMgBBXv
TjqoOAHT86eXm/IGYKFre+XZ2kH4EvkqawPidRHKCQ/pB+BG7vXtgckD8L6F
d80Uep9uVc345Z4+WPfifOFLUh9cnlvZdnLLBGQNL4PWYwoonT6mzlmEwfnd
1i75yLex1taNp/DneE3pGX3VbojpcRbhfDcGvXt8/a43dUPF1BXe3IRWCDi0
N1z50ghkh5fX3p7vAPn9vOXHkkmQvuRRx2U3BFKV5PhvLm2w+GyDomz4d4g7
eOhzWuIALKuSV8R0WkB0/j734fVVcLyrrBdE+mFzyB65xSAy9PiG5f4YKoXf
9kaZ7j0UKJRTKw/Z2QRhVsyYcHQehC9lLY38wGDyK2vIzGkS1EwGef95mA1u
1g5KO05jMHNz188q5CV1tXNV3/6kA8+gUUoS+n0MXt5LNkV1GG9D+nMF1Wcw
4Yb7L1SfCuyfZ9g6iRDtohKgF5AOTJHS8r5/e+Hr7rjO2TUkqOveJt6gnQmd
ql59WzZiwCRTfopRggQRGeYjnRJZ0D75bn5RAYOWRVeVWHkSyI9iedfds6CH
zF/cpI6B2kuOeFVpEqx4H/WYPJEFHJaHxU/vwsC3VFmch48ECzNvx2urMkHn
wcs12FYMvL69tTuL5rHj9QaO45IoX4R/b1H7L5zHPFd58j88NrTKvdbROOuq
xygjNO5/k8Zfh9K4qwPNY0mxhlQuMkTjm/M5qbxeMI/2/sw0j5W+uEjlH++G
cVDnOp+7VP43k4XqMc4eZg2cc9zio3qsKOwJG+6x9RnFjLjH8hVmg6nrcif5
mXCPGd7f8lIWcb+2Nbtxj9096ORljniufs/jQDwv+10sn0O8hsCl4IP4QdEP
S/7IY/cWTcK5kK/SCW18O5HHNsrev7IP9ceAXj/tcMSvxG0sF0ceG9r+4NLv
pwS4w2MlFzvTCynd8X/ekYkQtK9W6aUsygtuXmpMKC/03zSu0Z0jQncJq3To
zwzYUyVi9osbgxfDzX+EdEkwWJjX6HQqG84rzv38pYfBrvoPRWa8TeBHbyWq
9fEj3Jbx9tNpx6BAVveifzQZjq9gz50lyiBfM79NcIwCw0WDqa8kWyF5i6zJ
+4UaENzwSPhjbj8wXLz206SyA9IuRH1r0SeBt1dz2N1DQzB3zC78Pn8vGC36
+XvPtsP+v+3+jGajEMAxlFesRoFU9TNaf1HfTZn8cOyV8AT0sl+7b+bdB+57
vNTLVftA2tbAin8zmt/G+jsvy/XDWvOw/U56/eBxrk6VHc99Fzz8dyn0g2vF
cO+oYT/s4iZ4iiC+71TqJc+XfTCUWPugwakPgrEK9WH0Po89z683K6SALlfE
Ds6/GMTo5ci/FZ0A9+g28YyHGLy+IXBUibMXBKf0/M84jUN4xbo04tZekO9W
KA9T7IDYuugJneujsEO61HJDchfksZzbsfSoGe5rGopkRw6DDH1Im+PuDohz
c8lqMidCuUT4Ce/eQXh+UedW/bo2eKoT4yO6sQ6yGD+c8zQegCuvLEduC7UA
R1xVVsq5SjhkWr3r7GIfzMnEGe1wJ4NWq3j73MdSCP9gc6uKTIGoa2sczNWb
IIjsisXn5cFrrvUMurMYbPkT/NnNigQ/nCqLN3Zkg9377bEPLTB4cND7/OVx
IvQnFX5esc+A0v44DXo2DDLdisIrUR1avOzoNr6M6mpihkET1dvGMNcHKU3o
uWMyy/UUSQf7wWyFk4u9kMuTGEGeRby/YVSwKwPWLzZNjXMhL1VkzD7iJsHH
vy5hjh8yoYTe96vYFgziGNczK4uRQEngUPt2/izY45scmr0DA7ou9cuSm0ig
ovu9r/dvJjwiutffk8NgrZ6E1S525OGRJyOsTzOhdn5TEjua95zPKeWeXCAC
l9L+rxnsmcCspHmDh+/f95jVP7jHKn++yotWOXmVBzLT+J9Vfn+YxudsafxD
CI3vPkPz2LWLBlTu3ULjlu4cVN6fl0zla6SP0bi0KZWr+b5nx7nxq9tUfl3m
wijOJ/YJqONch5zgjHPu9GxG3GPks905Ivi+pFRjAM61/rxpwfn30IubtiHu
fNVaEPfYusFmDTPE3xX+cHBFfK9gzCDe74jJfTO3EI8Y3GonhjxGb2nozobq
54BH+TUO5DF7OuXsA44EIB23CXZFvMrIh8/nKxE2fZnU2f+AAIdeteyXQx5z
e/PzhTYJ9YXDLj9usqaD+vo3+0wX0Osb5tWcJ1FuzZF4oxCQAdkK0wOO6zFg
3PAn6L4qqh9PmdrYj1lwvWH7302AgWbO4vv5dhKcSLFMElb4AKHCJ66kZqM6
rAu/d2wTGa53RxuSR4rh1q/A816RFGB91f5IW7UFYjVymuq+VEL7PeOvMRz9
wDly4V2tajvyC8NpiZgGUL682SZv+yCk7yS22pG7QJ6l1RcGmkFIeKRv+v0w
bNxur8xegPqDXht7sGIXOCWqBB7QGIOT3sWdVyQoMK5dzC/BhIERKZ9OAvnt
hmrqE+tcCji8cc4/OI3B1e9333og/ww//1Nwp4gCqns3rB+io4BZZ2JPBuJm
jsmtZ40ocLXBO8bKGAOzHb2ehzdNQNlIsQ69JwaFRTWewfU90GVoI3pLfxyS
li90D1j24ut3NmEzHcDpV9MvUjYKkmnnvwp5ozlM2PTHQ9ZWuKN9T9xfbgTe
RK9ttTTthPbpuJ/u+k3AExfc2ZE6BDfv/RRRMGmHL79G1ik0NcDWJfd4Bc1B
aAh1fTPk2QrbnlntFlesBbqIkXyXmX4QTT/8La62GdRMVWJ79CugV95I99WX
PpAdfN4hfoYMnTpau8I0SqFaZbCoFf2edlf2yQkqNcGTm13jm4LyYJ/1rpPK
UxjslI3e9RrN27qpGtxSf7PhGeuDdhUrDKQWnzDJzxChtWk6m7kyA3IIKQ8/
c2IgMNdoeLkGzfm3DUu2+BLgqRTTukvTKI/Uj059+E4ELa5wps6vBDgpreEu
OYf68t24lNPDRNBlZyjco5AB9gFn6KXWYfAnQ3rgKZrTkoIP++ofRbnPY+Dg
gBAG+0MkXhznRHWluu9WeHIm1PtrCwduxqDm4KkgTsR9D94JmUnKhH0sHyPN
Ef9x/kSq7loSWFobpUqaZULj1KfN34QxEJty6AlB/jzSuLxxuTUDLm5kKf74
X3Du4tz/4LEHq7xwlZev8ngmGv+5yvWHaPyzEY23BNP4S83V9bHj+lTOVLN6
rsOAnbaP+TqKyrnPHKXyhq7jVL6tYnI9ziueXqdy9SN1I9Q869usQN134Fel
egzsj9DhvjIrtb6Ie+xeMZ0vdZ1fbiwN5xOpWM1WfJ/U7swizh9Y5ojhc7vv
