1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
|
program FourLevelPulseProp_v3_Double
!
! Written by: Dr. Frank A. Narducci
! Written on: May 12, 2008
!
! This program calculates the propagation of a pulse of arbitrary strength
! through a two level medium. The equations used are the full equations
! based on the Risken-Numedal discretization technique.
!
! This program only "watches" the evolution of the pulse in the cell. This is
! due to the constraint that the cell is very small relative to the pulse lengths
! that we want to use. If we watched the pulse outside the cell and then increased the
! resolution within the cell, the increased burden outside the cell because huge.
!
! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16
implicit none
!
! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision
complex ci
!
! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a
! three level system
!
! Four Level Notes: Valid to first order in dt
!
! Version 3: Make a step function in the coupling field.
character*150 fname
integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts
parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve
!REMEMBER TO CHANGE NMAT IN LMatConstruct Routine
parameter (tpts=100,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater)
!tpts is the number of temporal points in the cell
parameter (Nframemax=2000000)
parameter ( NWrite=100) !number of frames to actually write
integer i,j,k,m,n
complex*16 a1,a2,a3,a4,a5,a6
complex*16 b1,b2,b3,b4,b5,b6,b7
complex*16 c1,c2,c3,c4,c5,c6
complex*16 d1,d2,d3,d4,d5,d6,d7
complex*16 e1,e2,e3,e4,e5
complex*16 f1,f2,f3,f4,f5
complex*16 g1,g2,g3,g4,g5,g6,g7
complex*16 h1,h2,h3,h4,h5
complex*16 i1,i2,i3,i4,i5,i6,i7
complex*16 j1,j2,j3,j4,j5,j6,j7
complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10
complex*16 l1,l2,l3,l4,l5
complex *16 Omold, Omold_vac
real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop
real*8 dt,dz,eta
real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34
real*8 Ga2,Ga4,Om_crit
real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed,Ompeak
real*8 tpeak,tpeak_vac
real*8 epsil,hbar,lambda
real*8 del(npts)
real*8 t,z(zpts)
complex*16 yplot(nmat,npts)
complex*16 Imat(nmat)
complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts)
complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts)
complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts)
complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts)
complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts)
complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts)
complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts)
!No Om_last because we never need the previous spatial point
complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat)
common/para/ga12,W21
real*8 d !used by NR Routines
integer indx(nmat)
!
! Fundamental numbers
!
ci=cmplx(0.,1.)
pi=acos(-1.0)
c=3e8
hbar=1.055e-34
epsil=8.85e-12
!
! Atomic numbers (based on Rubidium 85)
!
beta=2*pi*3e6 !in Hz
W41=0
W42=1
W43=0
W32=1.
W31=1.
W21=.001
W12=W21
W34=0
ga12=0.5*(W21+W12)
ga13=0.5*(W31+W12+W32)
ga14=0.5*(W41+W42+W12)
ga23=0.5*(W32+W31+W21)
ga24=0.5*(W21+W41+W42+W43)
ga34=0.5*(W31+W41+W32+W42+W43)
lambda=780.24e-9
!
! Atomic parameters
!
! write (*,*)'Enter density in m^-1'
! read (*,*)eta
eta=6.9e13
alpha1=3*eta*lambda*lambda/(2*pi)
alpha1tilde=alpha1*c/beta
alpha2=3*eta*lambda*lambda/(2*pi)
alpha2tilde=alpha2*c/beta
alphac=3*eta*lambda*lambda/(2*pi)
alphactilde=alphac*c/beta
!
! Initialize matrices and set up Identity Matrix
!
do 20 i=1,nmat
do 10 j=1,nmat
L(i,j)=cmplx(0.,0.)
Linv(i,j)=cmplx(0.,0.)
10 continue !j loop
Imat(i)=cmplx(0.,0.)
Linv(i,i)=cmplx(1.,0.) !contains identity matrix
20 continue
!
! User defined numbers
!
! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell'
! read (*,*)Om1peak
Om1peak=1
! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell'
! read (*,*)Om2peak
Om2peak=.01
! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot'
! read (*,*) delmax
delmax=0
Ga4=(W41+W42+W43)
Ga2=W21
Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4))
Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4
Om_crit=sqrt(Om_crit/2)
! write (*,*)'Om_crit = ',Om_crit
! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell'
! read (*,*)Omcpeak
Ompeak=0.1
!
! First plot the dispersion lineshape
!