eplUWzxvumduxD1m96dC/zriOzfk8365QIAl/e31TMhXK34bOscR59mW9vrK
VQKUcGhMWSA+yXhPdALVG6dDsKBGMAGy9Apny1G9vZaScd/USIQaHZKq8jgB
jgiZpTXOo1xg58F8bAj1hQ5t7UjxDAiLd/G3Y8bg7AcSO6ckCc4rK6/wbcsC
07oLee8VUb8Lo9wlp5AgJjvUy6M2F6pM2nwKwjFgI90SqE5rggNbon6YUD6B
TIgsm7gWBVq/m2j1WDXD7qef4W3XF5Bc77I39lYfMCkXT6Z8bwWfrFOZfSe/
gQ9dmsYL+QH4+sV63/FPHXA1PW8udj8JePRdhD7vHQIw8CeTUrrBKDxVXMyo
FTY6nIhs1h4ByrN1cZ+9euHYyRPj3ZadMHSJ3uzO+ChYzxdHJKH+fI5odfLA
i25YqqsP1mwag9dPMud9d2IwkvRwtK+5G9pVSmTnx8bAn+u7MWNNL5z3LJGL
su0CUSc9Tm3jMUgUoo8V4e4F3aYzBlwD7dAvZlhfbTQKD/JfvE1w7Aa33zbP
U6dagDPXcdcriRGIEIsNFs/shFa3tKeGQ02wkOvBRR4aguJ6opbC33ZgTE70
vj/XCLJ59MfDPw7CltIo8T6rNrDuvM1rf+I7GKc+33g+cgC0Ss8/M2hugeaM
Dm+9H9VgJngujPdOPxwN3KPLb98M3S2zPpozX6BR4XDe4u0+0A+PijPaTIby
wDMRjRtLQDWwIMbpGQW4znariYg2wfrOY9rC9HnI5zHnOzAM3j6tSymxJcGl
q70Phn5nQ101e1DkOQxsjPcNbPlNhA75S+FPGTMhXz9PWoMXg3XjY5YdaM5f
yptn3/QK5Y6ZXYbis2hO8JJpfY765mU0RpY8JMD4M/kyQH2T8SQd+WEXEW7G
fk73epYO97ZvVnxMh8Gc607TxGn0/rw3652KM+Cjwx87K+TJL95T373+EqHM
ZsPOd+qZcC6GYHVZEIOV7g5jA+Q9+t/LzZZHMqGK9/lcNvLeccm11ZqLRLBz
KDt3nC8TWvkSdIrQ3CVkDRu9UV8WyX7XTUF9ecdP+tmb6//7POa+yoP+4bH3
q7yBkcaHVrnyII2rHqZxjlWPsSrSPGZy9CSVz35aza1a66lccXMwlds/16Jy
ueX9VP4wei/VYzL3LlE5m+dhqsd0qu1lcB47TXbCuV6ezRLO1Ts8pHCPSbs+
8qKecwsJDMI9Zj1XnSOFuDazeQ/Ow+WvCJsgDnNpgcaIV777bDOL598jRMur
iC+cibV2Qh7j8A5MpEe+4pw3IH9H/I3f/FINmvPTv4w0HUU8Y8Z18hLyWHDb
MR1x1DefkG6XXUQes/jxkVeungil8RxXdzcSQGJo5Zsr6ps3hqwZR3tR/2o2
kGSoTocGDvWJcXoMLB4dYOlFfXBNwsOPsamZkDe3IDaJ+uDuCrnaBx4ksIic
LH31IAf28+1rHHHEoP74DxPt401wNbL6sqFKPkiWWHUMonnnyZ77o8VJZFhR
Hw6+cbIMdohGJFyYpYDyL+M/FQ9bYJprp83PNdXw9azv0CDKf6qxtf0OlDbg
lFxJdGJugExjlwMOUwPwosMRS1HuhNCnka7b2JvgImHz6eSIIfDev+m1NFs3
ZGk9bHyv2QIrSk/FCjqGYZFfq+QdXw9ks96ftuRqA/4XComno0ZA8rC+PvPu
HtAeKz8edbINAl584e/LGIE9n2dfasZ3w4tPXSW7D7dC61Fj+cZDI9DceeyU
ZHgX3OtvUjt9qRl0ijNcOv2HQZM3/uCNo50QxVvYfArNO0Ggw3kkbgg+c3Df
XkJ5OI5dQaehvxG2JhZmnc8chE2/6pzOprQB39y2O7c16uGAsJHjaMUAnNmR
ZbZi1QplO85NhxK/gvXuybaQ3n7o3PLJyFWyBWzfdw+TvSuB2bb0eipdP4zs
Er62NE0G1VLSYOC5z/CCXgazlkV5+LfLqW9YEyhJXyznMSqCnqIjZeevUKB7
Rr9tka4J0l/wTniofYQfv14+sK7DwF++qeXzWRJcnZgI0KvOhvrTbUbvzJAH
mhgZUpEfzBVvnhYUyIRwr7pWRn4MNgSucAShuattsk5iVzUBqr1ZxehQ/Xh4
sFtpo1ygP9gYeN2ZACNV0bOx+Drt9WF2UTIR1lnVY2Ob0yGCz9LtJcqb7Mcf
6BUMoNy3xmzdb9YMeNjm+kcPzdHCxZX72H8SQVi8NdPzTQas9Qu1OcyBwanD
D5UF0Hxl8rPkTykxA9IT8rfYo/mK9887e7ofRBDqN9LqfZYBgx0mLnfZMcig
NOV8Rn2ZvrMu+YB0Boy9/1xQyPzf6zGvf3jszSoXWPVY1ypXGaBxF9XV+0p3
aTxajOaxJ+f1qNw2k8YjzNhovjLwpPKnv45Q+eVYZZr3rsWy4dz5vjWVH+qq
Hcb5GeZ2CZyfl/eleqyVRWAe5+/vpw3jfBMlzAPn/neLbXGPmd+e7pJE/Bgx
tgrnk1NlqmcQ/2PMInQc/7n8HF/w+0o7O3Kl7fF1M2frZmnksTQ9xfkVPBeL
NgbnIs6tOCFrcQm9z/79piqofpSu9e+eR3W1u33oc78HAe77f9ksiDz2YpNI
m0cdEaI/Lmtl5BPApPCd4eFfvaDKL3zAsoMIW3lvH+j2SIddaZcFmP/2QiH/
c4ybjgTCpKl1WfsyoV+e4kxE/TH2YRWma0SC2z3ytyLvZMO2XutJAyMMtuyv
+rj+FwnmppIzffs/wK/iXxv+lmMQfCOiSJueDPsrsjJZVIrh25y3gbof8pjp
Pr9kn2Y4tKFNWfZEOTDN3Ps8Hd4Hi5bnDtzQaYUdfheNUu5+hbvZw/L2jf2w
rqlj3Ju/HQR54jfutWoA0lKIsAHvIBzYBdKP/Dug+nfE48JOIrC95ZZ+xjcE
jzg3ZbUadYLD4/siPVpN8C2cZWkheQjijj4Iv+PWCZURTtJi/k0wbuMbcKpk
CMyV5t71s3TCsgH9de1KEpQMFZrTuQyB4tjB0OBDHSDl8MrP1oEIRL34sOih
QUhhe/x0x6l20Hlp9253XQMsjypGnoNBaD/re6LYtA0U2FjsInZ+h2yLwmqL
iAGgL/n7aN25Vtgf285UUPsVQHJcaVtPP7SUH1YNsW2BWXJOdqJtFcRwztcL
K/SDxC2dQaPLyJuHRnpCV74AXweDu+adPjDuuWVe6kaGcdn7i/4ZpfDjzp8z
PE0U0K8KZjgW3QSjKxsCG058gq0P9fMY1ChQffL8EkcnCeLmNWeyVD9AyssX
WY45GCge3hVgaEACM22H6lrnbAgVcjKdMMBAPC/a9CLusWt73p7kzwRJr1/Z
LWjOYUgypGtpIMLXd6+6rwwTgH1qqTUBzfN8z+k7bFEdsme9b2NG9Vlx7rrp
H1Sf+zqdqjhR32y1NKjLqCfAh51JI1bIe3tSDDrsUL0ZnHrNZeyZDpu8Dm1h
R/VWVnTQ50s/EZQk7tNF/EmHX9yHgxMZMfC5mequgfIpgcmRVXJHBoS2pZD4
UT6VL359wWAQzS2NymnyvBnw8l2gfD7yYedD5bifqC8HZJ//fhX1ZQVFjsPT
9P++xyz/wW+tcrdV/mmVx67ym2tpnLzKTfpX9zG3r56bDaJxI26ax0Re6FK5
ZfLq+Y1wVtq+5C4nmg8v0DzmXi5D5Zdu8FE9lp1oRuUMvjZUjz223bGJul/Z
pEb1WGDeuRnqeY/epVyc39X+cRPndG+eHMU9lnjizDEJxLc5iuXgvCL5uTN+
X4m7/ON5QPwryx113GNCC/Kp+H2ll5dfW43gP5fxeD1+zn/z3qnxWMRJVy5l
SFwkgJKD640tyGO7shYqI5HHfp+2Mrt3A/k5o2+aiHjWDud05m/Iz/4BFwNe
E6DK4L4boFzAkWumlNBMBIegiDVD6umwbLKzNWsJzXu7NEWfoPl/XCgis7Io
AyYpd7+fQfN/2LuS8B4lEnjL5NLzRGeBkQQfO2kvBrNbxq0T00iw1S1fqHk8
F9Lf6bgIPcLg5ei9rPBbTbBO7UibxM0CcL403YevZ10n6GhFPCPDeZc1xhEy
ZfDo2EvmkHEKZHwQL0mdaQYG4jszyc4KqJZ97VHd0wcJi6ziJSdaoeZGibtk
2Fdg7WBkOknsh2G+q/z1KJdNl3JaSaBcZlBnufYUymUyH+h2Ov9tg9A7XB8o
uxtA0sphbyPDIGyw0dxWJtIOO++4KUY7NsCl8CoGMaFBUH+a0N1LbAOOwJVL
da31IFHz2vhO/wDQOWk2W2q1wQ6RBG6lH3XQaTSsXuI7ADF885rBz1vhJl1Y
s3BcLfz0Sd6YzjIAtzh8XqsMtYDQvKEym2wNSCUUBk+H9oPHp8kQJkU0Xz2+
eoY5vRI0LSS37WLth9/VL0eP3GgG3vs5lTFS5fBZ2e3zTFAfyF3rc074QIbE
Byu5r+6Xwfiw9Jc5OpQfH6rk6Cw0gdYDVoU7c0Uwq//wyqAnBZhex3A8OtYE
9lkCijbb8qFTxlM0+y8G/V77JoSzSYDdqE3/wfMePJYM5WaeYKCemOV2/yAJ
pIuZp7f9yQIHt6dbpLQwuDaW+MhhngiS1889j6LLhII/Hi9KeDAQPVLvb04k
Ql6d5LrgPwT4GCI9mPW7F6zeyvZfQ3XInLHPPBF5rKji70ZGVG+m9jyqkiiH
nukv81//jAAMfraKcXjevC0snEsiAqNe+T4NrnRwcfzKl7TQC5rb/76eayeC
4Gmmw/tvpMNpw+/Hild6weHSMt2pbjRfXWuLZE1KB53tjinCazAoO/HqXBXK
rdane6/ZvUgHMzm9xjyUW3fqqJWGo/eZX97G/fRaOnw1eH7oxsr/na/+tx5z
+ofHHq/yKQYar/+P3/po3EicxvevekyecdVjMyeonBS7mjd7affHL5TaUfmD
Mdq5skMXxGnn1tYkUM/5O5ScovI1XaxUj1lfPitA3d8MXqDyHwHqP3AeRhYL
wfmBxTzq/fGp1G7qvcs7QxE/8POxr8tKqfcuiT4fvuL7mH31ew3wc/5S5ju/
4Ov/4TtNu/FzZe0hiY9ycZ6qJYWfj/XUbmsORZxgX6wsaE8ALns3NkH8/nhZ
zDcN5DEv24tSLGjOX6N1N/Ep4oe7OqzrvxIhpyzcKiwS/Xsc2hZsUF1VN1rE
JKH6NPMcT/NZkw6Bj8UPD6D63PjZZfdRNJ/vUfQRCBHPgMrQlOkLaD5viQtp
GuEngUrvyegXTZmg3u8aJCeDwYmkb+LKTiS4p/q0POBYDhQa7xBIsEf1Vic+
282I8ubtGtU7ph9BtCotvLEBzW/RyjzBbU3wjMHePFKoCCTX8Dk8vkCBJRsd
09vNZBBjEAtxWC4DqW6FRjOBPvjOs/buMWIzyH0+oc52sQKyT+kIG1b3AbN2
tn/58xZYG8gZni1VDdNWC5wTp/shqb4Vc+JqhXcWP2OuFtTA4G+9rvGUfrgt
881SbFsriI909R/k+grpaQ4PjuT3g96tzTtm51qgc1JLrda6BhaNj+9jiOqH
McOPYBnVAjU/5avHuKvBVvRWtIRhP6xs9ZhUEm9B/l2KWHSrhKb74tO8f/tA
V6Uh3udlM9z95H+4r6wcDhtEXShK7gPHrtkENolmqBwQqcn9+xkmWkvDy3T6
QCbT9q9fDBlsv9zp6ZYtgzRNGcNdExT4teuR9ikOMkQe9w6vDi6G6kclX9JD
KZCnRp9x16cJepXOVkSmF4BcbZMBkzQFwkXkn/IvkqCKUyg/kPkjnNg0Px5c
jcHubEeG2UASNJv69jT35MD0ep7UUTcMxEynujvlSECeHmHa7ZoF14wLH+iq
Y8BoY0kQQP0r+chl0q8PGeCkrfH6L8p399rT/hBRnbz9EjvOuDYdNHLVuxmR
f4xdpM/i67QXedlKba8SQFCRLQpfp31V8X1vL6rD5tZLP5Lc0fy2a26RGeWC
fV9v5Z1F+TRscwgLQyUBdo+4VPShXGDMtS4rHvkt6lef1hbOdDgf3vbpCXr/
qVlvshfqs+FCT/hY1NLBldU6+xnqs4xzmi9zEU8buWHMsCcdRgx/qpQinm70
U2qhiQh0Uuq3RiXS4cmmkMDgxf8+j/3nXNnlf3js3n/y5qrHalY5/arHyAKr
33exeh6DZYnGhexoHsuJovGfejSPbey2pPLoQJrHoq8I0c6BLB2g3R9vPUnl
G3nLaOfQmMyp98fz0yqoXFD1GfWcv+b6ZFucd8ph1POx8ZbGG3GP7U76RcTP
Y+x8bPiY6j1v9YO4x1o1m77i58quDHdZ4x4beDCRh5/HSEywqA9GnJOsNomf
x+B9xc7mic+ZQcoe++xQDv3m9HM9qp/hlrE9fxBX+eplftKBADsSY50uIt6d
Z1ZcV0MErmHe1LAgAiRwJg6lo7pqKpxasUDz/68D9L0YiQA9ROcd0Wj+vyX0
qX0Z9buNm6tN9OLTgf9BmH036neSCcXRSytEWIz3i5BQyYQz+807OVDerNs0
Flh0gARPcgu0In5kwZaYFP7uwxiEvmVn2vOGBGPXFy+qfM+FSL1bEmsiMCi8
UqnIs78JdmiKki+25UF5TfDm2Hk0JzDTPYuYbAIPrR1mze+KgNfJnsnclQLf
9FpfD8WRYeP10G9b9pZBsH5S4fEfFLiaKw0zss2wv/5SUMKWLzBAUQu5YtQH