! do 40 n=1,npts
! del(n)=-delmax+2*float(n)*delmax/npts
! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix
! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed
! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed
! !See also note in subroutine
! call ludcmp(L,nmat,nmat,indx,d)
! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi
! do 35 i=1,nmat
! yplot(i,n)=Imat(i)
!35 continue
! if (.false.) call MatCheck(Ltemp,Linv)
!40 continue
! call plotit(del,yplot,nmat,npts)
!
! Now that the user has an idea of the dispersion, do the full propagation problem
! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz'
! read (*,*)delc_prop !del_prop is the detuning used for the propagation
delc_prop=0
delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless
! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz'
! read (*,*)del2_prop !del_prop is the detuning used for the propagation
del2_prop=0.
del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless
! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz'
! read (*,*)del1_prop !del_prop is the detuning used for the propagation
del1_prop=0.
del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless
! write (*,*) 'Enter pulse width in nsec'
! read (*,*)tp
tp=1e-6
tp=beta*tp !Now dimensionless
! write (*,*)'Enter length of cell in m'
! read (*,*)Lcell
Lcell=1;
Lcell=beta*Lcell/c !Now dimensionless
t_start=secnds(0.E0)
! XXXXXXX
!
! Set up initial pulse.
!
tshift=2*tp
tmax=Lcell !Length of time to pass cell (no c because we're dimensionless)
dt=tmax/tpts
dz=dt !(no c because we're dimensionless)
! write (*,*)'tp = ',tp
Nframe=zpts+int(4*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution
if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax'
! write (*,*)'Nframe,tpts = ',Nframe,tpts
!
! Initialize matrices
!
Omold=cmplx(0.,0.)
Omold_vac=cmplx(0.,0.)
tpeak=-1
tpeak_vac=-1
! do 110 n=1,Nframe
do 100 m=1,zpts
Om1(m)=cmplx(0.,0.)
Om2(m)=cmplx(0.,0.)
Omc(m)=cmplx(0.,0.)
Om_vac(m)=cmplx(0.,0.)
rho11(m)=cmplx(1.,0.) !Change this to change the initial condition
rho12(m)=cmplx(0.,0.)
rho13(m)=cmplx(0.,0.)
rho14(m)=cmplx(0.,0.)
rho21(m)=cmplx(0.,0.)
rho22(m)=cmplx(0.,0.)
rho23(m)=cmplx(0.,0.)
rho24(m)=cmplx(0.,0.)
rho31(m)=cmplx(0.,0.)
rho32(m)=cmplx(0.,0.)
rho33(m)=cmplx(0.,0.)
rho34(m)=cmplx(0.,0.)
rho41(m)=cmplx(0.,0.)
rho42(m)=cmplx(0.,0.)
rho43(m)=cmplx(0.,0.)
rho44(m)=cmplx(0.,0.)
100 continue
!110 continue
! Propagation co-efficients
!
a1=1.
a2=0.5*ci*alpha1tilde*dt
a3=0.5*ci*alpha1tilde*dt
a4=0.
a5=0.
a6=0.
b1=1.
b2=0.5*ci*alpha2tilde*dt
b2=0.5*ci*alpha2tilde*dt
b4=0.
b5=0.
b6=0.
b7=0.
c1=1.
c2=0.5*ci*alphactilde*dt
c3=0.5*ci*alphactilde*dt
c4=0.
c5=0.
c6=0.
d1=1-(ga12-ci*(del2_prop-del1_prop))*dt
d2=0.25*ci*dt
d3=-0.25*ci*dt
d4=-0.25*ci*dt
d5=0.25*ci*dt
d6=-0.25*ci*dt
d7=-0.25*ci*dt
e1=1-(ga13+ci*del1_prop)*dt
e2=0.25*ci*dt
e3=-0.25*ci*dt
e4=0.25*ci*dt
e5=-0.25*ci*dt
f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt
f2=0.25*ci*dt
f3=-0.25*ci*dt
f4=0.25*ci*dt
f5=-0.25*ci*dt
g1=1-(ga23+ci*del1_prop)*dt
g2=-0.25*ci*dt
g3=0.25*ci*dt
g4=0.25*ci*dt
g5=-0.25*ci*dt
g6=0.25*ci*dt
g7=0.25*ci*dt
h1=1-(ga24+ci*delc_prop)*dt
h2=0.25*ci*dt
h3=0.25*ci*dt
h4=0.25*ci*dt
h5=0.25*ci*dt
i1=1-(ga34-ci*(del2_prop-delc_prop))*dt
i2=-0.25*ci*dt
i3=0.25*ci*dt
i4=0.25*ci*dt
i5=-0.25*ci*dt
i6=0.25*ci*dt
i7=0.25*ci*dt
j1=1-W12*dt
j2=W12*dt
j3=W31*dt
j4=0.25*ci*dt
j5=-0.25*ci*dt
j6=0.25*ci*dt
j7=-0.25*ci*dt
k1=1-(W32+W31+W34)*dt
k2=W43*dt
k3=-0.25*ci*dt
k4=-0.25*ci*dt
k5=0.25*ci*dt
k6=0.25*ci*dt
k7=-0.25*ci*dt
k8=-0.25*ci*dt
k9=0.25*ci*dt
k10=0.25*ci*dt
l1=1-(W43+W42+W41)*dt
l2=-0.25*ci*dt
l3=0.25*ci*dt
l4=-0.25*ci*dt
l5=0.25*ci*dt
NSkip=int(NFrame/NWrite)
fname='MovieParameters4level_v3.txt'
! write (*,*)'Enter file name to save parameters'
! read (*,3)fname
3 format(a150)
open(9,file=fname)
write (9,133)Nframe,zpts,beta,NSkip,dt
! write (*,*)'Nframe,zpts,beta,NSkip,dt'
! write (*,133)Nframe,zpts,beta,NSkip,dt
133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2)