o3z8Xhu8m2GSbs+oxqFyKFUuztlyH80zDifEyQ+awcVz3bJTQDn8rtu8zzCm
DwYlq6SuODUD2d6YP5+3HOiK7I1C/fsg70HEyl3FZkjYrfk+XOULsBy3Kntl
jPJdbenVZYwMRLuNzlekPoPqQdLPa2J90HF+HcfAfTJk1dn0rvwtBcE6v2PG
/RQ4s6uldJsqGVJr14uQYkvA9Gx4MiGZAiPVC376yOeSEizT3IJFEH6wzeoq
8jkzj8lohlsTVH1TXRa7XACLfo52wuIU0MgmpKtxN0H6fU/LS28+QlDOPHNt
Kwbr6WwGX2aQwD/ccF3xmvfgveiupRqJQeD2UQqYkeCb65IJJSMbTrAzBe80
wUBgacuJGgES/GLVgldYJojzzt7x2obeh8U4ac0YqhOFXortqQwQ3zuXt5YV
g19fGr8qI49pjShFGSwRwDTV4ugT1O82R2lpuyJfhbn6XaxyIcBVVzGRQlRv
PA8edlahOtw3YE5/6TIBvHY8msTPabinHt85g/qp4vWBZ95RBIhk373VC/VT
FkEHDXfktxdEcza/KpQvNgeLzSO/WRjZS6ahPJt9UuGZwCABtNfb5fmhPHvJ
6ICSciMRqhYKDa0mCNDHyPqjF3G1N+PX7dDr6xP7j+lRCBCwNaHYYP7f99j/
xO3+wQNWufiqx8pXud/qOf8hLhp3W/VYzer3+RyfofHB1e/B6GulzWlrXWn3
x+OVaR5rL6HdV+oR+kHlmztp95WMJQNp+6SHhKjn/DXDnlO50/lb1HNlh56y
HcX58KHz1HNl51MzWXCPvWO0G8PX/2Ps4+/i/EssRwPOub8nZ8sg/teLhRf3
mAfhkjy+j+nV03fxAp5Dw42k8H3MveWGxxwRd2XxWwxF8/wzh7AFBlQnLzNk
xyoQl9r0ckkX1Q/Ts5UHGojPXco4uILqrfoG6Y6WJwH22i/wiuD3SmD9mgKU
N3c8EmnblUGAiAqtr4Uob24U+e0ajPrdVWxt6wvUB9cdSdmWiPqdRYeXQPw4
EaJn5Yc7LmeAt3rSCWk2DI5ve1K5Gz0XJzhechV1ZcI2/6eJgui5eDQcZPHo
LAmKwfD0n8psuKfHoRFihsHCnxehL0pJMOzZFFd38z0kRXI4SSVg8Htvwgkn
1SYITkqVPPYuD/Z9I7bMTGPQZuZAr/GuCTK0Hq/ktXyCeqdOBfYjyG9FsfZR
68hwsYojqc2qGKRb1D++DqKAsJ/Mwy1Ahk022yX1OktgrLtj6U8aBfjoCMGG
J8jgL+569bdwKeg9MQg9+IEC1pJqty+ok+HV3CM3c0IJqOseuQVvUF5zcN6s
y0WGgiXjsjtRxXAu/HgkdxgF9D8fLG/pboJFpm2TAQeK4PRS7bqTlyig25zQ
GPO2CdqkdLIOfvsERg2hN/sPUaBn6VWYrXMTjJ6bDdQ9UgAHX6aRz2+iAMe1
yKtdu5qg2LpY1jghD1rvFWS3/sTgTJQFh90MCTo7PTcxtX2A8KRuluYvGFQZ
vy9YTifBDm6tU3v+5IL7gpRX2WP0/7l1r5zpVRJY8oV6fpbPgfGBwPYxWwy4
7xTUmCuRIMNR44HX4yzUl2Wc3fZioNFwur+VngShutEc9PqZML41fGvlRgxa
G/YtjVOIsHLNeetKXzpkvIpvNV6LwZdDaVUJyA8MS0xv3QfQcxceUOSB/GDf
rXivAtWV7c36DKVbBOA+OaH+C9Wb95ktrfh6yKUE5t4xfP/r4NMpfD1E6Nfw
mTn0+r2Cdz1bPQiQ1PcjQADVYfv+wZRNKIdqjD3YX/IU9eW5nmMxuN9mOiwT
UH1e7BA73kAgAL+sbmUqqs+XdDYWcnXo+TpuHXzlPQE2pBzfxo68x4A9YR1E
rx+qV7V7lkUA5bZrRR2z/76v/rf3x1v+cX9cdNVjLqv3LhVWPXZs9b5S91Ma
P7V6X2nek+YxT3vaOX/9n6tzmjbtfCw/RzZt/T+fdq6MzGhM5WMzIdRzZfRO
HlQ+GPyNuo/JrPWNeh7D/qEK9TwGg2TiMs5H1hao4B4bD3b2xrld8NZbuMdI
sZSxzfh+63kNMtWTducV8PV/3r/u2dp4/vXpKcLXzby2H9LD11dJWyZ30iGP
ZQvdncO/52c97/rCGMSfY69O/EJ5M9nDWG0zqiv7hy99LVD9bH9m//L2dQIc
PZpq9w7xxocueWmoP6Y/ouxLfUQA99CgWB1UP9pcPILFqG573FYucQ8RQG00
40wEqlspjzxTm24iPOsYXd+blA5SvFFOW9dgsHjtIv/b30T4JvfylwwLyptH
mc1jeTEw4g3mmt1MgpVDLTs1VbPANQaiWZUx2GRWUF9uhZ5TQcuo3V3ZoB0v
c6vaAoOGKuOQaTS/3T70LF2dlAtqYePf/dD8NhnmrGL8Az2P1/gDCr58AC96
N6mMMgxeDJhEHdvWBNLcs/M1J/Mgq6J+MXcEg4DxrRFJx5ugpDKp5ptaPmgI
S89tXUMB582c/qxGTagPng1RuZ4Phsn3frMzU4A7SHz/26NNkHwzZpZzcz5s
lvzhxfEXg+9/63jOKjbBN07eVGbfPDDbbdOQPokBTwY352PeJghdGKury/sI
f/duE3BpxyDk/ki1yywJfgQFspv1fgAHMcPnj8sxOL8rJm03iQQ+dgGFmgvv
4cKI9tXdBAxulGrZdiAvXZpfumm4nAti5zg4U5GXPmR5NrQFkeDnVJMo/2AO
lIUWy4bdxKBo2I7N2YIEC1qGMhIl2fBV6eRYkSkGDFq7HZOVUR+RnJB2f5EF
pFvKRMt9GMQeFik8wk4C5eTNr/2fZsKCgW2LkCQGz1IuTrpNESFWOZPl4qMM
qBORJm9lx2D8a2hqWjuatx0PKqg7p4Pf5V/aoSu9UKX+6t5FNC/pJa958Qzl
wbp4Dusx5I3TwS+ly1FdWVrzW4oijx3sYIFZVFcq64oj8XoWIkS7b0F1e+25
6Qhez3ftNSJ/IL4jWvZ8PMqh9vevh51Dr3eMeqcnhOeFqO2k4tsEsONKFFBE
fpvcGEvHiOqTR0pL734IAe4UlxeRET+hXfDIGa9bqR++LhEEYLn4hU0S1W1/
3M/ai4irsIc4LIQTgKya0ys88+/76v/1fOx/zvkn/ON8LHGVW6yej11a5RdX
z5Xxnabx4dXzGCaqNI9xxNPOY5wvpfGpado+Ju8zfyrPsKKdxxCqpO1j7n8d
T13/X5dK28e8nBZGXTebZb8iinOx8lPU9f+ogp5pnH+5y5yO82Ono6jr/wYr
91Xxz52y4YY5/r2LvZekU6jzpLlaDp4384XsWFUQV2/LyMbnNI3Mb734PaYI
3T7KU8Tj+mWK8XtMvBsyEjzwPD4Vm62K8uYPLD0Zz5sFGk8c+hG3OaB2du4K
Abrn99KfQby+4tAFaVQ/5esMvvp5EaA43XplN6oTB/ZCmxuor6U7Ozh6vCPA
w7eKD8NQX4vPfTvSSyLCLScz70yedHjTc/nRl4VeeCXaWLIZ9XGGURU2zrZ0
+JPDdqWGAYOT1oF90Qtozsz2bHrNmQl7bfIVj/BhEDy/58jNjSTwlTGR1JrN
BOxJx/NzsijvbDngc16DBLO79WJm6LPh0RaZnnwtDC4JyjypsicB3/EC3mX2
HNjKeqv9vTUGImeTos6g510pmHjxHiUH7E0jXiui551VHp5qPCVB4nmWj5Ln
cmHglXNRlT8GjJc2fBl8QQKugaNHne/kwomRxjtsdzFQO8RLkoxGnhQxPGhy
BuXfNwNKK34YpB4sGJO7RwKpzolZmbW5IDP4WSPKAwOrtpxA29sk+MBbXW4S
mwOCGgWhyk7IJ9u03S3QXDRdRHJqQ3OR+PtrcpNoLhpY9p3hNidB2WT3qej3
2eAwW7m9CuU7v5db7rUdJYHg+tDjowrZoAsP2Y/oYOB6W/2bJfKS886o2aCY
LNhzicNDDnlJ0M8+5YQwCfpY6XbyLGbCcnLu41/o/y1V8OR9o7UkiI93e65j
lgnSvr1aDcIY5Aao7ItGvvLXPGa9LTIDfPU1QvYjX52pvnu7D/UjLYdCu+Z3
6cCaW+ztg/pRgnurNC/6fBu96a/7MadDTEPunDL6fBeWzP0n0bxkLXnEcGsS
Ad7s0K6UR/Uw9fKyshvymMBB62UM5cojVwZci1BdBX3kuIx/74Gc6Ny2QlSf
Gmw3g/B13aPtrs/vIO4ReGfOE9Xn6RPPt+L3U06bvjvKiN4nP2z7qRIHAkha
TAo6Ir79aLmhN+JN7h8ZjVzRz51e3v4F8fO9WyNLEb91rzN+/CYBPa8Jn34i
Hh5CoHxFXO/T6T+eyKukTvrF3z//fV/9v57H+M/6v8c/zmPErfKQ1X3M5v/c
K1/dxzTcSuP3Vtf/TZloHnNjoO1jpsSt3m96TVs3c4+2ofKsz7S86eG7kco/
8ulR182KnutT+bn4TCo33uFG/Z6fd5sKaF5ll6XeK8/rKNXHOVNzDzVvhpT5
UvNmWEDbMD6nvb3mTc2bXQn26Thvyr3fjZ+bbaw5v4Tzoz/ravA5je3StQ2G
uMcy7Lbj582GLzun4HOaz7Er6xnRnPbdaZcKvg8uKSZ+9hHijgE/O33QnPZr
05HTIujzPSgtXCSCPvcXa0ru8V4jgGtTsPYd/H6TZKNJKPIbnYKUYp8fmjPv
vA25g/y2v22w4hPym/PT/a66KIcqMYStK0b1XHjfcnsnkQiZko9DA9emA/e9
Yf31qP6vPbsfNNqJ/Hxgo4fdg3RQZnKJEaFDz11SV+biKBF2NxQorz2VAcPt
p5r/sqDnt83cKmqJCHeDWPcGiGRCEIvd/Dt+5J+GiSsTbCSwCLFfkInIhI3j
n9qlJTDIbsh7OShIAiafU6U2I5lw90cbi9Z2DN4EpLTdEUfeCFr7YJ/o/9fO
1QdDmcdxHTKKvcvLrre8dLercLSLLqfup64UjWtzLu2ZimM7StK16zSSrsQS
hnMtIQ5lb7rdZ9muUHJaujqdo7VOSFYvavYURlis7b6/XX810//djH8/8515
nnm+n+fz+3x+bzWIa93nfN5jEMkrM9ecXNGJTjp5Kr3datDyW02CxXTwP00X
dn4M9eSNbpc1tjVo46MIl0ioT4lKpmHdcJ+JlpBAN8IO2Phg3Qgp5wf6W3ai
tYOa1a4d1Yjy9Gd+vfMgengmouEaqRN5te/552JFNbI0yZpz+BB8F/1saZFR
J9L3tNxAOQz1qoTZ5fbwnrEJO/Jey1BecNljhk81Eu58RE60GkT2O1ucOJMy
lKPWpJeNi5FQ4BX0gdkgcjTLun0Gcv2Lgt/822PEaO8Wdb015PpHhyhxfBhH
yAHW6wIHCFTJYhnYQB4c6PGQpPXIUBc9zhZFEKjhlp74+pwC7Yk89/cq6New
z4ki+Qz48E8bJ3NUCtRZRN36BPpbwRcPn4Bctsmt/0Qv9Lf4XqBtJfDBvpNZ
4JsKvLoSPZoLfMinJ7iqcR7x5xX7gf5kNMtrvgX+jDfuasP3G7vcuc6YBn4G
CIaLcV5o2Xz1BT63Ejj1S0sy4Eomey+e75Vm72Phc8QBQ4aCZ6Bvf17KKMDn
iF/qMQuvAv40+ouuxBgRUs1O3V2D73u5kMSUAz7DafAhw7hcQjETbwM8dmAm
vx/rwJjCogDwkeI79OB3WMfehke9JW8+feOeH6v5vOkynzdd5/NmslKHj6bo
cPP5c+VUpk7f1Ia6c0ypsvn9/4d0+2abd2dqcd86nU+bdaTr9qc187Q+zexk
uBbnegdofZqkvMkG40oWVevTWKQj2vuxNTT2ce38HsNdu745lCCmYB3Tdzcj
8LrASBxXe2/G6oayHowLBfWf4PNNnlKpNfZpa40Wq7G+1aZMd4QA/tJcEoT1
rbbNwg7zKneZXt4I4FznUAfMK9rNOk0q4GJG37M/gD/MuakRc+j7ltvsdMyH
XuMHbD7wYXvr6ErMB3GP47VK0D2NkBsUliBCv5sJOP2Ad+W6RDjg+dttDG91
pghZpPG2PAee2xXywrLhv+BZRMtuCyF3cI7HnIf/Yod/l99YO/wvoaV2o30i
lBTaHf56EnJ0mmfZCPgBgUukVbI5gfQKFc/bQA+PtQnLertlaFrvQrU6gEDx
xhx5jlqBUmP3VbyCHJSUvNLPiUug8Pj4hw2Qg1QkvZstoJ/2aW4WrBwCrTfl
k/RBP79n+3f79cN48fyVLeUsgdTyDZu+BryJ13i2FuplnDND5dkEMjng2zb9
WoFCKDG0gj4Z6mn9/N5EMoEOZrmRPQDfOrHZ2QueWyo1Hfh1P4GCDHcXeMNz
hRuWq2vug/+JMgyp/opAEordahrohmlXmOESeP8mPw1J8BmBVB2Na9WzCnSz
Ko9J7QL92X5sgPkR1O8T5ApmFIgt9TJVgc6QH1yMM15MoMt7Viod4Dt8d7SK
nw95nxHo4Sp9IkKnIu0SD0PeTzzKb6dB7vtLxfMzahah4J8c3W9A7jvIlSpf
gI+SjpUb2YOPijttHIZ91Ob1+lQ76Jfb/qve7dAvenbKoiHol1A+RrsL/X3P
VSlJAT+T/s3cqmno79JXj8OnsD6kOkzOQR7cLrnzZRTgw/HKcaw/CWNBJqPA