close (9)
fname='Movie4level_v3.dat'
! write (*,*)'Enter file name to save movie'
! read (*,3)fname
open(9,file=fname)
fname='Movie4level_EndPoints_v3.dat'
! write (*,*)'Enter file name to save endpoints'
! read (*,3)fname
open(10,file=fname)
do 60 n=1,Nframe
t=float(n-1)*dt
Om1(1)=Om1peak
Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp))
Omc(1)=Omcpeak*exp(-(t-tshift)**2/(tp*tp))
Om_vac(1)=Om2(1)
if (int(n/10).eq.0) write(fname,130)'Movie',n
if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n
if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n
130 format(a5,i1)
131 format(a5,i2)
132 format(a5,i3)
! write (*,125)fname
125 format(1x,a12)
! open(9,file=fname)
do 345 m=1,zpts
rho11_last(m)=rho11(m)
rho12_last(m)=rho12(m)
rho13_last(m)=rho13(m)
rho14_last(m)=rho14(m)
rho21_last(m)=rho21(m)
rho22_last(m)=rho22(m)
rho23_last(m)=rho23(m)
rho24_last(m)=rho24(m)
rho31_last(m)=rho31(m)
rho32_last(m)=rho32(m)
rho33_last(m)=rho33(m)
rho34_last(m)=rho34(m)
rho41_last(m)=rho41(m)
rho42_last(m)=rho42(m)
rho43_last(m)=rho43(m)
rho44_last(m)=rho44(m)
345 continue
do 50 m=zpts,2,-1
z(m)=float(m)*dz
Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1)
Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1)
Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1)
rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m)
rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m)
rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m)
rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m)
rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m)
rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m))
rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m))
rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m)
rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)*f3*conjg(Omc(m))*rho12_last(m)
rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m)
rho21(m)=conjg(rho12(m))
! rho22(m) needs to be calculated lower down
rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m))
rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m)
rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m)
rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*Omc(m)*(rho44_last(m)-rho22_last(m))
rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*Omc(m-1)*(rho44_last(m)-rho22_last(m))
rho31(m)=conjg(rho13(m))
rho32(m)=conjg(rho23(m))
rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m)
rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m)
rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m)
rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m)
rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m)
rho41(m)=conjg(rho14(m))
rho42(m)=conjg(rho24(m))
rho43(m)=conjg(rho34(m))
rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m)
rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m)
rho22(m)=1-rho11(m)-rho33(m)-rho44(m)
rho11_last(m)=rho11(m)
rho12_last(m)=rho12(m)
rho13_last(m)=rho13(m)
rho14_last(m)=rho14(m)
rho21_last(m)=rho21(m)
rho22_last(m)=rho22(m)
rho23_last(m)=rho23(m)
rho24_last(m)=rho24(m)
rho31_last(m)=rho31(m)
rho32_last(m)=rho32(m)
rho33_last(m)=rho33(m)
rho34_last(m)=rho34(m)
rho41_last(m)=rho41(m)
rho42_last(m)=rho42(m)
rho43_last(m)=rho43(m)
rho44_last(m)=rho44(m)
Om_vac(m)=a1*Om_vac(m-1)
if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m)
50 continue
if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t
if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t
write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File
Omold=Om2(zpts)
Omold_vac=Om_vac(zpts)
60 continue
close(9)
close(10)
139 format(1x,f12.6,',',F12.6,',',F12.6)
! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds'
! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds'
write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9)
120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6)
t_end=secnds(0.E0)
t_elapsed=t_end-t_start
! write(*,*)'T elapsed = ',t_elapsed
stop
end
!
subroutine IMatConstruct(Om,Imat)
!
! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat.
implicit none
integer i,nmat
parameter (nmat=3)
real*8 Om
complex*8 Imat(nmat)
Imat(1)=-cmplx(0.,-0.5*Om)
Imat(2)=-cmplx(0.,0.5*Om)
Imat(3)=cmplx(0.,0.)
return
end
!
subroutine LMatConstruct(Om,del,L)
!
implicit none
integer nmat
parameter (nmat=3)
real*8 del,ga12,Om,W21
complex*8 L(nmat,nmat)
common/para/ga12,W21
L(1,1)=cmplx (-ga12,-del)
L(1,3)=cmplx(0.,Om)
L(2,2)=cmplx(-ga12,del)
L(2,3)=cmplx(0.,-Om)
L(3,1)=cmplx(0.,0.5*Om)
L(3,2)=cmplx(0.,-0.5*Om)
L(3,3)=cmplx(-W21,0.)
return
end
!
subroutine MatCheck(L,Linv)
!
implicit none
integer i,j,k,nmat
parameter (nmat=3)
complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat)
write (*,*)'L = '
do 10 i=1,nmat
write (*,120)(L(i,j),j=1,nmat)
10 continue
write (*,*)'Linv = '
do 20 i=1,nmat
write (*,120)(Linv(i,j),j=1,nmat)
20 continue
write (*,*)'Res = '
do 50 i=1,nmat
do 40 j=1,nmat
Res(i,j)=cmplx(0.,0.)
do 30 k=1,nmat
Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j)
30 continue
40 continue
write (*,120)(Res(i,j),j=1,nmat)
50 continue
120 format(1x,3(f8.4,'+i',f8.4,' '))
return
end
!
subroutine plotit(x,y,nmat,npts)
!
! See MATLAB routine that will do this plotting.
implicit none
integer i,n,nmat,npts
real*8 x(npts)
complex*8 y(nmat,npts)
write (*,*)'For now, we are just going to write the file'
open(9, FILE='TwoLevelPulseProp.txt')
do 10 n=1,npts
write (9,100)x(n),(y(i,n),i=1,3)
! write(*,100)x(n),(y(i,n),i=1,3)
10 continue
100 format(1x,f9.6,',',3(f9.6,',',f9.6,','))
return
end
!********************************************************
! Numerical Recipes
!********************************************************
SUBROUTINE ludcmp(a,n,np,indx,d)
implicit none
INTEGER n,np,indx(n),NMAX
REAL*8 d,TINY
PARAMETER (NMAX=500,TINY=1.0e-20)
INTEGER i,imax,j,k
REAL aamax,dum,vv(NMAX)
! My changed variables
complex*8 sum,dum2
complex*8 a(np,np)
d=1.
do 12 i=1,n
aamax=0.
do 11 j=1,n
if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j))
11 continue
if (aamax.eq.0.) write (*,*) 'singular matrix in ludcmp'
vv(i)=1./aamax
12 continue
do 19 j=1,n
do 14 i=1,j-1
sum=a(i,j)
do 13 k=1,i-1
sum=sum-a(i,k)*a(k,j)
13 continue
a(i,j)=sum
14 continue
aamax=0.
do 16 i=j,n
sum=a(i,j)
do 15 k=1,j-1
sum=sum-a(i,k)*a(k,j)
15 continue
a(i,j)=sum
dum=vv(i)*cabs(sum)
if (dum.ge.aamax) then
imax=i
aamax=dum
endif
16 continue
if (j.ne.imax)then
do 17 k=1,n
dum2=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum2
17 continue
d=-d
vv(imax)=vv(j)
endif
indx(j)=imax
if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY)
if(j.ne.n)then
dum2=1./a(j,j)
do 18 i=j+1,n
a(i,j)=a(i,j)*dum2
18 continue
endif
19 continue
return
END
SUBROUTINE lubksb(a,n,np,indx,b)
implicit none
INTEGER n,np,indx(n)
INTEGER i,ii,j,ll
! My changed variables
complex*8 sum
complex*8 b(n)
complex*8 a(np,np)
ii=0
do 12 i=1,n
ll=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.0)then
do 11 j=ii,i-1
sum=sum-a(i,j)*b(j)
11 continue
else if (sum.ne.0.) then
ii=i
endif
b(i)=sum
12 continue
do 14 i=n,1,-1
sum=b(i)
do 13 j=i+1,n
sum=sum-a(i,j)*b(j)
13 continue
b(i)=sum/a(i,i)
14 continue
return
END
|