H8GEkwEZ8L7xayK8PlV1vMgTr08dobKGsF4VutY4Y94ySuqy8Ho9adeVEszn
kqU/nMP1oxUbbdIBN31/xX1cH/Tjohw2np9pPZW/DMZl6jrUjcdly/RGAd4f
vuTuRCgHcPsbt+R4f7ikb1M13geSErEtoxTwfy+dnjT4H+rYAr6AL+AL+Jv4
fxj9z+w=
        "]],
      AspectRatio->1,
      Frame->True,
      FrameLabel->{
        FormBox["\"t (\[Mu]s)\"", TraditionalForm], 
        FormBox["\"z (cm)\"", TraditionalForm]},
      PlotLabel->FormBox[
       "\"Intensity (|\\!\\(\\*SubscriptBox[\\(\[CapitalOmega]\\), \
\\(4\\)]\\)\\!\\(\\*SuperscriptBox[\\(|\\), \\(2\\)]\\))\"", TraditionalForm],
      PlotRange->{All, All},
      PlotRangeClipping->True,
      PlotRangePadding->{Automatic, Automatic}], {576., -189.}, 
     ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}},
  ContentSelectable->True,
  ImageSize->576,
  PlotRangePadding->{6, 5}]], "Output"]
}, Open  ]]
}, Open  ]]
}, Open  ]]
},
AutoGeneratedPackage->None,
WindowSize->{897, 826},
WindowMargins->{{0, Automatic}, {13, Automatic}},
ShowSelection->True,
FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[567, 22, 25, 0, 71, "Section"],
Cell[CellGroupData[{
Cell[617, 26, 161, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->836781195],
Cell[781, 31, 230, 5, 31, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->2058623809],
Cell[1014, 38, 1838, 60, 65, "Text",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->525777075],
Cell[2855, 100, 171, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->145610755]
}, Open  ]],
Cell[3041, 107, 180, 5, 31, "Input"],
Cell[CellGroupData[{
Cell[3246, 116, 163, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->429217524],
Cell[3412, 121, 1234, 31, 132, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->433132487],
Cell[4649, 154, 765, 26, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->133602844]
}, Open  ]],
Cell[CellGroupData[{
Cell[5451, 185, 207, 5, 31, "Input"],
Cell[5661, 192, 478, 12, 50, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[6176, 209, 2132, 65, 92, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->534530029],
Cell[8311, 276, 2360, 69, 96, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[10674, 347, 312, 7, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->462076121],
Cell[10989, 356, 623, 18, 52, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->494599775],
Cell[11615, 376, 3487, 103, 86, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[15105, 481, 171, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->358620443],
Cell[15279, 486, 558, 17, 31, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->167259034],
Cell[15840, 505, 803, 14, 118, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[16646, 521, 197, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->577766068],
Cell[16846, 527, 3515, 92, 132, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[20364, 621, 3937, 109, 126, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[24304, 732, 858, 33, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->525228576],
Cell[25165, 767, 1675, 47, 61, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[26843, 816, 4081, 115, 126, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}],
Cell[30927, 933, 478, 14, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->610306692],
Cell[31408, 949, 367, 9, 31, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10001.},
 CellID->645617687],
Cell[31778, 960, 880, 24, 86, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10001.}]
}, Open  ]],
Cell[CellGroupData[{
Cell[32695, 989, 485, 14, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->854192725],
Cell[33183, 1005, 554, 15, 31, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->465762594],
Cell[33740, 1022, 1853, 53, 104, "Output",
 CellGroupingRules->{GroupTogetherGrouping, 10000.}],
Cell[35596, 1077, 144, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->314466782]
}, Open  ]],
Cell[CellGroupData[{
Cell[35777, 1084, 901, 27, 33, "Input"],
Cell[36681, 1113, 2805, 74, 69, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[39523, 1192, 131, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->398692331],
Cell[39657, 1196, 1095, 31, 55, "Input",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->298399236]
}, Open  ]],
Cell[40767, 1230, 47483, 1326, 406, "Output"],
Cell[88253, 2558, 132, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->8183146],
Cell[CellGroupData[{
Cell[88410, 2564, 493, 14, 33, "Input"],
Cell[88906, 2580, 2579, 84, 92, "Output"]
}, Open  ]],
Cell[91500, 2667, 324, 8, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->142706944],
Cell[CellGroupData[{
Cell[91849, 2679, 7071, 207, 192, "Input"],
Cell[98923, 2888, 7369, 226, 299, "Output"]
}, Open  ]],
Cell[106307, 3117, 275, 6, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->97303873],
Cell[CellGroupData[{
Cell[106607, 3127, 7078, 207, 192, "Input"],
Cell[113688, 3336, 7077, 214, 299, "Output"]
}, Open  ]],
Cell[120780, 3553, 160, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->138519002],
Cell[CellGroupData[{
Cell[120965, 3561, 1847, 55, 55, "Input"],
Cell[122815, 3618, 1775, 54, 98, "Output"]
}, Open  ]],
Cell[124605, 3675, 254, 5, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->3468672],
Cell[CellGroupData[{
Cell[124884, 3684, 1909, 59, 55, "Input"],
Cell[126796, 3745, 1762, 54, 98, "Output"]
}, Open  ]],
Cell[128573, 3802, 213, 5, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->102411945],
Cell[CellGroupData[{
Cell[128811, 3811, 1920, 59, 55, "Input"],
Cell[130734, 3872, 1767, 54, 98, "Output"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[132550, 3932, 26, 0, 71, "Section"],
Cell[CellGroupData[{
Cell[132601, 3936, 32, 0, 36, "Subsection"],
Cell[132636, 3938, 136, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->573833124],
Cell[132775, 3944, 69, 2, 31, "Input"],
Cell[132847, 3948, 148, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->289922153],
Cell[132998, 3954, 231, 7, 31, "Input"],
Cell[133232, 3963, 157, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->605757010],
Cell[133392, 3969, 1108, 32, 72, "Input"],
Cell[134503, 4003, 162, 4, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->546154363],
Cell[134668, 4009, 1149, 33, 72, "Input"],
Cell[135820, 4044, 124, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->53519095],
Cell[135947, 4048, 206, 5, 31, "Input"],
Cell[136156, 4055, 363, 10, 52, "Input"],
Cell[136522, 4067, 202, 5, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->434761194]
}, Open  ]],
Cell[CellGroupData[{
Cell[136761, 4077, 166, 7, 36, "Subsection"],
Cell[136930, 4086, 2724, 75, 108, "Input"],
Cell[139657, 4163, 539, 17, 54, "Input"],
Cell[140199, 4182, 606, 18, 54, "Input"],
Cell[140808, 4202, 661, 18, 59, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->117093481],
Cell[CellGroupData[{
Cell[141494, 4224, 3312, 92, 98, "Input"],
Cell[144809, 4318, 29033, 489, 238, "Output"]
}, Open  ]],
Cell[173857, 4810, 148, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->333910298],
Cell[CellGroupData[{
Cell[174030, 4816, 4522, 112, 251, "Input"],
Cell[178555, 4930, 98527, 1632, 316, "Output"]
}, Open  ]],
Cell[277097, 6565, 154, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->11522122],
Cell[CellGroupData[{
Cell[277276, 6572, 4536, 112, 251, "Input"],
Cell[281815, 6686, 98393, 1630, 316, "Output"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[380257, 8322, 169, 7, 36, "Subsection"],
Cell[380429, 8331, 2725, 75, 108, "Input"],
Cell[383157, 8408, 539, 17, 54, "Input"],
Cell[383699, 8427, 606, 18, 54, "Input"],
Cell[384308, 8447, 660, 18, 59, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->10341135],
Cell[CellGroupData[{
Cell[384993, 8469, 3312, 92, 98, "Input"],
Cell[388308, 8563, 29509, 497, 237, "Output"]
}, Open  ]],
Cell[417832, 9063, 148, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->382278729],
Cell[CellGroupData[{
Cell[418005, 9069, 4522, 112, 251, "Input"],
Cell[422530, 9183, 100060, 1657, 316, "Output"]
}, Open  ]],
Cell[522605, 10843, 155, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->482398204],
Cell[CellGroupData[{
Cell[522785, 10850, 4536, 112, 251, "Input"],
Cell[527324, 10964, 100178, 1659, 316, "Output"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[627551, 12629, 168, 7, 36, "Subsection"],
Cell[627722, 12638, 2719, 75, 108, "Input"],
Cell[630444, 12715, 539, 17, 54, "Input"],
Cell[630986, 12734, 606, 18, 54, "Input"],
Cell[631595, 12754, 660, 18, 59, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->42364272],
Cell[CellGroupData[{
Cell[632280, 12776, 3312, 92, 98, "Input"],
Cell[635595, 12870, 29422, 494, 237, "Output"]
}, Open  ]],
Cell[665032, 13367, 148, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->574469730],
Cell[CellGroupData[{
Cell[665205, 13373, 4522, 112, 251, "Input"],
Cell[669730, 13487, 100149, 1658, 316, "Output"]
}, Open  ]],
Cell[769894, 15148, 155, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->199787901],
Cell[CellGroupData[{
Cell[770074, 15155, 4536, 112, 251, "Input"],
Cell[774613, 15269, 100145, 1658, 316, "Output"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[874807, 16933, 32, 0, 36, "Subsection"],
Cell[874842, 16935, 2592, 73, 87, "Input"],
Cell[877437, 17010, 539, 17, 54, "Input"],
Cell[877979, 17029, 606, 18, 54, "Input"],
Cell[878588, 17049, 661, 18, 59, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->111628146],
Cell[CellGroupData[{
Cell[879274, 17071, 3312, 92, 98, "Input"],
Cell[882589, 17165, 152692, 2516, 234, "Output"]
}, Open  ]],
Cell[1035296, 19684, 148, 2, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->131368739],
Cell[CellGroupData[{
Cell[1035469, 19690, 4524, 112, 251, "Input"],
Cell[1039996, 19804, 85546, 1419, 316, "Output"]
}, Open  ]],
Cell[1125557, 21226, 155, 3, 43, "MathCaption",
 CellGroupingRules->{GroupTogetherGrouping, 10000.},
 CellID->304022153],
Cell[CellGroupData[{
Cell[1125737, 21233, 4538, 112, 251, "Input"],
Cell[1130278, 21347, 86299, 1432, 316, "Output"]
}, Open  ]]
}, Open  ]]
}, Open  ]]
}
]
*)

(* End of internal cache information *)